core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * Copyright (C) 2012 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #define pr_fmt(fmt) "hci: %s: " fmt, __func__
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/nfc.h>
  24. #include <net/nfc/nfc.h>
  25. #include <net/nfc/hci.h>
  26. #include <net/nfc/llc.h>
  27. #include "hci.h"
  28. /* Largest headroom needed for outgoing HCI commands */
  29. #define HCI_CMDS_HEADROOM 1
  30. int nfc_hci_result_to_errno(u8 result)
  31. {
  32. switch (result) {
  33. case NFC_HCI_ANY_OK:
  34. return 0;
  35. case NFC_HCI_ANY_E_REG_PAR_UNKNOWN:
  36. return -EOPNOTSUPP;
  37. case NFC_HCI_ANY_E_TIMEOUT:
  38. return -ETIME;
  39. default:
  40. return -1;
  41. }
  42. }
  43. EXPORT_SYMBOL(nfc_hci_result_to_errno);
  44. static void nfc_hci_msg_tx_work(struct work_struct *work)
  45. {
  46. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  47. msg_tx_work);
  48. struct hci_msg *msg;
  49. struct sk_buff *skb;
  50. int r = 0;
  51. mutex_lock(&hdev->msg_tx_mutex);
  52. if (hdev->shutting_down)
  53. goto exit;
  54. if (hdev->cmd_pending_msg) {
  55. if (timer_pending(&hdev->cmd_timer) == 0) {
  56. if (hdev->cmd_pending_msg->cb)
  57. hdev->cmd_pending_msg->cb(hdev->
  58. cmd_pending_msg->
  59. cb_context,
  60. NULL,
  61. -ETIME);
  62. kfree(hdev->cmd_pending_msg);
  63. hdev->cmd_pending_msg = NULL;
  64. } else {
  65. goto exit;
  66. }
  67. }
  68. next_msg:
  69. if (list_empty(&hdev->msg_tx_queue))
  70. goto exit;
  71. msg = list_first_entry(&hdev->msg_tx_queue, struct hci_msg, msg_l);
  72. list_del(&msg->msg_l);
  73. pr_debug("msg_tx_queue has a cmd to send\n");
  74. while ((skb = skb_dequeue(&msg->msg_frags)) != NULL) {
  75. r = nfc_llc_xmit_from_hci(hdev->llc, skb);
  76. if (r < 0) {
  77. kfree_skb(skb);
  78. skb_queue_purge(&msg->msg_frags);
  79. if (msg->cb)
  80. msg->cb(msg->cb_context, NULL, r);
  81. kfree(msg);
  82. break;
  83. }
  84. }
  85. if (r)
  86. goto next_msg;
  87. if (msg->wait_response == false) {
  88. kfree(msg);
  89. goto next_msg;
  90. }
  91. hdev->cmd_pending_msg = msg;
  92. mod_timer(&hdev->cmd_timer, jiffies +
  93. msecs_to_jiffies(hdev->cmd_pending_msg->completion_delay));
  94. exit:
  95. mutex_unlock(&hdev->msg_tx_mutex);
  96. }
  97. static void nfc_hci_msg_rx_work(struct work_struct *work)
  98. {
  99. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  100. msg_rx_work);
  101. struct sk_buff *skb;
  102. struct hcp_message *message;
  103. u8 pipe;
  104. u8 type;
  105. u8 instruction;
  106. while ((skb = skb_dequeue(&hdev->msg_rx_queue)) != NULL) {
  107. pipe = skb->data[0];
  108. skb_pull(skb, NFC_HCI_HCP_PACKET_HEADER_LEN);
  109. message = (struct hcp_message *)skb->data;
  110. type = HCP_MSG_GET_TYPE(message->header);
  111. instruction = HCP_MSG_GET_CMD(message->header);
  112. skb_pull(skb, NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  113. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, skb);
  114. }
  115. }
  116. static void __nfc_hci_cmd_completion(struct nfc_hci_dev *hdev, int err,
  117. struct sk_buff *skb)
  118. {
  119. del_timer_sync(&hdev->cmd_timer);
  120. if (hdev->cmd_pending_msg->cb)
  121. hdev->cmd_pending_msg->cb(hdev->cmd_pending_msg->cb_context,
  122. skb, err);
  123. else
  124. kfree_skb(skb);
  125. kfree(hdev->cmd_pending_msg);
  126. hdev->cmd_pending_msg = NULL;
  127. schedule_work(&hdev->msg_tx_work);
  128. }
  129. void nfc_hci_resp_received(struct nfc_hci_dev *hdev, u8 result,
  130. struct sk_buff *skb)
  131. {
  132. mutex_lock(&hdev->msg_tx_mutex);
  133. if (hdev->cmd_pending_msg == NULL) {
  134. kfree_skb(skb);
  135. goto exit;
  136. }
  137. __nfc_hci_cmd_completion(hdev, nfc_hci_result_to_errno(result), skb);
  138. exit:
  139. mutex_unlock(&hdev->msg_tx_mutex);
  140. }
  141. void nfc_hci_cmd_received(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
  142. struct sk_buff *skb)
  143. {
  144. kfree_skb(skb);
  145. }
  146. u32 nfc_hci_sak_to_protocol(u8 sak)
  147. {
  148. switch (NFC_HCI_TYPE_A_SEL_PROT(sak)) {
  149. case NFC_HCI_TYPE_A_SEL_PROT_MIFARE:
  150. return NFC_PROTO_MIFARE_MASK;
  151. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443:
  152. return NFC_PROTO_ISO14443_MASK;
  153. case NFC_HCI_TYPE_A_SEL_PROT_DEP:
  154. return NFC_PROTO_NFC_DEP_MASK;
  155. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443_DEP:
  156. return NFC_PROTO_ISO14443_MASK | NFC_PROTO_NFC_DEP_MASK;
  157. default:
  158. return 0xffffffff;
  159. }
  160. }
  161. EXPORT_SYMBOL(nfc_hci_sak_to_protocol);
  162. int nfc_hci_target_discovered(struct nfc_hci_dev *hdev, u8 gate)
  163. {
  164. struct nfc_target *targets;
  165. struct sk_buff *atqa_skb = NULL;
  166. struct sk_buff *sak_skb = NULL;
  167. struct sk_buff *uid_skb = NULL;
  168. int r;
  169. pr_debug("from gate %d\n", gate);
  170. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  171. if (targets == NULL)
  172. return -ENOMEM;
  173. switch (gate) {
  174. case NFC_HCI_RF_READER_A_GATE:
  175. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  176. NFC_HCI_RF_READER_A_ATQA, &atqa_skb);
  177. if (r < 0)
  178. goto exit;
  179. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  180. NFC_HCI_RF_READER_A_SAK, &sak_skb);
  181. if (r < 0)
  182. goto exit;
  183. if (atqa_skb->len != 2 || sak_skb->len != 1) {
  184. r = -EPROTO;
  185. goto exit;
  186. }
  187. targets->supported_protocols =
  188. nfc_hci_sak_to_protocol(sak_skb->data[0]);
  189. if (targets->supported_protocols == 0xffffffff) {
  190. r = -EPROTO;
  191. goto exit;
  192. }
  193. targets->sens_res = be16_to_cpu(*(u16 *)atqa_skb->data);
  194. targets->sel_res = sak_skb->data[0];
  195. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  196. NFC_HCI_RF_READER_A_UID, &uid_skb);
  197. if (r < 0)
  198. goto exit;
  199. if (uid_skb->len == 0 || uid_skb->len > NFC_NFCID1_MAXSIZE) {
  200. r = -EPROTO;
  201. goto exit;
  202. }
  203. memcpy(targets->nfcid1, uid_skb->data, uid_skb->len);
  204. targets->nfcid1_len = uid_skb->len;
  205. if (hdev->ops->complete_target_discovered) {
  206. r = hdev->ops->complete_target_discovered(hdev, gate,
  207. targets);
  208. if (r < 0)
  209. goto exit;
  210. }
  211. break;
  212. case NFC_HCI_RF_READER_B_GATE:
  213. targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
  214. break;
  215. default:
  216. if (hdev->ops->target_from_gate)
  217. r = hdev->ops->target_from_gate(hdev, gate, targets);
  218. else
  219. r = -EPROTO;
  220. if (r < 0)
  221. goto exit;
  222. if (hdev->ops->complete_target_discovered) {
  223. r = hdev->ops->complete_target_discovered(hdev, gate,
  224. targets);
  225. if (r < 0)
  226. goto exit;
  227. }
  228. break;
  229. }
  230. /* if driver set the new gate, we will skip the old one */
  231. if (targets->hci_reader_gate == 0x00)
  232. targets->hci_reader_gate = gate;
  233. r = nfc_targets_found(hdev->ndev, targets, 1);
  234. exit:
  235. kfree(targets);
  236. kfree_skb(atqa_skb);
  237. kfree_skb(sak_skb);
  238. kfree_skb(uid_skb);
  239. return r;
  240. }
  241. EXPORT_SYMBOL(nfc_hci_target_discovered);
  242. void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
  243. struct sk_buff *skb)
  244. {
  245. int r = 0;
  246. u8 gate = nfc_hci_pipe2gate(hdev, pipe);
  247. if (gate == 0xff) {
  248. pr_err("Discarded event %x to unopened pipe %x\n", event, pipe);
  249. goto exit;
  250. }
  251. switch (event) {
  252. case NFC_HCI_EVT_TARGET_DISCOVERED:
  253. if (skb->len < 1) { /* no status data? */
  254. r = -EPROTO;
  255. goto exit;
  256. }
  257. if (skb->data[0] == 3) {
  258. /* TODO: Multiple targets in field, none activated
  259. * poll is supposedly stopped, but there is no
  260. * single target to activate, so nothing to report
  261. * up.
  262. * if we need to restart poll, we must save the
  263. * protocols from the initial poll and reuse here.
  264. */
  265. }
  266. if (skb->data[0] != 0) {
  267. r = -EPROTO;
  268. goto exit;
  269. }
  270. r = nfc_hci_target_discovered(hdev, gate);
  271. break;
  272. default:
  273. if (hdev->ops->event_received) {
  274. hdev->ops->event_received(hdev, gate, event, skb);
  275. return;
  276. }
  277. break;
  278. }
  279. exit:
  280. kfree_skb(skb);
  281. if (r) {
  282. /* TODO: There was an error dispatching the event,
  283. * how to propagate up to nfc core?
  284. */
  285. }
  286. }
  287. static void nfc_hci_cmd_timeout(unsigned long data)
  288. {
  289. struct nfc_hci_dev *hdev = (struct nfc_hci_dev *)data;
  290. schedule_work(&hdev->msg_tx_work);
  291. }
  292. static int hci_dev_connect_gates(struct nfc_hci_dev *hdev, u8 gate_count,
  293. struct nfc_hci_gate *gates)
  294. {
  295. int r;
  296. while (gate_count--) {
  297. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  298. gates->gate, gates->pipe);
  299. if (r < 0)
  300. return r;
  301. gates++;
  302. }
  303. return 0;
  304. }
  305. static int hci_dev_session_init(struct nfc_hci_dev *hdev)
  306. {
  307. struct sk_buff *skb = NULL;
  308. int r;
  309. if (hdev->init_data.gates[0].gate != NFC_HCI_ADMIN_GATE)
  310. return -EPROTO;
  311. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  312. hdev->init_data.gates[0].gate,
  313. hdev->init_data.gates[0].pipe);
  314. if (r < 0)
  315. goto exit;
  316. r = nfc_hci_get_param(hdev, NFC_HCI_ADMIN_GATE,
  317. NFC_HCI_ADMIN_SESSION_IDENTITY, &skb);
  318. if (r < 0)
  319. goto disconnect_all;
  320. if (skb->len && skb->len == strlen(hdev->init_data.session_id))
  321. if (memcmp(hdev->init_data.session_id, skb->data,
  322. skb->len) == 0) {
  323. /* TODO ELa: restore gate<->pipe table from
  324. * some TBD location.
  325. * note: it doesn't seem possible to get the chip
  326. * currently open gate/pipe table.
  327. * It is only possible to obtain the supported
  328. * gate list.
  329. */
  330. /* goto exit
  331. * For now, always do a full initialization */
  332. }
  333. r = nfc_hci_disconnect_all_gates(hdev);
  334. if (r < 0)
  335. goto exit;
  336. r = hci_dev_connect_gates(hdev, hdev->init_data.gate_count,
  337. hdev->init_data.gates);
  338. if (r < 0)
  339. goto disconnect_all;
  340. r = nfc_hci_set_param(hdev, NFC_HCI_ADMIN_GATE,
  341. NFC_HCI_ADMIN_SESSION_IDENTITY,
  342. hdev->init_data.session_id,
  343. strlen(hdev->init_data.session_id));
  344. if (r == 0)
  345. goto exit;
  346. disconnect_all:
  347. nfc_hci_disconnect_all_gates(hdev);
  348. exit:
  349. kfree_skb(skb);
  350. return r;
  351. }
  352. static int hci_dev_version(struct nfc_hci_dev *hdev)
  353. {
  354. int r;
  355. struct sk_buff *skb;
  356. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  357. NFC_HCI_ID_MGMT_VERSION_SW, &skb);
  358. if (r == -EOPNOTSUPP) {
  359. pr_info("Software/Hardware info not available\n");
  360. return 0;
  361. }
  362. if (r < 0)
  363. return r;
  364. if (skb->len != 3) {
  365. kfree_skb(skb);
  366. return -EINVAL;
  367. }
  368. hdev->sw_romlib = (skb->data[0] & 0xf0) >> 4;
  369. hdev->sw_patch = skb->data[0] & 0x0f;
  370. hdev->sw_flashlib_major = skb->data[1];
  371. hdev->sw_flashlib_minor = skb->data[2];
  372. kfree_skb(skb);
  373. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  374. NFC_HCI_ID_MGMT_VERSION_HW, &skb);
  375. if (r < 0)
  376. return r;
  377. if (skb->len != 3) {
  378. kfree_skb(skb);
  379. return -EINVAL;
  380. }
  381. hdev->hw_derivative = (skb->data[0] & 0xe0) >> 5;
  382. hdev->hw_version = skb->data[0] & 0x1f;
  383. hdev->hw_mpw = (skb->data[1] & 0xc0) >> 6;
  384. hdev->hw_software = skb->data[1] & 0x3f;
  385. hdev->hw_bsid = skb->data[2];
  386. kfree_skb(skb);
  387. pr_info("SOFTWARE INFO:\n");
  388. pr_info("RomLib : %d\n", hdev->sw_romlib);
  389. pr_info("Patch : %d\n", hdev->sw_patch);
  390. pr_info("FlashLib Major : %d\n", hdev->sw_flashlib_major);
  391. pr_info("FlashLib Minor : %d\n", hdev->sw_flashlib_minor);
  392. pr_info("HARDWARE INFO:\n");
  393. pr_info("Derivative : %d\n", hdev->hw_derivative);
  394. pr_info("HW Version : %d\n", hdev->hw_version);
  395. pr_info("#MPW : %d\n", hdev->hw_mpw);
  396. pr_info("Software : %d\n", hdev->hw_software);
  397. pr_info("BSID Version : %d\n", hdev->hw_bsid);
  398. return 0;
  399. }
  400. static int hci_dev_up(struct nfc_dev *nfc_dev)
  401. {
  402. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  403. int r = 0;
  404. if (hdev->ops->open) {
  405. r = hdev->ops->open(hdev);
  406. if (r < 0)
  407. return r;
  408. }
  409. r = nfc_llc_start(hdev->llc);
  410. if (r < 0)
  411. goto exit_close;
  412. r = hci_dev_session_init(hdev);
  413. if (r < 0)
  414. goto exit_llc;
  415. r = nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  416. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  417. if (r < 0)
  418. goto exit_llc;
  419. if (hdev->ops->hci_ready) {
  420. r = hdev->ops->hci_ready(hdev);
  421. if (r < 0)
  422. goto exit_llc;
  423. }
  424. r = hci_dev_version(hdev);
  425. if (r < 0)
  426. goto exit_llc;
  427. return 0;
  428. exit_llc:
  429. nfc_llc_stop(hdev->llc);
  430. exit_close:
  431. if (hdev->ops->close)
  432. hdev->ops->close(hdev);
  433. return r;
  434. }
  435. static int hci_dev_down(struct nfc_dev *nfc_dev)
  436. {
  437. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  438. nfc_llc_stop(hdev->llc);
  439. if (hdev->ops->close)
  440. hdev->ops->close(hdev);
  441. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  442. return 0;
  443. }
  444. static int hci_start_poll(struct nfc_dev *nfc_dev,
  445. u32 im_protocols, u32 tm_protocols)
  446. {
  447. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  448. if (hdev->ops->start_poll)
  449. return hdev->ops->start_poll(hdev, im_protocols, tm_protocols);
  450. else
  451. return nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  452. NFC_HCI_EVT_READER_REQUESTED,
  453. NULL, 0);
  454. }
  455. static void hci_stop_poll(struct nfc_dev *nfc_dev)
  456. {
  457. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  458. nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  459. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  460. }
  461. static int hci_dep_link_up(struct nfc_dev *nfc_dev, struct nfc_target *target,
  462. __u8 comm_mode, __u8 *gb, size_t gb_len)
  463. {
  464. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  465. if (hdev->ops->dep_link_up)
  466. return hdev->ops->dep_link_up(hdev, target, comm_mode,
  467. gb, gb_len);
  468. return 0;
  469. }
  470. static int hci_dep_link_down(struct nfc_dev *nfc_dev)
  471. {
  472. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  473. if (hdev->ops->dep_link_down)
  474. return hdev->ops->dep_link_down(hdev);
  475. return 0;
  476. }
  477. static int hci_activate_target(struct nfc_dev *nfc_dev,
  478. struct nfc_target *target, u32 protocol)
  479. {
  480. return 0;
  481. }
  482. static void hci_deactivate_target(struct nfc_dev *nfc_dev,
  483. struct nfc_target *target)
  484. {
  485. }
  486. #define HCI_CB_TYPE_TRANSCEIVE 1
  487. static void hci_transceive_cb(void *context, struct sk_buff *skb, int err)
  488. {
  489. struct nfc_hci_dev *hdev = context;
  490. switch (hdev->async_cb_type) {
  491. case HCI_CB_TYPE_TRANSCEIVE:
  492. /*
  493. * TODO: Check RF Error indicator to make sure data is valid.
  494. * It seems that HCI cmd can complete without error, but data
  495. * can be invalid if an RF error occured? Ignore for now.
  496. */
  497. if (err == 0)
  498. skb_trim(skb, skb->len - 1); /* RF Err ind */
  499. hdev->async_cb(hdev->async_cb_context, skb, err);
  500. break;
  501. default:
  502. if (err == 0)
  503. kfree_skb(skb);
  504. break;
  505. }
  506. }
  507. static int hci_transceive(struct nfc_dev *nfc_dev, struct nfc_target *target,
  508. struct sk_buff *skb, data_exchange_cb_t cb,
  509. void *cb_context)
  510. {
  511. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  512. int r;
  513. pr_debug("target_idx=%d\n", target->idx);
  514. switch (target->hci_reader_gate) {
  515. case NFC_HCI_RF_READER_A_GATE:
  516. case NFC_HCI_RF_READER_B_GATE:
  517. if (hdev->ops->im_transceive) {
  518. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  519. cb_context);
  520. if (r <= 0) /* handled */
  521. break;
  522. }
  523. *skb_push(skb, 1) = 0; /* CTR, see spec:10.2.2.1 */
  524. hdev->async_cb_type = HCI_CB_TYPE_TRANSCEIVE;
  525. hdev->async_cb = cb;
  526. hdev->async_cb_context = cb_context;
  527. r = nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
  528. NFC_HCI_WR_XCHG_DATA, skb->data,
  529. skb->len, hci_transceive_cb, hdev);
  530. break;
  531. default:
  532. if (hdev->ops->im_transceive) {
  533. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  534. cb_context);
  535. if (r == 1)
  536. r = -ENOTSUPP;
  537. } else {
  538. r = -ENOTSUPP;
  539. }
  540. break;
  541. }
  542. kfree_skb(skb);
  543. return r;
  544. }
  545. static int hci_tm_send(struct nfc_dev *nfc_dev, struct sk_buff *skb)
  546. {
  547. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  548. if (hdev->ops->tm_send)
  549. return hdev->ops->tm_send(hdev, skb);
  550. else
  551. return -ENOTSUPP;
  552. }
  553. static int hci_check_presence(struct nfc_dev *nfc_dev,
  554. struct nfc_target *target)
  555. {
  556. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  557. if (hdev->ops->check_presence)
  558. return hdev->ops->check_presence(hdev, target);
  559. return 0;
  560. }
  561. static void nfc_hci_failure(struct nfc_hci_dev *hdev, int err)
  562. {
  563. mutex_lock(&hdev->msg_tx_mutex);
  564. if (hdev->cmd_pending_msg == NULL) {
  565. nfc_driver_failure(hdev->ndev, err);
  566. goto exit;
  567. }
  568. __nfc_hci_cmd_completion(hdev, err, NULL);
  569. exit:
  570. mutex_unlock(&hdev->msg_tx_mutex);
  571. }
  572. static void nfc_hci_llc_failure(struct nfc_hci_dev *hdev, int err)
  573. {
  574. nfc_hci_failure(hdev, err);
  575. }
  576. static void nfc_hci_recv_from_llc(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  577. {
  578. struct hcp_packet *packet;
  579. u8 type;
  580. u8 instruction;
  581. struct sk_buff *hcp_skb;
  582. u8 pipe;
  583. struct sk_buff *frag_skb;
  584. int msg_len;
  585. packet = (struct hcp_packet *)skb->data;
  586. if ((packet->header & ~NFC_HCI_FRAGMENT) == 0) {
  587. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  588. return;
  589. }
  590. /* it's the last fragment. Does it need re-aggregation? */
  591. if (skb_queue_len(&hdev->rx_hcp_frags)) {
  592. pipe = packet->header & NFC_HCI_FRAGMENT;
  593. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  594. msg_len = 0;
  595. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  596. msg_len += (frag_skb->len -
  597. NFC_HCI_HCP_PACKET_HEADER_LEN);
  598. }
  599. hcp_skb = nfc_alloc_recv_skb(NFC_HCI_HCP_PACKET_HEADER_LEN +
  600. msg_len, GFP_KERNEL);
  601. if (hcp_skb == NULL) {
  602. nfc_hci_failure(hdev, -ENOMEM);
  603. return;
  604. }
  605. *skb_put(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN) = pipe;
  606. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  607. msg_len = frag_skb->len - NFC_HCI_HCP_PACKET_HEADER_LEN;
  608. memcpy(skb_put(hcp_skb, msg_len),
  609. frag_skb->data + NFC_HCI_HCP_PACKET_HEADER_LEN,
  610. msg_len);
  611. }
  612. skb_queue_purge(&hdev->rx_hcp_frags);
  613. } else {
  614. packet->header &= NFC_HCI_FRAGMENT;
  615. hcp_skb = skb;
  616. }
  617. /* if this is a response, dispatch immediately to
  618. * unblock waiting cmd context. Otherwise, enqueue to dispatch
  619. * in separate context where handler can also execute command.
  620. */
  621. packet = (struct hcp_packet *)hcp_skb->data;
  622. type = HCP_MSG_GET_TYPE(packet->message.header);
  623. if (type == NFC_HCI_HCP_RESPONSE) {
  624. pipe = packet->header;
  625. instruction = HCP_MSG_GET_CMD(packet->message.header);
  626. skb_pull(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN +
  627. NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  628. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, hcp_skb);
  629. } else {
  630. skb_queue_tail(&hdev->msg_rx_queue, hcp_skb);
  631. schedule_work(&hdev->msg_rx_work);
  632. }
  633. }
  634. static struct nfc_ops hci_nfc_ops = {
  635. .dev_up = hci_dev_up,
  636. .dev_down = hci_dev_down,
  637. .start_poll = hci_start_poll,
  638. .stop_poll = hci_stop_poll,
  639. .dep_link_up = hci_dep_link_up,
  640. .dep_link_down = hci_dep_link_down,
  641. .activate_target = hci_activate_target,
  642. .deactivate_target = hci_deactivate_target,
  643. .im_transceive = hci_transceive,
  644. .tm_send = hci_tm_send,
  645. .check_presence = hci_check_presence,
  646. };
  647. struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
  648. struct nfc_hci_init_data *init_data,
  649. u32 protocols,
  650. const char *llc_name,
  651. int tx_headroom,
  652. int tx_tailroom,
  653. int max_link_payload)
  654. {
  655. struct nfc_hci_dev *hdev;
  656. if (ops->xmit == NULL)
  657. return NULL;
  658. if (protocols == 0)
  659. return NULL;
  660. hdev = kzalloc(sizeof(struct nfc_hci_dev), GFP_KERNEL);
  661. if (hdev == NULL)
  662. return NULL;
  663. hdev->llc = nfc_llc_allocate(llc_name, hdev, ops->xmit,
  664. nfc_hci_recv_from_llc, tx_headroom,
  665. tx_tailroom, nfc_hci_llc_failure);
  666. if (hdev->llc == NULL) {
  667. kfree(hdev);
  668. return NULL;
  669. }
  670. hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols,
  671. tx_headroom + HCI_CMDS_HEADROOM,
  672. tx_tailroom);
  673. if (!hdev->ndev) {
  674. nfc_llc_free(hdev->llc);
  675. kfree(hdev);
  676. return NULL;
  677. }
  678. hdev->ops = ops;
  679. hdev->max_data_link_payload = max_link_payload;
  680. hdev->init_data = *init_data;
  681. nfc_set_drvdata(hdev->ndev, hdev);
  682. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  683. return hdev;
  684. }
  685. EXPORT_SYMBOL(nfc_hci_allocate_device);
  686. void nfc_hci_free_device(struct nfc_hci_dev *hdev)
  687. {
  688. nfc_free_device(hdev->ndev);
  689. nfc_llc_free(hdev->llc);
  690. kfree(hdev);
  691. }
  692. EXPORT_SYMBOL(nfc_hci_free_device);
  693. int nfc_hci_register_device(struct nfc_hci_dev *hdev)
  694. {
  695. mutex_init(&hdev->msg_tx_mutex);
  696. INIT_LIST_HEAD(&hdev->msg_tx_queue);
  697. INIT_WORK(&hdev->msg_tx_work, nfc_hci_msg_tx_work);
  698. init_timer(&hdev->cmd_timer);
  699. hdev->cmd_timer.data = (unsigned long)hdev;
  700. hdev->cmd_timer.function = nfc_hci_cmd_timeout;
  701. skb_queue_head_init(&hdev->rx_hcp_frags);
  702. INIT_WORK(&hdev->msg_rx_work, nfc_hci_msg_rx_work);
  703. skb_queue_head_init(&hdev->msg_rx_queue);
  704. return nfc_register_device(hdev->ndev);
  705. }
  706. EXPORT_SYMBOL(nfc_hci_register_device);
  707. void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
  708. {
  709. struct hci_msg *msg, *n;
  710. mutex_lock(&hdev->msg_tx_mutex);
  711. if (hdev->cmd_pending_msg) {
  712. if (hdev->cmd_pending_msg->cb)
  713. hdev->cmd_pending_msg->cb(
  714. hdev->cmd_pending_msg->cb_context,
  715. NULL, -ESHUTDOWN);
  716. kfree(hdev->cmd_pending_msg);
  717. hdev->cmd_pending_msg = NULL;
  718. }
  719. hdev->shutting_down = true;
  720. mutex_unlock(&hdev->msg_tx_mutex);
  721. del_timer_sync(&hdev->cmd_timer);
  722. cancel_work_sync(&hdev->msg_tx_work);
  723. cancel_work_sync(&hdev->msg_rx_work);
  724. nfc_unregister_device(hdev->ndev);
  725. skb_queue_purge(&hdev->rx_hcp_frags);
  726. skb_queue_purge(&hdev->msg_rx_queue);
  727. list_for_each_entry_safe(msg, n, &hdev->msg_tx_queue, msg_l) {
  728. list_del(&msg->msg_l);
  729. skb_queue_purge(&msg->msg_frags);
  730. kfree(msg);
  731. }
  732. }
  733. EXPORT_SYMBOL(nfc_hci_unregister_device);
  734. void nfc_hci_set_clientdata(struct nfc_hci_dev *hdev, void *clientdata)
  735. {
  736. hdev->clientdata = clientdata;
  737. }
  738. EXPORT_SYMBOL(nfc_hci_set_clientdata);
  739. void *nfc_hci_get_clientdata(struct nfc_hci_dev *hdev)
  740. {
  741. return hdev->clientdata;
  742. }
  743. EXPORT_SYMBOL(nfc_hci_get_clientdata);
  744. void nfc_hci_driver_failure(struct nfc_hci_dev *hdev, int err)
  745. {
  746. nfc_hci_failure(hdev, err);
  747. }
  748. EXPORT_SYMBOL(nfc_hci_driver_failure);
  749. void nfc_hci_recv_frame(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  750. {
  751. nfc_llc_rcv_from_drv(hdev->llc, skb);
  752. }
  753. EXPORT_SYMBOL(nfc_hci_recv_frame);
  754. static int __init nfc_hci_init(void)
  755. {
  756. return nfc_llc_init();
  757. }
  758. static void __exit nfc_hci_exit(void)
  759. {
  760. nfc_llc_exit();
  761. }
  762. subsys_initcall(nfc_hci_init);
  763. module_exit(nfc_hci_exit);
  764. MODULE_LICENSE("GPL");
  765. MODULE_DESCRIPTION("NFC HCI Core");