fork.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/namespace.h>
  20. #include <linux/personality.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/sem.h>
  23. #include <linux/file.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/fs.h>
  28. #include <linux/nsproxy.h>
  29. #include <linux/capability.h>
  30. #include <linux/cpu.h>
  31. #include <linux/cpuset.h>
  32. #include <linux/security.h>
  33. #include <linux/swap.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/futex.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/taskstats_kern.h>
  48. #include <linux/random.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/mmu_context.h>
  53. #include <asm/cacheflush.h>
  54. #include <asm/tlbflush.h>
  55. /*
  56. * Protected counters by write_lock_irq(&tasklist_lock)
  57. */
  58. unsigned long total_forks; /* Handle normal Linux uptimes. */
  59. int nr_threads; /* The idle threads do not count.. */
  60. int max_threads; /* tunable limit on nr_threads */
  61. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  62. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  63. int nr_processes(void)
  64. {
  65. int cpu;
  66. int total = 0;
  67. for_each_online_cpu(cpu)
  68. total += per_cpu(process_counts, cpu);
  69. return total;
  70. }
  71. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  72. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  73. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  74. static kmem_cache_t *task_struct_cachep;
  75. #endif
  76. /* SLAB cache for signal_struct structures (tsk->signal) */
  77. static kmem_cache_t *signal_cachep;
  78. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  79. kmem_cache_t *sighand_cachep;
  80. /* SLAB cache for files_struct structures (tsk->files) */
  81. kmem_cache_t *files_cachep;
  82. /* SLAB cache for fs_struct structures (tsk->fs) */
  83. kmem_cache_t *fs_cachep;
  84. /* SLAB cache for vm_area_struct structures */
  85. kmem_cache_t *vm_area_cachep;
  86. /* SLAB cache for mm_struct structures (tsk->mm) */
  87. static kmem_cache_t *mm_cachep;
  88. void free_task(struct task_struct *tsk)
  89. {
  90. free_thread_info(tsk->thread_info);
  91. rt_mutex_debug_task_free(tsk);
  92. free_task_struct(tsk);
  93. }
  94. EXPORT_SYMBOL(free_task);
  95. void __put_task_struct(struct task_struct *tsk)
  96. {
  97. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  98. WARN_ON(atomic_read(&tsk->usage));
  99. WARN_ON(tsk == current);
  100. security_task_free(tsk);
  101. free_uid(tsk->user);
  102. put_group_info(tsk->group_info);
  103. delayacct_tsk_free(tsk);
  104. if (!profile_handoff_task(tsk))
  105. free_task(tsk);
  106. }
  107. void __init fork_init(unsigned long mempages)
  108. {
  109. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  110. #ifndef ARCH_MIN_TASKALIGN
  111. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  112. #endif
  113. /* create a slab on which task_structs can be allocated */
  114. task_struct_cachep =
  115. kmem_cache_create("task_struct", sizeof(struct task_struct),
  116. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  117. #endif
  118. /*
  119. * The default maximum number of threads is set to a safe
  120. * value: the thread structures can take up at most half
  121. * of memory.
  122. */
  123. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  124. /*
  125. * we need to allow at least 20 threads to boot a system
  126. */
  127. if(max_threads < 20)
  128. max_threads = 20;
  129. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  130. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  131. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  132. init_task.signal->rlim[RLIMIT_NPROC];
  133. }
  134. static struct task_struct *dup_task_struct(struct task_struct *orig)
  135. {
  136. struct task_struct *tsk;
  137. struct thread_info *ti;
  138. prepare_to_copy(orig);
  139. tsk = alloc_task_struct();
  140. if (!tsk)
  141. return NULL;
  142. ti = alloc_thread_info(tsk);
  143. if (!ti) {
  144. free_task_struct(tsk);
  145. return NULL;
  146. }
  147. *tsk = *orig;
  148. tsk->thread_info = ti;
  149. setup_thread_stack(tsk, orig);
  150. #ifdef CONFIG_CC_STACKPROTECTOR
  151. tsk->stack_canary = get_random_int();
  152. #endif
  153. /* One for us, one for whoever does the "release_task()" (usually parent) */
  154. atomic_set(&tsk->usage,2);
  155. atomic_set(&tsk->fs_excl, 0);
  156. #ifdef CONFIG_BLK_DEV_IO_TRACE
  157. tsk->btrace_seq = 0;
  158. #endif
  159. tsk->splice_pipe = NULL;
  160. return tsk;
  161. }
  162. #ifdef CONFIG_MMU
  163. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  164. {
  165. struct vm_area_struct *mpnt, *tmp, **pprev;
  166. struct rb_node **rb_link, *rb_parent;
  167. int retval;
  168. unsigned long charge;
  169. struct mempolicy *pol;
  170. down_write(&oldmm->mmap_sem);
  171. flush_cache_mm(oldmm);
  172. /*
  173. * Not linked in yet - no deadlock potential:
  174. */
  175. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  176. mm->locked_vm = 0;
  177. mm->mmap = NULL;
  178. mm->mmap_cache = NULL;
  179. mm->free_area_cache = oldmm->mmap_base;
  180. mm->cached_hole_size = ~0UL;
  181. mm->map_count = 0;
  182. cpus_clear(mm->cpu_vm_mask);
  183. mm->mm_rb = RB_ROOT;
  184. rb_link = &mm->mm_rb.rb_node;
  185. rb_parent = NULL;
  186. pprev = &mm->mmap;
  187. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  188. struct file *file;
  189. if (mpnt->vm_flags & VM_DONTCOPY) {
  190. long pages = vma_pages(mpnt);
  191. mm->total_vm -= pages;
  192. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  193. -pages);
  194. continue;
  195. }
  196. charge = 0;
  197. if (mpnt->vm_flags & VM_ACCOUNT) {
  198. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  199. if (security_vm_enough_memory(len))
  200. goto fail_nomem;
  201. charge = len;
  202. }
  203. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  204. if (!tmp)
  205. goto fail_nomem;
  206. *tmp = *mpnt;
  207. pol = mpol_copy(vma_policy(mpnt));
  208. retval = PTR_ERR(pol);
  209. if (IS_ERR(pol))
  210. goto fail_nomem_policy;
  211. vma_set_policy(tmp, pol);
  212. tmp->vm_flags &= ~VM_LOCKED;
  213. tmp->vm_mm = mm;
  214. tmp->vm_next = NULL;
  215. anon_vma_link(tmp);
  216. file = tmp->vm_file;
  217. if (file) {
  218. struct inode *inode = file->f_dentry->d_inode;
  219. get_file(file);
  220. if (tmp->vm_flags & VM_DENYWRITE)
  221. atomic_dec(&inode->i_writecount);
  222. /* insert tmp into the share list, just after mpnt */
  223. spin_lock(&file->f_mapping->i_mmap_lock);
  224. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  225. flush_dcache_mmap_lock(file->f_mapping);
  226. vma_prio_tree_add(tmp, mpnt);
  227. flush_dcache_mmap_unlock(file->f_mapping);
  228. spin_unlock(&file->f_mapping->i_mmap_lock);
  229. }
  230. /*
  231. * Link in the new vma and copy the page table entries.
  232. */
  233. *pprev = tmp;
  234. pprev = &tmp->vm_next;
  235. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  236. rb_link = &tmp->vm_rb.rb_right;
  237. rb_parent = &tmp->vm_rb;
  238. mm->map_count++;
  239. retval = copy_page_range(mm, oldmm, mpnt);
  240. if (tmp->vm_ops && tmp->vm_ops->open)
  241. tmp->vm_ops->open(tmp);
  242. if (retval)
  243. goto out;
  244. }
  245. retval = 0;
  246. out:
  247. up_write(&mm->mmap_sem);
  248. flush_tlb_mm(oldmm);
  249. up_write(&oldmm->mmap_sem);
  250. return retval;
  251. fail_nomem_policy:
  252. kmem_cache_free(vm_area_cachep, tmp);
  253. fail_nomem:
  254. retval = -ENOMEM;
  255. vm_unacct_memory(charge);
  256. goto out;
  257. }
  258. static inline int mm_alloc_pgd(struct mm_struct * mm)
  259. {
  260. mm->pgd = pgd_alloc(mm);
  261. if (unlikely(!mm->pgd))
  262. return -ENOMEM;
  263. return 0;
  264. }
  265. static inline void mm_free_pgd(struct mm_struct * mm)
  266. {
  267. pgd_free(mm->pgd);
  268. }
  269. #else
  270. #define dup_mmap(mm, oldmm) (0)
  271. #define mm_alloc_pgd(mm) (0)
  272. #define mm_free_pgd(mm)
  273. #endif /* CONFIG_MMU */
  274. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  275. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  276. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  277. #include <linux/init_task.h>
  278. static struct mm_struct * mm_init(struct mm_struct * mm)
  279. {
  280. atomic_set(&mm->mm_users, 1);
  281. atomic_set(&mm->mm_count, 1);
  282. init_rwsem(&mm->mmap_sem);
  283. INIT_LIST_HEAD(&mm->mmlist);
  284. mm->core_waiters = 0;
  285. mm->nr_ptes = 0;
  286. set_mm_counter(mm, file_rss, 0);
  287. set_mm_counter(mm, anon_rss, 0);
  288. spin_lock_init(&mm->page_table_lock);
  289. rwlock_init(&mm->ioctx_list_lock);
  290. mm->ioctx_list = NULL;
  291. mm->free_area_cache = TASK_UNMAPPED_BASE;
  292. mm->cached_hole_size = ~0UL;
  293. if (likely(!mm_alloc_pgd(mm))) {
  294. mm->def_flags = 0;
  295. return mm;
  296. }
  297. free_mm(mm);
  298. return NULL;
  299. }
  300. /*
  301. * Allocate and initialize an mm_struct.
  302. */
  303. struct mm_struct * mm_alloc(void)
  304. {
  305. struct mm_struct * mm;
  306. mm = allocate_mm();
  307. if (mm) {
  308. memset(mm, 0, sizeof(*mm));
  309. mm = mm_init(mm);
  310. }
  311. return mm;
  312. }
  313. /*
  314. * Called when the last reference to the mm
  315. * is dropped: either by a lazy thread or by
  316. * mmput. Free the page directory and the mm.
  317. */
  318. void fastcall __mmdrop(struct mm_struct *mm)
  319. {
  320. BUG_ON(mm == &init_mm);
  321. mm_free_pgd(mm);
  322. destroy_context(mm);
  323. free_mm(mm);
  324. }
  325. /*
  326. * Decrement the use count and release all resources for an mm.
  327. */
  328. void mmput(struct mm_struct *mm)
  329. {
  330. might_sleep();
  331. if (atomic_dec_and_test(&mm->mm_users)) {
  332. exit_aio(mm);
  333. exit_mmap(mm);
  334. if (!list_empty(&mm->mmlist)) {
  335. spin_lock(&mmlist_lock);
  336. list_del(&mm->mmlist);
  337. spin_unlock(&mmlist_lock);
  338. }
  339. put_swap_token(mm);
  340. mmdrop(mm);
  341. }
  342. }
  343. EXPORT_SYMBOL_GPL(mmput);
  344. /**
  345. * get_task_mm - acquire a reference to the task's mm
  346. *
  347. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  348. * this kernel workthread has transiently adopted a user mm with use_mm,
  349. * to do its AIO) is not set and if so returns a reference to it, after
  350. * bumping up the use count. User must release the mm via mmput()
  351. * after use. Typically used by /proc and ptrace.
  352. */
  353. struct mm_struct *get_task_mm(struct task_struct *task)
  354. {
  355. struct mm_struct *mm;
  356. task_lock(task);
  357. mm = task->mm;
  358. if (mm) {
  359. if (task->flags & PF_BORROWED_MM)
  360. mm = NULL;
  361. else
  362. atomic_inc(&mm->mm_users);
  363. }
  364. task_unlock(task);
  365. return mm;
  366. }
  367. EXPORT_SYMBOL_GPL(get_task_mm);
  368. /* Please note the differences between mmput and mm_release.
  369. * mmput is called whenever we stop holding onto a mm_struct,
  370. * error success whatever.
  371. *
  372. * mm_release is called after a mm_struct has been removed
  373. * from the current process.
  374. *
  375. * This difference is important for error handling, when we
  376. * only half set up a mm_struct for a new process and need to restore
  377. * the old one. Because we mmput the new mm_struct before
  378. * restoring the old one. . .
  379. * Eric Biederman 10 January 1998
  380. */
  381. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  382. {
  383. struct completion *vfork_done = tsk->vfork_done;
  384. /* Get rid of any cached register state */
  385. deactivate_mm(tsk, mm);
  386. /* notify parent sleeping on vfork() */
  387. if (vfork_done) {
  388. tsk->vfork_done = NULL;
  389. complete(vfork_done);
  390. }
  391. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  392. u32 __user * tidptr = tsk->clear_child_tid;
  393. tsk->clear_child_tid = NULL;
  394. /*
  395. * We don't check the error code - if userspace has
  396. * not set up a proper pointer then tough luck.
  397. */
  398. put_user(0, tidptr);
  399. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  400. }
  401. }
  402. /*
  403. * Allocate a new mm structure and copy contents from the
  404. * mm structure of the passed in task structure.
  405. */
  406. static struct mm_struct *dup_mm(struct task_struct *tsk)
  407. {
  408. struct mm_struct *mm, *oldmm = current->mm;
  409. int err;
  410. if (!oldmm)
  411. return NULL;
  412. mm = allocate_mm();
  413. if (!mm)
  414. goto fail_nomem;
  415. memcpy(mm, oldmm, sizeof(*mm));
  416. if (!mm_init(mm))
  417. goto fail_nomem;
  418. if (init_new_context(tsk, mm))
  419. goto fail_nocontext;
  420. err = dup_mmap(mm, oldmm);
  421. if (err)
  422. goto free_pt;
  423. mm->hiwater_rss = get_mm_rss(mm);
  424. mm->hiwater_vm = mm->total_vm;
  425. return mm;
  426. free_pt:
  427. mmput(mm);
  428. fail_nomem:
  429. return NULL;
  430. fail_nocontext:
  431. /*
  432. * If init_new_context() failed, we cannot use mmput() to free the mm
  433. * because it calls destroy_context()
  434. */
  435. mm_free_pgd(mm);
  436. free_mm(mm);
  437. return NULL;
  438. }
  439. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  440. {
  441. struct mm_struct * mm, *oldmm;
  442. int retval;
  443. tsk->min_flt = tsk->maj_flt = 0;
  444. tsk->nvcsw = tsk->nivcsw = 0;
  445. tsk->mm = NULL;
  446. tsk->active_mm = NULL;
  447. /*
  448. * Are we cloning a kernel thread?
  449. *
  450. * We need to steal a active VM for that..
  451. */
  452. oldmm = current->mm;
  453. if (!oldmm)
  454. return 0;
  455. if (clone_flags & CLONE_VM) {
  456. atomic_inc(&oldmm->mm_users);
  457. mm = oldmm;
  458. goto good_mm;
  459. }
  460. retval = -ENOMEM;
  461. mm = dup_mm(tsk);
  462. if (!mm)
  463. goto fail_nomem;
  464. good_mm:
  465. tsk->mm = mm;
  466. tsk->active_mm = mm;
  467. return 0;
  468. fail_nomem:
  469. return retval;
  470. }
  471. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  472. {
  473. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  474. /* We don't need to lock fs - think why ;-) */
  475. if (fs) {
  476. atomic_set(&fs->count, 1);
  477. rwlock_init(&fs->lock);
  478. fs->umask = old->umask;
  479. read_lock(&old->lock);
  480. fs->rootmnt = mntget(old->rootmnt);
  481. fs->root = dget(old->root);
  482. fs->pwdmnt = mntget(old->pwdmnt);
  483. fs->pwd = dget(old->pwd);
  484. if (old->altroot) {
  485. fs->altrootmnt = mntget(old->altrootmnt);
  486. fs->altroot = dget(old->altroot);
  487. } else {
  488. fs->altrootmnt = NULL;
  489. fs->altroot = NULL;
  490. }
  491. read_unlock(&old->lock);
  492. }
  493. return fs;
  494. }
  495. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  496. {
  497. return __copy_fs_struct(old);
  498. }
  499. EXPORT_SYMBOL_GPL(copy_fs_struct);
  500. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  501. {
  502. if (clone_flags & CLONE_FS) {
  503. atomic_inc(&current->fs->count);
  504. return 0;
  505. }
  506. tsk->fs = __copy_fs_struct(current->fs);
  507. if (!tsk->fs)
  508. return -ENOMEM;
  509. return 0;
  510. }
  511. static int count_open_files(struct fdtable *fdt)
  512. {
  513. int size = fdt->max_fdset;
  514. int i;
  515. /* Find the last open fd */
  516. for (i = size/(8*sizeof(long)); i > 0; ) {
  517. if (fdt->open_fds->fds_bits[--i])
  518. break;
  519. }
  520. i = (i+1) * 8 * sizeof(long);
  521. return i;
  522. }
  523. static struct files_struct *alloc_files(void)
  524. {
  525. struct files_struct *newf;
  526. struct fdtable *fdt;
  527. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  528. if (!newf)
  529. goto out;
  530. atomic_set(&newf->count, 1);
  531. spin_lock_init(&newf->file_lock);
  532. newf->next_fd = 0;
  533. fdt = &newf->fdtab;
  534. fdt->max_fds = NR_OPEN_DEFAULT;
  535. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  536. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  537. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  538. fdt->fd = &newf->fd_array[0];
  539. INIT_RCU_HEAD(&fdt->rcu);
  540. fdt->free_files = NULL;
  541. fdt->next = NULL;
  542. rcu_assign_pointer(newf->fdt, fdt);
  543. out:
  544. return newf;
  545. }
  546. /*
  547. * Allocate a new files structure and copy contents from the
  548. * passed in files structure.
  549. * errorp will be valid only when the returned files_struct is NULL.
  550. */
  551. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  552. {
  553. struct files_struct *newf;
  554. struct file **old_fds, **new_fds;
  555. int open_files, size, i, expand;
  556. struct fdtable *old_fdt, *new_fdt;
  557. *errorp = -ENOMEM;
  558. newf = alloc_files();
  559. if (!newf)
  560. goto out;
  561. spin_lock(&oldf->file_lock);
  562. old_fdt = files_fdtable(oldf);
  563. new_fdt = files_fdtable(newf);
  564. size = old_fdt->max_fdset;
  565. open_files = count_open_files(old_fdt);
  566. expand = 0;
  567. /*
  568. * Check whether we need to allocate a larger fd array or fd set.
  569. * Note: we're not a clone task, so the open count won't change.
  570. */
  571. if (open_files > new_fdt->max_fdset) {
  572. new_fdt->max_fdset = 0;
  573. expand = 1;
  574. }
  575. if (open_files > new_fdt->max_fds) {
  576. new_fdt->max_fds = 0;
  577. expand = 1;
  578. }
  579. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  580. if (expand) {
  581. spin_unlock(&oldf->file_lock);
  582. spin_lock(&newf->file_lock);
  583. *errorp = expand_files(newf, open_files-1);
  584. spin_unlock(&newf->file_lock);
  585. if (*errorp < 0)
  586. goto out_release;
  587. new_fdt = files_fdtable(newf);
  588. /*
  589. * Reacquire the oldf lock and a pointer to its fd table
  590. * who knows it may have a new bigger fd table. We need
  591. * the latest pointer.
  592. */
  593. spin_lock(&oldf->file_lock);
  594. old_fdt = files_fdtable(oldf);
  595. }
  596. old_fds = old_fdt->fd;
  597. new_fds = new_fdt->fd;
  598. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  599. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  600. for (i = open_files; i != 0; i--) {
  601. struct file *f = *old_fds++;
  602. if (f) {
  603. get_file(f);
  604. } else {
  605. /*
  606. * The fd may be claimed in the fd bitmap but not yet
  607. * instantiated in the files array if a sibling thread
  608. * is partway through open(). So make sure that this
  609. * fd is available to the new process.
  610. */
  611. FD_CLR(open_files - i, new_fdt->open_fds);
  612. }
  613. rcu_assign_pointer(*new_fds++, f);
  614. }
  615. spin_unlock(&oldf->file_lock);
  616. /* compute the remainder to be cleared */
  617. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  618. /* This is long word aligned thus could use a optimized version */
  619. memset(new_fds, 0, size);
  620. if (new_fdt->max_fdset > open_files) {
  621. int left = (new_fdt->max_fdset-open_files)/8;
  622. int start = open_files / (8 * sizeof(unsigned long));
  623. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  624. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  625. }
  626. out:
  627. return newf;
  628. out_release:
  629. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  630. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  631. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  632. kmem_cache_free(files_cachep, newf);
  633. return NULL;
  634. }
  635. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  636. {
  637. struct files_struct *oldf, *newf;
  638. int error = 0;
  639. /*
  640. * A background process may not have any files ...
  641. */
  642. oldf = current->files;
  643. if (!oldf)
  644. goto out;
  645. if (clone_flags & CLONE_FILES) {
  646. atomic_inc(&oldf->count);
  647. goto out;
  648. }
  649. /*
  650. * Note: we may be using current for both targets (See exec.c)
  651. * This works because we cache current->files (old) as oldf. Don't
  652. * break this.
  653. */
  654. tsk->files = NULL;
  655. newf = dup_fd(oldf, &error);
  656. if (!newf)
  657. goto out;
  658. tsk->files = newf;
  659. error = 0;
  660. out:
  661. return error;
  662. }
  663. /*
  664. * Helper to unshare the files of the current task.
  665. * We don't want to expose copy_files internals to
  666. * the exec layer of the kernel.
  667. */
  668. int unshare_files(void)
  669. {
  670. struct files_struct *files = current->files;
  671. int rc;
  672. BUG_ON(!files);
  673. /* This can race but the race causes us to copy when we don't
  674. need to and drop the copy */
  675. if(atomic_read(&files->count) == 1)
  676. {
  677. atomic_inc(&files->count);
  678. return 0;
  679. }
  680. rc = copy_files(0, current);
  681. if(rc)
  682. current->files = files;
  683. return rc;
  684. }
  685. EXPORT_SYMBOL(unshare_files);
  686. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  687. {
  688. struct sighand_struct *sig;
  689. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  690. atomic_inc(&current->sighand->count);
  691. return 0;
  692. }
  693. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  694. rcu_assign_pointer(tsk->sighand, sig);
  695. if (!sig)
  696. return -ENOMEM;
  697. atomic_set(&sig->count, 1);
  698. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  699. return 0;
  700. }
  701. void __cleanup_sighand(struct sighand_struct *sighand)
  702. {
  703. if (atomic_dec_and_test(&sighand->count))
  704. kmem_cache_free(sighand_cachep, sighand);
  705. }
  706. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  707. {
  708. struct signal_struct *sig;
  709. int ret;
  710. if (clone_flags & CLONE_THREAD) {
  711. atomic_inc(&current->signal->count);
  712. atomic_inc(&current->signal->live);
  713. taskstats_tgid_alloc(current);
  714. return 0;
  715. }
  716. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  717. tsk->signal = sig;
  718. if (!sig)
  719. return -ENOMEM;
  720. ret = copy_thread_group_keys(tsk);
  721. if (ret < 0) {
  722. kmem_cache_free(signal_cachep, sig);
  723. return ret;
  724. }
  725. atomic_set(&sig->count, 1);
  726. atomic_set(&sig->live, 1);
  727. init_waitqueue_head(&sig->wait_chldexit);
  728. sig->flags = 0;
  729. sig->group_exit_code = 0;
  730. sig->group_exit_task = NULL;
  731. sig->group_stop_count = 0;
  732. sig->curr_target = NULL;
  733. init_sigpending(&sig->shared_pending);
  734. INIT_LIST_HEAD(&sig->posix_timers);
  735. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  736. sig->it_real_incr.tv64 = 0;
  737. sig->real_timer.function = it_real_fn;
  738. sig->tsk = tsk;
  739. sig->it_virt_expires = cputime_zero;
  740. sig->it_virt_incr = cputime_zero;
  741. sig->it_prof_expires = cputime_zero;
  742. sig->it_prof_incr = cputime_zero;
  743. sig->leader = 0; /* session leadership doesn't inherit */
  744. sig->tty_old_pgrp = 0;
  745. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  746. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  747. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  748. sig->sched_time = 0;
  749. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  750. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  751. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  752. taskstats_tgid_init(sig);
  753. task_lock(current->group_leader);
  754. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  755. task_unlock(current->group_leader);
  756. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  757. /*
  758. * New sole thread in the process gets an expiry time
  759. * of the whole CPU time limit.
  760. */
  761. tsk->it_prof_expires =
  762. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  763. }
  764. acct_init_pacct(&sig->pacct);
  765. return 0;
  766. }
  767. void __cleanup_signal(struct signal_struct *sig)
  768. {
  769. exit_thread_group_keys(sig);
  770. kmem_cache_free(signal_cachep, sig);
  771. }
  772. static inline void cleanup_signal(struct task_struct *tsk)
  773. {
  774. struct signal_struct *sig = tsk->signal;
  775. atomic_dec(&sig->live);
  776. if (atomic_dec_and_test(&sig->count))
  777. __cleanup_signal(sig);
  778. }
  779. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  780. {
  781. unsigned long new_flags = p->flags;
  782. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  783. new_flags |= PF_FORKNOEXEC;
  784. if (!(clone_flags & CLONE_PTRACE))
  785. p->ptrace = 0;
  786. p->flags = new_flags;
  787. }
  788. asmlinkage long sys_set_tid_address(int __user *tidptr)
  789. {
  790. current->clear_child_tid = tidptr;
  791. return current->pid;
  792. }
  793. static inline void rt_mutex_init_task(struct task_struct *p)
  794. {
  795. #ifdef CONFIG_RT_MUTEXES
  796. spin_lock_init(&p->pi_lock);
  797. plist_head_init(&p->pi_waiters, &p->pi_lock);
  798. p->pi_blocked_on = NULL;
  799. #endif
  800. }
  801. /*
  802. * This creates a new process as a copy of the old one,
  803. * but does not actually start it yet.
  804. *
  805. * It copies the registers, and all the appropriate
  806. * parts of the process environment (as per the clone
  807. * flags). The actual kick-off is left to the caller.
  808. */
  809. static struct task_struct *copy_process(unsigned long clone_flags,
  810. unsigned long stack_start,
  811. struct pt_regs *regs,
  812. unsigned long stack_size,
  813. int __user *parent_tidptr,
  814. int __user *child_tidptr,
  815. int pid)
  816. {
  817. int retval;
  818. struct task_struct *p = NULL;
  819. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  820. return ERR_PTR(-EINVAL);
  821. /*
  822. * Thread groups must share signals as well, and detached threads
  823. * can only be started up within the thread group.
  824. */
  825. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  826. return ERR_PTR(-EINVAL);
  827. /*
  828. * Shared signal handlers imply shared VM. By way of the above,
  829. * thread groups also imply shared VM. Blocking this case allows
  830. * for various simplifications in other code.
  831. */
  832. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  833. return ERR_PTR(-EINVAL);
  834. retval = security_task_create(clone_flags);
  835. if (retval)
  836. goto fork_out;
  837. retval = -ENOMEM;
  838. p = dup_task_struct(current);
  839. if (!p)
  840. goto fork_out;
  841. rt_mutex_init_task(p);
  842. #ifdef CONFIG_TRACE_IRQFLAGS
  843. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  844. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  845. #endif
  846. retval = -EAGAIN;
  847. if (atomic_read(&p->user->processes) >=
  848. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  849. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  850. p->user != &root_user)
  851. goto bad_fork_free;
  852. }
  853. atomic_inc(&p->user->__count);
  854. atomic_inc(&p->user->processes);
  855. get_group_info(p->group_info);
  856. /*
  857. * If multiple threads are within copy_process(), then this check
  858. * triggers too late. This doesn't hurt, the check is only there
  859. * to stop root fork bombs.
  860. */
  861. if (nr_threads >= max_threads)
  862. goto bad_fork_cleanup_count;
  863. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  864. goto bad_fork_cleanup_count;
  865. if (p->binfmt && !try_module_get(p->binfmt->module))
  866. goto bad_fork_cleanup_put_domain;
  867. p->did_exec = 0;
  868. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  869. copy_flags(clone_flags, p);
  870. p->pid = pid;
  871. retval = -EFAULT;
  872. if (clone_flags & CLONE_PARENT_SETTID)
  873. if (put_user(p->pid, parent_tidptr))
  874. goto bad_fork_cleanup_delays_binfmt;
  875. INIT_LIST_HEAD(&p->children);
  876. INIT_LIST_HEAD(&p->sibling);
  877. p->vfork_done = NULL;
  878. spin_lock_init(&p->alloc_lock);
  879. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  880. init_sigpending(&p->pending);
  881. p->utime = cputime_zero;
  882. p->stime = cputime_zero;
  883. p->sched_time = 0;
  884. p->rchar = 0; /* I/O counter: bytes read */
  885. p->wchar = 0; /* I/O counter: bytes written */
  886. p->syscr = 0; /* I/O counter: read syscalls */
  887. p->syscw = 0; /* I/O counter: write syscalls */
  888. acct_clear_integrals(p);
  889. p->it_virt_expires = cputime_zero;
  890. p->it_prof_expires = cputime_zero;
  891. p->it_sched_expires = 0;
  892. INIT_LIST_HEAD(&p->cpu_timers[0]);
  893. INIT_LIST_HEAD(&p->cpu_timers[1]);
  894. INIT_LIST_HEAD(&p->cpu_timers[2]);
  895. p->lock_depth = -1; /* -1 = no lock */
  896. do_posix_clock_monotonic_gettime(&p->start_time);
  897. p->security = NULL;
  898. p->io_context = NULL;
  899. p->io_wait = NULL;
  900. p->audit_context = NULL;
  901. cpuset_fork(p);
  902. #ifdef CONFIG_NUMA
  903. p->mempolicy = mpol_copy(p->mempolicy);
  904. if (IS_ERR(p->mempolicy)) {
  905. retval = PTR_ERR(p->mempolicy);
  906. p->mempolicy = NULL;
  907. goto bad_fork_cleanup_cpuset;
  908. }
  909. mpol_fix_fork_child_flag(p);
  910. #endif
  911. #ifdef CONFIG_TRACE_IRQFLAGS
  912. p->irq_events = 0;
  913. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  914. p->hardirqs_enabled = 1;
  915. #else
  916. p->hardirqs_enabled = 0;
  917. #endif
  918. p->hardirq_enable_ip = 0;
  919. p->hardirq_enable_event = 0;
  920. p->hardirq_disable_ip = _THIS_IP_;
  921. p->hardirq_disable_event = 0;
  922. p->softirqs_enabled = 1;
  923. p->softirq_enable_ip = _THIS_IP_;
  924. p->softirq_enable_event = 0;
  925. p->softirq_disable_ip = 0;
  926. p->softirq_disable_event = 0;
  927. p->hardirq_context = 0;
  928. p->softirq_context = 0;
  929. #endif
  930. #ifdef CONFIG_LOCKDEP
  931. p->lockdep_depth = 0; /* no locks held yet */
  932. p->curr_chain_key = 0;
  933. p->lockdep_recursion = 0;
  934. #endif
  935. #ifdef CONFIG_DEBUG_MUTEXES
  936. p->blocked_on = NULL; /* not blocked yet */
  937. #endif
  938. p->tgid = p->pid;
  939. if (clone_flags & CLONE_THREAD)
  940. p->tgid = current->tgid;
  941. if ((retval = security_task_alloc(p)))
  942. goto bad_fork_cleanup_policy;
  943. if ((retval = audit_alloc(p)))
  944. goto bad_fork_cleanup_security;
  945. /* copy all the process information */
  946. if ((retval = copy_semundo(clone_flags, p)))
  947. goto bad_fork_cleanup_audit;
  948. if ((retval = copy_files(clone_flags, p)))
  949. goto bad_fork_cleanup_semundo;
  950. if ((retval = copy_fs(clone_flags, p)))
  951. goto bad_fork_cleanup_files;
  952. if ((retval = copy_sighand(clone_flags, p)))
  953. goto bad_fork_cleanup_fs;
  954. if ((retval = copy_signal(clone_flags, p)))
  955. goto bad_fork_cleanup_sighand;
  956. if ((retval = copy_mm(clone_flags, p)))
  957. goto bad_fork_cleanup_signal;
  958. if ((retval = copy_keys(clone_flags, p)))
  959. goto bad_fork_cleanup_mm;
  960. if ((retval = copy_namespaces(clone_flags, p)))
  961. goto bad_fork_cleanup_keys;
  962. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  963. if (retval)
  964. goto bad_fork_cleanup_namespaces;
  965. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  966. /*
  967. * Clear TID on mm_release()?
  968. */
  969. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  970. p->robust_list = NULL;
  971. #ifdef CONFIG_COMPAT
  972. p->compat_robust_list = NULL;
  973. #endif
  974. INIT_LIST_HEAD(&p->pi_state_list);
  975. p->pi_state_cache = NULL;
  976. /*
  977. * sigaltstack should be cleared when sharing the same VM
  978. */
  979. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  980. p->sas_ss_sp = p->sas_ss_size = 0;
  981. /*
  982. * Syscall tracing should be turned off in the child regardless
  983. * of CLONE_PTRACE.
  984. */
  985. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  986. #ifdef TIF_SYSCALL_EMU
  987. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  988. #endif
  989. /* Our parent execution domain becomes current domain
  990. These must match for thread signalling to apply */
  991. p->parent_exec_id = p->self_exec_id;
  992. /* ok, now we should be set up.. */
  993. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  994. p->pdeath_signal = 0;
  995. p->exit_state = 0;
  996. /*
  997. * Ok, make it visible to the rest of the system.
  998. * We dont wake it up yet.
  999. */
  1000. p->group_leader = p;
  1001. INIT_LIST_HEAD(&p->thread_group);
  1002. INIT_LIST_HEAD(&p->ptrace_children);
  1003. INIT_LIST_HEAD(&p->ptrace_list);
  1004. /* Perform scheduler related setup. Assign this task to a CPU. */
  1005. sched_fork(p, clone_flags);
  1006. /* Need tasklist lock for parent etc handling! */
  1007. write_lock_irq(&tasklist_lock);
  1008. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1009. p->ioprio = current->ioprio;
  1010. /*
  1011. * The task hasn't been attached yet, so its cpus_allowed mask will
  1012. * not be changed, nor will its assigned CPU.
  1013. *
  1014. * The cpus_allowed mask of the parent may have changed after it was
  1015. * copied first time - so re-copy it here, then check the child's CPU
  1016. * to ensure it is on a valid CPU (and if not, just force it back to
  1017. * parent's CPU). This avoids alot of nasty races.
  1018. */
  1019. p->cpus_allowed = current->cpus_allowed;
  1020. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1021. !cpu_online(task_cpu(p))))
  1022. set_task_cpu(p, smp_processor_id());
  1023. /* CLONE_PARENT re-uses the old parent */
  1024. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1025. p->real_parent = current->real_parent;
  1026. else
  1027. p->real_parent = current;
  1028. p->parent = p->real_parent;
  1029. spin_lock(&current->sighand->siglock);
  1030. /*
  1031. * Process group and session signals need to be delivered to just the
  1032. * parent before the fork or both the parent and the child after the
  1033. * fork. Restart if a signal comes in before we add the new process to
  1034. * it's process group.
  1035. * A fatal signal pending means that current will exit, so the new
  1036. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1037. */
  1038. recalc_sigpending();
  1039. if (signal_pending(current)) {
  1040. spin_unlock(&current->sighand->siglock);
  1041. write_unlock_irq(&tasklist_lock);
  1042. retval = -ERESTARTNOINTR;
  1043. goto bad_fork_cleanup_namespaces;
  1044. }
  1045. if (clone_flags & CLONE_THREAD) {
  1046. p->group_leader = current->group_leader;
  1047. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1048. if (!cputime_eq(current->signal->it_virt_expires,
  1049. cputime_zero) ||
  1050. !cputime_eq(current->signal->it_prof_expires,
  1051. cputime_zero) ||
  1052. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1053. !list_empty(&current->signal->cpu_timers[0]) ||
  1054. !list_empty(&current->signal->cpu_timers[1]) ||
  1055. !list_empty(&current->signal->cpu_timers[2])) {
  1056. /*
  1057. * Have child wake up on its first tick to check
  1058. * for process CPU timers.
  1059. */
  1060. p->it_prof_expires = jiffies_to_cputime(1);
  1061. }
  1062. }
  1063. if (likely(p->pid)) {
  1064. add_parent(p);
  1065. if (unlikely(p->ptrace & PT_PTRACED))
  1066. __ptrace_link(p, current->parent);
  1067. if (thread_group_leader(p)) {
  1068. p->signal->tty = current->signal->tty;
  1069. p->signal->pgrp = process_group(current);
  1070. p->signal->session = current->signal->session;
  1071. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1072. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1073. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1074. __get_cpu_var(process_counts)++;
  1075. }
  1076. attach_pid(p, PIDTYPE_PID, p->pid);
  1077. nr_threads++;
  1078. }
  1079. total_forks++;
  1080. spin_unlock(&current->sighand->siglock);
  1081. write_unlock_irq(&tasklist_lock);
  1082. proc_fork_connector(p);
  1083. return p;
  1084. bad_fork_cleanup_namespaces:
  1085. exit_task_namespaces(p);
  1086. bad_fork_cleanup_keys:
  1087. exit_keys(p);
  1088. bad_fork_cleanup_mm:
  1089. if (p->mm)
  1090. mmput(p->mm);
  1091. bad_fork_cleanup_signal:
  1092. cleanup_signal(p);
  1093. bad_fork_cleanup_sighand:
  1094. __cleanup_sighand(p->sighand);
  1095. bad_fork_cleanup_fs:
  1096. exit_fs(p); /* blocking */
  1097. bad_fork_cleanup_files:
  1098. exit_files(p); /* blocking */
  1099. bad_fork_cleanup_semundo:
  1100. exit_sem(p);
  1101. bad_fork_cleanup_audit:
  1102. audit_free(p);
  1103. bad_fork_cleanup_security:
  1104. security_task_free(p);
  1105. bad_fork_cleanup_policy:
  1106. #ifdef CONFIG_NUMA
  1107. mpol_free(p->mempolicy);
  1108. bad_fork_cleanup_cpuset:
  1109. #endif
  1110. cpuset_exit(p);
  1111. bad_fork_cleanup_delays_binfmt:
  1112. delayacct_tsk_free(p);
  1113. if (p->binfmt)
  1114. module_put(p->binfmt->module);
  1115. bad_fork_cleanup_put_domain:
  1116. module_put(task_thread_info(p)->exec_domain->module);
  1117. bad_fork_cleanup_count:
  1118. put_group_info(p->group_info);
  1119. atomic_dec(&p->user->processes);
  1120. free_uid(p->user);
  1121. bad_fork_free:
  1122. free_task(p);
  1123. fork_out:
  1124. return ERR_PTR(retval);
  1125. }
  1126. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1127. {
  1128. memset(regs, 0, sizeof(struct pt_regs));
  1129. return regs;
  1130. }
  1131. struct task_struct * __devinit fork_idle(int cpu)
  1132. {
  1133. struct task_struct *task;
  1134. struct pt_regs regs;
  1135. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1136. if (!task)
  1137. return ERR_PTR(-ENOMEM);
  1138. init_idle(task, cpu);
  1139. return task;
  1140. }
  1141. static inline int fork_traceflag (unsigned clone_flags)
  1142. {
  1143. if (clone_flags & CLONE_UNTRACED)
  1144. return 0;
  1145. else if (clone_flags & CLONE_VFORK) {
  1146. if (current->ptrace & PT_TRACE_VFORK)
  1147. return PTRACE_EVENT_VFORK;
  1148. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1149. if (current->ptrace & PT_TRACE_CLONE)
  1150. return PTRACE_EVENT_CLONE;
  1151. } else if (current->ptrace & PT_TRACE_FORK)
  1152. return PTRACE_EVENT_FORK;
  1153. return 0;
  1154. }
  1155. /*
  1156. * Ok, this is the main fork-routine.
  1157. *
  1158. * It copies the process, and if successful kick-starts
  1159. * it and waits for it to finish using the VM if required.
  1160. */
  1161. long do_fork(unsigned long clone_flags,
  1162. unsigned long stack_start,
  1163. struct pt_regs *regs,
  1164. unsigned long stack_size,
  1165. int __user *parent_tidptr,
  1166. int __user *child_tidptr)
  1167. {
  1168. struct task_struct *p;
  1169. int trace = 0;
  1170. struct pid *pid = alloc_pid();
  1171. long nr;
  1172. if (!pid)
  1173. return -EAGAIN;
  1174. nr = pid->nr;
  1175. if (unlikely(current->ptrace)) {
  1176. trace = fork_traceflag (clone_flags);
  1177. if (trace)
  1178. clone_flags |= CLONE_PTRACE;
  1179. }
  1180. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1181. /*
  1182. * Do this prior waking up the new thread - the thread pointer
  1183. * might get invalid after that point, if the thread exits quickly.
  1184. */
  1185. if (!IS_ERR(p)) {
  1186. struct completion vfork;
  1187. if (clone_flags & CLONE_VFORK) {
  1188. p->vfork_done = &vfork;
  1189. init_completion(&vfork);
  1190. }
  1191. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1192. /*
  1193. * We'll start up with an immediate SIGSTOP.
  1194. */
  1195. sigaddset(&p->pending.signal, SIGSTOP);
  1196. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1197. }
  1198. if (!(clone_flags & CLONE_STOPPED))
  1199. wake_up_new_task(p, clone_flags);
  1200. else
  1201. p->state = TASK_STOPPED;
  1202. if (unlikely (trace)) {
  1203. current->ptrace_message = nr;
  1204. ptrace_notify ((trace << 8) | SIGTRAP);
  1205. }
  1206. if (clone_flags & CLONE_VFORK) {
  1207. wait_for_completion(&vfork);
  1208. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1209. current->ptrace_message = nr;
  1210. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1211. }
  1212. }
  1213. } else {
  1214. free_pid(pid);
  1215. nr = PTR_ERR(p);
  1216. }
  1217. return nr;
  1218. }
  1219. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1220. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1221. #endif
  1222. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1223. {
  1224. struct sighand_struct *sighand = data;
  1225. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1226. SLAB_CTOR_CONSTRUCTOR)
  1227. spin_lock_init(&sighand->siglock);
  1228. }
  1229. void __init proc_caches_init(void)
  1230. {
  1231. sighand_cachep = kmem_cache_create("sighand_cache",
  1232. sizeof(struct sighand_struct), 0,
  1233. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1234. sighand_ctor, NULL);
  1235. signal_cachep = kmem_cache_create("signal_cache",
  1236. sizeof(struct signal_struct), 0,
  1237. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1238. files_cachep = kmem_cache_create("files_cache",
  1239. sizeof(struct files_struct), 0,
  1240. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1241. fs_cachep = kmem_cache_create("fs_cache",
  1242. sizeof(struct fs_struct), 0,
  1243. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1244. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1245. sizeof(struct vm_area_struct), 0,
  1246. SLAB_PANIC, NULL, NULL);
  1247. mm_cachep = kmem_cache_create("mm_struct",
  1248. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1249. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1250. }
  1251. /*
  1252. * Check constraints on flags passed to the unshare system call and
  1253. * force unsharing of additional process context as appropriate.
  1254. */
  1255. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1256. {
  1257. /*
  1258. * If unsharing a thread from a thread group, must also
  1259. * unshare vm.
  1260. */
  1261. if (*flags_ptr & CLONE_THREAD)
  1262. *flags_ptr |= CLONE_VM;
  1263. /*
  1264. * If unsharing vm, must also unshare signal handlers.
  1265. */
  1266. if (*flags_ptr & CLONE_VM)
  1267. *flags_ptr |= CLONE_SIGHAND;
  1268. /*
  1269. * If unsharing signal handlers and the task was created
  1270. * using CLONE_THREAD, then must unshare the thread
  1271. */
  1272. if ((*flags_ptr & CLONE_SIGHAND) &&
  1273. (atomic_read(&current->signal->count) > 1))
  1274. *flags_ptr |= CLONE_THREAD;
  1275. /*
  1276. * If unsharing namespace, must also unshare filesystem information.
  1277. */
  1278. if (*flags_ptr & CLONE_NEWNS)
  1279. *flags_ptr |= CLONE_FS;
  1280. }
  1281. /*
  1282. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1283. */
  1284. static int unshare_thread(unsigned long unshare_flags)
  1285. {
  1286. if (unshare_flags & CLONE_THREAD)
  1287. return -EINVAL;
  1288. return 0;
  1289. }
  1290. /*
  1291. * Unshare the filesystem structure if it is being shared
  1292. */
  1293. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1294. {
  1295. struct fs_struct *fs = current->fs;
  1296. if ((unshare_flags & CLONE_FS) &&
  1297. (fs && atomic_read(&fs->count) > 1)) {
  1298. *new_fsp = __copy_fs_struct(current->fs);
  1299. if (!*new_fsp)
  1300. return -ENOMEM;
  1301. }
  1302. return 0;
  1303. }
  1304. /*
  1305. * Unshare the namespace structure if it is being shared
  1306. */
  1307. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1308. {
  1309. struct namespace *ns = current->nsproxy->namespace;
  1310. if ((unshare_flags & CLONE_NEWNS) && ns) {
  1311. if (!capable(CAP_SYS_ADMIN))
  1312. return -EPERM;
  1313. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1314. if (!*new_nsp)
  1315. return -ENOMEM;
  1316. }
  1317. return 0;
  1318. }
  1319. /*
  1320. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1321. * supported yet
  1322. */
  1323. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1324. {
  1325. struct sighand_struct *sigh = current->sighand;
  1326. if ((unshare_flags & CLONE_SIGHAND) &&
  1327. (sigh && atomic_read(&sigh->count) > 1))
  1328. return -EINVAL;
  1329. else
  1330. return 0;
  1331. }
  1332. /*
  1333. * Unshare vm if it is being shared
  1334. */
  1335. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1336. {
  1337. struct mm_struct *mm = current->mm;
  1338. if ((unshare_flags & CLONE_VM) &&
  1339. (mm && atomic_read(&mm->mm_users) > 1)) {
  1340. return -EINVAL;
  1341. }
  1342. return 0;
  1343. }
  1344. /*
  1345. * Unshare file descriptor table if it is being shared
  1346. */
  1347. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1348. {
  1349. struct files_struct *fd = current->files;
  1350. int error = 0;
  1351. if ((unshare_flags & CLONE_FILES) &&
  1352. (fd && atomic_read(&fd->count) > 1)) {
  1353. *new_fdp = dup_fd(fd, &error);
  1354. if (!*new_fdp)
  1355. return error;
  1356. }
  1357. return 0;
  1358. }
  1359. /*
  1360. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1361. * supported yet
  1362. */
  1363. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1364. {
  1365. if (unshare_flags & CLONE_SYSVSEM)
  1366. return -EINVAL;
  1367. return 0;
  1368. }
  1369. #ifndef CONFIG_IPC_NS
  1370. static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
  1371. {
  1372. if (flags & CLONE_NEWIPC)
  1373. return -EINVAL;
  1374. return 0;
  1375. }
  1376. #endif
  1377. /*
  1378. * unshare allows a process to 'unshare' part of the process
  1379. * context which was originally shared using clone. copy_*
  1380. * functions used by do_fork() cannot be used here directly
  1381. * because they modify an inactive task_struct that is being
  1382. * constructed. Here we are modifying the current, active,
  1383. * task_struct.
  1384. */
  1385. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1386. {
  1387. int err = 0;
  1388. struct fs_struct *fs, *new_fs = NULL;
  1389. struct namespace *ns, *new_ns = NULL;
  1390. struct sighand_struct *sigh, *new_sigh = NULL;
  1391. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1392. struct files_struct *fd, *new_fd = NULL;
  1393. struct sem_undo_list *new_ulist = NULL;
  1394. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1395. struct uts_namespace *uts, *new_uts = NULL;
  1396. struct ipc_namespace *ipc, *new_ipc = NULL;
  1397. check_unshare_flags(&unshare_flags);
  1398. /* Return -EINVAL for all unsupported flags */
  1399. err = -EINVAL;
  1400. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1401. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1402. CLONE_NEWUTS|CLONE_NEWIPC))
  1403. goto bad_unshare_out;
  1404. if ((err = unshare_thread(unshare_flags)))
  1405. goto bad_unshare_out;
  1406. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1407. goto bad_unshare_cleanup_thread;
  1408. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1409. goto bad_unshare_cleanup_fs;
  1410. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1411. goto bad_unshare_cleanup_ns;
  1412. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1413. goto bad_unshare_cleanup_sigh;
  1414. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1415. goto bad_unshare_cleanup_vm;
  1416. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1417. goto bad_unshare_cleanup_fd;
  1418. if ((err = unshare_utsname(unshare_flags, &new_uts)))
  1419. goto bad_unshare_cleanup_semundo;
  1420. if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
  1421. goto bad_unshare_cleanup_uts;
  1422. if (new_ns || new_uts || new_ipc) {
  1423. old_nsproxy = current->nsproxy;
  1424. new_nsproxy = dup_namespaces(old_nsproxy);
  1425. if (!new_nsproxy) {
  1426. err = -ENOMEM;
  1427. goto bad_unshare_cleanup_ipc;
  1428. }
  1429. }
  1430. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
  1431. new_uts || new_ipc) {
  1432. task_lock(current);
  1433. if (new_nsproxy) {
  1434. current->nsproxy = new_nsproxy;
  1435. new_nsproxy = old_nsproxy;
  1436. }
  1437. if (new_fs) {
  1438. fs = current->fs;
  1439. current->fs = new_fs;
  1440. new_fs = fs;
  1441. }
  1442. if (new_ns) {
  1443. ns = current->nsproxy->namespace;
  1444. current->nsproxy->namespace = new_ns;
  1445. new_ns = ns;
  1446. }
  1447. if (new_sigh) {
  1448. sigh = current->sighand;
  1449. rcu_assign_pointer(current->sighand, new_sigh);
  1450. new_sigh = sigh;
  1451. }
  1452. if (new_mm) {
  1453. mm = current->mm;
  1454. active_mm = current->active_mm;
  1455. current->mm = new_mm;
  1456. current->active_mm = new_mm;
  1457. activate_mm(active_mm, new_mm);
  1458. new_mm = mm;
  1459. }
  1460. if (new_fd) {
  1461. fd = current->files;
  1462. current->files = new_fd;
  1463. new_fd = fd;
  1464. }
  1465. if (new_uts) {
  1466. uts = current->nsproxy->uts_ns;
  1467. current->nsproxy->uts_ns = new_uts;
  1468. new_uts = uts;
  1469. }
  1470. if (new_ipc) {
  1471. ipc = current->nsproxy->ipc_ns;
  1472. current->nsproxy->ipc_ns = new_ipc;
  1473. new_ipc = ipc;
  1474. }
  1475. task_unlock(current);
  1476. }
  1477. if (new_nsproxy)
  1478. put_nsproxy(new_nsproxy);
  1479. bad_unshare_cleanup_ipc:
  1480. if (new_ipc)
  1481. put_ipc_ns(new_ipc);
  1482. bad_unshare_cleanup_uts:
  1483. if (new_uts)
  1484. put_uts_ns(new_uts);
  1485. bad_unshare_cleanup_semundo:
  1486. bad_unshare_cleanup_fd:
  1487. if (new_fd)
  1488. put_files_struct(new_fd);
  1489. bad_unshare_cleanup_vm:
  1490. if (new_mm)
  1491. mmput(new_mm);
  1492. bad_unshare_cleanup_sigh:
  1493. if (new_sigh)
  1494. if (atomic_dec_and_test(&new_sigh->count))
  1495. kmem_cache_free(sighand_cachep, new_sigh);
  1496. bad_unshare_cleanup_ns:
  1497. if (new_ns)
  1498. put_namespace(new_ns);
  1499. bad_unshare_cleanup_fs:
  1500. if (new_fs)
  1501. put_fs_struct(new_fs);
  1502. bad_unshare_cleanup_thread:
  1503. bad_unshare_out:
  1504. return err;
  1505. }