spi-topcliff-pch.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. int save_total_len;
  180. };
  181. /**
  182. * struct pch_spi_board_data - Holds the SPI device specific details
  183. * @pdev: Pointer to the PCI device
  184. * @suspend_sts: Status of suspend
  185. * @num: The number of SPI device instance
  186. */
  187. struct pch_spi_board_data {
  188. struct pci_dev *pdev;
  189. u8 suspend_sts;
  190. int num;
  191. };
  192. struct pch_pd_dev_save {
  193. int num;
  194. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  195. struct pch_spi_board_data *board_dat;
  196. };
  197. static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
  198. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  201. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  202. { }
  203. };
  204. /**
  205. * pch_spi_writereg() - Performs register writes
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. * @val: Value to be written to register.
  209. */
  210. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  211. {
  212. struct pch_spi_data *data = spi_master_get_devdata(master);
  213. iowrite32(val, (data->io_remap_addr + idx));
  214. }
  215. /**
  216. * pch_spi_readreg() - Performs register reads
  217. * @master: Pointer to struct spi_master.
  218. * @idx: Register offset.
  219. */
  220. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  221. {
  222. struct pch_spi_data *data = spi_master_get_devdata(master);
  223. return ioread32(data->io_remap_addr + idx);
  224. }
  225. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  226. u32 set, u32 clr)
  227. {
  228. u32 tmp = pch_spi_readreg(master, idx);
  229. tmp = (tmp & ~clr) | set;
  230. pch_spi_writereg(master, idx, tmp);
  231. }
  232. static void pch_spi_set_master_mode(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  235. }
  236. /**
  237. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  238. * @master: Pointer to struct spi_master.
  239. */
  240. static void pch_spi_clear_fifo(struct spi_master *master)
  241. {
  242. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  243. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  244. }
  245. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  246. void __iomem *io_remap_addr)
  247. {
  248. u32 n_read, tx_index, rx_index, bpw_len;
  249. u16 *pkt_rx_buffer, *pkt_tx_buff;
  250. int read_cnt;
  251. u32 reg_spcr_val;
  252. void __iomem *spsr;
  253. void __iomem *spdrr;
  254. void __iomem *spdwr;
  255. spsr = io_remap_addr + PCH_SPSR;
  256. iowrite32(reg_spsr_val, spsr);
  257. if (data->transfer_active) {
  258. rx_index = data->rx_index;
  259. tx_index = data->tx_index;
  260. bpw_len = data->bpw_len;
  261. pkt_rx_buffer = data->pkt_rx_buff;
  262. pkt_tx_buff = data->pkt_tx_buff;
  263. spdrr = io_remap_addr + PCH_SPDRR;
  264. spdwr = io_remap_addr + PCH_SPDWR;
  265. n_read = PCH_READABLE(reg_spsr_val);
  266. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  267. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  268. if (tx_index < bpw_len)
  269. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  270. }
  271. /* disable RFI if not needed */
  272. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  273. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  274. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  275. /* reset rx threshold */
  276. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  277. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  278. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  279. }
  280. /* update counts */
  281. data->tx_index = tx_index;
  282. data->rx_index = rx_index;
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  288. PCH_ALL);
  289. /* transfer is completed;
  290. inform pch_spi_process_messages */
  291. data->transfer_complete = true;
  292. data->transfer_active = false;
  293. wake_up(&data->wait);
  294. } else {
  295. dev_err(&data->master->dev,
  296. "%s : Transfer is not completed",
  297. __func__);
  298. }
  299. }
  300. }
  301. }
  302. /**
  303. * pch_spi_handler() - Interrupt handler
  304. * @irq: The interrupt number.
  305. * @dev_id: Pointer to struct pch_spi_board_data.
  306. */
  307. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  308. {
  309. u32 reg_spsr_val;
  310. void __iomem *spsr;
  311. void __iomem *io_remap_addr;
  312. irqreturn_t ret = IRQ_NONE;
  313. struct pch_spi_data *data = dev_id;
  314. struct pch_spi_board_data *board_dat = data->board_dat;
  315. if (board_dat->suspend_sts) {
  316. dev_dbg(&board_dat->pdev->dev,
  317. "%s returning due to suspend\n", __func__);
  318. return IRQ_NONE;
  319. }
  320. io_remap_addr = data->io_remap_addr;
  321. spsr = io_remap_addr + PCH_SPSR;
  322. reg_spsr_val = ioread32(spsr);
  323. if (reg_spsr_val & SPSR_ORF_BIT) {
  324. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  325. if (data->current_msg->complete) {
  326. data->transfer_complete = true;
  327. data->current_msg->status = -EIO;
  328. data->current_msg->complete(data->current_msg->context);
  329. data->bcurrent_msg_processing = false;
  330. data->current_msg = NULL;
  331. data->cur_trans = NULL;
  332. }
  333. }
  334. if (data->use_dma)
  335. return IRQ_NONE;
  336. /* Check if the interrupt is for SPI device */
  337. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  338. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  339. ret = IRQ_HANDLED;
  340. }
  341. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  342. __func__, ret);
  343. return ret;
  344. }
  345. /**
  346. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  347. * @master: Pointer to struct spi_master.
  348. * @speed_hz: Baud rate.
  349. */
  350. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  351. {
  352. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  353. /* if baud rate is less than we can support limit it */
  354. if (n_spbr > PCH_MAX_SPBR)
  355. n_spbr = PCH_MAX_SPBR;
  356. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  357. }
  358. /**
  359. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  360. * @master: Pointer to struct spi_master.
  361. * @bits_per_word: Bits per word for SPI transfer.
  362. */
  363. static void pch_spi_set_bits_per_word(struct spi_master *master,
  364. u8 bits_per_word)
  365. {
  366. if (bits_per_word == 8)
  367. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  368. else
  369. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  370. }
  371. /**
  372. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  373. * @spi: Pointer to struct spi_device.
  374. */
  375. static void pch_spi_setup_transfer(struct spi_device *spi)
  376. {
  377. u32 flags = 0;
  378. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  379. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  380. spi->max_speed_hz);
  381. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  382. /* set bits per word */
  383. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  384. if (!(spi->mode & SPI_LSB_FIRST))
  385. flags |= SPCR_LSBF_BIT;
  386. if (spi->mode & SPI_CPOL)
  387. flags |= SPCR_CPOL_BIT;
  388. if (spi->mode & SPI_CPHA)
  389. flags |= SPCR_CPHA_BIT;
  390. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  391. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  392. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  393. pch_spi_clear_fifo(spi->master);
  394. }
  395. /**
  396. * pch_spi_reset() - Clears SPI registers
  397. * @master: Pointer to struct spi_master.
  398. */
  399. static void pch_spi_reset(struct spi_master *master)
  400. {
  401. /* write 1 to reset SPI */
  402. pch_spi_writereg(master, PCH_SRST, 0x1);
  403. /* clear reset */
  404. pch_spi_writereg(master, PCH_SRST, 0x0);
  405. }
  406. static int pch_spi_setup(struct spi_device *pspi)
  407. {
  408. /* check bits per word */
  409. if (pspi->bits_per_word == 0) {
  410. pspi->bits_per_word = 8;
  411. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  412. }
  413. /* Check baud rate setting */
  414. /* if baud rate of chip is greater than
  415. max we can support,return error */
  416. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  417. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  418. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  419. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  420. return 0;
  421. }
  422. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  423. {
  424. struct spi_transfer *transfer;
  425. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  426. int retval;
  427. unsigned long flags;
  428. /* validate spi message and baud rate */
  429. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  430. dev_err(&pspi->dev, "%s list empty\n", __func__);
  431. retval = -EINVAL;
  432. goto err_out;
  433. }
  434. if (unlikely(pspi->max_speed_hz == 0)) {
  435. dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
  436. __func__, pspi->max_speed_hz);
  437. retval = -EINVAL;
  438. goto err_out;
  439. }
  440. dev_dbg(&pspi->dev,
  441. "%s Transfer List not empty. Transfer Speed is set.\n", __func__);
  442. spin_lock_irqsave(&data->lock, flags);
  443. /* validate Tx/Rx buffers and Transfer length */
  444. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  445. if (!transfer->tx_buf && !transfer->rx_buf) {
  446. dev_err(&pspi->dev,
  447. "%s Tx and Rx buffer NULL\n", __func__);
  448. retval = -EINVAL;
  449. goto err_return_spinlock;
  450. }
  451. if (!transfer->len) {
  452. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  453. __func__);
  454. retval = -EINVAL;
  455. goto err_return_spinlock;
  456. }
  457. dev_dbg(&pspi->dev,
  458. "%s Tx/Rx buffer valid. Transfer length valid\n",
  459. __func__);
  460. /* if baud rate has been specified validate the same */
  461. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  462. transfer->speed_hz = PCH_MAX_BAUDRATE;
  463. }
  464. spin_unlock_irqrestore(&data->lock, flags);
  465. /* We won't process any messages if we have been asked to terminate */
  466. if (data->status == STATUS_EXITING) {
  467. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  468. retval = -ESHUTDOWN;
  469. goto err_out;
  470. }
  471. /* If suspended ,return -EINVAL */
  472. if (data->board_dat->suspend_sts) {
  473. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  474. retval = -EINVAL;
  475. goto err_out;
  476. }
  477. /* set status of message */
  478. pmsg->actual_length = 0;
  479. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  480. pmsg->status = -EINPROGRESS;
  481. spin_lock_irqsave(&data->lock, flags);
  482. /* add message to queue */
  483. list_add_tail(&pmsg->queue, &data->queue);
  484. spin_unlock_irqrestore(&data->lock, flags);
  485. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  486. /* schedule work queue to run */
  487. queue_work(data->wk, &data->work);
  488. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  489. retval = 0;
  490. err_out:
  491. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  492. return retval;
  493. err_return_spinlock:
  494. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  495. spin_unlock_irqrestore(&data->lock, flags);
  496. return retval;
  497. }
  498. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  499. struct spi_device *pspi)
  500. {
  501. if (data->current_chip != NULL) {
  502. if (pspi->chip_select != data->n_curnt_chip) {
  503. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  504. data->current_chip = NULL;
  505. }
  506. }
  507. data->current_chip = pspi;
  508. data->n_curnt_chip = data->current_chip->chip_select;
  509. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  510. pch_spi_setup_transfer(pspi);
  511. }
  512. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  513. {
  514. int size;
  515. u32 n_writes;
  516. int j;
  517. struct spi_message *pmsg, *tmp;
  518. const u8 *tx_buf;
  519. const u16 *tx_sbuf;
  520. /* set baud rate if needed */
  521. if (data->cur_trans->speed_hz) {
  522. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  523. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  524. }
  525. /* set bits per word if needed */
  526. if (data->cur_trans->bits_per_word &&
  527. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  528. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  529. pch_spi_set_bits_per_word(data->master,
  530. data->cur_trans->bits_per_word);
  531. *bpw = data->cur_trans->bits_per_word;
  532. } else {
  533. *bpw = data->current_msg->spi->bits_per_word;
  534. }
  535. /* reset Tx/Rx index */
  536. data->tx_index = 0;
  537. data->rx_index = 0;
  538. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  539. /* find alloc size */
  540. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  541. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  542. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  543. if (data->pkt_tx_buff != NULL) {
  544. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  545. if (!data->pkt_rx_buff)
  546. kfree(data->pkt_tx_buff);
  547. }
  548. if (!data->pkt_rx_buff) {
  549. /* flush queue and set status of all transfers to -ENOMEM */
  550. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  551. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  552. pmsg->status = -ENOMEM;
  553. if (pmsg->complete)
  554. pmsg->complete(pmsg->context);
  555. /* delete from queue */
  556. list_del_init(&pmsg->queue);
  557. }
  558. return;
  559. }
  560. /* copy Tx Data */
  561. if (data->cur_trans->tx_buf != NULL) {
  562. if (*bpw == 8) {
  563. tx_buf = data->cur_trans->tx_buf;
  564. for (j = 0; j < data->bpw_len; j++)
  565. data->pkt_tx_buff[j] = *tx_buf++;
  566. } else {
  567. tx_sbuf = data->cur_trans->tx_buf;
  568. for (j = 0; j < data->bpw_len; j++)
  569. data->pkt_tx_buff[j] = *tx_sbuf++;
  570. }
  571. }
  572. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  573. n_writes = data->bpw_len;
  574. if (n_writes > PCH_MAX_FIFO_DEPTH)
  575. n_writes = PCH_MAX_FIFO_DEPTH;
  576. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  577. "0x2 to SSNXCR\n", __func__);
  578. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  579. for (j = 0; j < n_writes; j++)
  580. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  581. /* update tx_index */
  582. data->tx_index = j;
  583. /* reset transfer complete flag */
  584. data->transfer_complete = false;
  585. data->transfer_active = true;
  586. }
  587. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  588. {
  589. struct spi_message *pmsg, *tmp;
  590. dev_dbg(&data->master->dev, "%s called\n", __func__);
  591. /* Invoke complete callback
  592. * [To the spi core..indicating end of transfer] */
  593. data->current_msg->status = 0;
  594. if (data->current_msg->complete) {
  595. dev_dbg(&data->master->dev,
  596. "%s:Invoking callback of SPI core\n", __func__);
  597. data->current_msg->complete(data->current_msg->context);
  598. }
  599. /* update status in global variable */
  600. data->bcurrent_msg_processing = false;
  601. dev_dbg(&data->master->dev,
  602. "%s:data->bcurrent_msg_processing = false\n", __func__);
  603. data->current_msg = NULL;
  604. data->cur_trans = NULL;
  605. /* check if we have items in list and not suspending
  606. * return 1 if list empty */
  607. if ((list_empty(&data->queue) == 0) &&
  608. (!data->board_dat->suspend_sts) &&
  609. (data->status != STATUS_EXITING)) {
  610. /* We have some more work to do (either there is more tranint
  611. * bpw;sfer requests in the current message or there are
  612. *more messages)
  613. */
  614. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  615. queue_work(data->wk, &data->work);
  616. } else if (data->board_dat->suspend_sts ||
  617. data->status == STATUS_EXITING) {
  618. dev_dbg(&data->master->dev,
  619. "%s suspend/remove initiated, flushing queue\n",
  620. __func__);
  621. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  622. pmsg->status = -EIO;
  623. if (pmsg->complete)
  624. pmsg->complete(pmsg->context);
  625. /* delete from queue */
  626. list_del_init(&pmsg->queue);
  627. }
  628. }
  629. }
  630. static void pch_spi_set_ir(struct pch_spi_data *data)
  631. {
  632. /* enable interrupts, set threshold, enable SPI */
  633. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  634. /* set receive threshold to PCH_RX_THOLD */
  635. pch_spi_setclr_reg(data->master, PCH_SPCR,
  636. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  637. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  638. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  639. MASK_RFIC_SPCR_BITS | PCH_ALL);
  640. else
  641. /* set receive threshold to maximum */
  642. pch_spi_setclr_reg(data->master, PCH_SPCR,
  643. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  644. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  645. SPCR_SPE_BIT,
  646. MASK_RFIC_SPCR_BITS | PCH_ALL);
  647. /* Wait until the transfer completes; go to sleep after
  648. initiating the transfer. */
  649. dev_dbg(&data->master->dev,
  650. "%s:waiting for transfer to get over\n", __func__);
  651. wait_event_interruptible(data->wait, data->transfer_complete);
  652. /* clear all interrupts */
  653. pch_spi_writereg(data->master, PCH_SPSR,
  654. pch_spi_readreg(data->master, PCH_SPSR));
  655. /* Disable interrupts and SPI transfer */
  656. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  657. /* clear FIFO */
  658. pch_spi_clear_fifo(data->master);
  659. }
  660. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  661. {
  662. int j;
  663. u8 *rx_buf;
  664. u16 *rx_sbuf;
  665. /* copy Rx Data */
  666. if (!data->cur_trans->rx_buf)
  667. return;
  668. if (bpw == 8) {
  669. rx_buf = data->cur_trans->rx_buf;
  670. for (j = 0; j < data->bpw_len; j++)
  671. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  672. } else {
  673. rx_sbuf = data->cur_trans->rx_buf;
  674. for (j = 0; j < data->bpw_len; j++)
  675. *rx_sbuf++ = data->pkt_rx_buff[j];
  676. }
  677. }
  678. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  679. {
  680. int j;
  681. u8 *rx_buf;
  682. u16 *rx_sbuf;
  683. const u8 *rx_dma_buf;
  684. const u16 *rx_dma_sbuf;
  685. /* copy Rx Data */
  686. if (!data->cur_trans->rx_buf)
  687. return;
  688. if (bpw == 8) {
  689. rx_buf = data->cur_trans->rx_buf;
  690. rx_dma_buf = data->dma.rx_buf_virt;
  691. for (j = 0; j < data->bpw_len; j++)
  692. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  693. data->cur_trans->rx_buf = rx_buf;
  694. } else {
  695. rx_sbuf = data->cur_trans->rx_buf;
  696. rx_dma_sbuf = data->dma.rx_buf_virt;
  697. for (j = 0; j < data->bpw_len; j++)
  698. *rx_sbuf++ = *rx_dma_sbuf++;
  699. data->cur_trans->rx_buf = rx_sbuf;
  700. }
  701. }
  702. static int pch_spi_start_transfer(struct pch_spi_data *data)
  703. {
  704. struct pch_spi_dma_ctrl *dma;
  705. unsigned long flags;
  706. int rtn;
  707. dma = &data->dma;
  708. spin_lock_irqsave(&data->lock, flags);
  709. /* disable interrupts, SPI set enable */
  710. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  711. spin_unlock_irqrestore(&data->lock, flags);
  712. /* Wait until the transfer completes; go to sleep after
  713. initiating the transfer. */
  714. dev_dbg(&data->master->dev,
  715. "%s:waiting for transfer to get over\n", __func__);
  716. rtn = wait_event_interruptible_timeout(data->wait,
  717. data->transfer_complete,
  718. msecs_to_jiffies(2 * HZ));
  719. if (!rtn)
  720. dev_err(&data->master->dev,
  721. "%s wait-event timeout\n", __func__);
  722. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  723. DMA_FROM_DEVICE);
  724. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  725. DMA_FROM_DEVICE);
  726. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  727. async_tx_ack(dma->desc_rx);
  728. async_tx_ack(dma->desc_tx);
  729. kfree(dma->sg_tx_p);
  730. kfree(dma->sg_rx_p);
  731. spin_lock_irqsave(&data->lock, flags);
  732. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  733. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  734. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  735. SPCR_SPE_BIT);
  736. /* clear all interrupts */
  737. pch_spi_writereg(data->master, PCH_SPSR,
  738. pch_spi_readreg(data->master, PCH_SPSR));
  739. /* clear FIFO */
  740. pch_spi_clear_fifo(data->master);
  741. spin_unlock_irqrestore(&data->lock, flags);
  742. return rtn;
  743. }
  744. static void pch_dma_rx_complete(void *arg)
  745. {
  746. struct pch_spi_data *data = arg;
  747. /* transfer is completed;inform pch_spi_process_messages_dma */
  748. data->transfer_complete = true;
  749. wake_up_interruptible(&data->wait);
  750. }
  751. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  752. {
  753. struct pch_dma_slave *param = slave;
  754. if ((chan->chan_id == param->chan_id) &&
  755. (param->dma_dev == chan->device->dev)) {
  756. chan->private = param;
  757. return true;
  758. } else {
  759. return false;
  760. }
  761. }
  762. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  763. {
  764. dma_cap_mask_t mask;
  765. struct dma_chan *chan;
  766. struct pci_dev *dma_dev;
  767. struct pch_dma_slave *param;
  768. struct pch_spi_dma_ctrl *dma;
  769. unsigned int width;
  770. if (bpw == 8)
  771. width = PCH_DMA_WIDTH_1_BYTE;
  772. else
  773. width = PCH_DMA_WIDTH_2_BYTES;
  774. dma = &data->dma;
  775. dma_cap_zero(mask);
  776. dma_cap_set(DMA_SLAVE, mask);
  777. /* Get DMA's dev information */
  778. dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
  779. PCI_DEVFN(12, 0));
  780. /* Set Tx DMA */
  781. param = &dma->param_tx;
  782. param->dma_dev = &dma_dev->dev;
  783. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  784. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  785. param->width = width;
  786. chan = dma_request_channel(mask, pch_spi_filter, param);
  787. if (!chan) {
  788. dev_err(&data->master->dev,
  789. "ERROR: dma_request_channel FAILS(Tx)\n");
  790. data->use_dma = 0;
  791. return;
  792. }
  793. dma->chan_tx = chan;
  794. /* Set Rx DMA */
  795. param = &dma->param_rx;
  796. param->dma_dev = &dma_dev->dev;
  797. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  798. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  799. param->width = width;
  800. chan = dma_request_channel(mask, pch_spi_filter, param);
  801. if (!chan) {
  802. dev_err(&data->master->dev,
  803. "ERROR: dma_request_channel FAILS(Rx)\n");
  804. dma_release_channel(dma->chan_tx);
  805. dma->chan_tx = NULL;
  806. data->use_dma = 0;
  807. return;
  808. }
  809. dma->chan_rx = chan;
  810. }
  811. static void pch_spi_release_dma(struct pch_spi_data *data)
  812. {
  813. struct pch_spi_dma_ctrl *dma;
  814. dma = &data->dma;
  815. if (dma->chan_tx) {
  816. dma_release_channel(dma->chan_tx);
  817. dma->chan_tx = NULL;
  818. }
  819. if (dma->chan_rx) {
  820. dma_release_channel(dma->chan_rx);
  821. dma->chan_rx = NULL;
  822. }
  823. return;
  824. }
  825. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  826. {
  827. const u8 *tx_buf;
  828. const u16 *tx_sbuf;
  829. u8 *tx_dma_buf;
  830. u16 *tx_dma_sbuf;
  831. struct scatterlist *sg;
  832. struct dma_async_tx_descriptor *desc_tx;
  833. struct dma_async_tx_descriptor *desc_rx;
  834. int num;
  835. int i;
  836. int size;
  837. int rem;
  838. int head;
  839. unsigned long flags;
  840. struct pch_spi_dma_ctrl *dma;
  841. dma = &data->dma;
  842. /* set baud rate if needed */
  843. if (data->cur_trans->speed_hz) {
  844. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  845. spin_lock_irqsave(&data->lock, flags);
  846. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  847. spin_unlock_irqrestore(&data->lock, flags);
  848. }
  849. /* set bits per word if needed */
  850. if (data->cur_trans->bits_per_word &&
  851. (data->current_msg->spi->bits_per_word !=
  852. data->cur_trans->bits_per_word)) {
  853. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  854. spin_lock_irqsave(&data->lock, flags);
  855. pch_spi_set_bits_per_word(data->master,
  856. data->cur_trans->bits_per_word);
  857. spin_unlock_irqrestore(&data->lock, flags);
  858. *bpw = data->cur_trans->bits_per_word;
  859. } else {
  860. *bpw = data->current_msg->spi->bits_per_word;
  861. }
  862. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  863. if (data->bpw_len > PCH_BUF_SIZE) {
  864. data->bpw_len = PCH_BUF_SIZE;
  865. data->cur_trans->len -= PCH_BUF_SIZE;
  866. }
  867. /* copy Tx Data */
  868. if (data->cur_trans->tx_buf != NULL) {
  869. if (*bpw == 8) {
  870. tx_buf = data->cur_trans->tx_buf;
  871. tx_dma_buf = dma->tx_buf_virt;
  872. for (i = 0; i < data->bpw_len; i++)
  873. *tx_dma_buf++ = *tx_buf++;
  874. } else {
  875. tx_sbuf = data->cur_trans->tx_buf;
  876. tx_dma_sbuf = dma->tx_buf_virt;
  877. for (i = 0; i < data->bpw_len; i++)
  878. *tx_dma_sbuf++ = *tx_sbuf++;
  879. }
  880. }
  881. /* Calculate Rx parameter for DMA transmitting */
  882. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  883. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  884. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  885. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  886. } else {
  887. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  888. rem = PCH_DMA_TRANS_SIZE;
  889. }
  890. size = PCH_DMA_TRANS_SIZE;
  891. } else {
  892. num = 1;
  893. size = data->bpw_len;
  894. rem = data->bpw_len;
  895. }
  896. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  897. __func__, num, size, rem);
  898. spin_lock_irqsave(&data->lock, flags);
  899. /* set receive fifo threshold and transmit fifo threshold */
  900. pch_spi_setclr_reg(data->master, PCH_SPCR,
  901. ((size - 1) << SPCR_RFIC_FIELD) |
  902. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  903. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  904. spin_unlock_irqrestore(&data->lock, flags);
  905. /* RX */
  906. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  907. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  908. /* offset, length setting */
  909. sg = dma->sg_rx_p;
  910. for (i = 0; i < num; i++, sg++) {
  911. if (i == (num - 2)) {
  912. sg->offset = size * i;
  913. sg->offset = sg->offset * (*bpw / 8);
  914. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  915. sg->offset);
  916. sg_dma_len(sg) = rem;
  917. } else if (i == (num - 1)) {
  918. sg->offset = size * (i - 1) + rem;
  919. sg->offset = sg->offset * (*bpw / 8);
  920. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  921. sg->offset);
  922. sg_dma_len(sg) = size;
  923. } else {
  924. sg->offset = size * i;
  925. sg->offset = sg->offset * (*bpw / 8);
  926. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  927. sg->offset);
  928. sg_dma_len(sg) = size;
  929. }
  930. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  931. }
  932. sg = dma->sg_rx_p;
  933. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  934. num, DMA_DEV_TO_MEM,
  935. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  936. if (!desc_rx) {
  937. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  938. __func__);
  939. return;
  940. }
  941. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  942. desc_rx->callback = pch_dma_rx_complete;
  943. desc_rx->callback_param = data;
  944. dma->nent = num;
  945. dma->desc_rx = desc_rx;
  946. /* Calculate Tx parameter for DMA transmitting */
  947. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  948. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  949. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  950. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  951. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  952. } else {
  953. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  954. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  955. PCH_DMA_TRANS_SIZE - head;
  956. }
  957. size = PCH_DMA_TRANS_SIZE;
  958. } else {
  959. num = 1;
  960. size = data->bpw_len;
  961. rem = data->bpw_len;
  962. head = 0;
  963. }
  964. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  965. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  966. /* offset, length setting */
  967. sg = dma->sg_tx_p;
  968. for (i = 0; i < num; i++, sg++) {
  969. if (i == 0) {
  970. sg->offset = 0;
  971. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  972. sg->offset);
  973. sg_dma_len(sg) = size + head;
  974. } else if (i == (num - 1)) {
  975. sg->offset = head + size * i;
  976. sg->offset = sg->offset * (*bpw / 8);
  977. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  978. sg->offset);
  979. sg_dma_len(sg) = rem;
  980. } else {
  981. sg->offset = head + size * i;
  982. sg->offset = sg->offset * (*bpw / 8);
  983. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  984. sg->offset);
  985. sg_dma_len(sg) = size;
  986. }
  987. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  988. }
  989. sg = dma->sg_tx_p;
  990. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  991. sg, num, DMA_MEM_TO_DEV,
  992. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  993. if (!desc_tx) {
  994. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  995. __func__);
  996. return;
  997. }
  998. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  999. desc_tx->callback = NULL;
  1000. desc_tx->callback_param = data;
  1001. dma->nent = num;
  1002. dma->desc_tx = desc_tx;
  1003. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  1004. "0x2 to SSNXCR\n", __func__);
  1005. spin_lock_irqsave(&data->lock, flags);
  1006. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  1007. desc_rx->tx_submit(desc_rx);
  1008. desc_tx->tx_submit(desc_tx);
  1009. spin_unlock_irqrestore(&data->lock, flags);
  1010. /* reset transfer complete flag */
  1011. data->transfer_complete = false;
  1012. }
  1013. static void pch_spi_process_messages(struct work_struct *pwork)
  1014. {
  1015. struct spi_message *pmsg, *tmp;
  1016. struct pch_spi_data *data;
  1017. int bpw;
  1018. data = container_of(pwork, struct pch_spi_data, work);
  1019. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  1020. spin_lock(&data->lock);
  1021. /* check if suspend has been initiated;if yes flush queue */
  1022. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1023. dev_dbg(&data->master->dev,
  1024. "%s suspend/remove initiated, flushing queue\n", __func__);
  1025. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  1026. pmsg->status = -EIO;
  1027. if (pmsg->complete) {
  1028. spin_unlock(&data->lock);
  1029. pmsg->complete(pmsg->context);
  1030. spin_lock(&data->lock);
  1031. }
  1032. /* delete from queue */
  1033. list_del_init(&pmsg->queue);
  1034. }
  1035. spin_unlock(&data->lock);
  1036. return;
  1037. }
  1038. data->bcurrent_msg_processing = true;
  1039. dev_dbg(&data->master->dev,
  1040. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1041. /* Get the message from the queue and delete it from there. */
  1042. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1043. queue);
  1044. list_del_init(&data->current_msg->queue);
  1045. data->current_msg->status = 0;
  1046. pch_spi_select_chip(data, data->current_msg->spi);
  1047. spin_unlock(&data->lock);
  1048. if (data->use_dma)
  1049. pch_spi_request_dma(data,
  1050. data->current_msg->spi->bits_per_word);
  1051. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1052. do {
  1053. int cnt;
  1054. /* If we are already processing a message get the next
  1055. transfer structure from the message otherwise retrieve
  1056. the 1st transfer request from the message. */
  1057. spin_lock(&data->lock);
  1058. if (data->cur_trans == NULL) {
  1059. data->cur_trans =
  1060. list_entry(data->current_msg->transfers.next,
  1061. struct spi_transfer, transfer_list);
  1062. dev_dbg(&data->master->dev, "%s "
  1063. ":Getting 1st transfer message\n", __func__);
  1064. } else {
  1065. data->cur_trans =
  1066. list_entry(data->cur_trans->transfer_list.next,
  1067. struct spi_transfer, transfer_list);
  1068. dev_dbg(&data->master->dev, "%s "
  1069. ":Getting next transfer message\n", __func__);
  1070. }
  1071. spin_unlock(&data->lock);
  1072. if (!data->cur_trans->len)
  1073. goto out;
  1074. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1075. data->save_total_len = data->cur_trans->len;
  1076. if (data->use_dma) {
  1077. int i;
  1078. char *save_rx_buf = data->cur_trans->rx_buf;
  1079. for (i = 0; i < cnt; i ++) {
  1080. pch_spi_handle_dma(data, &bpw);
  1081. if (!pch_spi_start_transfer(data)) {
  1082. data->transfer_complete = true;
  1083. data->current_msg->status = -EIO;
  1084. data->current_msg->complete
  1085. (data->current_msg->context);
  1086. data->bcurrent_msg_processing = false;
  1087. data->current_msg = NULL;
  1088. data->cur_trans = NULL;
  1089. goto out;
  1090. }
  1091. pch_spi_copy_rx_data_for_dma(data, bpw);
  1092. }
  1093. data->cur_trans->rx_buf = save_rx_buf;
  1094. } else {
  1095. pch_spi_set_tx(data, &bpw);
  1096. pch_spi_set_ir(data);
  1097. pch_spi_copy_rx_data(data, bpw);
  1098. kfree(data->pkt_rx_buff);
  1099. data->pkt_rx_buff = NULL;
  1100. kfree(data->pkt_tx_buff);
  1101. data->pkt_tx_buff = NULL;
  1102. }
  1103. /* increment message count */
  1104. data->cur_trans->len = data->save_total_len;
  1105. data->current_msg->actual_length += data->cur_trans->len;
  1106. dev_dbg(&data->master->dev,
  1107. "%s:data->current_msg->actual_length=%d\n",
  1108. __func__, data->current_msg->actual_length);
  1109. /* check for delay */
  1110. if (data->cur_trans->delay_usecs) {
  1111. dev_dbg(&data->master->dev, "%s:"
  1112. "delay in usec=%d\n", __func__,
  1113. data->cur_trans->delay_usecs);
  1114. udelay(data->cur_trans->delay_usecs);
  1115. }
  1116. spin_lock(&data->lock);
  1117. /* No more transfer in this message. */
  1118. if ((data->cur_trans->transfer_list.next) ==
  1119. &(data->current_msg->transfers)) {
  1120. pch_spi_nomore_transfer(data);
  1121. }
  1122. spin_unlock(&data->lock);
  1123. } while (data->cur_trans != NULL);
  1124. out:
  1125. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1126. if (data->use_dma)
  1127. pch_spi_release_dma(data);
  1128. }
  1129. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1130. struct pch_spi_data *data)
  1131. {
  1132. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1133. /* free workqueue */
  1134. if (data->wk != NULL) {
  1135. destroy_workqueue(data->wk);
  1136. data->wk = NULL;
  1137. dev_dbg(&board_dat->pdev->dev,
  1138. "%s destroy_workqueue invoked successfully\n",
  1139. __func__);
  1140. }
  1141. }
  1142. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1143. struct pch_spi_data *data)
  1144. {
  1145. int retval = 0;
  1146. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1147. /* create workqueue */
  1148. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1149. if (!data->wk) {
  1150. dev_err(&board_dat->pdev->dev,
  1151. "%s create_singlet hread_workqueue failed\n", __func__);
  1152. retval = -EBUSY;
  1153. goto err_return;
  1154. }
  1155. /* reset PCH SPI h/w */
  1156. pch_spi_reset(data->master);
  1157. dev_dbg(&board_dat->pdev->dev,
  1158. "%s pch_spi_reset invoked successfully\n", __func__);
  1159. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1160. err_return:
  1161. if (retval != 0) {
  1162. dev_err(&board_dat->pdev->dev,
  1163. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1164. pch_spi_free_resources(board_dat, data);
  1165. }
  1166. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1167. return retval;
  1168. }
  1169. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1170. struct pch_spi_data *data)
  1171. {
  1172. struct pch_spi_dma_ctrl *dma;
  1173. dma = &data->dma;
  1174. if (dma->tx_buf_dma)
  1175. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1176. dma->tx_buf_virt, dma->tx_buf_dma);
  1177. if (dma->rx_buf_dma)
  1178. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1179. dma->rx_buf_virt, dma->rx_buf_dma);
  1180. return;
  1181. }
  1182. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1183. struct pch_spi_data *data)
  1184. {
  1185. struct pch_spi_dma_ctrl *dma;
  1186. dma = &data->dma;
  1187. /* Get Consistent memory for Tx DMA */
  1188. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1189. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1190. /* Get Consistent memory for Rx DMA */
  1191. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1192. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1193. }
  1194. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1195. {
  1196. int ret;
  1197. struct spi_master *master;
  1198. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1199. struct pch_spi_data *data;
  1200. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1201. master = spi_alloc_master(&board_dat->pdev->dev,
  1202. sizeof(struct pch_spi_data));
  1203. if (!master) {
  1204. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1205. plat_dev->id);
  1206. return -ENOMEM;
  1207. }
  1208. data = spi_master_get_devdata(master);
  1209. data->master = master;
  1210. platform_set_drvdata(plat_dev, data);
  1211. /* baseaddress + address offset) */
  1212. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1213. PCH_ADDRESS_SIZE * plat_dev->id;
  1214. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1215. if (!data->io_remap_addr) {
  1216. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1217. ret = -ENOMEM;
  1218. goto err_pci_iomap;
  1219. }
  1220. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1221. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1222. plat_dev->id, data->io_remap_addr);
  1223. /* initialize members of SPI master */
  1224. master->num_chipselect = PCH_MAX_CS;
  1225. master->setup = pch_spi_setup;
  1226. master->transfer = pch_spi_transfer;
  1227. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1228. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1229. data->board_dat = board_dat;
  1230. data->plat_dev = plat_dev;
  1231. data->n_curnt_chip = 255;
  1232. data->status = STATUS_RUNNING;
  1233. data->ch = plat_dev->id;
  1234. data->use_dma = use_dma;
  1235. INIT_LIST_HEAD(&data->queue);
  1236. spin_lock_init(&data->lock);
  1237. INIT_WORK(&data->work, pch_spi_process_messages);
  1238. init_waitqueue_head(&data->wait);
  1239. ret = pch_spi_get_resources(board_dat, data);
  1240. if (ret) {
  1241. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1242. goto err_spi_get_resources;
  1243. }
  1244. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1245. IRQF_SHARED, KBUILD_MODNAME, data);
  1246. if (ret) {
  1247. dev_err(&plat_dev->dev,
  1248. "%s request_irq failed\n", __func__);
  1249. goto err_request_irq;
  1250. }
  1251. data->irq_reg_sts = true;
  1252. pch_spi_set_master_mode(master);
  1253. ret = spi_register_master(master);
  1254. if (ret != 0) {
  1255. dev_err(&plat_dev->dev,
  1256. "%s spi_register_master FAILED\n", __func__);
  1257. goto err_spi_register_master;
  1258. }
  1259. if (use_dma) {
  1260. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1261. pch_alloc_dma_buf(board_dat, data);
  1262. }
  1263. return 0;
  1264. err_spi_register_master:
  1265. free_irq(board_dat->pdev->irq, data);
  1266. err_request_irq:
  1267. pch_spi_free_resources(board_dat, data);
  1268. err_spi_get_resources:
  1269. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1270. err_pci_iomap:
  1271. spi_master_put(master);
  1272. return ret;
  1273. }
  1274. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1275. {
  1276. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1277. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1278. int count;
  1279. unsigned long flags;
  1280. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1281. __func__, plat_dev->id, board_dat->pdev->irq);
  1282. if (use_dma)
  1283. pch_free_dma_buf(board_dat, data);
  1284. /* check for any pending messages; no action is taken if the queue
  1285. * is still full; but at least we tried. Unload anyway */
  1286. count = 500;
  1287. spin_lock_irqsave(&data->lock, flags);
  1288. data->status = STATUS_EXITING;
  1289. while ((list_empty(&data->queue) == 0) && --count) {
  1290. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1291. __func__);
  1292. spin_unlock_irqrestore(&data->lock, flags);
  1293. msleep(PCH_SLEEP_TIME);
  1294. spin_lock_irqsave(&data->lock, flags);
  1295. }
  1296. spin_unlock_irqrestore(&data->lock, flags);
  1297. pch_spi_free_resources(board_dat, data);
  1298. /* disable interrupts & free IRQ */
  1299. if (data->irq_reg_sts) {
  1300. /* disable interrupts */
  1301. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1302. data->irq_reg_sts = false;
  1303. free_irq(board_dat->pdev->irq, data);
  1304. }
  1305. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1306. spi_unregister_master(data->master);
  1307. return 0;
  1308. }
  1309. #ifdef CONFIG_PM
  1310. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1311. pm_message_t state)
  1312. {
  1313. u8 count;
  1314. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1315. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1316. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1317. if (!board_dat) {
  1318. dev_err(&pd_dev->dev,
  1319. "%s pci_get_drvdata returned NULL\n", __func__);
  1320. return -EFAULT;
  1321. }
  1322. /* check if the current message is processed:
  1323. Only after thats done the transfer will be suspended */
  1324. count = 255;
  1325. while ((--count) > 0) {
  1326. if (!(data->bcurrent_msg_processing))
  1327. break;
  1328. msleep(PCH_SLEEP_TIME);
  1329. }
  1330. /* Free IRQ */
  1331. if (data->irq_reg_sts) {
  1332. /* disable all interrupts */
  1333. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1334. pch_spi_reset(data->master);
  1335. free_irq(board_dat->pdev->irq, data);
  1336. data->irq_reg_sts = false;
  1337. dev_dbg(&pd_dev->dev,
  1338. "%s free_irq invoked successfully.\n", __func__);
  1339. }
  1340. return 0;
  1341. }
  1342. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1343. {
  1344. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1345. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1346. int retval;
  1347. if (!board_dat) {
  1348. dev_err(&pd_dev->dev,
  1349. "%s pci_get_drvdata returned NULL\n", __func__);
  1350. return -EFAULT;
  1351. }
  1352. if (!data->irq_reg_sts) {
  1353. /* register IRQ */
  1354. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1355. IRQF_SHARED, KBUILD_MODNAME, data);
  1356. if (retval < 0) {
  1357. dev_err(&pd_dev->dev,
  1358. "%s request_irq failed\n", __func__);
  1359. return retval;
  1360. }
  1361. /* reset PCH SPI h/w */
  1362. pch_spi_reset(data->master);
  1363. pch_spi_set_master_mode(data->master);
  1364. data->irq_reg_sts = true;
  1365. }
  1366. return 0;
  1367. }
  1368. #else
  1369. #define pch_spi_pd_suspend NULL
  1370. #define pch_spi_pd_resume NULL
  1371. #endif
  1372. static struct platform_driver pch_spi_pd_driver = {
  1373. .driver = {
  1374. .name = "pch-spi",
  1375. .owner = THIS_MODULE,
  1376. },
  1377. .probe = pch_spi_pd_probe,
  1378. .remove = pch_spi_pd_remove,
  1379. .suspend = pch_spi_pd_suspend,
  1380. .resume = pch_spi_pd_resume
  1381. };
  1382. static int pch_spi_probe(struct pci_dev *pdev,
  1383. const struct pci_device_id *id)
  1384. {
  1385. struct pch_spi_board_data *board_dat;
  1386. struct platform_device *pd_dev = NULL;
  1387. int retval;
  1388. int i;
  1389. struct pch_pd_dev_save *pd_dev_save;
  1390. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1391. if (!pd_dev_save) {
  1392. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1393. return -ENOMEM;
  1394. }
  1395. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1396. if (!board_dat) {
  1397. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1398. retval = -ENOMEM;
  1399. goto err_no_mem;
  1400. }
  1401. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1402. if (retval) {
  1403. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1404. goto pci_request_regions;
  1405. }
  1406. board_dat->pdev = pdev;
  1407. board_dat->num = id->driver_data;
  1408. pd_dev_save->num = id->driver_data;
  1409. pd_dev_save->board_dat = board_dat;
  1410. retval = pci_enable_device(pdev);
  1411. if (retval) {
  1412. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1413. goto pci_enable_device;
  1414. }
  1415. for (i = 0; i < board_dat->num; i++) {
  1416. pd_dev = platform_device_alloc("pch-spi", i);
  1417. if (!pd_dev) {
  1418. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1419. retval = -ENOMEM;
  1420. goto err_platform_device;
  1421. }
  1422. pd_dev_save->pd_save[i] = pd_dev;
  1423. pd_dev->dev.parent = &pdev->dev;
  1424. retval = platform_device_add_data(pd_dev, board_dat,
  1425. sizeof(*board_dat));
  1426. if (retval) {
  1427. dev_err(&pdev->dev,
  1428. "platform_device_add_data failed\n");
  1429. platform_device_put(pd_dev);
  1430. goto err_platform_device;
  1431. }
  1432. retval = platform_device_add(pd_dev);
  1433. if (retval) {
  1434. dev_err(&pdev->dev, "platform_device_add failed\n");
  1435. platform_device_put(pd_dev);
  1436. goto err_platform_device;
  1437. }
  1438. }
  1439. pci_set_drvdata(pdev, pd_dev_save);
  1440. return 0;
  1441. err_platform_device:
  1442. pci_disable_device(pdev);
  1443. pci_enable_device:
  1444. pci_release_regions(pdev);
  1445. pci_request_regions:
  1446. kfree(board_dat);
  1447. err_no_mem:
  1448. kfree(pd_dev_save);
  1449. return retval;
  1450. }
  1451. static void pch_spi_remove(struct pci_dev *pdev)
  1452. {
  1453. int i;
  1454. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1455. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1456. for (i = 0; i < pd_dev_save->num; i++)
  1457. platform_device_unregister(pd_dev_save->pd_save[i]);
  1458. pci_disable_device(pdev);
  1459. pci_release_regions(pdev);
  1460. kfree(pd_dev_save->board_dat);
  1461. kfree(pd_dev_save);
  1462. }
  1463. #ifdef CONFIG_PM
  1464. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1465. {
  1466. int retval;
  1467. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1468. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1469. pd_dev_save->board_dat->suspend_sts = true;
  1470. /* save config space */
  1471. retval = pci_save_state(pdev);
  1472. if (retval == 0) {
  1473. pci_enable_wake(pdev, PCI_D3hot, 0);
  1474. pci_disable_device(pdev);
  1475. pci_set_power_state(pdev, PCI_D3hot);
  1476. } else {
  1477. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1478. }
  1479. return retval;
  1480. }
  1481. static int pch_spi_resume(struct pci_dev *pdev)
  1482. {
  1483. int retval;
  1484. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1485. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1486. pci_set_power_state(pdev, PCI_D0);
  1487. pci_restore_state(pdev);
  1488. retval = pci_enable_device(pdev);
  1489. if (retval < 0) {
  1490. dev_err(&pdev->dev,
  1491. "%s pci_enable_device failed\n", __func__);
  1492. } else {
  1493. pci_enable_wake(pdev, PCI_D3hot, 0);
  1494. /* set suspend status to false */
  1495. pd_dev_save->board_dat->suspend_sts = false;
  1496. }
  1497. return retval;
  1498. }
  1499. #else
  1500. #define pch_spi_suspend NULL
  1501. #define pch_spi_resume NULL
  1502. #endif
  1503. static struct pci_driver pch_spi_pcidev_driver = {
  1504. .name = "pch_spi",
  1505. .id_table = pch_spi_pcidev_id,
  1506. .probe = pch_spi_probe,
  1507. .remove = pch_spi_remove,
  1508. .suspend = pch_spi_suspend,
  1509. .resume = pch_spi_resume,
  1510. };
  1511. static int __init pch_spi_init(void)
  1512. {
  1513. int ret;
  1514. ret = platform_driver_register(&pch_spi_pd_driver);
  1515. if (ret)
  1516. return ret;
  1517. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1518. if (ret) {
  1519. platform_driver_unregister(&pch_spi_pd_driver);
  1520. return ret;
  1521. }
  1522. return 0;
  1523. }
  1524. module_init(pch_spi_init);
  1525. static void __exit pch_spi_exit(void)
  1526. {
  1527. pci_unregister_driver(&pch_spi_pcidev_driver);
  1528. platform_driver_unregister(&pch_spi_pd_driver);
  1529. }
  1530. module_exit(pch_spi_exit);
  1531. module_param(use_dma, int, 0644);
  1532. MODULE_PARM_DESC(use_dma,
  1533. "to use DMA for data transfers pass 1 else 0; default 1");
  1534. MODULE_LICENSE("GPL");
  1535. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1536. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);