1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- /*
- * Common time routines among all ppc machines.
- *
- * Written by Cort Dougan (cort@cs.nmt.edu) to merge
- * Paul Mackerras' version and mine for PReP and Pmac.
- * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
- * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
- *
- * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
- * to make clock more stable (2.4.0-test5). The only thing
- * that this code assumes is that the timebases have been synchronized
- * by firmware on SMP and are never stopped (never do sleep
- * on SMP then, nap and doze are OK).
- *
- * Speeded up do_gettimeofday by getting rid of references to
- * xtime (which required locks for consistency). (mikejc@us.ibm.com)
- *
- * TODO (not necessarily in this file):
- * - improve precision and reproducibility of timebase frequency
- * measurement at boot time. (for iSeries, we calibrate the timebase
- * against the Titan chip's clock.)
- * - for astronomical applications: add a new function to get
- * non ambiguous timestamps even around leap seconds. This needs
- * a new timestamp format and a good name.
- *
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/config.h>
- #include <linux/errno.h>
- #include <linux/module.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/interrupt.h>
- #include <linux/timex.h>
- #include <linux/kernel_stat.h>
- #include <linux/time.h>
- #include <linux/init.h>
- #include <linux/profile.h>
- #include <linux/cpu.h>
- #include <linux/security.h>
- #include <linux/percpu.h>
- #include <linux/rtc.h>
- #include <asm/io.h>
- #include <asm/processor.h>
- #include <asm/nvram.h>
- #include <asm/cache.h>
- #include <asm/machdep.h>
- #include <asm/uaccess.h>
- #include <asm/time.h>
- #include <asm/prom.h>
- #include <asm/irq.h>
- #include <asm/div64.h>
- #include <asm/smp.h>
- #ifdef CONFIG_PPC64
- #include <asm/systemcfg.h>
- #include <asm/firmware.h>
- #endif
- #ifdef CONFIG_PPC_ISERIES
- #include <asm/iseries/it_lp_queue.h>
- #include <asm/iseries/hv_call_xm.h>
- #endif
- #include <asm/smp.h>
- /* keep track of when we need to update the rtc */
- time_t last_rtc_update;
- extern int piranha_simulator;
- #ifdef CONFIG_PPC_ISERIES
- unsigned long iSeries_recal_titan = 0;
- unsigned long iSeries_recal_tb = 0;
- static unsigned long first_settimeofday = 1;
- #endif
- /* The decrementer counts down by 128 every 128ns on a 601. */
- #define DECREMENTER_COUNT_601 (1000000000 / HZ)
- #define XSEC_PER_SEC (1024*1024)
- #ifdef CONFIG_PPC64
- #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
- #else
- /* compute ((xsec << 12) * max) >> 32 */
- #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
- #endif
- unsigned long tb_ticks_per_jiffy;
- unsigned long tb_ticks_per_usec = 100; /* sane default */
- EXPORT_SYMBOL(tb_ticks_per_usec);
- unsigned long tb_ticks_per_sec;
- u64 tb_to_xs;
- unsigned tb_to_us;
- unsigned long processor_freq;
- DEFINE_SPINLOCK(rtc_lock);
- EXPORT_SYMBOL_GPL(rtc_lock);
- u64 tb_to_ns_scale;
- unsigned tb_to_ns_shift;
- struct gettimeofday_struct do_gtod;
- extern unsigned long wall_jiffies;
- extern struct timezone sys_tz;
- static long timezone_offset;
- void ppc_adjtimex(void);
- static unsigned adjusting_time = 0;
- unsigned long ppc_proc_freq;
- unsigned long ppc_tb_freq;
- u64 tb_last_jiffy __cacheline_aligned_in_smp;
- unsigned long tb_last_stamp;
- /*
- * Note that on ppc32 this only stores the bottom 32 bits of
- * the timebase value, but that's enough to tell when a jiffy
- * has passed.
- */
- DEFINE_PER_CPU(unsigned long, last_jiffy);
- static __inline__ void timer_check_rtc(void)
- {
- /*
- * update the rtc when needed, this should be performed on the
- * right fraction of a second. Half or full second ?
- * Full second works on mk48t59 clocks, others need testing.
- * Note that this update is basically only used through
- * the adjtimex system calls. Setting the HW clock in
- * any other way is a /dev/rtc and userland business.
- * This is still wrong by -0.5/+1.5 jiffies because of the
- * timer interrupt resolution and possible delay, but here we
- * hit a quantization limit which can only be solved by higher
- * resolution timers and decoupling time management from timer
- * interrupts. This is also wrong on the clocks
- * which require being written at the half second boundary.
- * We should have an rtc call that only sets the minutes and
- * seconds like on Intel to avoid problems with non UTC clocks.
- */
- if (ppc_md.set_rtc_time && ntp_synced() &&
- xtime.tv_sec - last_rtc_update >= 659 &&
- abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
- jiffies - wall_jiffies == 1) {
- struct rtc_time tm;
- to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
- tm.tm_year -= 1900;
- tm.tm_mon -= 1;
- if (ppc_md.set_rtc_time(&tm) == 0)
- last_rtc_update = xtime.tv_sec + 1;
- else
- /* Try again one minute later */
- last_rtc_update += 60;
- }
- }
- /*
- * This version of gettimeofday has microsecond resolution.
- */
- static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
- {
- unsigned long sec, usec;
- u64 tb_ticks, xsec;
- struct gettimeofday_vars *temp_varp;
- u64 temp_tb_to_xs, temp_stamp_xsec;
- /*
- * These calculations are faster (gets rid of divides)
- * if done in units of 1/2^20 rather than microseconds.
- * The conversion to microseconds at the end is done
- * without a divide (and in fact, without a multiply)
- */
- temp_varp = do_gtod.varp;
- tb_ticks = tb_val - temp_varp->tb_orig_stamp;
- temp_tb_to_xs = temp_varp->tb_to_xs;
- temp_stamp_xsec = temp_varp->stamp_xsec;
- xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
- sec = xsec / XSEC_PER_SEC;
- usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
- usec = SCALE_XSEC(usec, 1000000);
- tv->tv_sec = sec;
- tv->tv_usec = usec;
- }
- void do_gettimeofday(struct timeval *tv)
- {
- if (__USE_RTC()) {
- /* do this the old way */
- unsigned long flags, seq;
- unsigned int sec, nsec, usec, lost;
- do {
- seq = read_seqbegin_irqsave(&xtime_lock, flags);
- sec = xtime.tv_sec;
- nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
- lost = jiffies - wall_jiffies;
- } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
- usec = nsec / 1000 + lost * (1000000 / HZ);
- while (usec >= 1000000) {
- usec -= 1000000;
- ++sec;
- }
- tv->tv_sec = sec;
- tv->tv_usec = usec;
- return;
- }
- __do_gettimeofday(tv, get_tb());
- }
- EXPORT_SYMBOL(do_gettimeofday);
- /* Synchronize xtime with do_gettimeofday */
- static inline void timer_sync_xtime(unsigned long cur_tb)
- {
- #ifdef CONFIG_PPC64
- /* why do we do this? */
- struct timeval my_tv;
- __do_gettimeofday(&my_tv, cur_tb);
- if (xtime.tv_sec <= my_tv.tv_sec) {
- xtime.tv_sec = my_tv.tv_sec;
- xtime.tv_nsec = my_tv.tv_usec * 1000;
- }
- #endif
- }
- /*
- * There are two copies of tb_to_xs and stamp_xsec so that no
- * lock is needed to access and use these values in
- * do_gettimeofday. We alternate the copies and as long as a
- * reasonable time elapses between changes, there will never
- * be inconsistent values. ntpd has a minimum of one minute
- * between updates.
- */
- static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
- u64 new_tb_to_xs)
- {
- unsigned temp_idx;
- struct gettimeofday_vars *temp_varp;
- temp_idx = (do_gtod.var_idx == 0);
- temp_varp = &do_gtod.vars[temp_idx];
- temp_varp->tb_to_xs = new_tb_to_xs;
- temp_varp->tb_orig_stamp = new_tb_stamp;
- temp_varp->stamp_xsec = new_stamp_xsec;
- smp_mb();
- do_gtod.varp = temp_varp;
- do_gtod.var_idx = temp_idx;
- #ifdef CONFIG_PPC64
- /*
- * tb_update_count is used to allow the userspace gettimeofday code
- * to assure itself that it sees a consistent view of the tb_to_xs and
- * stamp_xsec variables. It reads the tb_update_count, then reads
- * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
- * the two values of tb_update_count match and are even then the
- * tb_to_xs and stamp_xsec values are consistent. If not, then it
- * loops back and reads them again until this criteria is met.
- */
- ++(systemcfg->tb_update_count);
- smp_wmb();
- systemcfg->tb_orig_stamp = new_tb_stamp;
- systemcfg->stamp_xsec = new_stamp_xsec;
- systemcfg->tb_to_xs = new_tb_to_xs;
- smp_wmb();
- ++(systemcfg->tb_update_count);
- #endif
- }
- /*
- * When the timebase - tb_orig_stamp gets too big, we do a manipulation
- * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
- * difference tb - tb_orig_stamp small enough to always fit inside a
- * 32 bits number. This is a requirement of our fast 32 bits userland
- * implementation in the vdso. If we "miss" a call to this function
- * (interrupt latency, CPU locked in a spinlock, ...) and we end up
- * with a too big difference, then the vdso will fallback to calling
- * the syscall
- */
- static __inline__ void timer_recalc_offset(u64 cur_tb)
- {
- unsigned long offset;
- u64 new_stamp_xsec;
- if (__USE_RTC())
- return;
- offset = cur_tb - do_gtod.varp->tb_orig_stamp;
- if ((offset & 0x80000000u) == 0)
- return;
- new_stamp_xsec = do_gtod.varp->stamp_xsec
- + mulhdu(offset, do_gtod.varp->tb_to_xs);
- update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
- }
- #ifdef CONFIG_SMP
- unsigned long profile_pc(struct pt_regs *regs)
- {
- unsigned long pc = instruction_pointer(regs);
- if (in_lock_functions(pc))
- return regs->link;
- return pc;
- }
- EXPORT_SYMBOL(profile_pc);
- #endif
- #ifdef CONFIG_PPC_ISERIES
- /*
- * This function recalibrates the timebase based on the 49-bit time-of-day
- * value in the Titan chip. The Titan is much more accurate than the value
- * returned by the service processor for the timebase frequency.
- */
- static void iSeries_tb_recal(void)
- {
- struct div_result divres;
- unsigned long titan, tb;
- tb = get_tb();
- titan = HvCallXm_loadTod();
- if ( iSeries_recal_titan ) {
- unsigned long tb_ticks = tb - iSeries_recal_tb;
- unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
- unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
- unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
- long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
- char sign = '+';
- /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
- new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
- if ( tick_diff < 0 ) {
- tick_diff = -tick_diff;
- sign = '-';
- }
- if ( tick_diff ) {
- if ( tick_diff < tb_ticks_per_jiffy/25 ) {
- printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
- new_tb_ticks_per_jiffy, sign, tick_diff );
- tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
- tb_ticks_per_sec = new_tb_ticks_per_sec;
- div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
- do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
- tb_to_xs = divres.result_low;
- do_gtod.varp->tb_to_xs = tb_to_xs;
- systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
- systemcfg->tb_to_xs = tb_to_xs;
- }
- else {
- printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
- " new tb_ticks_per_jiffy = %lu\n"
- " old tb_ticks_per_jiffy = %lu\n",
- new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
- }
- }
- }
- iSeries_recal_titan = titan;
- iSeries_recal_tb = tb;
- }
- #endif
- /*
- * For iSeries shared processors, we have to let the hypervisor
- * set the hardware decrementer. We set a virtual decrementer
- * in the lppaca and call the hypervisor if the virtual
- * decrementer is less than the current value in the hardware
- * decrementer. (almost always the new decrementer value will
- * be greater than the current hardware decementer so the hypervisor
- * call will not be needed)
- */
- /*
- * timer_interrupt - gets called when the decrementer overflows,
- * with interrupts disabled.
- */
- void timer_interrupt(struct pt_regs * regs)
- {
- int next_dec;
- int cpu = smp_processor_id();
- unsigned long ticks;
- #ifdef CONFIG_PPC32
- if (atomic_read(&ppc_n_lost_interrupts) != 0)
- do_IRQ(regs);
- #endif
- irq_enter();
- profile_tick(CPU_PROFILING, regs);
- #ifdef CONFIG_PPC_ISERIES
- get_paca()->lppaca.int_dword.fields.decr_int = 0;
- #endif
- while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
- >= tb_ticks_per_jiffy) {
- /* Update last_jiffy */
- per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
- /* Handle RTCL overflow on 601 */
- if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
- per_cpu(last_jiffy, cpu) -= 1000000000;
- /*
- * We cannot disable the decrementer, so in the period
- * between this cpu's being marked offline in cpu_online_map
- * and calling stop-self, it is taking timer interrupts.
- * Avoid calling into the scheduler rebalancing code if this
- * is the case.
- */
- if (!cpu_is_offline(cpu))
- update_process_times(user_mode(regs));
- /*
- * No need to check whether cpu is offline here; boot_cpuid
- * should have been fixed up by now.
- */
- if (cpu != boot_cpuid)
- continue;
- write_seqlock(&xtime_lock);
- tb_last_jiffy += tb_ticks_per_jiffy;
- tb_last_stamp = per_cpu(last_jiffy, cpu);
- timer_recalc_offset(tb_last_jiffy);
- do_timer(regs);
- timer_sync_xtime(tb_last_jiffy);
- timer_check_rtc();
- write_sequnlock(&xtime_lock);
- if (adjusting_time && (time_adjust == 0))
- ppc_adjtimex();
- }
-
- next_dec = tb_ticks_per_jiffy - ticks;
- set_dec(next_dec);
- #ifdef CONFIG_PPC_ISERIES
- if (hvlpevent_is_pending())
- process_hvlpevents(regs);
- #endif
- #ifdef CONFIG_PPC64
- /* collect purr register values often, for accurate calculations */
- if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
- struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
- cu->current_tb = mfspr(SPRN_PURR);
- }
- #endif
- irq_exit();
- }
- void wakeup_decrementer(void)
- {
- int i;
- set_dec(tb_ticks_per_jiffy);
- /*
- * We don't expect this to be called on a machine with a 601,
- * so using get_tbl is fine.
- */
- tb_last_stamp = tb_last_jiffy = get_tb();
- for_each_cpu(i)
- per_cpu(last_jiffy, i) = tb_last_stamp;
- }
- #ifdef CONFIG_SMP
- void __init smp_space_timers(unsigned int max_cpus)
- {
- int i;
- unsigned long offset = tb_ticks_per_jiffy / max_cpus;
- unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
- for_each_cpu(i) {
- if (i != boot_cpuid) {
- previous_tb += offset;
- per_cpu(last_jiffy, i) = previous_tb;
- }
- }
- }
- #endif
- /*
- * Scheduler clock - returns current time in nanosec units.
- *
- * Note: mulhdu(a, b) (multiply high double unsigned) returns
- * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
- * are 64-bit unsigned numbers.
- */
- unsigned long long sched_clock(void)
- {
- if (__USE_RTC())
- return get_rtc();
- return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
- }
- int do_settimeofday(struct timespec *tv)
- {
- time_t wtm_sec, new_sec = tv->tv_sec;
- long wtm_nsec, new_nsec = tv->tv_nsec;
- unsigned long flags;
- long int tb_delta;
- u64 new_xsec, tb_delta_xs;
- if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
- return -EINVAL;
- write_seqlock_irqsave(&xtime_lock, flags);
- /*
- * Updating the RTC is not the job of this code. If the time is
- * stepped under NTP, the RTC will be updated after STA_UNSYNC
- * is cleared. Tools like clock/hwclock either copy the RTC
- * to the system time, in which case there is no point in writing
- * to the RTC again, or write to the RTC but then they don't call
- * settimeofday to perform this operation.
- */
- #ifdef CONFIG_PPC_ISERIES
- if (first_settimeofday) {
- iSeries_tb_recal();
- first_settimeofday = 0;
- }
- #endif
- tb_delta = tb_ticks_since(tb_last_stamp);
- tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
- tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
- wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
- wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
- set_normalized_timespec(&xtime, new_sec, new_nsec);
- set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
- /* In case of a large backwards jump in time with NTP, we want the
- * clock to be updated as soon as the PLL is again in lock.
- */
- last_rtc_update = new_sec - 658;
- ntp_clear();
- new_xsec = 0;
- if (new_nsec != 0) {
- new_xsec = (u64)new_nsec * XSEC_PER_SEC;
- do_div(new_xsec, NSEC_PER_SEC);
- }
- new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
- update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
- #ifdef CONFIG_PPC64
- systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
- systemcfg->tz_dsttime = sys_tz.tz_dsttime;
- #endif
- write_sequnlock_irqrestore(&xtime_lock, flags);
- clock_was_set();
- return 0;
- }
- EXPORT_SYMBOL(do_settimeofday);
- void __init generic_calibrate_decr(void)
- {
- struct device_node *cpu;
- unsigned int *fp;
- int node_found;
- /*
- * The cpu node should have a timebase-frequency property
- * to tell us the rate at which the decrementer counts.
- */
- cpu = of_find_node_by_type(NULL, "cpu");
- ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
- node_found = 0;
- if (cpu != 0) {
- fp = (unsigned int *)get_property(cpu, "timebase-frequency",
- NULL);
- if (fp != 0) {
- node_found = 1;
- ppc_tb_freq = *fp;
- }
- }
- if (!node_found)
- printk(KERN_ERR "WARNING: Estimating decrementer frequency "
- "(not found)\n");
- ppc_proc_freq = DEFAULT_PROC_FREQ;
- node_found = 0;
- if (cpu != 0) {
- fp = (unsigned int *)get_property(cpu, "clock-frequency",
- NULL);
- if (fp != 0) {
- node_found = 1;
- ppc_proc_freq = *fp;
- }
- }
- #ifdef CONFIG_BOOKE
- /* Set the time base to zero */
- mtspr(SPRN_TBWL, 0);
- mtspr(SPRN_TBWU, 0);
- /* Clear any pending timer interrupts */
- mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
- /* Enable decrementer interrupt */
- mtspr(SPRN_TCR, TCR_DIE);
- #endif
- if (!node_found)
- printk(KERN_ERR "WARNING: Estimating processor frequency "
- "(not found)\n");
- of_node_put(cpu);
- }
- unsigned long get_boot_time(void)
- {
- struct rtc_time tm;
- if (ppc_md.get_boot_time)
- return ppc_md.get_boot_time();
- if (!ppc_md.get_rtc_time)
- return 0;
- ppc_md.get_rtc_time(&tm);
- return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
- tm.tm_hour, tm.tm_min, tm.tm_sec);
- }
- /* This function is only called on the boot processor */
- void __init time_init(void)
- {
- unsigned long flags;
- unsigned long tm = 0;
- struct div_result res;
- u64 scale;
- unsigned shift;
- if (ppc_md.time_init != NULL)
- timezone_offset = ppc_md.time_init();
- if (__USE_RTC()) {
- /* 601 processor: dec counts down by 128 every 128ns */
- ppc_tb_freq = 1000000000;
- tb_last_stamp = get_rtcl();
- tb_last_jiffy = tb_last_stamp;
- } else {
- /* Normal PowerPC with timebase register */
- ppc_md.calibrate_decr();
- printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
- ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
- printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
- ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
- tb_last_stamp = tb_last_jiffy = get_tb();
- }
- tb_ticks_per_jiffy = ppc_tb_freq / HZ;
- tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
- tb_ticks_per_usec = ppc_tb_freq / 1000000;
- tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
- div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
- tb_to_xs = res.result_low;
- #ifdef CONFIG_PPC64
- get_paca()->default_decr = tb_ticks_per_jiffy;
- #endif
- /*
- * Compute scale factor for sched_clock.
- * The calibrate_decr() function has set tb_ticks_per_sec,
- * which is the timebase frequency.
- * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
- * the 128-bit result as a 64.64 fixed-point number.
- * We then shift that number right until it is less than 1.0,
- * giving us the scale factor and shift count to use in
- * sched_clock().
- */
- div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
- scale = res.result_low;
- for (shift = 0; res.result_high != 0; ++shift) {
- scale = (scale >> 1) | (res.result_high << 63);
- res.result_high >>= 1;
- }
- tb_to_ns_scale = scale;
- tb_to_ns_shift = shift;
- #ifdef CONFIG_PPC_ISERIES
- if (!piranha_simulator)
- #endif
- tm = get_boot_time();
- write_seqlock_irqsave(&xtime_lock, flags);
- xtime.tv_sec = tm;
- xtime.tv_nsec = 0;
- do_gtod.varp = &do_gtod.vars[0];
- do_gtod.var_idx = 0;
- do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
- __get_cpu_var(last_jiffy) = tb_last_stamp;
- do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
- do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
- do_gtod.varp->tb_to_xs = tb_to_xs;
- do_gtod.tb_to_us = tb_to_us;
- #ifdef CONFIG_PPC64
- systemcfg->tb_orig_stamp = tb_last_jiffy;
- systemcfg->tb_update_count = 0;
- systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
- systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
- systemcfg->tb_to_xs = tb_to_xs;
- #endif
- time_freq = 0;
- /* If platform provided a timezone (pmac), we correct the time */
- if (timezone_offset) {
- sys_tz.tz_minuteswest = -timezone_offset / 60;
- sys_tz.tz_dsttime = 0;
- xtime.tv_sec -= timezone_offset;
- }
- last_rtc_update = xtime.tv_sec;
- set_normalized_timespec(&wall_to_monotonic,
- -xtime.tv_sec, -xtime.tv_nsec);
- write_sequnlock_irqrestore(&xtime_lock, flags);
- /* Not exact, but the timer interrupt takes care of this */
- set_dec(tb_ticks_per_jiffy);
- }
- /*
- * After adjtimex is called, adjust the conversion of tb ticks
- * to microseconds to keep do_gettimeofday synchronized
- * with ntpd.
- *
- * Use the time_adjust, time_freq and time_offset computed by adjtimex to
- * adjust the frequency.
- */
- /* #define DEBUG_PPC_ADJTIMEX 1 */
- void ppc_adjtimex(void)
- {
- #ifdef CONFIG_PPC64
- unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
- new_tb_to_xs, new_xsec, new_stamp_xsec;
- unsigned long tb_ticks_per_sec_delta;
- long delta_freq, ltemp;
- struct div_result divres;
- unsigned long flags;
- long singleshot_ppm = 0;
- /*
- * Compute parts per million frequency adjustment to
- * accomplish the time adjustment implied by time_offset to be
- * applied over the elapsed time indicated by time_constant.
- * Use SHIFT_USEC to get it into the same units as
- * time_freq.
- */
- if ( time_offset < 0 ) {
- ltemp = -time_offset;
- ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
- ltemp >>= SHIFT_KG + time_constant;
- ltemp = -ltemp;
- } else {
- ltemp = time_offset;
- ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
- ltemp >>= SHIFT_KG + time_constant;
- }
-
- /* If there is a single shot time adjustment in progress */
- if ( time_adjust ) {
- #ifdef DEBUG_PPC_ADJTIMEX
- printk("ppc_adjtimex: ");
- if ( adjusting_time == 0 )
- printk("starting ");
- printk("single shot time_adjust = %ld\n", time_adjust);
- #endif
-
- adjusting_time = 1;
-
- /*
- * Compute parts per million frequency adjustment
- * to match time_adjust
- */
- singleshot_ppm = tickadj * HZ;
- /*
- * The adjustment should be tickadj*HZ to match the code in
- * linux/kernel/timer.c, but experiments show that this is too
- * large. 3/4 of tickadj*HZ seems about right
- */
- singleshot_ppm -= singleshot_ppm / 4;
- /* Use SHIFT_USEC to get it into the same units as time_freq */
- singleshot_ppm <<= SHIFT_USEC;
- if ( time_adjust < 0 )
- singleshot_ppm = -singleshot_ppm;
- }
- else {
- #ifdef DEBUG_PPC_ADJTIMEX
- if ( adjusting_time )
- printk("ppc_adjtimex: ending single shot time_adjust\n");
- #endif
- adjusting_time = 0;
- }
-
- /* Add up all of the frequency adjustments */
- delta_freq = time_freq + ltemp + singleshot_ppm;
-
- /*
- * Compute a new value for tb_ticks_per_sec based on
- * the frequency adjustment
- */
- den = 1000000 * (1 << (SHIFT_USEC - 8));
- if ( delta_freq < 0 ) {
- tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
- new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
- }
- else {
- tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
- new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
- }
-
- #ifdef DEBUG_PPC_ADJTIMEX
- printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
- printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
- #endif
- /*
- * Compute a new value of tb_to_xs (used to convert tb to
- * microseconds) and a new value of stamp_xsec which is the
- * time (in 1/2^20 second units) corresponding to
- * tb_orig_stamp. This new value of stamp_xsec compensates
- * for the change in frequency (implied by the new tb_to_xs)
- * which guarantees that the current time remains the same.
- */
- write_seqlock_irqsave( &xtime_lock, flags );
- tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
- div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
- new_tb_to_xs = divres.result_low;
- new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
- old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
- new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
- update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
- write_sequnlock_irqrestore( &xtime_lock, flags );
- #endif /* CONFIG_PPC64 */
- }
- #define FEBRUARY 2
- #define STARTOFTIME 1970
- #define SECDAY 86400L
- #define SECYR (SECDAY * 365)
- #define leapyear(year) ((year) % 4 == 0 && \
- ((year) % 100 != 0 || (year) % 400 == 0))
- #define days_in_year(a) (leapyear(a) ? 366 : 365)
- #define days_in_month(a) (month_days[(a) - 1])
- static int month_days[12] = {
- 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
- };
- /*
- * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
- */
- void GregorianDay(struct rtc_time * tm)
- {
- int leapsToDate;
- int lastYear;
- int day;
- int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
- lastYear = tm->tm_year - 1;
- /*
- * Number of leap corrections to apply up to end of last year
- */
- leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
- /*
- * This year is a leap year if it is divisible by 4 except when it is
- * divisible by 100 unless it is divisible by 400
- *
- * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
- */
- day = tm->tm_mon > 2 && leapyear(tm->tm_year);
- day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
- tm->tm_mday;
- tm->tm_wday = day % 7;
- }
- void to_tm(int tim, struct rtc_time * tm)
- {
- register int i;
- register long hms, day;
- day = tim / SECDAY;
- hms = tim % SECDAY;
- /* Hours, minutes, seconds are easy */
- tm->tm_hour = hms / 3600;
- tm->tm_min = (hms % 3600) / 60;
- tm->tm_sec = (hms % 3600) % 60;
- /* Number of years in days */
- for (i = STARTOFTIME; day >= days_in_year(i); i++)
- day -= days_in_year(i);
- tm->tm_year = i;
- /* Number of months in days left */
- if (leapyear(tm->tm_year))
- days_in_month(FEBRUARY) = 29;
- for (i = 1; day >= days_in_month(i); i++)
- day -= days_in_month(i);
- days_in_month(FEBRUARY) = 28;
- tm->tm_mon = i;
- /* Days are what is left over (+1) from all that. */
- tm->tm_mday = day + 1;
- /*
- * Determine the day of week
- */
- GregorianDay(tm);
- }
- /* Auxiliary function to compute scaling factors */
- /* Actually the choice of a timebase running at 1/4 the of the bus
- * frequency giving resolution of a few tens of nanoseconds is quite nice.
- * It makes this computation very precise (27-28 bits typically) which
- * is optimistic considering the stability of most processor clock
- * oscillators and the precision with which the timebase frequency
- * is measured but does not harm.
- */
- unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
- {
- unsigned mlt=0, tmp, err;
- /* No concern for performance, it's done once: use a stupid
- * but safe and compact method to find the multiplier.
- */
-
- for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
- if (mulhwu(inscale, mlt|tmp) < outscale)
- mlt |= tmp;
- }
-
- /* We might still be off by 1 for the best approximation.
- * A side effect of this is that if outscale is too large
- * the returned value will be zero.
- * Many corner cases have been checked and seem to work,
- * some might have been forgotten in the test however.
- */
-
- err = inscale * (mlt+1);
- if (err <= inscale/2)
- mlt++;
- return mlt;
- }
- /*
- * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
- * result.
- */
- void div128_by_32(u64 dividend_high, u64 dividend_low,
- unsigned divisor, struct div_result *dr)
- {
- unsigned long a, b, c, d;
- unsigned long w, x, y, z;
- u64 ra, rb, rc;
- a = dividend_high >> 32;
- b = dividend_high & 0xffffffff;
- c = dividend_low >> 32;
- d = dividend_low & 0xffffffff;
- w = a / divisor;
- ra = ((u64)(a - (w * divisor)) << 32) + b;
- rb = ((u64) do_div(ra, divisor) << 32) + c;
- x = ra;
- rc = ((u64) do_div(rb, divisor) << 32) + d;
- y = rb;
- do_div(rc, divisor);
- z = rc;
- dr->result_high = ((u64)w << 32) + x;
- dr->result_low = ((u64)y << 32) + z;
- }
|