mmzone.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. /* First 128 byte cacheline (assuming 64 bit words) */
  44. NR_FREE_PAGES,
  45. NR_INACTIVE,
  46. NR_ACTIVE,
  47. NR_ANON_PAGES, /* Mapped anonymous pages */
  48. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  49. only modified from process context */
  50. NR_FILE_PAGES,
  51. NR_FILE_DIRTY,
  52. NR_WRITEBACK,
  53. /* Second 128 byte cacheline */
  54. NR_SLAB_RECLAIMABLE,
  55. NR_SLAB_UNRECLAIMABLE,
  56. NR_PAGETABLE, /* used for pagetables */
  57. NR_UNSTABLE_NFS, /* NFS unstable pages */
  58. NR_BOUNCE,
  59. NR_VMSCAN_WRITE,
  60. #ifdef CONFIG_NUMA
  61. NUMA_HIT, /* allocated in intended node */
  62. NUMA_MISS, /* allocated in non intended node */
  63. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  64. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  65. NUMA_LOCAL, /* allocation from local node */
  66. NUMA_OTHER, /* allocation from other node */
  67. #endif
  68. NR_VM_ZONE_STAT_ITEMS };
  69. struct per_cpu_pages {
  70. int count; /* number of pages in the list */
  71. int high; /* high watermark, emptying needed */
  72. int batch; /* chunk size for buddy add/remove */
  73. struct list_head list; /* the list of pages */
  74. };
  75. struct per_cpu_pageset {
  76. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  77. #ifdef CONFIG_NUMA
  78. s8 expire;
  79. #endif
  80. #ifdef CONFIG_SMP
  81. s8 stat_threshold;
  82. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  83. #endif
  84. } ____cacheline_aligned_in_smp;
  85. #ifdef CONFIG_NUMA
  86. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  87. #else
  88. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  89. #endif
  90. enum zone_type {
  91. #ifdef CONFIG_ZONE_DMA
  92. /*
  93. * ZONE_DMA is used when there are devices that are not able
  94. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  95. * carve out the portion of memory that is needed for these devices.
  96. * The range is arch specific.
  97. *
  98. * Some examples
  99. *
  100. * Architecture Limit
  101. * ---------------------------
  102. * parisc, ia64, sparc <4G
  103. * s390 <2G
  104. * arm26 <48M
  105. * arm Various
  106. * alpha Unlimited or 0-16MB.
  107. *
  108. * i386, x86_64 and multiple other arches
  109. * <16M.
  110. */
  111. ZONE_DMA,
  112. #endif
  113. #ifdef CONFIG_ZONE_DMA32
  114. /*
  115. * x86_64 needs two ZONE_DMAs because it supports devices that are
  116. * only able to do DMA to the lower 16M but also 32 bit devices that
  117. * can only do DMA areas below 4G.
  118. */
  119. ZONE_DMA32,
  120. #endif
  121. /*
  122. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  123. * performed on pages in ZONE_NORMAL if the DMA devices support
  124. * transfers to all addressable memory.
  125. */
  126. ZONE_NORMAL,
  127. #ifdef CONFIG_HIGHMEM
  128. /*
  129. * A memory area that is only addressable by the kernel through
  130. * mapping portions into its own address space. This is for example
  131. * used by i386 to allow the kernel to address the memory beyond
  132. * 900MB. The kernel will set up special mappings (page
  133. * table entries on i386) for each page that the kernel needs to
  134. * access.
  135. */
  136. ZONE_HIGHMEM,
  137. #endif
  138. MAX_NR_ZONES
  139. };
  140. /*
  141. * When a memory allocation must conform to specific limitations (such
  142. * as being suitable for DMA) the caller will pass in hints to the
  143. * allocator in the gfp_mask, in the zone modifier bits. These bits
  144. * are used to select a priority ordered list of memory zones which
  145. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  146. */
  147. /*
  148. * Count the active zones. Note that the use of defined(X) outside
  149. * #if and family is not necessarily defined so ensure we cannot use
  150. * it later. Use __ZONE_COUNT to work out how many shift bits we need.
  151. */
  152. #define __ZONE_COUNT ( \
  153. defined(CONFIG_ZONE_DMA) \
  154. + defined(CONFIG_ZONE_DMA32) \
  155. + 1 \
  156. + defined(CONFIG_HIGHMEM) \
  157. )
  158. #if __ZONE_COUNT < 2
  159. #define ZONES_SHIFT 0
  160. #elif __ZONE_COUNT <= 2
  161. #define ZONES_SHIFT 1
  162. #elif __ZONE_COUNT <= 4
  163. #define ZONES_SHIFT 2
  164. #else
  165. #error ZONES_SHIFT -- too many zones configured adjust calculation
  166. #endif
  167. #undef __ZONE_COUNT
  168. struct zone {
  169. /* Fields commonly accessed by the page allocator */
  170. unsigned long pages_min, pages_low, pages_high;
  171. /*
  172. * We don't know if the memory that we're going to allocate will be freeable
  173. * or/and it will be released eventually, so to avoid totally wasting several
  174. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  175. * to run OOM on the lower zones despite there's tons of freeable ram
  176. * on the higher zones). This array is recalculated at runtime if the
  177. * sysctl_lowmem_reserve_ratio sysctl changes.
  178. */
  179. unsigned long lowmem_reserve[MAX_NR_ZONES];
  180. #ifdef CONFIG_NUMA
  181. int node;
  182. /*
  183. * zone reclaim becomes active if more unmapped pages exist.
  184. */
  185. unsigned long min_unmapped_pages;
  186. unsigned long min_slab_pages;
  187. struct per_cpu_pageset *pageset[NR_CPUS];
  188. #else
  189. struct per_cpu_pageset pageset[NR_CPUS];
  190. #endif
  191. /*
  192. * free areas of different sizes
  193. */
  194. spinlock_t lock;
  195. #ifdef CONFIG_MEMORY_HOTPLUG
  196. /* see spanned/present_pages for more description */
  197. seqlock_t span_seqlock;
  198. #endif
  199. struct free_area free_area[MAX_ORDER];
  200. ZONE_PADDING(_pad1_)
  201. /* Fields commonly accessed by the page reclaim scanner */
  202. spinlock_t lru_lock;
  203. struct list_head active_list;
  204. struct list_head inactive_list;
  205. unsigned long nr_scan_active;
  206. unsigned long nr_scan_inactive;
  207. unsigned long pages_scanned; /* since last reclaim */
  208. int all_unreclaimable; /* All pages pinned */
  209. /* A count of how many reclaimers are scanning this zone */
  210. atomic_t reclaim_in_progress;
  211. /* Zone statistics */
  212. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  213. /*
  214. * prev_priority holds the scanning priority for this zone. It is
  215. * defined as the scanning priority at which we achieved our reclaim
  216. * target at the previous try_to_free_pages() or balance_pgdat()
  217. * invokation.
  218. *
  219. * We use prev_priority as a measure of how much stress page reclaim is
  220. * under - it drives the swappiness decision: whether to unmap mapped
  221. * pages.
  222. *
  223. * Access to both this field is quite racy even on uniprocessor. But
  224. * it is expected to average out OK.
  225. */
  226. int prev_priority;
  227. ZONE_PADDING(_pad2_)
  228. /* Rarely used or read-mostly fields */
  229. /*
  230. * wait_table -- the array holding the hash table
  231. * wait_table_hash_nr_entries -- the size of the hash table array
  232. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  233. *
  234. * The purpose of all these is to keep track of the people
  235. * waiting for a page to become available and make them
  236. * runnable again when possible. The trouble is that this
  237. * consumes a lot of space, especially when so few things
  238. * wait on pages at a given time. So instead of using
  239. * per-page waitqueues, we use a waitqueue hash table.
  240. *
  241. * The bucket discipline is to sleep on the same queue when
  242. * colliding and wake all in that wait queue when removing.
  243. * When something wakes, it must check to be sure its page is
  244. * truly available, a la thundering herd. The cost of a
  245. * collision is great, but given the expected load of the
  246. * table, they should be so rare as to be outweighed by the
  247. * benefits from the saved space.
  248. *
  249. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  250. * primary users of these fields, and in mm/page_alloc.c
  251. * free_area_init_core() performs the initialization of them.
  252. */
  253. wait_queue_head_t * wait_table;
  254. unsigned long wait_table_hash_nr_entries;
  255. unsigned long wait_table_bits;
  256. /*
  257. * Discontig memory support fields.
  258. */
  259. struct pglist_data *zone_pgdat;
  260. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  261. unsigned long zone_start_pfn;
  262. /*
  263. * zone_start_pfn, spanned_pages and present_pages are all
  264. * protected by span_seqlock. It is a seqlock because it has
  265. * to be read outside of zone->lock, and it is done in the main
  266. * allocator path. But, it is written quite infrequently.
  267. *
  268. * The lock is declared along with zone->lock because it is
  269. * frequently read in proximity to zone->lock. It's good to
  270. * give them a chance of being in the same cacheline.
  271. */
  272. unsigned long spanned_pages; /* total size, including holes */
  273. unsigned long present_pages; /* amount of memory (excluding holes) */
  274. /*
  275. * rarely used fields:
  276. */
  277. const char *name;
  278. } ____cacheline_internodealigned_in_smp;
  279. /*
  280. * The "priority" of VM scanning is how much of the queues we will scan in one
  281. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  282. * queues ("queue_length >> 12") during an aging round.
  283. */
  284. #define DEF_PRIORITY 12
  285. /* Maximum number of zones on a zonelist */
  286. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  287. #ifdef CONFIG_NUMA
  288. /*
  289. * We cache key information from each zonelist for smaller cache
  290. * footprint when scanning for free pages in get_page_from_freelist().
  291. *
  292. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  293. * up short of free memory since the last time (last_fullzone_zap)
  294. * we zero'd fullzones.
  295. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  296. * id, so that we can efficiently evaluate whether that node is
  297. * set in the current tasks mems_allowed.
  298. *
  299. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  300. * indexed by a zones offset in the zonelist zones[] array.
  301. *
  302. * The get_page_from_freelist() routine does two scans. During the
  303. * first scan, we skip zones whose corresponding bit in 'fullzones'
  304. * is set or whose corresponding node in current->mems_allowed (which
  305. * comes from cpusets) is not set. During the second scan, we bypass
  306. * this zonelist_cache, to ensure we look methodically at each zone.
  307. *
  308. * Once per second, we zero out (zap) fullzones, forcing us to
  309. * reconsider nodes that might have regained more free memory.
  310. * The field last_full_zap is the time we last zapped fullzones.
  311. *
  312. * This mechanism reduces the amount of time we waste repeatedly
  313. * reexaming zones for free memory when they just came up low on
  314. * memory momentarilly ago.
  315. *
  316. * The zonelist_cache struct members logically belong in struct
  317. * zonelist. However, the mempolicy zonelists constructed for
  318. * MPOL_BIND are intentionally variable length (and usually much
  319. * shorter). A general purpose mechanism for handling structs with
  320. * multiple variable length members is more mechanism than we want
  321. * here. We resort to some special case hackery instead.
  322. *
  323. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  324. * part because they are shorter), so we put the fixed length stuff
  325. * at the front of the zonelist struct, ending in a variable length
  326. * zones[], as is needed by MPOL_BIND.
  327. *
  328. * Then we put the optional zonelist cache on the end of the zonelist
  329. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  330. * the fixed length portion at the front of the struct. This pointer
  331. * both enables us to find the zonelist cache, and in the case of
  332. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  333. * to know that the zonelist cache is not there.
  334. *
  335. * The end result is that struct zonelists come in two flavors:
  336. * 1) The full, fixed length version, shown below, and
  337. * 2) The custom zonelists for MPOL_BIND.
  338. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  339. *
  340. * Even though there may be multiple CPU cores on a node modifying
  341. * fullzones or last_full_zap in the same zonelist_cache at the same
  342. * time, we don't lock it. This is just hint data - if it is wrong now
  343. * and then, the allocator will still function, perhaps a bit slower.
  344. */
  345. struct zonelist_cache {
  346. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  347. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  348. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  349. };
  350. #else
  351. struct zonelist_cache;
  352. #endif
  353. /*
  354. * One allocation request operates on a zonelist. A zonelist
  355. * is a list of zones, the first one is the 'goal' of the
  356. * allocation, the other zones are fallback zones, in decreasing
  357. * priority.
  358. *
  359. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  360. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  361. */
  362. struct zonelist {
  363. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  364. struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
  365. #ifdef CONFIG_NUMA
  366. struct zonelist_cache zlcache; // optional ...
  367. #endif
  368. };
  369. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  370. struct node_active_region {
  371. unsigned long start_pfn;
  372. unsigned long end_pfn;
  373. int nid;
  374. };
  375. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  376. #ifndef CONFIG_DISCONTIGMEM
  377. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  378. extern struct page *mem_map;
  379. #endif
  380. /*
  381. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  382. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  383. * zone denotes.
  384. *
  385. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  386. * it's memory layout.
  387. *
  388. * Memory statistics and page replacement data structures are maintained on a
  389. * per-zone basis.
  390. */
  391. struct bootmem_data;
  392. typedef struct pglist_data {
  393. struct zone node_zones[MAX_NR_ZONES];
  394. struct zonelist node_zonelists[MAX_NR_ZONES];
  395. int nr_zones;
  396. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  397. struct page *node_mem_map;
  398. #endif
  399. struct bootmem_data *bdata;
  400. #ifdef CONFIG_MEMORY_HOTPLUG
  401. /*
  402. * Must be held any time you expect node_start_pfn, node_present_pages
  403. * or node_spanned_pages stay constant. Holding this will also
  404. * guarantee that any pfn_valid() stays that way.
  405. *
  406. * Nests above zone->lock and zone->size_seqlock.
  407. */
  408. spinlock_t node_size_lock;
  409. #endif
  410. unsigned long node_start_pfn;
  411. unsigned long node_present_pages; /* total number of physical pages */
  412. unsigned long node_spanned_pages; /* total size of physical page
  413. range, including holes */
  414. int node_id;
  415. wait_queue_head_t kswapd_wait;
  416. struct task_struct *kswapd;
  417. int kswapd_max_order;
  418. } pg_data_t;
  419. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  420. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  421. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  422. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  423. #else
  424. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  425. #endif
  426. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  427. #include <linux/memory_hotplug.h>
  428. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  429. unsigned long *free);
  430. void build_all_zonelists(void);
  431. void wakeup_kswapd(struct zone *zone, int order);
  432. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  433. int classzone_idx, int alloc_flags);
  434. enum memmap_context {
  435. MEMMAP_EARLY,
  436. MEMMAP_HOTPLUG,
  437. };
  438. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  439. unsigned long size,
  440. enum memmap_context context);
  441. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  442. void memory_present(int nid, unsigned long start, unsigned long end);
  443. #else
  444. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  445. #endif
  446. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  447. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  448. #endif
  449. /*
  450. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  451. */
  452. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  453. static inline int populated_zone(struct zone *zone)
  454. {
  455. return (!!zone->present_pages);
  456. }
  457. static inline int is_highmem_idx(enum zone_type idx)
  458. {
  459. #ifdef CONFIG_HIGHMEM
  460. return (idx == ZONE_HIGHMEM);
  461. #else
  462. return 0;
  463. #endif
  464. }
  465. static inline int is_normal_idx(enum zone_type idx)
  466. {
  467. return (idx == ZONE_NORMAL);
  468. }
  469. /**
  470. * is_highmem - helper function to quickly check if a struct zone is a
  471. * highmem zone or not. This is an attempt to keep references
  472. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  473. * @zone - pointer to struct zone variable
  474. */
  475. static inline int is_highmem(struct zone *zone)
  476. {
  477. #ifdef CONFIG_HIGHMEM
  478. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. static inline int is_normal(struct zone *zone)
  484. {
  485. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  486. }
  487. static inline int is_dma32(struct zone *zone)
  488. {
  489. #ifdef CONFIG_ZONE_DMA32
  490. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  491. #else
  492. return 0;
  493. #endif
  494. }
  495. static inline int is_dma(struct zone *zone)
  496. {
  497. #ifdef CONFIG_ZONE_DMA
  498. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  499. #else
  500. return 0;
  501. #endif
  502. }
  503. /* These two functions are used to setup the per zone pages min values */
  504. struct ctl_table;
  505. struct file;
  506. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  507. void __user *, size_t *, loff_t *);
  508. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  509. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  510. void __user *, size_t *, loff_t *);
  511. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  512. void __user *, size_t *, loff_t *);
  513. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  514. struct file *, void __user *, size_t *, loff_t *);
  515. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  516. struct file *, void __user *, size_t *, loff_t *);
  517. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  518. struct file *, void __user *, size_t *, loff_t *);
  519. extern char numa_zonelist_order[];
  520. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  521. #include <linux/topology.h>
  522. /* Returns the number of the current Node. */
  523. #ifndef numa_node_id
  524. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  525. #endif
  526. #ifndef CONFIG_NEED_MULTIPLE_NODES
  527. extern struct pglist_data contig_page_data;
  528. #define NODE_DATA(nid) (&contig_page_data)
  529. #define NODE_MEM_MAP(nid) mem_map
  530. #define MAX_NODES_SHIFT 1
  531. #else /* CONFIG_NEED_MULTIPLE_NODES */
  532. #include <asm/mmzone.h>
  533. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  534. extern struct pglist_data *first_online_pgdat(void);
  535. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  536. extern struct zone *next_zone(struct zone *zone);
  537. /**
  538. * for_each_pgdat - helper macro to iterate over all nodes
  539. * @pgdat - pointer to a pg_data_t variable
  540. */
  541. #define for_each_online_pgdat(pgdat) \
  542. for (pgdat = first_online_pgdat(); \
  543. pgdat; \
  544. pgdat = next_online_pgdat(pgdat))
  545. /**
  546. * for_each_zone - helper macro to iterate over all memory zones
  547. * @zone - pointer to struct zone variable
  548. *
  549. * The user only needs to declare the zone variable, for_each_zone
  550. * fills it in.
  551. */
  552. #define for_each_zone(zone) \
  553. for (zone = (first_online_pgdat())->node_zones; \
  554. zone; \
  555. zone = next_zone(zone))
  556. #ifdef CONFIG_SPARSEMEM
  557. #include <asm/sparsemem.h>
  558. #endif
  559. #if BITS_PER_LONG == 32
  560. /*
  561. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  562. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  563. */
  564. #define FLAGS_RESERVED 9
  565. #elif BITS_PER_LONG == 64
  566. /*
  567. * with 64 bit flags field, there's plenty of room.
  568. */
  569. #define FLAGS_RESERVED 32
  570. #else
  571. #error BITS_PER_LONG not defined
  572. #endif
  573. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  574. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  575. #define early_pfn_to_nid(nid) (0UL)
  576. #endif
  577. #ifdef CONFIG_FLATMEM
  578. #define pfn_to_nid(pfn) (0)
  579. #endif
  580. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  581. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  582. #ifdef CONFIG_SPARSEMEM
  583. /*
  584. * SECTION_SHIFT #bits space required to store a section #
  585. *
  586. * PA_SECTION_SHIFT physical address to/from section number
  587. * PFN_SECTION_SHIFT pfn to/from section number
  588. */
  589. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  590. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  591. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  592. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  593. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  594. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  595. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  596. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  597. #endif
  598. struct page;
  599. struct mem_section {
  600. /*
  601. * This is, logically, a pointer to an array of struct
  602. * pages. However, it is stored with some other magic.
  603. * (see sparse.c::sparse_init_one_section())
  604. *
  605. * Additionally during early boot we encode node id of
  606. * the location of the section here to guide allocation.
  607. * (see sparse.c::memory_present())
  608. *
  609. * Making it a UL at least makes someone do a cast
  610. * before using it wrong.
  611. */
  612. unsigned long section_mem_map;
  613. };
  614. #ifdef CONFIG_SPARSEMEM_EXTREME
  615. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  616. #else
  617. #define SECTIONS_PER_ROOT 1
  618. #endif
  619. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  620. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  621. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  622. #ifdef CONFIG_SPARSEMEM_EXTREME
  623. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  624. #else
  625. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  626. #endif
  627. static inline struct mem_section *__nr_to_section(unsigned long nr)
  628. {
  629. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  630. return NULL;
  631. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  632. }
  633. extern int __section_nr(struct mem_section* ms);
  634. /*
  635. * We use the lower bits of the mem_map pointer to store
  636. * a little bit of information. There should be at least
  637. * 3 bits here due to 32-bit alignment.
  638. */
  639. #define SECTION_MARKED_PRESENT (1UL<<0)
  640. #define SECTION_HAS_MEM_MAP (1UL<<1)
  641. #define SECTION_MAP_LAST_BIT (1UL<<2)
  642. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  643. #define SECTION_NID_SHIFT 2
  644. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  645. {
  646. unsigned long map = section->section_mem_map;
  647. map &= SECTION_MAP_MASK;
  648. return (struct page *)map;
  649. }
  650. static inline int valid_section(struct mem_section *section)
  651. {
  652. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  653. }
  654. static inline int section_has_mem_map(struct mem_section *section)
  655. {
  656. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  657. }
  658. static inline int valid_section_nr(unsigned long nr)
  659. {
  660. return valid_section(__nr_to_section(nr));
  661. }
  662. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  663. {
  664. return __nr_to_section(pfn_to_section_nr(pfn));
  665. }
  666. static inline int pfn_valid(unsigned long pfn)
  667. {
  668. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  669. return 0;
  670. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  671. }
  672. /*
  673. * These are _only_ used during initialisation, therefore they
  674. * can use __initdata ... They could have names to indicate
  675. * this restriction.
  676. */
  677. #ifdef CONFIG_NUMA
  678. #define pfn_to_nid(pfn) \
  679. ({ \
  680. unsigned long __pfn_to_nid_pfn = (pfn); \
  681. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  682. })
  683. #else
  684. #define pfn_to_nid(pfn) (0)
  685. #endif
  686. #define early_pfn_valid(pfn) pfn_valid(pfn)
  687. void sparse_init(void);
  688. #else
  689. #define sparse_init() do {} while (0)
  690. #define sparse_index_init(_sec, _nid) do {} while (0)
  691. #endif /* CONFIG_SPARSEMEM */
  692. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  693. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  694. #else
  695. #define early_pfn_in_nid(pfn, nid) (1)
  696. #endif
  697. #ifndef early_pfn_valid
  698. #define early_pfn_valid(pfn) (1)
  699. #endif
  700. void memory_present(int nid, unsigned long start, unsigned long end);
  701. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  702. /*
  703. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  704. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  705. * pfn_valid_within() should be used in this case; we optimise this away
  706. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  707. */
  708. #ifdef CONFIG_HOLES_IN_ZONE
  709. #define pfn_valid_within(pfn) pfn_valid(pfn)
  710. #else
  711. #define pfn_valid_within(pfn) (1)
  712. #endif
  713. #endif /* !__ASSEMBLY__ */
  714. #endif /* __KERNEL__ */
  715. #endif /* _LINUX_MMZONE_H */