ide-timing.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. #ifndef _IDE_TIMING_H
  2. #define _IDE_TIMING_H
  3. /*
  4. * Copyright (c) 1999-2001 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * Should you need to contact me, the author, you can do so either by
  22. * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
  23. * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/hdreg.h>
  27. struct ide_timing {
  28. short mode;
  29. short setup; /* t1 */
  30. short act8b; /* t2 for 8-bit io */
  31. short rec8b; /* t2i for 8-bit io */
  32. short cyc8b; /* t0 for 8-bit io */
  33. short active; /* t2 or tD */
  34. short recover; /* t2i or tK */
  35. short cycle; /* t0 */
  36. short udma; /* t2CYCTYP/2 */
  37. };
  38. /*
  39. * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  40. * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  41. * for PIO 5, which is a nonstandard extension and UDMA6, which
  42. * is currently supported only by Maxtor drives.
  43. */
  44. static struct ide_timing ide_timing[] = {
  45. { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
  46. { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
  47. { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
  48. { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
  49. { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
  50. { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
  51. { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
  52. { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
  53. { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
  54. { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
  55. { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
  56. { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
  57. { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
  58. { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
  59. { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
  60. { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
  61. { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
  62. { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
  63. { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
  64. { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
  65. { -1 }
  66. };
  67. #define IDE_TIMING_SETUP 0x01
  68. #define IDE_TIMING_ACT8B 0x02
  69. #define IDE_TIMING_REC8B 0x04
  70. #define IDE_TIMING_CYC8B 0x08
  71. #define IDE_TIMING_8BIT 0x0e
  72. #define IDE_TIMING_ACTIVE 0x10
  73. #define IDE_TIMING_RECOVER 0x20
  74. #define IDE_TIMING_CYCLE 0x40
  75. #define IDE_TIMING_UDMA 0x80
  76. #define IDE_TIMING_ALL 0xff
  77. #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
  78. #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
  79. #define XFER_MODE 0xf0
  80. #define XFER_MWDMA 0x20
  81. #define XFER_EPIO 0x01
  82. #define XFER_PIO 0x00
  83. static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
  84. {
  85. q->setup = EZ(t->setup * 1000, T);
  86. q->act8b = EZ(t->act8b * 1000, T);
  87. q->rec8b = EZ(t->rec8b * 1000, T);
  88. q->cyc8b = EZ(t->cyc8b * 1000, T);
  89. q->active = EZ(t->active * 1000, T);
  90. q->recover = EZ(t->recover * 1000, T);
  91. q->cycle = EZ(t->cycle * 1000, T);
  92. q->udma = EZ(t->udma * 1000, UT);
  93. }
  94. static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
  95. {
  96. if (what & IDE_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
  97. if (what & IDE_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
  98. if (what & IDE_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
  99. if (what & IDE_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
  100. if (what & IDE_TIMING_ACTIVE ) m->active = max(a->active, b->active);
  101. if (what & IDE_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
  102. if (what & IDE_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
  103. if (what & IDE_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
  104. }
  105. static struct ide_timing* ide_timing_find_mode(short speed)
  106. {
  107. struct ide_timing *t;
  108. for (t = ide_timing; t->mode != speed; t++)
  109. if (t->mode < 0)
  110. return NULL;
  111. return t;
  112. }
  113. static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
  114. {
  115. struct hd_driveid *id = drive->id;
  116. struct ide_timing *s, p;
  117. /*
  118. * Find the mode.
  119. */
  120. if (!(s = ide_timing_find_mode(speed)))
  121. return -EINVAL;
  122. /*
  123. * Copy the timing from the table.
  124. */
  125. *t = *s;
  126. /*
  127. * If the drive is an EIDE drive, it can tell us it needs extended
  128. * PIO/MWDMA cycle timing.
  129. */
  130. if (id && id->field_valid & 2) { /* EIDE drive */
  131. memset(&p, 0, sizeof(p));
  132. switch (speed & XFER_MODE) {
  133. case XFER_PIO:
  134. if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
  135. else p.cycle = p.cyc8b = id->eide_pio_iordy;
  136. break;
  137. case XFER_MWDMA:
  138. p.cycle = id->eide_dma_min;
  139. break;
  140. }
  141. ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
  142. }
  143. /*
  144. * Convert the timing to bus clock counts.
  145. */
  146. ide_timing_quantize(t, t, T, UT);
  147. /*
  148. * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
  149. * and some other commands. We have to ensure that the DMA cycle timing is
  150. * slower/equal than the fastest PIO timing.
  151. */
  152. if ((speed & XFER_MODE) != XFER_PIO) {
  153. u8 pio = ide_get_best_pio_mode(drive, 255, 5);
  154. ide_timing_compute(drive, XFER_PIO_0 + pio, &p, T, UT);
  155. ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
  156. }
  157. /*
  158. * Lengthen active & recovery time so that cycle time is correct.
  159. */
  160. if (t->act8b + t->rec8b < t->cyc8b) {
  161. t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
  162. t->rec8b = t->cyc8b - t->act8b;
  163. }
  164. if (t->active + t->recover < t->cycle) {
  165. t->active += (t->cycle - (t->active + t->recover)) / 2;
  166. t->recover = t->cycle - t->active;
  167. }
  168. return 0;
  169. }
  170. #endif