prom.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700
  1. /*
  2. * Procedures for creating, accessing and interpreting the device tree.
  3. *
  4. * Paul Mackerras August 1996.
  5. * Copyright (C) 1996-2005 Paul Mackerras.
  6. *
  7. * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8. * {engebret|bergner}@us.ibm.com
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #undef DEBUG
  16. #include <stdarg.h>
  17. #include <linux/kernel.h>
  18. #include <linux/string.h>
  19. #include <linux/init.h>
  20. #include <linux/threads.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/types.h>
  23. #include <linux/pci.h>
  24. #include <linux/stringify.h>
  25. #include <linux/delay.h>
  26. #include <linux/initrd.h>
  27. #include <linux/bitops.h>
  28. #include <linux/module.h>
  29. #include <linux/kexec.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/irq.h>
  32. #include <asm/prom.h>
  33. #include <asm/rtas.h>
  34. #include <asm/lmb.h>
  35. #include <asm/page.h>
  36. #include <asm/processor.h>
  37. #include <asm/irq.h>
  38. #include <asm/io.h>
  39. #include <asm/kdump.h>
  40. #include <asm/smp.h>
  41. #include <asm/system.h>
  42. #include <asm/mmu.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/pci.h>
  45. #include <asm/iommu.h>
  46. #include <asm/btext.h>
  47. #include <asm/sections.h>
  48. #include <asm/machdep.h>
  49. #include <asm/pSeries_reconfig.h>
  50. #include <asm/pci-bridge.h>
  51. #include <asm/kexec.h>
  52. #ifdef DEBUG
  53. #define DBG(fmt...) printk(KERN_ERR fmt)
  54. #else
  55. #define DBG(fmt...)
  56. #endif
  57. static int __initdata dt_root_addr_cells;
  58. static int __initdata dt_root_size_cells;
  59. #ifdef CONFIG_PPC64
  60. int __initdata iommu_is_off;
  61. int __initdata iommu_force_on;
  62. unsigned long tce_alloc_start, tce_alloc_end;
  63. #endif
  64. typedef u32 cell_t;
  65. #if 0
  66. static struct boot_param_header *initial_boot_params __initdata;
  67. #else
  68. struct boot_param_header *initial_boot_params;
  69. #endif
  70. static struct device_node *allnodes = NULL;
  71. /* use when traversing tree through the allnext, child, sibling,
  72. * or parent members of struct device_node.
  73. */
  74. static DEFINE_RWLOCK(devtree_lock);
  75. /* export that to outside world */
  76. struct device_node *of_chosen;
  77. static inline char *find_flat_dt_string(u32 offset)
  78. {
  79. return ((char *)initial_boot_params) +
  80. initial_boot_params->off_dt_strings + offset;
  81. }
  82. /**
  83. * This function is used to scan the flattened device-tree, it is
  84. * used to extract the memory informations at boot before we can
  85. * unflatten the tree
  86. */
  87. int __init of_scan_flat_dt(int (*it)(unsigned long node,
  88. const char *uname, int depth,
  89. void *data),
  90. void *data)
  91. {
  92. unsigned long p = ((unsigned long)initial_boot_params) +
  93. initial_boot_params->off_dt_struct;
  94. int rc = 0;
  95. int depth = -1;
  96. do {
  97. u32 tag = *((u32 *)p);
  98. char *pathp;
  99. p += 4;
  100. if (tag == OF_DT_END_NODE) {
  101. depth --;
  102. continue;
  103. }
  104. if (tag == OF_DT_NOP)
  105. continue;
  106. if (tag == OF_DT_END)
  107. break;
  108. if (tag == OF_DT_PROP) {
  109. u32 sz = *((u32 *)p);
  110. p += 8;
  111. if (initial_boot_params->version < 0x10)
  112. p = _ALIGN(p, sz >= 8 ? 8 : 4);
  113. p += sz;
  114. p = _ALIGN(p, 4);
  115. continue;
  116. }
  117. if (tag != OF_DT_BEGIN_NODE) {
  118. printk(KERN_WARNING "Invalid tag %x scanning flattened"
  119. " device tree !\n", tag);
  120. return -EINVAL;
  121. }
  122. depth++;
  123. pathp = (char *)p;
  124. p = _ALIGN(p + strlen(pathp) + 1, 4);
  125. if ((*pathp) == '/') {
  126. char *lp, *np;
  127. for (lp = NULL, np = pathp; *np; np++)
  128. if ((*np) == '/')
  129. lp = np+1;
  130. if (lp != NULL)
  131. pathp = lp;
  132. }
  133. rc = it(p, pathp, depth, data);
  134. if (rc != 0)
  135. break;
  136. } while(1);
  137. return rc;
  138. }
  139. unsigned long __init of_get_flat_dt_root(void)
  140. {
  141. unsigned long p = ((unsigned long)initial_boot_params) +
  142. initial_boot_params->off_dt_struct;
  143. while(*((u32 *)p) == OF_DT_NOP)
  144. p += 4;
  145. BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
  146. p += 4;
  147. return _ALIGN(p + strlen((char *)p) + 1, 4);
  148. }
  149. /**
  150. * This function can be used within scan_flattened_dt callback to get
  151. * access to properties
  152. */
  153. void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
  154. unsigned long *size)
  155. {
  156. unsigned long p = node;
  157. do {
  158. u32 tag = *((u32 *)p);
  159. u32 sz, noff;
  160. const char *nstr;
  161. p += 4;
  162. if (tag == OF_DT_NOP)
  163. continue;
  164. if (tag != OF_DT_PROP)
  165. return NULL;
  166. sz = *((u32 *)p);
  167. noff = *((u32 *)(p + 4));
  168. p += 8;
  169. if (initial_boot_params->version < 0x10)
  170. p = _ALIGN(p, sz >= 8 ? 8 : 4);
  171. nstr = find_flat_dt_string(noff);
  172. if (nstr == NULL) {
  173. printk(KERN_WARNING "Can't find property index"
  174. " name !\n");
  175. return NULL;
  176. }
  177. if (strcmp(name, nstr) == 0) {
  178. if (size)
  179. *size = sz;
  180. return (void *)p;
  181. }
  182. p += sz;
  183. p = _ALIGN(p, 4);
  184. } while(1);
  185. }
  186. int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
  187. {
  188. const char* cp;
  189. unsigned long cplen, l;
  190. cp = of_get_flat_dt_prop(node, "compatible", &cplen);
  191. if (cp == NULL)
  192. return 0;
  193. while (cplen > 0) {
  194. if (strncasecmp(cp, compat, strlen(compat)) == 0)
  195. return 1;
  196. l = strlen(cp) + 1;
  197. cp += l;
  198. cplen -= l;
  199. }
  200. return 0;
  201. }
  202. static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
  203. unsigned long align)
  204. {
  205. void *res;
  206. *mem = _ALIGN(*mem, align);
  207. res = (void *)*mem;
  208. *mem += size;
  209. return res;
  210. }
  211. static unsigned long __init unflatten_dt_node(unsigned long mem,
  212. unsigned long *p,
  213. struct device_node *dad,
  214. struct device_node ***allnextpp,
  215. unsigned long fpsize)
  216. {
  217. struct device_node *np;
  218. struct property *pp, **prev_pp = NULL;
  219. char *pathp;
  220. u32 tag;
  221. unsigned int l, allocl;
  222. int has_name = 0;
  223. int new_format = 0;
  224. tag = *((u32 *)(*p));
  225. if (tag != OF_DT_BEGIN_NODE) {
  226. printk("Weird tag at start of node: %x\n", tag);
  227. return mem;
  228. }
  229. *p += 4;
  230. pathp = (char *)*p;
  231. l = allocl = strlen(pathp) + 1;
  232. *p = _ALIGN(*p + l, 4);
  233. /* version 0x10 has a more compact unit name here instead of the full
  234. * path. we accumulate the full path size using "fpsize", we'll rebuild
  235. * it later. We detect this because the first character of the name is
  236. * not '/'.
  237. */
  238. if ((*pathp) != '/') {
  239. new_format = 1;
  240. if (fpsize == 0) {
  241. /* root node: special case. fpsize accounts for path
  242. * plus terminating zero. root node only has '/', so
  243. * fpsize should be 2, but we want to avoid the first
  244. * level nodes to have two '/' so we use fpsize 1 here
  245. */
  246. fpsize = 1;
  247. allocl = 2;
  248. } else {
  249. /* account for '/' and path size minus terminal 0
  250. * already in 'l'
  251. */
  252. fpsize += l;
  253. allocl = fpsize;
  254. }
  255. }
  256. np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
  257. __alignof__(struct device_node));
  258. if (allnextpp) {
  259. memset(np, 0, sizeof(*np));
  260. np->full_name = ((char*)np) + sizeof(struct device_node);
  261. if (new_format) {
  262. char *p = np->full_name;
  263. /* rebuild full path for new format */
  264. if (dad && dad->parent) {
  265. strcpy(p, dad->full_name);
  266. #ifdef DEBUG
  267. if ((strlen(p) + l + 1) != allocl) {
  268. DBG("%s: p: %d, l: %d, a: %d\n",
  269. pathp, (int)strlen(p), l, allocl);
  270. }
  271. #endif
  272. p += strlen(p);
  273. }
  274. *(p++) = '/';
  275. memcpy(p, pathp, l);
  276. } else
  277. memcpy(np->full_name, pathp, l);
  278. prev_pp = &np->properties;
  279. **allnextpp = np;
  280. *allnextpp = &np->allnext;
  281. if (dad != NULL) {
  282. np->parent = dad;
  283. /* we temporarily use the next field as `last_child'*/
  284. if (dad->next == 0)
  285. dad->child = np;
  286. else
  287. dad->next->sibling = np;
  288. dad->next = np;
  289. }
  290. kref_init(&np->kref);
  291. }
  292. while(1) {
  293. u32 sz, noff;
  294. char *pname;
  295. tag = *((u32 *)(*p));
  296. if (tag == OF_DT_NOP) {
  297. *p += 4;
  298. continue;
  299. }
  300. if (tag != OF_DT_PROP)
  301. break;
  302. *p += 4;
  303. sz = *((u32 *)(*p));
  304. noff = *((u32 *)((*p) + 4));
  305. *p += 8;
  306. if (initial_boot_params->version < 0x10)
  307. *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
  308. pname = find_flat_dt_string(noff);
  309. if (pname == NULL) {
  310. printk("Can't find property name in list !\n");
  311. break;
  312. }
  313. if (strcmp(pname, "name") == 0)
  314. has_name = 1;
  315. l = strlen(pname) + 1;
  316. pp = unflatten_dt_alloc(&mem, sizeof(struct property),
  317. __alignof__(struct property));
  318. if (allnextpp) {
  319. if (strcmp(pname, "linux,phandle") == 0) {
  320. np->node = *((u32 *)*p);
  321. if (np->linux_phandle == 0)
  322. np->linux_phandle = np->node;
  323. }
  324. if (strcmp(pname, "ibm,phandle") == 0)
  325. np->linux_phandle = *((u32 *)*p);
  326. pp->name = pname;
  327. pp->length = sz;
  328. pp->value = (void *)*p;
  329. *prev_pp = pp;
  330. prev_pp = &pp->next;
  331. }
  332. *p = _ALIGN((*p) + sz, 4);
  333. }
  334. /* with version 0x10 we may not have the name property, recreate
  335. * it here from the unit name if absent
  336. */
  337. if (!has_name) {
  338. char *p = pathp, *ps = pathp, *pa = NULL;
  339. int sz;
  340. while (*p) {
  341. if ((*p) == '@')
  342. pa = p;
  343. if ((*p) == '/')
  344. ps = p + 1;
  345. p++;
  346. }
  347. if (pa < ps)
  348. pa = p;
  349. sz = (pa - ps) + 1;
  350. pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
  351. __alignof__(struct property));
  352. if (allnextpp) {
  353. pp->name = "name";
  354. pp->length = sz;
  355. pp->value = (unsigned char *)(pp + 1);
  356. *prev_pp = pp;
  357. prev_pp = &pp->next;
  358. memcpy(pp->value, ps, sz - 1);
  359. ((char *)pp->value)[sz - 1] = 0;
  360. DBG("fixed up name for %s -> %s\n", pathp, pp->value);
  361. }
  362. }
  363. if (allnextpp) {
  364. *prev_pp = NULL;
  365. np->name = get_property(np, "name", NULL);
  366. np->type = get_property(np, "device_type", NULL);
  367. if (!np->name)
  368. np->name = "<NULL>";
  369. if (!np->type)
  370. np->type = "<NULL>";
  371. }
  372. while (tag == OF_DT_BEGIN_NODE) {
  373. mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
  374. tag = *((u32 *)(*p));
  375. }
  376. if (tag != OF_DT_END_NODE) {
  377. printk("Weird tag at end of node: %x\n", tag);
  378. return mem;
  379. }
  380. *p += 4;
  381. return mem;
  382. }
  383. static int __init early_parse_mem(char *p)
  384. {
  385. if (!p)
  386. return 1;
  387. memory_limit = PAGE_ALIGN(memparse(p, &p));
  388. DBG("memory limit = 0x%lx\n", memory_limit);
  389. return 0;
  390. }
  391. early_param("mem", early_parse_mem);
  392. /*
  393. * The device tree may be allocated below our memory limit, or inside the
  394. * crash kernel region for kdump. If so, move it out now.
  395. */
  396. static void move_device_tree(void)
  397. {
  398. unsigned long start, size;
  399. void *p;
  400. DBG("-> move_device_tree\n");
  401. start = __pa(initial_boot_params);
  402. size = initial_boot_params->totalsize;
  403. if ((memory_limit && (start + size) > memory_limit) ||
  404. overlaps_crashkernel(start, size)) {
  405. p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
  406. memcpy(p, initial_boot_params, size);
  407. initial_boot_params = (struct boot_param_header *)p;
  408. DBG("Moved device tree to 0x%p\n", p);
  409. }
  410. DBG("<- move_device_tree\n");
  411. }
  412. /**
  413. * unflattens the device-tree passed by the firmware, creating the
  414. * tree of struct device_node. It also fills the "name" and "type"
  415. * pointers of the nodes so the normal device-tree walking functions
  416. * can be used (this used to be done by finish_device_tree)
  417. */
  418. void __init unflatten_device_tree(void)
  419. {
  420. unsigned long start, mem, size;
  421. struct device_node **allnextp = &allnodes;
  422. DBG(" -> unflatten_device_tree()\n");
  423. /* First pass, scan for size */
  424. start = ((unsigned long)initial_boot_params) +
  425. initial_boot_params->off_dt_struct;
  426. size = unflatten_dt_node(0, &start, NULL, NULL, 0);
  427. size = (size | 3) + 1;
  428. DBG(" size is %lx, allocating...\n", size);
  429. /* Allocate memory for the expanded device tree */
  430. mem = lmb_alloc(size + 4, __alignof__(struct device_node));
  431. mem = (unsigned long) __va(mem);
  432. ((u32 *)mem)[size / 4] = 0xdeadbeef;
  433. DBG(" unflattening %lx...\n", mem);
  434. /* Second pass, do actual unflattening */
  435. start = ((unsigned long)initial_boot_params) +
  436. initial_boot_params->off_dt_struct;
  437. unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
  438. if (*((u32 *)start) != OF_DT_END)
  439. printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
  440. if (((u32 *)mem)[size / 4] != 0xdeadbeef)
  441. printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
  442. ((u32 *)mem)[size / 4] );
  443. *allnextp = NULL;
  444. /* Get pointer to OF "/chosen" node for use everywhere */
  445. of_chosen = of_find_node_by_path("/chosen");
  446. if (of_chosen == NULL)
  447. of_chosen = of_find_node_by_path("/chosen@0");
  448. DBG(" <- unflatten_device_tree()\n");
  449. }
  450. /*
  451. * ibm,pa-features is a per-cpu property that contains a string of
  452. * attribute descriptors, each of which has a 2 byte header plus up
  453. * to 254 bytes worth of processor attribute bits. First header
  454. * byte specifies the number of bytes following the header.
  455. * Second header byte is an "attribute-specifier" type, of which
  456. * zero is the only currently-defined value.
  457. * Implementation: Pass in the byte and bit offset for the feature
  458. * that we are interested in. The function will return -1 if the
  459. * pa-features property is missing, or a 1/0 to indicate if the feature
  460. * is supported/not supported. Note that the bit numbers are
  461. * big-endian to match the definition in PAPR.
  462. */
  463. static struct ibm_pa_feature {
  464. unsigned long cpu_features; /* CPU_FTR_xxx bit */
  465. unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
  466. unsigned char pabyte; /* byte number in ibm,pa-features */
  467. unsigned char pabit; /* bit number (big-endian) */
  468. unsigned char invert; /* if 1, pa bit set => clear feature */
  469. } ibm_pa_features[] __initdata = {
  470. {0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
  471. {0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
  472. {CPU_FTR_SLB, 0, 0, 2, 0},
  473. {CPU_FTR_CTRL, 0, 0, 3, 0},
  474. {CPU_FTR_NOEXECUTE, 0, 0, 6, 0},
  475. {CPU_FTR_NODSISRALIGN, 0, 1, 1, 1},
  476. #if 0
  477. /* put this back once we know how to test if firmware does 64k IO */
  478. {CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
  479. #endif
  480. {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
  481. };
  482. static void __init check_cpu_pa_features(unsigned long node)
  483. {
  484. unsigned char *pa_ftrs;
  485. unsigned long len, tablelen, i, bit;
  486. pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
  487. if (pa_ftrs == NULL)
  488. return;
  489. /* find descriptor with type == 0 */
  490. for (;;) {
  491. if (tablelen < 3)
  492. return;
  493. len = 2 + pa_ftrs[0];
  494. if (tablelen < len)
  495. return; /* descriptor 0 not found */
  496. if (pa_ftrs[1] == 0)
  497. break;
  498. tablelen -= len;
  499. pa_ftrs += len;
  500. }
  501. /* loop over bits we know about */
  502. for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) {
  503. struct ibm_pa_feature *fp = &ibm_pa_features[i];
  504. if (fp->pabyte >= pa_ftrs[0])
  505. continue;
  506. bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
  507. if (bit ^ fp->invert) {
  508. cur_cpu_spec->cpu_features |= fp->cpu_features;
  509. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
  510. } else {
  511. cur_cpu_spec->cpu_features &= ~fp->cpu_features;
  512. cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
  513. }
  514. }
  515. }
  516. static int __init early_init_dt_scan_cpus(unsigned long node,
  517. const char *uname, int depth,
  518. void *data)
  519. {
  520. static int logical_cpuid = 0;
  521. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  522. #ifdef CONFIG_ALTIVEC
  523. u32 *prop;
  524. #endif
  525. u32 *intserv;
  526. int i, nthreads;
  527. unsigned long len;
  528. int found = 0;
  529. /* We are scanning "cpu" nodes only */
  530. if (type == NULL || strcmp(type, "cpu") != 0)
  531. return 0;
  532. /* Get physical cpuid */
  533. intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
  534. if (intserv) {
  535. nthreads = len / sizeof(int);
  536. } else {
  537. intserv = of_get_flat_dt_prop(node, "reg", NULL);
  538. nthreads = 1;
  539. }
  540. /*
  541. * Now see if any of these threads match our boot cpu.
  542. * NOTE: This must match the parsing done in smp_setup_cpu_maps.
  543. */
  544. for (i = 0; i < nthreads; i++) {
  545. /*
  546. * version 2 of the kexec param format adds the phys cpuid of
  547. * booted proc.
  548. */
  549. if (initial_boot_params && initial_boot_params->version >= 2) {
  550. if (intserv[i] ==
  551. initial_boot_params->boot_cpuid_phys) {
  552. found = 1;
  553. break;
  554. }
  555. } else {
  556. /*
  557. * Check if it's the boot-cpu, set it's hw index now,
  558. * unfortunately this format did not support booting
  559. * off secondary threads.
  560. */
  561. if (of_get_flat_dt_prop(node,
  562. "linux,boot-cpu", NULL) != NULL) {
  563. found = 1;
  564. break;
  565. }
  566. }
  567. #ifdef CONFIG_SMP
  568. /* logical cpu id is always 0 on UP kernels */
  569. logical_cpuid++;
  570. #endif
  571. }
  572. if (found) {
  573. DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
  574. intserv[i]);
  575. boot_cpuid = logical_cpuid;
  576. set_hard_smp_processor_id(boot_cpuid, intserv[i]);
  577. }
  578. #ifdef CONFIG_ALTIVEC
  579. /* Check if we have a VMX and eventually update CPU features */
  580. prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
  581. if (prop && (*prop) > 0) {
  582. cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
  583. cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
  584. }
  585. /* Same goes for Apple's "altivec" property */
  586. prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
  587. if (prop) {
  588. cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
  589. cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
  590. }
  591. #endif /* CONFIG_ALTIVEC */
  592. check_cpu_pa_features(node);
  593. #ifdef CONFIG_PPC_PSERIES
  594. if (nthreads > 1)
  595. cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
  596. else
  597. cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
  598. #endif
  599. return 0;
  600. }
  601. static int __init early_init_dt_scan_chosen(unsigned long node,
  602. const char *uname, int depth, void *data)
  603. {
  604. unsigned long *lprop;
  605. unsigned long l;
  606. char *p;
  607. DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
  608. if (depth != 1 ||
  609. (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
  610. return 0;
  611. #ifdef CONFIG_PPC64
  612. /* check if iommu is forced on or off */
  613. if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
  614. iommu_is_off = 1;
  615. if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
  616. iommu_force_on = 1;
  617. #endif
  618. /* mem=x on the command line is the preferred mechanism */
  619. lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
  620. if (lprop)
  621. memory_limit = *lprop;
  622. #ifdef CONFIG_PPC64
  623. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
  624. if (lprop)
  625. tce_alloc_start = *lprop;
  626. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
  627. if (lprop)
  628. tce_alloc_end = *lprop;
  629. #endif
  630. #ifdef CONFIG_KEXEC
  631. lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
  632. if (lprop)
  633. crashk_res.start = *lprop;
  634. lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
  635. if (lprop)
  636. crashk_res.end = crashk_res.start + *lprop - 1;
  637. #endif
  638. /* Retreive command line */
  639. p = of_get_flat_dt_prop(node, "bootargs", &l);
  640. if (p != NULL && l > 0)
  641. strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
  642. #ifdef CONFIG_CMDLINE
  643. if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
  644. strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
  645. #endif /* CONFIG_CMDLINE */
  646. DBG("Command line is: %s\n", cmd_line);
  647. /* break now */
  648. return 1;
  649. }
  650. static int __init early_init_dt_scan_root(unsigned long node,
  651. const char *uname, int depth, void *data)
  652. {
  653. u32 *prop;
  654. if (depth != 0)
  655. return 0;
  656. prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
  657. dt_root_size_cells = (prop == NULL) ? 1 : *prop;
  658. DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
  659. prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
  660. dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
  661. DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
  662. /* break now */
  663. return 1;
  664. }
  665. static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
  666. {
  667. cell_t *p = *cellp;
  668. *cellp = p + s;
  669. return of_read_ulong(p, s);
  670. }
  671. static int __init early_init_dt_scan_memory(unsigned long node,
  672. const char *uname, int depth, void *data)
  673. {
  674. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  675. cell_t *reg, *endp;
  676. unsigned long l;
  677. /* We are scanning "memory" nodes only */
  678. if (type == NULL) {
  679. /*
  680. * The longtrail doesn't have a device_type on the
  681. * /memory node, so look for the node called /memory@0.
  682. */
  683. if (depth != 1 || strcmp(uname, "memory@0") != 0)
  684. return 0;
  685. } else if (strcmp(type, "memory") != 0)
  686. return 0;
  687. reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
  688. if (reg == NULL)
  689. reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
  690. if (reg == NULL)
  691. return 0;
  692. endp = reg + (l / sizeof(cell_t));
  693. DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
  694. uname, l, reg[0], reg[1], reg[2], reg[3]);
  695. while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
  696. unsigned long base, size;
  697. base = dt_mem_next_cell(dt_root_addr_cells, &reg);
  698. size = dt_mem_next_cell(dt_root_size_cells, &reg);
  699. if (size == 0)
  700. continue;
  701. DBG(" - %lx , %lx\n", base, size);
  702. #ifdef CONFIG_PPC64
  703. if (iommu_is_off) {
  704. if (base >= 0x80000000ul)
  705. continue;
  706. if ((base + size) > 0x80000000ul)
  707. size = 0x80000000ul - base;
  708. }
  709. #endif
  710. lmb_add(base, size);
  711. }
  712. return 0;
  713. }
  714. static void __init early_reserve_mem(void)
  715. {
  716. u64 base, size;
  717. u64 *reserve_map;
  718. unsigned long self_base;
  719. unsigned long self_size;
  720. reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
  721. initial_boot_params->off_mem_rsvmap);
  722. /* before we do anything, lets reserve the dt blob */
  723. self_base = __pa((unsigned long)initial_boot_params);
  724. self_size = initial_boot_params->totalsize;
  725. lmb_reserve(self_base, self_size);
  726. #ifdef CONFIG_PPC32
  727. /*
  728. * Handle the case where we might be booting from an old kexec
  729. * image that setup the mem_rsvmap as pairs of 32-bit values
  730. */
  731. if (*reserve_map > 0xffffffffull) {
  732. u32 base_32, size_32;
  733. u32 *reserve_map_32 = (u32 *)reserve_map;
  734. while (1) {
  735. base_32 = *(reserve_map_32++);
  736. size_32 = *(reserve_map_32++);
  737. if (size_32 == 0)
  738. break;
  739. /* skip if the reservation is for the blob */
  740. if (base_32 == self_base && size_32 == self_size)
  741. continue;
  742. DBG("reserving: %x -> %x\n", base_32, size_32);
  743. lmb_reserve(base_32, size_32);
  744. }
  745. return;
  746. }
  747. #endif
  748. while (1) {
  749. base = *(reserve_map++);
  750. size = *(reserve_map++);
  751. if (size == 0)
  752. break;
  753. /* skip if the reservation is for the blob */
  754. if (base == self_base && size == self_size)
  755. continue;
  756. DBG("reserving: %llx -> %llx\n", base, size);
  757. lmb_reserve(base, size);
  758. }
  759. #if 0
  760. DBG("memory reserved, lmbs :\n");
  761. lmb_dump_all();
  762. #endif
  763. }
  764. void __init early_init_devtree(void *params)
  765. {
  766. DBG(" -> early_init_devtree()\n");
  767. /* Setup flat device-tree pointer */
  768. initial_boot_params = params;
  769. #ifdef CONFIG_PPC_RTAS
  770. /* Some machines might need RTAS info for debugging, grab it now. */
  771. of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
  772. #endif
  773. /* Retrieve various informations from the /chosen node of the
  774. * device-tree, including the platform type, initrd location and
  775. * size, TCE reserve, and more ...
  776. */
  777. of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
  778. /* Scan memory nodes and rebuild LMBs */
  779. lmb_init();
  780. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  781. of_scan_flat_dt(early_init_dt_scan_memory, NULL);
  782. /* Save command line for /proc/cmdline and then parse parameters */
  783. strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
  784. parse_early_param();
  785. /* Reserve LMB regions used by kernel, initrd, dt, etc... */
  786. lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
  787. reserve_kdump_trampoline();
  788. reserve_crashkernel();
  789. early_reserve_mem();
  790. lmb_enforce_memory_limit(memory_limit);
  791. lmb_analyze();
  792. DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
  793. /* We may need to relocate the flat tree, do it now.
  794. * FIXME .. and the initrd too? */
  795. move_device_tree();
  796. DBG("Scanning CPUs ...\n");
  797. /* Retreive CPU related informations from the flat tree
  798. * (altivec support, boot CPU ID, ...)
  799. */
  800. of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
  801. DBG(" <- early_init_devtree()\n");
  802. }
  803. #undef printk
  804. int
  805. prom_n_addr_cells(struct device_node* np)
  806. {
  807. const int *ip;
  808. do {
  809. if (np->parent)
  810. np = np->parent;
  811. ip = get_property(np, "#address-cells", NULL);
  812. if (ip != NULL)
  813. return *ip;
  814. } while (np->parent);
  815. /* No #address-cells property for the root node, default to 1 */
  816. return 1;
  817. }
  818. EXPORT_SYMBOL(prom_n_addr_cells);
  819. int
  820. prom_n_size_cells(struct device_node* np)
  821. {
  822. const int* ip;
  823. do {
  824. if (np->parent)
  825. np = np->parent;
  826. ip = get_property(np, "#size-cells", NULL);
  827. if (ip != NULL)
  828. return *ip;
  829. } while (np->parent);
  830. /* No #size-cells property for the root node, default to 1 */
  831. return 1;
  832. }
  833. EXPORT_SYMBOL(prom_n_size_cells);
  834. /**
  835. * Construct and return a list of the device_nodes with a given name.
  836. */
  837. struct device_node *find_devices(const char *name)
  838. {
  839. struct device_node *head, **prevp, *np;
  840. prevp = &head;
  841. for (np = allnodes; np != 0; np = np->allnext) {
  842. if (np->name != 0 && strcasecmp(np->name, name) == 0) {
  843. *prevp = np;
  844. prevp = &np->next;
  845. }
  846. }
  847. *prevp = NULL;
  848. return head;
  849. }
  850. EXPORT_SYMBOL(find_devices);
  851. /**
  852. * Construct and return a list of the device_nodes with a given type.
  853. */
  854. struct device_node *find_type_devices(const char *type)
  855. {
  856. struct device_node *head, **prevp, *np;
  857. prevp = &head;
  858. for (np = allnodes; np != 0; np = np->allnext) {
  859. if (np->type != 0 && strcasecmp(np->type, type) == 0) {
  860. *prevp = np;
  861. prevp = &np->next;
  862. }
  863. }
  864. *prevp = NULL;
  865. return head;
  866. }
  867. EXPORT_SYMBOL(find_type_devices);
  868. /**
  869. * Returns all nodes linked together
  870. */
  871. struct device_node *find_all_nodes(void)
  872. {
  873. struct device_node *head, **prevp, *np;
  874. prevp = &head;
  875. for (np = allnodes; np != 0; np = np->allnext) {
  876. *prevp = np;
  877. prevp = &np->next;
  878. }
  879. *prevp = NULL;
  880. return head;
  881. }
  882. EXPORT_SYMBOL(find_all_nodes);
  883. /** Checks if the given "compat" string matches one of the strings in
  884. * the device's "compatible" property
  885. */
  886. int device_is_compatible(const struct device_node *device, const char *compat)
  887. {
  888. const char* cp;
  889. int cplen, l;
  890. cp = get_property(device, "compatible", &cplen);
  891. if (cp == NULL)
  892. return 0;
  893. while (cplen > 0) {
  894. if (strncasecmp(cp, compat, strlen(compat)) == 0)
  895. return 1;
  896. l = strlen(cp) + 1;
  897. cp += l;
  898. cplen -= l;
  899. }
  900. return 0;
  901. }
  902. EXPORT_SYMBOL(device_is_compatible);
  903. /**
  904. * Indicates whether the root node has a given value in its
  905. * compatible property.
  906. */
  907. int machine_is_compatible(const char *compat)
  908. {
  909. struct device_node *root;
  910. int rc = 0;
  911. root = of_find_node_by_path("/");
  912. if (root) {
  913. rc = device_is_compatible(root, compat);
  914. of_node_put(root);
  915. }
  916. return rc;
  917. }
  918. EXPORT_SYMBOL(machine_is_compatible);
  919. /**
  920. * Construct and return a list of the device_nodes with a given type
  921. * and compatible property.
  922. */
  923. struct device_node *find_compatible_devices(const char *type,
  924. const char *compat)
  925. {
  926. struct device_node *head, **prevp, *np;
  927. prevp = &head;
  928. for (np = allnodes; np != 0; np = np->allnext) {
  929. if (type != NULL
  930. && !(np->type != 0 && strcasecmp(np->type, type) == 0))
  931. continue;
  932. if (device_is_compatible(np, compat)) {
  933. *prevp = np;
  934. prevp = &np->next;
  935. }
  936. }
  937. *prevp = NULL;
  938. return head;
  939. }
  940. EXPORT_SYMBOL(find_compatible_devices);
  941. /**
  942. * Find the device_node with a given full_name.
  943. */
  944. struct device_node *find_path_device(const char *path)
  945. {
  946. struct device_node *np;
  947. for (np = allnodes; np != 0; np = np->allnext)
  948. if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
  949. return np;
  950. return NULL;
  951. }
  952. EXPORT_SYMBOL(find_path_device);
  953. /*******
  954. *
  955. * New implementation of the OF "find" APIs, return a refcounted
  956. * object, call of_node_put() when done. The device tree and list
  957. * are protected by a rw_lock.
  958. *
  959. * Note that property management will need some locking as well,
  960. * this isn't dealt with yet.
  961. *
  962. *******/
  963. /**
  964. * of_find_node_by_name - Find a node by its "name" property
  965. * @from: The node to start searching from or NULL, the node
  966. * you pass will not be searched, only the next one
  967. * will; typically, you pass what the previous call
  968. * returned. of_node_put() will be called on it
  969. * @name: The name string to match against
  970. *
  971. * Returns a node pointer with refcount incremented, use
  972. * of_node_put() on it when done.
  973. */
  974. struct device_node *of_find_node_by_name(struct device_node *from,
  975. const char *name)
  976. {
  977. struct device_node *np;
  978. read_lock(&devtree_lock);
  979. np = from ? from->allnext : allnodes;
  980. for (; np != NULL; np = np->allnext)
  981. if (np->name != NULL && strcasecmp(np->name, name) == 0
  982. && of_node_get(np))
  983. break;
  984. if (from)
  985. of_node_put(from);
  986. read_unlock(&devtree_lock);
  987. return np;
  988. }
  989. EXPORT_SYMBOL(of_find_node_by_name);
  990. /**
  991. * of_find_node_by_type - Find a node by its "device_type" property
  992. * @from: The node to start searching from or NULL, the node
  993. * you pass will not be searched, only the next one
  994. * will; typically, you pass what the previous call
  995. * returned. of_node_put() will be called on it
  996. * @name: The type string to match against
  997. *
  998. * Returns a node pointer with refcount incremented, use
  999. * of_node_put() on it when done.
  1000. */
  1001. struct device_node *of_find_node_by_type(struct device_node *from,
  1002. const char *type)
  1003. {
  1004. struct device_node *np;
  1005. read_lock(&devtree_lock);
  1006. np = from ? from->allnext : allnodes;
  1007. for (; np != 0; np = np->allnext)
  1008. if (np->type != 0 && strcasecmp(np->type, type) == 0
  1009. && of_node_get(np))
  1010. break;
  1011. if (from)
  1012. of_node_put(from);
  1013. read_unlock(&devtree_lock);
  1014. return np;
  1015. }
  1016. EXPORT_SYMBOL(of_find_node_by_type);
  1017. /**
  1018. * of_find_compatible_node - Find a node based on type and one of the
  1019. * tokens in its "compatible" property
  1020. * @from: The node to start searching from or NULL, the node
  1021. * you pass will not be searched, only the next one
  1022. * will; typically, you pass what the previous call
  1023. * returned. of_node_put() will be called on it
  1024. * @type: The type string to match "device_type" or NULL to ignore
  1025. * @compatible: The string to match to one of the tokens in the device
  1026. * "compatible" list.
  1027. *
  1028. * Returns a node pointer with refcount incremented, use
  1029. * of_node_put() on it when done.
  1030. */
  1031. struct device_node *of_find_compatible_node(struct device_node *from,
  1032. const char *type, const char *compatible)
  1033. {
  1034. struct device_node *np;
  1035. read_lock(&devtree_lock);
  1036. np = from ? from->allnext : allnodes;
  1037. for (; np != 0; np = np->allnext) {
  1038. if (type != NULL
  1039. && !(np->type != 0 && strcasecmp(np->type, type) == 0))
  1040. continue;
  1041. if (device_is_compatible(np, compatible) && of_node_get(np))
  1042. break;
  1043. }
  1044. if (from)
  1045. of_node_put(from);
  1046. read_unlock(&devtree_lock);
  1047. return np;
  1048. }
  1049. EXPORT_SYMBOL(of_find_compatible_node);
  1050. /**
  1051. * of_find_node_by_path - Find a node matching a full OF path
  1052. * @path: The full path to match
  1053. *
  1054. * Returns a node pointer with refcount incremented, use
  1055. * of_node_put() on it when done.
  1056. */
  1057. struct device_node *of_find_node_by_path(const char *path)
  1058. {
  1059. struct device_node *np = allnodes;
  1060. read_lock(&devtree_lock);
  1061. for (; np != 0; np = np->allnext) {
  1062. if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
  1063. && of_node_get(np))
  1064. break;
  1065. }
  1066. read_unlock(&devtree_lock);
  1067. return np;
  1068. }
  1069. EXPORT_SYMBOL(of_find_node_by_path);
  1070. /**
  1071. * of_find_node_by_phandle - Find a node given a phandle
  1072. * @handle: phandle of the node to find
  1073. *
  1074. * Returns a node pointer with refcount incremented, use
  1075. * of_node_put() on it when done.
  1076. */
  1077. struct device_node *of_find_node_by_phandle(phandle handle)
  1078. {
  1079. struct device_node *np;
  1080. read_lock(&devtree_lock);
  1081. for (np = allnodes; np != 0; np = np->allnext)
  1082. if (np->linux_phandle == handle)
  1083. break;
  1084. if (np)
  1085. of_node_get(np);
  1086. read_unlock(&devtree_lock);
  1087. return np;
  1088. }
  1089. EXPORT_SYMBOL(of_find_node_by_phandle);
  1090. /**
  1091. * of_find_all_nodes - Get next node in global list
  1092. * @prev: Previous node or NULL to start iteration
  1093. * of_node_put() will be called on it
  1094. *
  1095. * Returns a node pointer with refcount incremented, use
  1096. * of_node_put() on it when done.
  1097. */
  1098. struct device_node *of_find_all_nodes(struct device_node *prev)
  1099. {
  1100. struct device_node *np;
  1101. read_lock(&devtree_lock);
  1102. np = prev ? prev->allnext : allnodes;
  1103. for (; np != 0; np = np->allnext)
  1104. if (of_node_get(np))
  1105. break;
  1106. if (prev)
  1107. of_node_put(prev);
  1108. read_unlock(&devtree_lock);
  1109. return np;
  1110. }
  1111. EXPORT_SYMBOL(of_find_all_nodes);
  1112. /**
  1113. * of_get_parent - Get a node's parent if any
  1114. * @node: Node to get parent
  1115. *
  1116. * Returns a node pointer with refcount incremented, use
  1117. * of_node_put() on it when done.
  1118. */
  1119. struct device_node *of_get_parent(const struct device_node *node)
  1120. {
  1121. struct device_node *np;
  1122. if (!node)
  1123. return NULL;
  1124. read_lock(&devtree_lock);
  1125. np = of_node_get(node->parent);
  1126. read_unlock(&devtree_lock);
  1127. return np;
  1128. }
  1129. EXPORT_SYMBOL(of_get_parent);
  1130. /**
  1131. * of_get_next_child - Iterate a node childs
  1132. * @node: parent node
  1133. * @prev: previous child of the parent node, or NULL to get first
  1134. *
  1135. * Returns a node pointer with refcount incremented, use
  1136. * of_node_put() on it when done.
  1137. */
  1138. struct device_node *of_get_next_child(const struct device_node *node,
  1139. struct device_node *prev)
  1140. {
  1141. struct device_node *next;
  1142. read_lock(&devtree_lock);
  1143. next = prev ? prev->sibling : node->child;
  1144. for (; next != 0; next = next->sibling)
  1145. if (of_node_get(next))
  1146. break;
  1147. if (prev)
  1148. of_node_put(prev);
  1149. read_unlock(&devtree_lock);
  1150. return next;
  1151. }
  1152. EXPORT_SYMBOL(of_get_next_child);
  1153. /**
  1154. * of_node_get - Increment refcount of a node
  1155. * @node: Node to inc refcount, NULL is supported to
  1156. * simplify writing of callers
  1157. *
  1158. * Returns node.
  1159. */
  1160. struct device_node *of_node_get(struct device_node *node)
  1161. {
  1162. if (node)
  1163. kref_get(&node->kref);
  1164. return node;
  1165. }
  1166. EXPORT_SYMBOL(of_node_get);
  1167. static inline struct device_node * kref_to_device_node(struct kref *kref)
  1168. {
  1169. return container_of(kref, struct device_node, kref);
  1170. }
  1171. /**
  1172. * of_node_release - release a dynamically allocated node
  1173. * @kref: kref element of the node to be released
  1174. *
  1175. * In of_node_put() this function is passed to kref_put()
  1176. * as the destructor.
  1177. */
  1178. static void of_node_release(struct kref *kref)
  1179. {
  1180. struct device_node *node = kref_to_device_node(kref);
  1181. struct property *prop = node->properties;
  1182. if (!OF_IS_DYNAMIC(node))
  1183. return;
  1184. while (prop) {
  1185. struct property *next = prop->next;
  1186. kfree(prop->name);
  1187. kfree(prop->value);
  1188. kfree(prop);
  1189. prop = next;
  1190. if (!prop) {
  1191. prop = node->deadprops;
  1192. node->deadprops = NULL;
  1193. }
  1194. }
  1195. kfree(node->full_name);
  1196. kfree(node->data);
  1197. kfree(node);
  1198. }
  1199. /**
  1200. * of_node_put - Decrement refcount of a node
  1201. * @node: Node to dec refcount, NULL is supported to
  1202. * simplify writing of callers
  1203. *
  1204. */
  1205. void of_node_put(struct device_node *node)
  1206. {
  1207. if (node)
  1208. kref_put(&node->kref, of_node_release);
  1209. }
  1210. EXPORT_SYMBOL(of_node_put);
  1211. /*
  1212. * Plug a device node into the tree and global list.
  1213. */
  1214. void of_attach_node(struct device_node *np)
  1215. {
  1216. write_lock(&devtree_lock);
  1217. np->sibling = np->parent->child;
  1218. np->allnext = allnodes;
  1219. np->parent->child = np;
  1220. allnodes = np;
  1221. write_unlock(&devtree_lock);
  1222. }
  1223. /*
  1224. * "Unplug" a node from the device tree. The caller must hold
  1225. * a reference to the node. The memory associated with the node
  1226. * is not freed until its refcount goes to zero.
  1227. */
  1228. void of_detach_node(const struct device_node *np)
  1229. {
  1230. struct device_node *parent;
  1231. write_lock(&devtree_lock);
  1232. parent = np->parent;
  1233. if (allnodes == np)
  1234. allnodes = np->allnext;
  1235. else {
  1236. struct device_node *prev;
  1237. for (prev = allnodes;
  1238. prev->allnext != np;
  1239. prev = prev->allnext)
  1240. ;
  1241. prev->allnext = np->allnext;
  1242. }
  1243. if (parent->child == np)
  1244. parent->child = np->sibling;
  1245. else {
  1246. struct device_node *prevsib;
  1247. for (prevsib = np->parent->child;
  1248. prevsib->sibling != np;
  1249. prevsib = prevsib->sibling)
  1250. ;
  1251. prevsib->sibling = np->sibling;
  1252. }
  1253. write_unlock(&devtree_lock);
  1254. }
  1255. #ifdef CONFIG_PPC_PSERIES
  1256. /*
  1257. * Fix up the uninitialized fields in a new device node:
  1258. * name, type and pci-specific fields
  1259. */
  1260. static int of_finish_dynamic_node(struct device_node *node)
  1261. {
  1262. struct device_node *parent = of_get_parent(node);
  1263. int err = 0;
  1264. const phandle *ibm_phandle;
  1265. node->name = get_property(node, "name", NULL);
  1266. node->type = get_property(node, "device_type", NULL);
  1267. if (!parent) {
  1268. err = -ENODEV;
  1269. goto out;
  1270. }
  1271. /* We don't support that function on PowerMac, at least
  1272. * not yet
  1273. */
  1274. if (machine_is(powermac))
  1275. return -ENODEV;
  1276. /* fix up new node's linux_phandle field */
  1277. if ((ibm_phandle = get_property(node, "ibm,phandle", NULL)))
  1278. node->linux_phandle = *ibm_phandle;
  1279. out:
  1280. of_node_put(parent);
  1281. return err;
  1282. }
  1283. static int prom_reconfig_notifier(struct notifier_block *nb,
  1284. unsigned long action, void *node)
  1285. {
  1286. int err;
  1287. switch (action) {
  1288. case PSERIES_RECONFIG_ADD:
  1289. err = of_finish_dynamic_node(node);
  1290. if (err < 0) {
  1291. printk(KERN_ERR "finish_node returned %d\n", err);
  1292. err = NOTIFY_BAD;
  1293. }
  1294. break;
  1295. default:
  1296. err = NOTIFY_DONE;
  1297. break;
  1298. }
  1299. return err;
  1300. }
  1301. static struct notifier_block prom_reconfig_nb = {
  1302. .notifier_call = prom_reconfig_notifier,
  1303. .priority = 10, /* This one needs to run first */
  1304. };
  1305. static int __init prom_reconfig_setup(void)
  1306. {
  1307. return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
  1308. }
  1309. __initcall(prom_reconfig_setup);
  1310. #endif
  1311. struct property *of_find_property(const struct device_node *np,
  1312. const char *name,
  1313. int *lenp)
  1314. {
  1315. struct property *pp;
  1316. read_lock(&devtree_lock);
  1317. for (pp = np->properties; pp != 0; pp = pp->next)
  1318. if (strcmp(pp->name, name) == 0) {
  1319. if (lenp != 0)
  1320. *lenp = pp->length;
  1321. break;
  1322. }
  1323. read_unlock(&devtree_lock);
  1324. return pp;
  1325. }
  1326. /*
  1327. * Find a property with a given name for a given node
  1328. * and return the value.
  1329. */
  1330. const void *get_property(const struct device_node *np, const char *name,
  1331. int *lenp)
  1332. {
  1333. struct property *pp = of_find_property(np,name,lenp);
  1334. return pp ? pp->value : NULL;
  1335. }
  1336. EXPORT_SYMBOL(get_property);
  1337. /*
  1338. * Add a property to a node
  1339. */
  1340. int prom_add_property(struct device_node* np, struct property* prop)
  1341. {
  1342. struct property **next;
  1343. prop->next = NULL;
  1344. write_lock(&devtree_lock);
  1345. next = &np->properties;
  1346. while (*next) {
  1347. if (strcmp(prop->name, (*next)->name) == 0) {
  1348. /* duplicate ! don't insert it */
  1349. write_unlock(&devtree_lock);
  1350. return -1;
  1351. }
  1352. next = &(*next)->next;
  1353. }
  1354. *next = prop;
  1355. write_unlock(&devtree_lock);
  1356. #ifdef CONFIG_PROC_DEVICETREE
  1357. /* try to add to proc as well if it was initialized */
  1358. if (np->pde)
  1359. proc_device_tree_add_prop(np->pde, prop);
  1360. #endif /* CONFIG_PROC_DEVICETREE */
  1361. return 0;
  1362. }
  1363. /*
  1364. * Remove a property from a node. Note that we don't actually
  1365. * remove it, since we have given out who-knows-how-many pointers
  1366. * to the data using get-property. Instead we just move the property
  1367. * to the "dead properties" list, so it won't be found any more.
  1368. */
  1369. int prom_remove_property(struct device_node *np, struct property *prop)
  1370. {
  1371. struct property **next;
  1372. int found = 0;
  1373. write_lock(&devtree_lock);
  1374. next = &np->properties;
  1375. while (*next) {
  1376. if (*next == prop) {
  1377. /* found the node */
  1378. *next = prop->next;
  1379. prop->next = np->deadprops;
  1380. np->deadprops = prop;
  1381. found = 1;
  1382. break;
  1383. }
  1384. next = &(*next)->next;
  1385. }
  1386. write_unlock(&devtree_lock);
  1387. if (!found)
  1388. return -ENODEV;
  1389. #ifdef CONFIG_PROC_DEVICETREE
  1390. /* try to remove the proc node as well */
  1391. if (np->pde)
  1392. proc_device_tree_remove_prop(np->pde, prop);
  1393. #endif /* CONFIG_PROC_DEVICETREE */
  1394. return 0;
  1395. }
  1396. /*
  1397. * Update a property in a node. Note that we don't actually
  1398. * remove it, since we have given out who-knows-how-many pointers
  1399. * to the data using get-property. Instead we just move the property
  1400. * to the "dead properties" list, and add the new property to the
  1401. * property list
  1402. */
  1403. int prom_update_property(struct device_node *np,
  1404. struct property *newprop,
  1405. struct property *oldprop)
  1406. {
  1407. struct property **next;
  1408. int found = 0;
  1409. write_lock(&devtree_lock);
  1410. next = &np->properties;
  1411. while (*next) {
  1412. if (*next == oldprop) {
  1413. /* found the node */
  1414. newprop->next = oldprop->next;
  1415. *next = newprop;
  1416. oldprop->next = np->deadprops;
  1417. np->deadprops = oldprop;
  1418. found = 1;
  1419. break;
  1420. }
  1421. next = &(*next)->next;
  1422. }
  1423. write_unlock(&devtree_lock);
  1424. if (!found)
  1425. return -ENODEV;
  1426. #ifdef CONFIG_PROC_DEVICETREE
  1427. /* try to add to proc as well if it was initialized */
  1428. if (np->pde)
  1429. proc_device_tree_update_prop(np->pde, newprop, oldprop);
  1430. #endif /* CONFIG_PROC_DEVICETREE */
  1431. return 0;
  1432. }
  1433. /* Find the device node for a given logical cpu number, also returns the cpu
  1434. * local thread number (index in ibm,interrupt-server#s) if relevant and
  1435. * asked for (non NULL)
  1436. */
  1437. struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
  1438. {
  1439. int hardid;
  1440. struct device_node *np;
  1441. hardid = get_hard_smp_processor_id(cpu);
  1442. for_each_node_by_type(np, "cpu") {
  1443. const u32 *intserv;
  1444. unsigned int plen, t;
  1445. /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
  1446. * fallback to "reg" property and assume no threads
  1447. */
  1448. intserv = get_property(np, "ibm,ppc-interrupt-server#s",
  1449. &plen);
  1450. if (intserv == NULL) {
  1451. const u32 *reg = get_property(np, "reg", NULL);
  1452. if (reg == NULL)
  1453. continue;
  1454. if (*reg == hardid) {
  1455. if (thread)
  1456. *thread = 0;
  1457. return np;
  1458. }
  1459. } else {
  1460. plen /= sizeof(u32);
  1461. for (t = 0; t < plen; t++) {
  1462. if (hardid == intserv[t]) {
  1463. if (thread)
  1464. *thread = t;
  1465. return np;
  1466. }
  1467. }
  1468. }
  1469. }
  1470. return NULL;
  1471. }
  1472. #ifdef DEBUG
  1473. static struct debugfs_blob_wrapper flat_dt_blob;
  1474. static int __init export_flat_device_tree(void)
  1475. {
  1476. struct dentry *d;
  1477. d = debugfs_create_dir("powerpc", NULL);
  1478. if (!d)
  1479. return 1;
  1480. flat_dt_blob.data = initial_boot_params;
  1481. flat_dt_blob.size = initial_boot_params->totalsize;
  1482. d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
  1483. d, &flat_dt_blob);
  1484. if (!d)
  1485. return 1;
  1486. return 0;
  1487. }
  1488. __initcall(export_flat_device_tree);
  1489. #endif