spi-pxa2xx.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/delay.h>
  31. #include <linux/gpio.h>
  32. #include <linux/slab.h>
  33. #include <linux/clk.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/acpi.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/delay.h>
  39. #include "spi-pxa2xx.h"
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define TIMOUT_DFLT 1000
  46. /*
  47. * for testing SSCR1 changes that require SSP restart, basically
  48. * everything except the service and interrupt enables, the pxa270 developer
  49. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50. * list, but the PXA255 dev man says all bits without really meaning the
  51. * service and interrupt enables
  52. */
  53. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59. #define LPSS_RX_THRESH_DFLT 64
  60. #define LPSS_TX_LOTHRESH_DFLT 160
  61. #define LPSS_TX_HITHRESH_DFLT 224
  62. /* Offset from drv_data->lpss_base */
  63. #define GENERAL_REG 0x08
  64. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  65. #define SSP_REG 0x0c
  66. #define SPI_CS_CONTROL 0x18
  67. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  68. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  69. static bool is_lpss_ssp(const struct driver_data *drv_data)
  70. {
  71. return drv_data->ssp_type == LPSS_SSP;
  72. }
  73. /*
  74. * Read and write LPSS SSP private registers. Caller must first check that
  75. * is_lpss_ssp() returns true before these can be called.
  76. */
  77. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  78. {
  79. WARN_ON(!drv_data->lpss_base);
  80. return readl(drv_data->lpss_base + offset);
  81. }
  82. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  83. unsigned offset, u32 value)
  84. {
  85. WARN_ON(!drv_data->lpss_base);
  86. writel(value, drv_data->lpss_base + offset);
  87. }
  88. /*
  89. * lpss_ssp_setup - perform LPSS SSP specific setup
  90. * @drv_data: pointer to the driver private data
  91. *
  92. * Perform LPSS SSP specific setup. This function must be called first if
  93. * one is going to use LPSS SSP private registers.
  94. */
  95. static void lpss_ssp_setup(struct driver_data *drv_data)
  96. {
  97. unsigned offset = 0x400;
  98. u32 value, orig;
  99. if (!is_lpss_ssp(drv_data))
  100. return;
  101. /*
  102. * Perform auto-detection of the LPSS SSP private registers. They
  103. * can be either at 1k or 2k offset from the base address.
  104. */
  105. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  106. value = orig | SPI_CS_CONTROL_SW_MODE;
  107. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  108. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  109. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  110. offset = 0x800;
  111. goto detection_done;
  112. }
  113. value &= ~SPI_CS_CONTROL_SW_MODE;
  114. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  115. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  116. if (value != orig) {
  117. offset = 0x800;
  118. goto detection_done;
  119. }
  120. detection_done:
  121. /* Now set the LPSS base */
  122. drv_data->lpss_base = drv_data->ioaddr + offset;
  123. /* Enable software chip select control */
  124. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  125. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  126. /* Enable multiblock DMA transfers */
  127. if (drv_data->master_info->enable_dma) {
  128. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  129. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  130. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  131. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  132. }
  133. }
  134. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  135. {
  136. u32 value;
  137. if (!is_lpss_ssp(drv_data))
  138. return;
  139. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  140. if (enable)
  141. value &= ~SPI_CS_CONTROL_CS_HIGH;
  142. else
  143. value |= SPI_CS_CONTROL_CS_HIGH;
  144. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  145. }
  146. static void cs_assert(struct driver_data *drv_data)
  147. {
  148. struct chip_data *chip = drv_data->cur_chip;
  149. if (drv_data->ssp_type == CE4100_SSP) {
  150. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  151. return;
  152. }
  153. if (chip->cs_control) {
  154. chip->cs_control(PXA2XX_CS_ASSERT);
  155. return;
  156. }
  157. if (gpio_is_valid(chip->gpio_cs)) {
  158. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  159. return;
  160. }
  161. lpss_ssp_cs_control(drv_data, true);
  162. }
  163. static void cs_deassert(struct driver_data *drv_data)
  164. {
  165. struct chip_data *chip = drv_data->cur_chip;
  166. if (drv_data->ssp_type == CE4100_SSP)
  167. return;
  168. if (chip->cs_control) {
  169. chip->cs_control(PXA2XX_CS_DEASSERT);
  170. return;
  171. }
  172. if (gpio_is_valid(chip->gpio_cs)) {
  173. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  174. return;
  175. }
  176. lpss_ssp_cs_control(drv_data, false);
  177. }
  178. int pxa2xx_spi_flush(struct driver_data *drv_data)
  179. {
  180. unsigned long limit = loops_per_jiffy << 1;
  181. void __iomem *reg = drv_data->ioaddr;
  182. do {
  183. while (read_SSSR(reg) & SSSR_RNE) {
  184. read_SSDR(reg);
  185. }
  186. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  187. write_SSSR_CS(drv_data, SSSR_ROR);
  188. return limit;
  189. }
  190. static int null_writer(struct driver_data *drv_data)
  191. {
  192. void __iomem *reg = drv_data->ioaddr;
  193. u8 n_bytes = drv_data->n_bytes;
  194. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  195. || (drv_data->tx == drv_data->tx_end))
  196. return 0;
  197. write_SSDR(0, reg);
  198. drv_data->tx += n_bytes;
  199. return 1;
  200. }
  201. static int null_reader(struct driver_data *drv_data)
  202. {
  203. void __iomem *reg = drv_data->ioaddr;
  204. u8 n_bytes = drv_data->n_bytes;
  205. while ((read_SSSR(reg) & SSSR_RNE)
  206. && (drv_data->rx < drv_data->rx_end)) {
  207. read_SSDR(reg);
  208. drv_data->rx += n_bytes;
  209. }
  210. return drv_data->rx == drv_data->rx_end;
  211. }
  212. static int u8_writer(struct driver_data *drv_data)
  213. {
  214. void __iomem *reg = drv_data->ioaddr;
  215. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  216. || (drv_data->tx == drv_data->tx_end))
  217. return 0;
  218. write_SSDR(*(u8 *)(drv_data->tx), reg);
  219. ++drv_data->tx;
  220. return 1;
  221. }
  222. static int u8_reader(struct driver_data *drv_data)
  223. {
  224. void __iomem *reg = drv_data->ioaddr;
  225. while ((read_SSSR(reg) & SSSR_RNE)
  226. && (drv_data->rx < drv_data->rx_end)) {
  227. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  228. ++drv_data->rx;
  229. }
  230. return drv_data->rx == drv_data->rx_end;
  231. }
  232. static int u16_writer(struct driver_data *drv_data)
  233. {
  234. void __iomem *reg = drv_data->ioaddr;
  235. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  236. || (drv_data->tx == drv_data->tx_end))
  237. return 0;
  238. write_SSDR(*(u16 *)(drv_data->tx), reg);
  239. drv_data->tx += 2;
  240. return 1;
  241. }
  242. static int u16_reader(struct driver_data *drv_data)
  243. {
  244. void __iomem *reg = drv_data->ioaddr;
  245. while ((read_SSSR(reg) & SSSR_RNE)
  246. && (drv_data->rx < drv_data->rx_end)) {
  247. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  248. drv_data->rx += 2;
  249. }
  250. return drv_data->rx == drv_data->rx_end;
  251. }
  252. static int u32_writer(struct driver_data *drv_data)
  253. {
  254. void __iomem *reg = drv_data->ioaddr;
  255. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  256. || (drv_data->tx == drv_data->tx_end))
  257. return 0;
  258. write_SSDR(*(u32 *)(drv_data->tx), reg);
  259. drv_data->tx += 4;
  260. return 1;
  261. }
  262. static int u32_reader(struct driver_data *drv_data)
  263. {
  264. void __iomem *reg = drv_data->ioaddr;
  265. while ((read_SSSR(reg) & SSSR_RNE)
  266. && (drv_data->rx < drv_data->rx_end)) {
  267. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  268. drv_data->rx += 4;
  269. }
  270. return drv_data->rx == drv_data->rx_end;
  271. }
  272. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  273. {
  274. struct spi_message *msg = drv_data->cur_msg;
  275. struct spi_transfer *trans = drv_data->cur_transfer;
  276. /* Move to next transfer */
  277. if (trans->transfer_list.next != &msg->transfers) {
  278. drv_data->cur_transfer =
  279. list_entry(trans->transfer_list.next,
  280. struct spi_transfer,
  281. transfer_list);
  282. return RUNNING_STATE;
  283. } else
  284. return DONE_STATE;
  285. }
  286. /* caller already set message->status; dma and pio irqs are blocked */
  287. static void giveback(struct driver_data *drv_data)
  288. {
  289. struct spi_transfer* last_transfer;
  290. struct spi_message *msg;
  291. msg = drv_data->cur_msg;
  292. drv_data->cur_msg = NULL;
  293. drv_data->cur_transfer = NULL;
  294. last_transfer = list_entry(msg->transfers.prev,
  295. struct spi_transfer,
  296. transfer_list);
  297. /* Delay if requested before any change in chip select */
  298. if (last_transfer->delay_usecs)
  299. udelay(last_transfer->delay_usecs);
  300. /* Drop chip select UNLESS cs_change is true or we are returning
  301. * a message with an error, or next message is for another chip
  302. */
  303. if (!last_transfer->cs_change)
  304. cs_deassert(drv_data);
  305. else {
  306. struct spi_message *next_msg;
  307. /* Holding of cs was hinted, but we need to make sure
  308. * the next message is for the same chip. Don't waste
  309. * time with the following tests unless this was hinted.
  310. *
  311. * We cannot postpone this until pump_messages, because
  312. * after calling msg->complete (below) the driver that
  313. * sent the current message could be unloaded, which
  314. * could invalidate the cs_control() callback...
  315. */
  316. /* get a pointer to the next message, if any */
  317. next_msg = spi_get_next_queued_message(drv_data->master);
  318. /* see if the next and current messages point
  319. * to the same chip
  320. */
  321. if (next_msg && next_msg->spi != msg->spi)
  322. next_msg = NULL;
  323. if (!next_msg || msg->state == ERROR_STATE)
  324. cs_deassert(drv_data);
  325. }
  326. spi_finalize_current_message(drv_data->master);
  327. drv_data->cur_chip = NULL;
  328. }
  329. static void reset_sccr1(struct driver_data *drv_data)
  330. {
  331. void __iomem *reg = drv_data->ioaddr;
  332. struct chip_data *chip = drv_data->cur_chip;
  333. u32 sccr1_reg;
  334. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  335. sccr1_reg &= ~SSCR1_RFT;
  336. sccr1_reg |= chip->threshold;
  337. write_SSCR1(sccr1_reg, reg);
  338. }
  339. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  340. {
  341. void __iomem *reg = drv_data->ioaddr;
  342. /* Stop and reset SSP */
  343. write_SSSR_CS(drv_data, drv_data->clear_sr);
  344. reset_sccr1(drv_data);
  345. if (!pxa25x_ssp_comp(drv_data))
  346. write_SSTO(0, reg);
  347. pxa2xx_spi_flush(drv_data);
  348. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  349. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  350. drv_data->cur_msg->state = ERROR_STATE;
  351. tasklet_schedule(&drv_data->pump_transfers);
  352. }
  353. static void int_transfer_complete(struct driver_data *drv_data)
  354. {
  355. void __iomem *reg = drv_data->ioaddr;
  356. /* Stop SSP */
  357. write_SSSR_CS(drv_data, drv_data->clear_sr);
  358. reset_sccr1(drv_data);
  359. if (!pxa25x_ssp_comp(drv_data))
  360. write_SSTO(0, reg);
  361. /* Update total byte transferred return count actual bytes read */
  362. drv_data->cur_msg->actual_length += drv_data->len -
  363. (drv_data->rx_end - drv_data->rx);
  364. /* Transfer delays and chip select release are
  365. * handled in pump_transfers or giveback
  366. */
  367. /* Move to next transfer */
  368. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  369. /* Schedule transfer tasklet */
  370. tasklet_schedule(&drv_data->pump_transfers);
  371. }
  372. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  373. {
  374. void __iomem *reg = drv_data->ioaddr;
  375. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  376. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  377. u32 irq_status = read_SSSR(reg) & irq_mask;
  378. if (irq_status & SSSR_ROR) {
  379. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  380. return IRQ_HANDLED;
  381. }
  382. if (irq_status & SSSR_TINT) {
  383. write_SSSR(SSSR_TINT, reg);
  384. if (drv_data->read(drv_data)) {
  385. int_transfer_complete(drv_data);
  386. return IRQ_HANDLED;
  387. }
  388. }
  389. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  390. do {
  391. if (drv_data->read(drv_data)) {
  392. int_transfer_complete(drv_data);
  393. return IRQ_HANDLED;
  394. }
  395. } while (drv_data->write(drv_data));
  396. if (drv_data->read(drv_data)) {
  397. int_transfer_complete(drv_data);
  398. return IRQ_HANDLED;
  399. }
  400. if (drv_data->tx == drv_data->tx_end) {
  401. u32 bytes_left;
  402. u32 sccr1_reg;
  403. sccr1_reg = read_SSCR1(reg);
  404. sccr1_reg &= ~SSCR1_TIE;
  405. /*
  406. * PXA25x_SSP has no timeout, set up rx threshould for the
  407. * remaining RX bytes.
  408. */
  409. if (pxa25x_ssp_comp(drv_data)) {
  410. sccr1_reg &= ~SSCR1_RFT;
  411. bytes_left = drv_data->rx_end - drv_data->rx;
  412. switch (drv_data->n_bytes) {
  413. case 4:
  414. bytes_left >>= 1;
  415. case 2:
  416. bytes_left >>= 1;
  417. }
  418. if (bytes_left > RX_THRESH_DFLT)
  419. bytes_left = RX_THRESH_DFLT;
  420. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  421. }
  422. write_SSCR1(sccr1_reg, reg);
  423. }
  424. /* We did something */
  425. return IRQ_HANDLED;
  426. }
  427. static irqreturn_t ssp_int(int irq, void *dev_id)
  428. {
  429. struct driver_data *drv_data = dev_id;
  430. void __iomem *reg = drv_data->ioaddr;
  431. u32 sccr1_reg;
  432. u32 mask = drv_data->mask_sr;
  433. u32 status;
  434. /*
  435. * The IRQ might be shared with other peripherals so we must first
  436. * check that are we RPM suspended or not. If we are we assume that
  437. * the IRQ was not for us (we shouldn't be RPM suspended when the
  438. * interrupt is enabled).
  439. */
  440. if (pm_runtime_suspended(&drv_data->pdev->dev))
  441. return IRQ_NONE;
  442. /*
  443. * If the device is not yet in RPM suspended state and we get an
  444. * interrupt that is meant for another device, check if status bits
  445. * are all set to one. That means that the device is already
  446. * powered off.
  447. */
  448. status = read_SSSR(reg);
  449. if (status == ~0)
  450. return IRQ_NONE;
  451. sccr1_reg = read_SSCR1(reg);
  452. /* Ignore possible writes if we don't need to write */
  453. if (!(sccr1_reg & SSCR1_TIE))
  454. mask &= ~SSSR_TFS;
  455. if (!(status & mask))
  456. return IRQ_NONE;
  457. if (!drv_data->cur_msg) {
  458. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  459. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  460. if (!pxa25x_ssp_comp(drv_data))
  461. write_SSTO(0, reg);
  462. write_SSSR_CS(drv_data, drv_data->clear_sr);
  463. dev_err(&drv_data->pdev->dev,
  464. "bad message state in interrupt handler\n");
  465. /* Never fail */
  466. return IRQ_HANDLED;
  467. }
  468. return drv_data->transfer_handler(drv_data);
  469. }
  470. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  471. {
  472. unsigned long ssp_clk = drv_data->max_clk_rate;
  473. const struct ssp_device *ssp = drv_data->ssp;
  474. rate = min_t(int, ssp_clk, rate);
  475. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  476. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  477. else
  478. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  479. }
  480. static void pump_transfers(unsigned long data)
  481. {
  482. struct driver_data *drv_data = (struct driver_data *)data;
  483. struct spi_message *message = NULL;
  484. struct spi_transfer *transfer = NULL;
  485. struct spi_transfer *previous = NULL;
  486. struct chip_data *chip = NULL;
  487. void __iomem *reg = drv_data->ioaddr;
  488. u32 clk_div = 0;
  489. u8 bits = 0;
  490. u32 speed = 0;
  491. u32 cr0;
  492. u32 cr1;
  493. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  494. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  495. /* Get current state information */
  496. message = drv_data->cur_msg;
  497. transfer = drv_data->cur_transfer;
  498. chip = drv_data->cur_chip;
  499. /* Handle for abort */
  500. if (message->state == ERROR_STATE) {
  501. message->status = -EIO;
  502. giveback(drv_data);
  503. return;
  504. }
  505. /* Handle end of message */
  506. if (message->state == DONE_STATE) {
  507. message->status = 0;
  508. giveback(drv_data);
  509. return;
  510. }
  511. /* Delay if requested at end of transfer before CS change */
  512. if (message->state == RUNNING_STATE) {
  513. previous = list_entry(transfer->transfer_list.prev,
  514. struct spi_transfer,
  515. transfer_list);
  516. if (previous->delay_usecs)
  517. udelay(previous->delay_usecs);
  518. /* Drop chip select only if cs_change is requested */
  519. if (previous->cs_change)
  520. cs_deassert(drv_data);
  521. }
  522. /* Check if we can DMA this transfer */
  523. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  524. /* reject already-mapped transfers; PIO won't always work */
  525. if (message->is_dma_mapped
  526. || transfer->rx_dma || transfer->tx_dma) {
  527. dev_err(&drv_data->pdev->dev,
  528. "pump_transfers: mapped transfer length of "
  529. "%u is greater than %d\n",
  530. transfer->len, MAX_DMA_LEN);
  531. message->status = -EINVAL;
  532. giveback(drv_data);
  533. return;
  534. }
  535. /* warn ... we force this to PIO mode */
  536. dev_warn_ratelimited(&message->spi->dev,
  537. "pump_transfers: DMA disabled for transfer length %ld "
  538. "greater than %d\n",
  539. (long)drv_data->len, MAX_DMA_LEN);
  540. }
  541. /* Setup the transfer state based on the type of transfer */
  542. if (pxa2xx_spi_flush(drv_data) == 0) {
  543. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  544. message->status = -EIO;
  545. giveback(drv_data);
  546. return;
  547. }
  548. drv_data->n_bytes = chip->n_bytes;
  549. drv_data->tx = (void *)transfer->tx_buf;
  550. drv_data->tx_end = drv_data->tx + transfer->len;
  551. drv_data->rx = transfer->rx_buf;
  552. drv_data->rx_end = drv_data->rx + transfer->len;
  553. drv_data->rx_dma = transfer->rx_dma;
  554. drv_data->tx_dma = transfer->tx_dma;
  555. drv_data->len = transfer->len;
  556. drv_data->write = drv_data->tx ? chip->write : null_writer;
  557. drv_data->read = drv_data->rx ? chip->read : null_reader;
  558. /* Change speed and bit per word on a per transfer */
  559. cr0 = chip->cr0;
  560. if (transfer->speed_hz || transfer->bits_per_word) {
  561. bits = chip->bits_per_word;
  562. speed = chip->speed_hz;
  563. if (transfer->speed_hz)
  564. speed = transfer->speed_hz;
  565. if (transfer->bits_per_word)
  566. bits = transfer->bits_per_word;
  567. clk_div = ssp_get_clk_div(drv_data, speed);
  568. if (bits <= 8) {
  569. drv_data->n_bytes = 1;
  570. drv_data->read = drv_data->read != null_reader ?
  571. u8_reader : null_reader;
  572. drv_data->write = drv_data->write != null_writer ?
  573. u8_writer : null_writer;
  574. } else if (bits <= 16) {
  575. drv_data->n_bytes = 2;
  576. drv_data->read = drv_data->read != null_reader ?
  577. u16_reader : null_reader;
  578. drv_data->write = drv_data->write != null_writer ?
  579. u16_writer : null_writer;
  580. } else if (bits <= 32) {
  581. drv_data->n_bytes = 4;
  582. drv_data->read = drv_data->read != null_reader ?
  583. u32_reader : null_reader;
  584. drv_data->write = drv_data->write != null_writer ?
  585. u32_writer : null_writer;
  586. }
  587. /* if bits/word is changed in dma mode, then must check the
  588. * thresholds and burst also */
  589. if (chip->enable_dma) {
  590. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  591. message->spi,
  592. bits, &dma_burst,
  593. &dma_thresh))
  594. dev_warn_ratelimited(&message->spi->dev,
  595. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  596. }
  597. cr0 = clk_div
  598. | SSCR0_Motorola
  599. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  600. | SSCR0_SSE
  601. | (bits > 16 ? SSCR0_EDSS : 0);
  602. }
  603. message->state = RUNNING_STATE;
  604. drv_data->dma_mapped = 0;
  605. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  606. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  607. if (drv_data->dma_mapped) {
  608. /* Ensure we have the correct interrupt handler */
  609. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  610. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  611. /* Clear status and start DMA engine */
  612. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  613. write_SSSR(drv_data->clear_sr, reg);
  614. pxa2xx_spi_dma_start(drv_data);
  615. } else {
  616. /* Ensure we have the correct interrupt handler */
  617. drv_data->transfer_handler = interrupt_transfer;
  618. /* Clear status */
  619. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  620. write_SSSR_CS(drv_data, drv_data->clear_sr);
  621. }
  622. if (is_lpss_ssp(drv_data)) {
  623. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  624. write_SSIRF(chip->lpss_rx_threshold, reg);
  625. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  626. write_SSITF(chip->lpss_tx_threshold, reg);
  627. }
  628. /* see if we need to reload the config registers */
  629. if ((read_SSCR0(reg) != cr0)
  630. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  631. (cr1 & SSCR1_CHANGE_MASK)) {
  632. /* stop the SSP, and update the other bits */
  633. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  634. if (!pxa25x_ssp_comp(drv_data))
  635. write_SSTO(chip->timeout, reg);
  636. /* first set CR1 without interrupt and service enables */
  637. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  638. /* restart the SSP */
  639. write_SSCR0(cr0, reg);
  640. } else {
  641. if (!pxa25x_ssp_comp(drv_data))
  642. write_SSTO(chip->timeout, reg);
  643. }
  644. cs_assert(drv_data);
  645. /* after chip select, release the data by enabling service
  646. * requests and interrupts, without changing any mode bits */
  647. write_SSCR1(cr1, reg);
  648. }
  649. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  650. struct spi_message *msg)
  651. {
  652. struct driver_data *drv_data = spi_master_get_devdata(master);
  653. drv_data->cur_msg = msg;
  654. /* Initial message state*/
  655. drv_data->cur_msg->state = START_STATE;
  656. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  657. struct spi_transfer,
  658. transfer_list);
  659. /* prepare to setup the SSP, in pump_transfers, using the per
  660. * chip configuration */
  661. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  662. /* Mark as busy and launch transfers */
  663. tasklet_schedule(&drv_data->pump_transfers);
  664. return 0;
  665. }
  666. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  667. {
  668. struct driver_data *drv_data = spi_master_get_devdata(master);
  669. /* Disable the SSP now */
  670. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  671. drv_data->ioaddr);
  672. return 0;
  673. }
  674. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  675. struct pxa2xx_spi_chip *chip_info)
  676. {
  677. int err = 0;
  678. if (chip == NULL || chip_info == NULL)
  679. return 0;
  680. /* NOTE: setup() can be called multiple times, possibly with
  681. * different chip_info, release previously requested GPIO
  682. */
  683. if (gpio_is_valid(chip->gpio_cs))
  684. gpio_free(chip->gpio_cs);
  685. /* If (*cs_control) is provided, ignore GPIO chip select */
  686. if (chip_info->cs_control) {
  687. chip->cs_control = chip_info->cs_control;
  688. return 0;
  689. }
  690. if (gpio_is_valid(chip_info->gpio_cs)) {
  691. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  692. if (err) {
  693. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  694. chip_info->gpio_cs);
  695. return err;
  696. }
  697. chip->gpio_cs = chip_info->gpio_cs;
  698. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  699. err = gpio_direction_output(chip->gpio_cs,
  700. !chip->gpio_cs_inverted);
  701. }
  702. return err;
  703. }
  704. static int setup(struct spi_device *spi)
  705. {
  706. struct pxa2xx_spi_chip *chip_info = NULL;
  707. struct chip_data *chip;
  708. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  709. unsigned int clk_div;
  710. uint tx_thres, tx_hi_thres, rx_thres;
  711. if (is_lpss_ssp(drv_data)) {
  712. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  713. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  714. rx_thres = LPSS_RX_THRESH_DFLT;
  715. } else {
  716. tx_thres = TX_THRESH_DFLT;
  717. tx_hi_thres = 0;
  718. rx_thres = RX_THRESH_DFLT;
  719. }
  720. /* Only alloc on first setup */
  721. chip = spi_get_ctldata(spi);
  722. if (!chip) {
  723. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  724. if (!chip) {
  725. dev_err(&spi->dev,
  726. "failed setup: can't allocate chip data\n");
  727. return -ENOMEM;
  728. }
  729. if (drv_data->ssp_type == CE4100_SSP) {
  730. if (spi->chip_select > 4) {
  731. dev_err(&spi->dev,
  732. "failed setup: cs number must not be > 4.\n");
  733. kfree(chip);
  734. return -EINVAL;
  735. }
  736. chip->frm = spi->chip_select;
  737. } else
  738. chip->gpio_cs = -1;
  739. chip->enable_dma = 0;
  740. chip->timeout = TIMOUT_DFLT;
  741. }
  742. /* protocol drivers may change the chip settings, so...
  743. * if chip_info exists, use it */
  744. chip_info = spi->controller_data;
  745. /* chip_info isn't always needed */
  746. chip->cr1 = 0;
  747. if (chip_info) {
  748. if (chip_info->timeout)
  749. chip->timeout = chip_info->timeout;
  750. if (chip_info->tx_threshold)
  751. tx_thres = chip_info->tx_threshold;
  752. if (chip_info->tx_hi_threshold)
  753. tx_hi_thres = chip_info->tx_hi_threshold;
  754. if (chip_info->rx_threshold)
  755. rx_thres = chip_info->rx_threshold;
  756. chip->enable_dma = drv_data->master_info->enable_dma;
  757. chip->dma_threshold = 0;
  758. if (chip_info->enable_loopback)
  759. chip->cr1 = SSCR1_LBM;
  760. } else if (ACPI_HANDLE(&spi->dev)) {
  761. /*
  762. * Slave devices enumerated from ACPI namespace don't
  763. * usually have chip_info but we still might want to use
  764. * DMA with them.
  765. */
  766. chip->enable_dma = drv_data->master_info->enable_dma;
  767. }
  768. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  769. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  770. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  771. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  772. | SSITF_TxHiThresh(tx_hi_thres);
  773. /* set dma burst and threshold outside of chip_info path so that if
  774. * chip_info goes away after setting chip->enable_dma, the
  775. * burst and threshold can still respond to changes in bits_per_word */
  776. if (chip->enable_dma) {
  777. /* set up legal burst and threshold for dma */
  778. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  779. spi->bits_per_word,
  780. &chip->dma_burst_size,
  781. &chip->dma_threshold)) {
  782. dev_warn(&spi->dev,
  783. "in setup: DMA burst size reduced to match bits_per_word\n");
  784. }
  785. }
  786. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  787. chip->speed_hz = spi->max_speed_hz;
  788. chip->cr0 = clk_div
  789. | SSCR0_Motorola
  790. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  791. spi->bits_per_word - 16 : spi->bits_per_word)
  792. | SSCR0_SSE
  793. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  794. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  795. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  796. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  797. if (spi->mode & SPI_LOOP)
  798. chip->cr1 |= SSCR1_LBM;
  799. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  800. if (!pxa25x_ssp_comp(drv_data))
  801. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  802. drv_data->max_clk_rate
  803. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  804. chip->enable_dma ? "DMA" : "PIO");
  805. else
  806. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  807. drv_data->max_clk_rate / 2
  808. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  809. chip->enable_dma ? "DMA" : "PIO");
  810. if (spi->bits_per_word <= 8) {
  811. chip->n_bytes = 1;
  812. chip->read = u8_reader;
  813. chip->write = u8_writer;
  814. } else if (spi->bits_per_word <= 16) {
  815. chip->n_bytes = 2;
  816. chip->read = u16_reader;
  817. chip->write = u16_writer;
  818. } else if (spi->bits_per_word <= 32) {
  819. chip->cr0 |= SSCR0_EDSS;
  820. chip->n_bytes = 4;
  821. chip->read = u32_reader;
  822. chip->write = u32_writer;
  823. }
  824. chip->bits_per_word = spi->bits_per_word;
  825. spi_set_ctldata(spi, chip);
  826. if (drv_data->ssp_type == CE4100_SSP)
  827. return 0;
  828. return setup_cs(spi, chip, chip_info);
  829. }
  830. static void cleanup(struct spi_device *spi)
  831. {
  832. struct chip_data *chip = spi_get_ctldata(spi);
  833. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  834. if (!chip)
  835. return;
  836. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  837. gpio_free(chip->gpio_cs);
  838. kfree(chip);
  839. }
  840. #ifdef CONFIG_ACPI
  841. static struct pxa2xx_spi_master *
  842. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  843. {
  844. struct pxa2xx_spi_master *pdata;
  845. struct acpi_device *adev;
  846. struct ssp_device *ssp;
  847. struct resource *res;
  848. int devid;
  849. if (!ACPI_HANDLE(&pdev->dev) ||
  850. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  851. return NULL;
  852. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  853. if (!pdata) {
  854. dev_err(&pdev->dev,
  855. "failed to allocate memory for platform data\n");
  856. return NULL;
  857. }
  858. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  859. if (!res)
  860. return NULL;
  861. ssp = &pdata->ssp;
  862. ssp->phys_base = res->start;
  863. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  864. if (IS_ERR(ssp->mmio_base))
  865. return NULL;
  866. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  867. ssp->irq = platform_get_irq(pdev, 0);
  868. ssp->type = LPSS_SSP;
  869. ssp->pdev = pdev;
  870. ssp->port_id = -1;
  871. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  872. ssp->port_id = devid;
  873. pdata->num_chipselect = 1;
  874. pdata->enable_dma = true;
  875. return pdata;
  876. }
  877. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  878. { "INT33C0", 0 },
  879. { "INT33C1", 0 },
  880. { "80860F0E", 0 },
  881. { },
  882. };
  883. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  884. #else
  885. static inline struct pxa2xx_spi_master *
  886. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  887. {
  888. return NULL;
  889. }
  890. #endif
  891. static int pxa2xx_spi_probe(struct platform_device *pdev)
  892. {
  893. struct device *dev = &pdev->dev;
  894. struct pxa2xx_spi_master *platform_info;
  895. struct spi_master *master;
  896. struct driver_data *drv_data;
  897. struct ssp_device *ssp;
  898. int status;
  899. platform_info = dev_get_platdata(dev);
  900. if (!platform_info) {
  901. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  902. if (!platform_info) {
  903. dev_err(&pdev->dev, "missing platform data\n");
  904. return -ENODEV;
  905. }
  906. }
  907. ssp = pxa_ssp_request(pdev->id, pdev->name);
  908. if (!ssp)
  909. ssp = &platform_info->ssp;
  910. if (!ssp->mmio_base) {
  911. dev_err(&pdev->dev, "failed to get ssp\n");
  912. return -ENODEV;
  913. }
  914. /* Allocate master with space for drv_data and null dma buffer */
  915. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  916. if (!master) {
  917. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  918. pxa_ssp_free(ssp);
  919. return -ENOMEM;
  920. }
  921. drv_data = spi_master_get_devdata(master);
  922. drv_data->master = master;
  923. drv_data->master_info = platform_info;
  924. drv_data->pdev = pdev;
  925. drv_data->ssp = ssp;
  926. master->dev.parent = &pdev->dev;
  927. master->dev.of_node = pdev->dev.of_node;
  928. /* the spi->mode bits understood by this driver: */
  929. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  930. master->bus_num = ssp->port_id;
  931. master->num_chipselect = platform_info->num_chipselect;
  932. master->dma_alignment = DMA_ALIGNMENT;
  933. master->cleanup = cleanup;
  934. master->setup = setup;
  935. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  936. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  937. master->auto_runtime_pm = true;
  938. drv_data->ssp_type = ssp->type;
  939. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  940. drv_data->ioaddr = ssp->mmio_base;
  941. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  942. if (pxa25x_ssp_comp(drv_data)) {
  943. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  944. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  945. drv_data->dma_cr1 = 0;
  946. drv_data->clear_sr = SSSR_ROR;
  947. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  948. } else {
  949. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  950. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  951. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  952. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  953. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  954. }
  955. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  956. drv_data);
  957. if (status < 0) {
  958. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  959. goto out_error_master_alloc;
  960. }
  961. /* Setup DMA if requested */
  962. drv_data->tx_channel = -1;
  963. drv_data->rx_channel = -1;
  964. if (platform_info->enable_dma) {
  965. status = pxa2xx_spi_dma_setup(drv_data);
  966. if (status) {
  967. dev_dbg(dev, "no DMA channels available, using PIO\n");
  968. platform_info->enable_dma = false;
  969. }
  970. }
  971. /* Enable SOC clock */
  972. clk_prepare_enable(ssp->clk);
  973. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  974. /* Load default SSP configuration */
  975. write_SSCR0(0, drv_data->ioaddr);
  976. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  977. SSCR1_TxTresh(TX_THRESH_DFLT),
  978. drv_data->ioaddr);
  979. write_SSCR0(SSCR0_SCR(2)
  980. | SSCR0_Motorola
  981. | SSCR0_DataSize(8),
  982. drv_data->ioaddr);
  983. if (!pxa25x_ssp_comp(drv_data))
  984. write_SSTO(0, drv_data->ioaddr);
  985. write_SSPSP(0, drv_data->ioaddr);
  986. lpss_ssp_setup(drv_data);
  987. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  988. (unsigned long)drv_data);
  989. /* Register with the SPI framework */
  990. platform_set_drvdata(pdev, drv_data);
  991. status = devm_spi_register_master(&pdev->dev, master);
  992. if (status != 0) {
  993. dev_err(&pdev->dev, "problem registering spi master\n");
  994. goto out_error_clock_enabled;
  995. }
  996. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  997. pm_runtime_use_autosuspend(&pdev->dev);
  998. pm_runtime_set_active(&pdev->dev);
  999. pm_runtime_enable(&pdev->dev);
  1000. return status;
  1001. out_error_clock_enabled:
  1002. clk_disable_unprepare(ssp->clk);
  1003. pxa2xx_spi_dma_release(drv_data);
  1004. free_irq(ssp->irq, drv_data);
  1005. out_error_master_alloc:
  1006. spi_master_put(master);
  1007. pxa_ssp_free(ssp);
  1008. return status;
  1009. }
  1010. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1011. {
  1012. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1013. struct ssp_device *ssp;
  1014. if (!drv_data)
  1015. return 0;
  1016. ssp = drv_data->ssp;
  1017. pm_runtime_get_sync(&pdev->dev);
  1018. /* Disable the SSP at the peripheral and SOC level */
  1019. write_SSCR0(0, drv_data->ioaddr);
  1020. clk_disable_unprepare(ssp->clk);
  1021. /* Release DMA */
  1022. if (drv_data->master_info->enable_dma)
  1023. pxa2xx_spi_dma_release(drv_data);
  1024. pm_runtime_put_noidle(&pdev->dev);
  1025. pm_runtime_disable(&pdev->dev);
  1026. /* Release IRQ */
  1027. free_irq(ssp->irq, drv_data);
  1028. /* Release SSP */
  1029. pxa_ssp_free(ssp);
  1030. return 0;
  1031. }
  1032. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1033. {
  1034. int status = 0;
  1035. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1036. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1037. }
  1038. #ifdef CONFIG_PM
  1039. static int pxa2xx_spi_suspend(struct device *dev)
  1040. {
  1041. struct driver_data *drv_data = dev_get_drvdata(dev);
  1042. struct ssp_device *ssp = drv_data->ssp;
  1043. int status = 0;
  1044. status = spi_master_suspend(drv_data->master);
  1045. if (status != 0)
  1046. return status;
  1047. write_SSCR0(0, drv_data->ioaddr);
  1048. clk_disable_unprepare(ssp->clk);
  1049. return 0;
  1050. }
  1051. static int pxa2xx_spi_resume(struct device *dev)
  1052. {
  1053. struct driver_data *drv_data = dev_get_drvdata(dev);
  1054. struct ssp_device *ssp = drv_data->ssp;
  1055. int status = 0;
  1056. pxa2xx_spi_dma_resume(drv_data);
  1057. /* Enable the SSP clock */
  1058. clk_prepare_enable(ssp->clk);
  1059. /* Start the queue running */
  1060. status = spi_master_resume(drv_data->master);
  1061. if (status != 0) {
  1062. dev_err(dev, "problem starting queue (%d)\n", status);
  1063. return status;
  1064. }
  1065. return 0;
  1066. }
  1067. #endif
  1068. #ifdef CONFIG_PM_RUNTIME
  1069. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1070. {
  1071. struct driver_data *drv_data = dev_get_drvdata(dev);
  1072. clk_disable_unprepare(drv_data->ssp->clk);
  1073. return 0;
  1074. }
  1075. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1076. {
  1077. struct driver_data *drv_data = dev_get_drvdata(dev);
  1078. clk_prepare_enable(drv_data->ssp->clk);
  1079. return 0;
  1080. }
  1081. #endif
  1082. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1083. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1084. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1085. pxa2xx_spi_runtime_resume, NULL)
  1086. };
  1087. static struct platform_driver driver = {
  1088. .driver = {
  1089. .name = "pxa2xx-spi",
  1090. .owner = THIS_MODULE,
  1091. .pm = &pxa2xx_spi_pm_ops,
  1092. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1093. },
  1094. .probe = pxa2xx_spi_probe,
  1095. .remove = pxa2xx_spi_remove,
  1096. .shutdown = pxa2xx_spi_shutdown,
  1097. };
  1098. static int __init pxa2xx_spi_init(void)
  1099. {
  1100. return platform_driver_register(&driver);
  1101. }
  1102. subsys_initcall(pxa2xx_spi_init);
  1103. static void __exit pxa2xx_spi_exit(void)
  1104. {
  1105. platform_driver_unregister(&driver);
  1106. }
  1107. module_exit(pxa2xx_spi_exit);