spi-fsl-dspi.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. /*
  2. * drivers/spi/spi-fsl-dspi.c
  3. *
  4. * Copyright 2013 Freescale Semiconductor, Inc.
  5. *
  6. * Freescale DSPI driver
  7. * This file contains a driver for the Freescale DSPI
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/errno.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/sched.h>
  21. #include <linux/delay.h>
  22. #include <linux/io.h>
  23. #include <linux/clk.h>
  24. #include <linux/err.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/spi/spi_bitbang.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/of.h>
  29. #include <linux/of_device.h>
  30. #define DRIVER_NAME "fsl-dspi"
  31. #define TRAN_STATE_RX_VOID 0x01
  32. #define TRAN_STATE_TX_VOID 0x02
  33. #define TRAN_STATE_WORD_ODD_NUM 0x04
  34. #define DSPI_FIFO_SIZE 4
  35. #define SPI_MCR 0x00
  36. #define SPI_MCR_MASTER (1 << 31)
  37. #define SPI_MCR_PCSIS (0x3F << 16)
  38. #define SPI_MCR_CLR_TXF (1 << 11)
  39. #define SPI_MCR_CLR_RXF (1 << 10)
  40. #define SPI_TCR 0x08
  41. #define SPI_CTAR(x) (0x0c + (x * 4))
  42. #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
  43. #define SPI_CTAR_CPOL(x) ((x) << 26)
  44. #define SPI_CTAR_CPHA(x) ((x) << 25)
  45. #define SPI_CTAR_LSBFE(x) ((x) << 24)
  46. #define SPI_CTAR_PCSSCR(x) (((x) & 0x00000003) << 22)
  47. #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
  48. #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
  49. #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
  50. #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
  51. #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
  52. #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
  53. #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
  54. #define SPI_CTAR0_SLAVE 0x0c
  55. #define SPI_SR 0x2c
  56. #define SPI_SR_EOQF 0x10000000
  57. #define SPI_RSER 0x30
  58. #define SPI_RSER_EOQFE 0x10000000
  59. #define SPI_PUSHR 0x34
  60. #define SPI_PUSHR_CONT (1 << 31)
  61. #define SPI_PUSHR_CTAS(x) (((x) & 0x00000007) << 28)
  62. #define SPI_PUSHR_EOQ (1 << 27)
  63. #define SPI_PUSHR_CTCNT (1 << 26)
  64. #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16)
  65. #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
  66. #define SPI_PUSHR_SLAVE 0x34
  67. #define SPI_POPR 0x38
  68. #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
  69. #define SPI_TXFR0 0x3c
  70. #define SPI_TXFR1 0x40
  71. #define SPI_TXFR2 0x44
  72. #define SPI_TXFR3 0x48
  73. #define SPI_RXFR0 0x7c
  74. #define SPI_RXFR1 0x80
  75. #define SPI_RXFR2 0x84
  76. #define SPI_RXFR3 0x88
  77. #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
  78. #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
  79. #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
  80. #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
  81. #define SPI_CS_INIT 0x01
  82. #define SPI_CS_ASSERT 0x02
  83. #define SPI_CS_DROP 0x04
  84. struct chip_data {
  85. u32 mcr_val;
  86. u32 ctar_val;
  87. u16 void_write_data;
  88. };
  89. struct fsl_dspi {
  90. struct spi_bitbang bitbang;
  91. struct platform_device *pdev;
  92. void __iomem *base;
  93. int irq;
  94. struct clk *clk;
  95. struct spi_transfer *cur_transfer;
  96. struct chip_data *cur_chip;
  97. size_t len;
  98. void *tx;
  99. void *tx_end;
  100. void *rx;
  101. void *rx_end;
  102. char dataflags;
  103. u8 cs;
  104. u16 void_write_data;
  105. wait_queue_head_t waitq;
  106. u32 waitflags;
  107. };
  108. static inline int is_double_byte_mode(struct fsl_dspi *dspi)
  109. {
  110. return ((readl(dspi->base + SPI_CTAR(dspi->cs)) & SPI_FRAME_BITS_MASK)
  111. == SPI_FRAME_BITS(8)) ? 0 : 1;
  112. }
  113. static void set_bit_mode(struct fsl_dspi *dspi, unsigned char bits)
  114. {
  115. u32 temp;
  116. temp = readl(dspi->base + SPI_CTAR(dspi->cs));
  117. temp &= ~SPI_FRAME_BITS_MASK;
  118. temp |= SPI_FRAME_BITS(bits);
  119. writel(temp, dspi->base + SPI_CTAR(dspi->cs));
  120. }
  121. static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
  122. unsigned long clkrate)
  123. {
  124. /* Valid baud rate pre-scaler values */
  125. int pbr_tbl[4] = {2, 3, 5, 7};
  126. int brs[16] = { 2, 4, 6, 8,
  127. 16, 32, 64, 128,
  128. 256, 512, 1024, 2048,
  129. 4096, 8192, 16384, 32768 };
  130. int temp, i = 0, j = 0;
  131. temp = clkrate / 2 / speed_hz;
  132. for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++)
  133. for (j = 0; j < ARRAY_SIZE(brs); j++) {
  134. if (pbr_tbl[i] * brs[j] >= temp) {
  135. *pbr = i;
  136. *br = j;
  137. return;
  138. }
  139. }
  140. pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld\
  141. ,we use the max prescaler value.\n", speed_hz, clkrate);
  142. *pbr = ARRAY_SIZE(pbr_tbl) - 1;
  143. *br = ARRAY_SIZE(brs) - 1;
  144. }
  145. static int dspi_transfer_write(struct fsl_dspi *dspi)
  146. {
  147. int tx_count = 0;
  148. int tx_word;
  149. u16 d16;
  150. u8 d8;
  151. u32 dspi_pushr = 0;
  152. int first = 1;
  153. tx_word = is_double_byte_mode(dspi);
  154. /* If we are in word mode, but only have a single byte to transfer
  155. * then switch to byte mode temporarily. Will switch back at the
  156. * end of the transfer.
  157. */
  158. if (tx_word && (dspi->len == 1)) {
  159. dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
  160. set_bit_mode(dspi, 8);
  161. tx_word = 0;
  162. }
  163. while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
  164. if (tx_word) {
  165. if (dspi->len == 1)
  166. break;
  167. if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
  168. d16 = *(u16 *)dspi->tx;
  169. dspi->tx += 2;
  170. } else {
  171. d16 = dspi->void_write_data;
  172. }
  173. dspi_pushr = SPI_PUSHR_TXDATA(d16) |
  174. SPI_PUSHR_PCS(dspi->cs) |
  175. SPI_PUSHR_CTAS(dspi->cs) |
  176. SPI_PUSHR_CONT;
  177. dspi->len -= 2;
  178. } else {
  179. if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
  180. d8 = *(u8 *)dspi->tx;
  181. dspi->tx++;
  182. } else {
  183. d8 = (u8)dspi->void_write_data;
  184. }
  185. dspi_pushr = SPI_PUSHR_TXDATA(d8) |
  186. SPI_PUSHR_PCS(dspi->cs) |
  187. SPI_PUSHR_CTAS(dspi->cs) |
  188. SPI_PUSHR_CONT;
  189. dspi->len--;
  190. }
  191. if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
  192. /* last transfer in the transfer */
  193. dspi_pushr |= SPI_PUSHR_EOQ;
  194. } else if (tx_word && (dspi->len == 1))
  195. dspi_pushr |= SPI_PUSHR_EOQ;
  196. if (first) {
  197. first = 0;
  198. dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */
  199. }
  200. writel(dspi_pushr, dspi->base + SPI_PUSHR);
  201. tx_count++;
  202. }
  203. return tx_count * (tx_word + 1);
  204. }
  205. static int dspi_transfer_read(struct fsl_dspi *dspi)
  206. {
  207. int rx_count = 0;
  208. int rx_word = is_double_byte_mode(dspi);
  209. u16 d;
  210. while ((dspi->rx < dspi->rx_end)
  211. && (rx_count < DSPI_FIFO_SIZE)) {
  212. if (rx_word) {
  213. if ((dspi->rx_end - dspi->rx) == 1)
  214. break;
  215. d = SPI_POPR_RXDATA(readl(dspi->base + SPI_POPR));
  216. if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
  217. *(u16 *)dspi->rx = d;
  218. dspi->rx += 2;
  219. } else {
  220. d = SPI_POPR_RXDATA(readl(dspi->base + SPI_POPR));
  221. if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
  222. *(u8 *)dspi->rx = d;
  223. dspi->rx++;
  224. }
  225. rx_count++;
  226. }
  227. return rx_count;
  228. }
  229. static int dspi_txrx_transfer(struct spi_device *spi, struct spi_transfer *t)
  230. {
  231. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  232. dspi->cur_transfer = t;
  233. dspi->cur_chip = spi_get_ctldata(spi);
  234. dspi->cs = spi->chip_select;
  235. dspi->void_write_data = dspi->cur_chip->void_write_data;
  236. dspi->dataflags = 0;
  237. dspi->tx = (void *)t->tx_buf;
  238. dspi->tx_end = dspi->tx + t->len;
  239. dspi->rx = t->rx_buf;
  240. dspi->rx_end = dspi->rx + t->len;
  241. dspi->len = t->len;
  242. if (!dspi->rx)
  243. dspi->dataflags |= TRAN_STATE_RX_VOID;
  244. if (!dspi->tx)
  245. dspi->dataflags |= TRAN_STATE_TX_VOID;
  246. writel(dspi->cur_chip->mcr_val, dspi->base + SPI_MCR);
  247. writel(dspi->cur_chip->ctar_val, dspi->base + SPI_CTAR(dspi->cs));
  248. writel(SPI_RSER_EOQFE, dspi->base + SPI_RSER);
  249. if (t->speed_hz)
  250. writel(dspi->cur_chip->ctar_val,
  251. dspi->base + SPI_CTAR(dspi->cs));
  252. dspi_transfer_write(dspi);
  253. if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
  254. dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
  255. dspi->waitflags = 0;
  256. return t->len - dspi->len;
  257. }
  258. static void dspi_chipselect(struct spi_device *spi, int value)
  259. {
  260. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  261. u32 pushr = readl(dspi->base + SPI_PUSHR);
  262. switch (value) {
  263. case BITBANG_CS_ACTIVE:
  264. pushr |= SPI_PUSHR_CONT;
  265. case BITBANG_CS_INACTIVE:
  266. pushr &= ~SPI_PUSHR_CONT;
  267. }
  268. writel(pushr, dspi->base + SPI_PUSHR);
  269. }
  270. static int dspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
  271. {
  272. struct chip_data *chip;
  273. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  274. unsigned char br = 0, pbr = 0, fmsz = 0;
  275. /* Only alloc on first setup */
  276. chip = spi_get_ctldata(spi);
  277. if (chip == NULL) {
  278. chip = kcalloc(1, sizeof(struct chip_data), GFP_KERNEL);
  279. if (!chip)
  280. return -ENOMEM;
  281. }
  282. chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
  283. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
  284. if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
  285. fmsz = spi->bits_per_word - 1;
  286. } else {
  287. pr_err("Invalid wordsize\n");
  288. kfree(chip);
  289. return -ENODEV;
  290. }
  291. chip->void_write_data = 0;
  292. hz_to_spi_baud(&pbr, &br,
  293. spi->max_speed_hz, clk_get_rate(dspi->clk));
  294. chip->ctar_val = SPI_CTAR_FMSZ(fmsz)
  295. | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
  296. | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
  297. | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
  298. | SPI_CTAR_PBR(pbr)
  299. | SPI_CTAR_BR(br);
  300. spi_set_ctldata(spi, chip);
  301. return 0;
  302. }
  303. static int dspi_setup(struct spi_device *spi)
  304. {
  305. if (!spi->max_speed_hz)
  306. return -EINVAL;
  307. if (!spi->bits_per_word)
  308. spi->bits_per_word = 8;
  309. return dspi_setup_transfer(spi, NULL);
  310. }
  311. static irqreturn_t dspi_interrupt(int irq, void *dev_id)
  312. {
  313. struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
  314. writel(SPI_SR_EOQF, dspi->base + SPI_SR);
  315. dspi_transfer_read(dspi);
  316. if (!dspi->len) {
  317. if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
  318. set_bit_mode(dspi, 16);
  319. dspi->waitflags = 1;
  320. wake_up_interruptible(&dspi->waitq);
  321. } else {
  322. dspi_transfer_write(dspi);
  323. return IRQ_HANDLED;
  324. }
  325. return IRQ_HANDLED;
  326. }
  327. static struct of_device_id fsl_dspi_dt_ids[] = {
  328. { .compatible = "fsl,vf610-dspi", .data = NULL, },
  329. { /* sentinel */ }
  330. };
  331. MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
  332. #ifdef CONFIG_PM_SLEEP
  333. static int dspi_suspend(struct device *dev)
  334. {
  335. struct spi_master *master = dev_get_drvdata(dev);
  336. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  337. spi_master_suspend(master);
  338. clk_disable_unprepare(dspi->clk);
  339. return 0;
  340. }
  341. static int dspi_resume(struct device *dev)
  342. {
  343. struct spi_master *master = dev_get_drvdata(dev);
  344. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  345. clk_prepare_enable(dspi->clk);
  346. spi_master_resume(master);
  347. return 0;
  348. }
  349. #endif /* CONFIG_PM_SLEEP */
  350. static const struct dev_pm_ops dspi_pm = {
  351. SET_SYSTEM_SLEEP_PM_OPS(dspi_suspend, dspi_resume)
  352. };
  353. static int dspi_probe(struct platform_device *pdev)
  354. {
  355. struct device_node *np = pdev->dev.of_node;
  356. struct spi_master *master;
  357. struct fsl_dspi *dspi;
  358. struct resource *res;
  359. int ret = 0, cs_num, bus_num;
  360. master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
  361. if (!master)
  362. return -ENOMEM;
  363. dspi = spi_master_get_devdata(master);
  364. dspi->pdev = pdev;
  365. dspi->bitbang.master = master;
  366. dspi->bitbang.chipselect = dspi_chipselect;
  367. dspi->bitbang.setup_transfer = dspi_setup_transfer;
  368. dspi->bitbang.txrx_bufs = dspi_txrx_transfer;
  369. dspi->bitbang.master->setup = dspi_setup;
  370. dspi->bitbang.master->dev.of_node = pdev->dev.of_node;
  371. master->mode_bits = SPI_CPOL | SPI_CPHA;
  372. master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
  373. SPI_BPW_MASK(16);
  374. ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
  375. if (ret < 0) {
  376. dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
  377. goto out_master_put;
  378. }
  379. master->num_chipselect = cs_num;
  380. ret = of_property_read_u32(np, "bus-num", &bus_num);
  381. if (ret < 0) {
  382. dev_err(&pdev->dev, "can't get bus-num\n");
  383. goto out_master_put;
  384. }
  385. master->bus_num = bus_num;
  386. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  387. dspi->base = devm_ioremap_resource(&pdev->dev, res);
  388. if (IS_ERR(dspi->base)) {
  389. ret = PTR_ERR(dspi->base);
  390. goto out_master_put;
  391. }
  392. dspi->irq = platform_get_irq(pdev, 0);
  393. if (dspi->irq < 0) {
  394. dev_err(&pdev->dev, "can't get platform irq\n");
  395. ret = dspi->irq;
  396. goto out_master_put;
  397. }
  398. ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
  399. pdev->name, dspi);
  400. if (ret < 0) {
  401. dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
  402. goto out_master_put;
  403. }
  404. dspi->clk = devm_clk_get(&pdev->dev, "dspi");
  405. if (IS_ERR(dspi->clk)) {
  406. ret = PTR_ERR(dspi->clk);
  407. dev_err(&pdev->dev, "unable to get clock\n");
  408. goto out_master_put;
  409. }
  410. clk_prepare_enable(dspi->clk);
  411. init_waitqueue_head(&dspi->waitq);
  412. platform_set_drvdata(pdev, dspi);
  413. ret = spi_bitbang_start(&dspi->bitbang);
  414. if (ret != 0) {
  415. dev_err(&pdev->dev, "Problem registering DSPI master\n");
  416. goto out_clk_put;
  417. }
  418. pr_info(KERN_INFO "Freescale DSPI master initialized\n");
  419. return ret;
  420. out_clk_put:
  421. clk_disable_unprepare(dspi->clk);
  422. out_master_put:
  423. spi_master_put(master);
  424. return ret;
  425. }
  426. static int dspi_remove(struct platform_device *pdev)
  427. {
  428. struct fsl_dspi *dspi = platform_get_drvdata(pdev);
  429. /* Disconnect from the SPI framework */
  430. spi_bitbang_stop(&dspi->bitbang);
  431. clk_disable_unprepare(dspi->clk);
  432. spi_master_put(dspi->bitbang.master);
  433. return 0;
  434. }
  435. static struct platform_driver fsl_dspi_driver = {
  436. .driver.name = DRIVER_NAME,
  437. .driver.of_match_table = fsl_dspi_dt_ids,
  438. .driver.owner = THIS_MODULE,
  439. .driver.pm = &dspi_pm,
  440. .probe = dspi_probe,
  441. .remove = dspi_remove,
  442. };
  443. module_platform_driver(fsl_dspi_driver);
  444. MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
  445. MODULE_LICENSE("GPL");
  446. MODULE_ALIAS("platform:" DRIVER_NAME);