tcp_input.c 156 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/module.h>
  64. #include <linux/sysctl.h>
  65. #include <net/dst.h>
  66. #include <net/tcp.h>
  67. #include <net/inet_common.h>
  68. #include <linux/ipsec.h>
  69. #include <asm/unaligned.h>
  70. #include <net/netdma.h>
  71. int sysctl_tcp_timestamps __read_mostly = 1;
  72. int sysctl_tcp_window_scaling __read_mostly = 1;
  73. int sysctl_tcp_sack __read_mostly = 1;
  74. int sysctl_tcp_fack __read_mostly = 1;
  75. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  76. int sysctl_tcp_ecn __read_mostly;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  80. int sysctl_tcp_stdurg __read_mostly;
  81. int sysctl_tcp_rfc1337 __read_mostly;
  82. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  83. int sysctl_tcp_frto __read_mostly = 2;
  84. int sysctl_tcp_frto_response __read_mostly;
  85. int sysctl_tcp_nometrics_save __read_mostly;
  86. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  87. int sysctl_tcp_abc __read_mostly;
  88. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  89. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  90. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  91. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  92. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  93. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  94. #define FLAG_ECE 0x40 /* ECE in this ACK */
  95. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  96. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  97. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  98. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  99. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  100. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  101. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  102. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  103. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  104. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  105. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  106. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  107. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  108. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  109. /* Adapt the MSS value used to make delayed ack decision to the
  110. * real world.
  111. */
  112. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  113. {
  114. struct inet_connection_sock *icsk = inet_csk(sk);
  115. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  116. unsigned int len;
  117. icsk->icsk_ack.last_seg_size = 0;
  118. /* skb->len may jitter because of SACKs, even if peer
  119. * sends good full-sized frames.
  120. */
  121. len = skb_shinfo(skb)->gso_size ? : skb->len;
  122. if (len >= icsk->icsk_ack.rcv_mss) {
  123. icsk->icsk_ack.rcv_mss = len;
  124. } else {
  125. /* Otherwise, we make more careful check taking into account,
  126. * that SACKs block is variable.
  127. *
  128. * "len" is invariant segment length, including TCP header.
  129. */
  130. len += skb->data - skb_transport_header(skb);
  131. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  132. /* If PSH is not set, packet should be
  133. * full sized, provided peer TCP is not badly broken.
  134. * This observation (if it is correct 8)) allows
  135. * to handle super-low mtu links fairly.
  136. */
  137. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  138. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  139. /* Subtract also invariant (if peer is RFC compliant),
  140. * tcp header plus fixed timestamp option length.
  141. * Resulting "len" is MSS free of SACK jitter.
  142. */
  143. len -= tcp_sk(sk)->tcp_header_len;
  144. icsk->icsk_ack.last_seg_size = len;
  145. if (len == lss) {
  146. icsk->icsk_ack.rcv_mss = len;
  147. return;
  148. }
  149. }
  150. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  151. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  153. }
  154. }
  155. static void tcp_incr_quickack(struct sock *sk)
  156. {
  157. struct inet_connection_sock *icsk = inet_csk(sk);
  158. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  159. if (quickacks == 0)
  160. quickacks = 2;
  161. if (quickacks > icsk->icsk_ack.quick)
  162. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  163. }
  164. void tcp_enter_quickack_mode(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. tcp_incr_quickack(sk);
  168. icsk->icsk_ack.pingpong = 0;
  169. icsk->icsk_ack.ato = TCP_ATO_MIN;
  170. }
  171. /* Send ACKs quickly, if "quick" count is not exhausted
  172. * and the session is not interactive.
  173. */
  174. static inline int tcp_in_quickack_mode(const struct sock *sk)
  175. {
  176. const struct inet_connection_sock *icsk = inet_csk(sk);
  177. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  178. }
  179. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  180. {
  181. if (tp->ecn_flags & TCP_ECN_OK)
  182. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  183. }
  184. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  185. {
  186. if (tcp_hdr(skb)->cwr)
  187. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  188. }
  189. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  190. {
  191. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  192. }
  193. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  194. {
  195. if (tp->ecn_flags & TCP_ECN_OK) {
  196. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  197. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  198. /* Funny extension: if ECT is not set on a segment,
  199. * it is surely retransmit. It is not in ECN RFC,
  200. * but Linux follows this rule. */
  201. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  202. tcp_enter_quickack_mode((struct sock *)tp);
  203. }
  204. }
  205. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  206. {
  207. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  208. tp->ecn_flags &= ~TCP_ECN_OK;
  209. }
  210. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  211. {
  212. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  213. tp->ecn_flags &= ~TCP_ECN_OK;
  214. }
  215. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  216. {
  217. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  218. return 1;
  219. return 0;
  220. }
  221. /* Buffer size and advertised window tuning.
  222. *
  223. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  224. */
  225. static void tcp_fixup_sndbuf(struct sock *sk)
  226. {
  227. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  228. sizeof(struct sk_buff);
  229. if (sk->sk_sndbuf < 3 * sndmem)
  230. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  231. }
  232. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  233. *
  234. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  235. * forward and advertised in receiver window (tp->rcv_wnd) and
  236. * "application buffer", required to isolate scheduling/application
  237. * latencies from network.
  238. * window_clamp is maximal advertised window. It can be less than
  239. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  240. * is reserved for "application" buffer. The less window_clamp is
  241. * the smoother our behaviour from viewpoint of network, but the lower
  242. * throughput and the higher sensitivity of the connection to losses. 8)
  243. *
  244. * rcv_ssthresh is more strict window_clamp used at "slow start"
  245. * phase to predict further behaviour of this connection.
  246. * It is used for two goals:
  247. * - to enforce header prediction at sender, even when application
  248. * requires some significant "application buffer". It is check #1.
  249. * - to prevent pruning of receive queue because of misprediction
  250. * of receiver window. Check #2.
  251. *
  252. * The scheme does not work when sender sends good segments opening
  253. * window and then starts to feed us spaghetti. But it should work
  254. * in common situations. Otherwise, we have to rely on queue collapsing.
  255. */
  256. /* Slow part of check#2. */
  257. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  258. {
  259. struct tcp_sock *tp = tcp_sk(sk);
  260. /* Optimize this! */
  261. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  262. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  263. while (tp->rcv_ssthresh <= window) {
  264. if (truesize <= skb->len)
  265. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  266. truesize >>= 1;
  267. window >>= 1;
  268. }
  269. return 0;
  270. }
  271. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Check #1 */
  275. if (tp->rcv_ssthresh < tp->window_clamp &&
  276. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  277. !tcp_memory_pressure) {
  278. int incr;
  279. /* Check #2. Increase window, if skb with such overhead
  280. * will fit to rcvbuf in future.
  281. */
  282. if (tcp_win_from_space(skb->truesize) <= skb->len)
  283. incr = 2 * tp->advmss;
  284. else
  285. incr = __tcp_grow_window(sk, skb);
  286. if (incr) {
  287. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  288. tp->window_clamp);
  289. inet_csk(sk)->icsk_ack.quick |= 1;
  290. }
  291. }
  292. }
  293. /* 3. Tuning rcvbuf, when connection enters established state. */
  294. static void tcp_fixup_rcvbuf(struct sock *sk)
  295. {
  296. struct tcp_sock *tp = tcp_sk(sk);
  297. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  298. /* Try to select rcvbuf so that 4 mss-sized segments
  299. * will fit to window and corresponding skbs will fit to our rcvbuf.
  300. * (was 3; 4 is minimum to allow fast retransmit to work.)
  301. */
  302. while (tcp_win_from_space(rcvmem) < tp->advmss)
  303. rcvmem += 128;
  304. if (sk->sk_rcvbuf < 4 * rcvmem)
  305. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  306. }
  307. /* 4. Try to fixup all. It is made immediately after connection enters
  308. * established state.
  309. */
  310. static void tcp_init_buffer_space(struct sock *sk)
  311. {
  312. struct tcp_sock *tp = tcp_sk(sk);
  313. int maxwin;
  314. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  315. tcp_fixup_rcvbuf(sk);
  316. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  317. tcp_fixup_sndbuf(sk);
  318. tp->rcvq_space.space = tp->rcv_wnd;
  319. maxwin = tcp_full_space(sk);
  320. if (tp->window_clamp >= maxwin) {
  321. tp->window_clamp = maxwin;
  322. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  323. tp->window_clamp = max(maxwin -
  324. (maxwin >> sysctl_tcp_app_win),
  325. 4 * tp->advmss);
  326. }
  327. /* Force reservation of one segment. */
  328. if (sysctl_tcp_app_win &&
  329. tp->window_clamp > 2 * tp->advmss &&
  330. tp->window_clamp + tp->advmss > maxwin)
  331. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  332. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  333. tp->snd_cwnd_stamp = tcp_time_stamp;
  334. }
  335. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  336. static void tcp_clamp_window(struct sock *sk)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. struct inet_connection_sock *icsk = inet_csk(sk);
  340. icsk->icsk_ack.quick = 0;
  341. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  342. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  343. !tcp_memory_pressure &&
  344. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  345. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  346. sysctl_tcp_rmem[2]);
  347. }
  348. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  349. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  350. }
  351. /* Initialize RCV_MSS value.
  352. * RCV_MSS is an our guess about MSS used by the peer.
  353. * We haven't any direct information about the MSS.
  354. * It's better to underestimate the RCV_MSS rather than overestimate.
  355. * Overestimations make us ACKing less frequently than needed.
  356. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  357. */
  358. void tcp_initialize_rcv_mss(struct sock *sk)
  359. {
  360. struct tcp_sock *tp = tcp_sk(sk);
  361. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  362. hint = min(hint, tp->rcv_wnd / 2);
  363. hint = min(hint, TCP_MIN_RCVMSS);
  364. hint = max(hint, TCP_MIN_MSS);
  365. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  366. }
  367. /* Receiver "autotuning" code.
  368. *
  369. * The algorithm for RTT estimation w/o timestamps is based on
  370. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  371. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  372. *
  373. * More detail on this code can be found at
  374. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  375. * though this reference is out of date. A new paper
  376. * is pending.
  377. */
  378. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  379. {
  380. u32 new_sample = tp->rcv_rtt_est.rtt;
  381. long m = sample;
  382. if (m == 0)
  383. m = 1;
  384. if (new_sample != 0) {
  385. /* If we sample in larger samples in the non-timestamp
  386. * case, we could grossly overestimate the RTT especially
  387. * with chatty applications or bulk transfer apps which
  388. * are stalled on filesystem I/O.
  389. *
  390. * Also, since we are only going for a minimum in the
  391. * non-timestamp case, we do not smooth things out
  392. * else with timestamps disabled convergence takes too
  393. * long.
  394. */
  395. if (!win_dep) {
  396. m -= (new_sample >> 3);
  397. new_sample += m;
  398. } else if (m < new_sample)
  399. new_sample = m << 3;
  400. } else {
  401. /* No previous measure. */
  402. new_sample = m << 3;
  403. }
  404. if (tp->rcv_rtt_est.rtt != new_sample)
  405. tp->rcv_rtt_est.rtt = new_sample;
  406. }
  407. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  408. {
  409. if (tp->rcv_rtt_est.time == 0)
  410. goto new_measure;
  411. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  412. return;
  413. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  414. new_measure:
  415. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  416. tp->rcv_rtt_est.time = tcp_time_stamp;
  417. }
  418. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  419. const struct sk_buff *skb)
  420. {
  421. struct tcp_sock *tp = tcp_sk(sk);
  422. if (tp->rx_opt.rcv_tsecr &&
  423. (TCP_SKB_CB(skb)->end_seq -
  424. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  425. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  426. }
  427. /*
  428. * This function should be called every time data is copied to user space.
  429. * It calculates the appropriate TCP receive buffer space.
  430. */
  431. void tcp_rcv_space_adjust(struct sock *sk)
  432. {
  433. struct tcp_sock *tp = tcp_sk(sk);
  434. int time;
  435. int space;
  436. if (tp->rcvq_space.time == 0)
  437. goto new_measure;
  438. time = tcp_time_stamp - tp->rcvq_space.time;
  439. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  440. return;
  441. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  442. space = max(tp->rcvq_space.space, space);
  443. if (tp->rcvq_space.space != space) {
  444. int rcvmem;
  445. tp->rcvq_space.space = space;
  446. if (sysctl_tcp_moderate_rcvbuf &&
  447. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  448. int new_clamp = space;
  449. /* Receive space grows, normalize in order to
  450. * take into account packet headers and sk_buff
  451. * structure overhead.
  452. */
  453. space /= tp->advmss;
  454. if (!space)
  455. space = 1;
  456. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  457. 16 + sizeof(struct sk_buff));
  458. while (tcp_win_from_space(rcvmem) < tp->advmss)
  459. rcvmem += 128;
  460. space *= rcvmem;
  461. space = min(space, sysctl_tcp_rmem[2]);
  462. if (space > sk->sk_rcvbuf) {
  463. sk->sk_rcvbuf = space;
  464. /* Make the window clamp follow along. */
  465. tp->window_clamp = new_clamp;
  466. }
  467. }
  468. }
  469. new_measure:
  470. tp->rcvq_space.seq = tp->copied_seq;
  471. tp->rcvq_space.time = tcp_time_stamp;
  472. }
  473. /* There is something which you must keep in mind when you analyze the
  474. * behavior of the tp->ato delayed ack timeout interval. When a
  475. * connection starts up, we want to ack as quickly as possible. The
  476. * problem is that "good" TCP's do slow start at the beginning of data
  477. * transmission. The means that until we send the first few ACK's the
  478. * sender will sit on his end and only queue most of his data, because
  479. * he can only send snd_cwnd unacked packets at any given time. For
  480. * each ACK we send, he increments snd_cwnd and transmits more of his
  481. * queue. -DaveM
  482. */
  483. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  484. {
  485. struct tcp_sock *tp = tcp_sk(sk);
  486. struct inet_connection_sock *icsk = inet_csk(sk);
  487. u32 now;
  488. inet_csk_schedule_ack(sk);
  489. tcp_measure_rcv_mss(sk, skb);
  490. tcp_rcv_rtt_measure(tp);
  491. now = tcp_time_stamp;
  492. if (!icsk->icsk_ack.ato) {
  493. /* The _first_ data packet received, initialize
  494. * delayed ACK engine.
  495. */
  496. tcp_incr_quickack(sk);
  497. icsk->icsk_ack.ato = TCP_ATO_MIN;
  498. } else {
  499. int m = now - icsk->icsk_ack.lrcvtime;
  500. if (m <= TCP_ATO_MIN / 2) {
  501. /* The fastest case is the first. */
  502. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  503. } else if (m < icsk->icsk_ack.ato) {
  504. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  505. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  506. icsk->icsk_ack.ato = icsk->icsk_rto;
  507. } else if (m > icsk->icsk_rto) {
  508. /* Too long gap. Apparently sender failed to
  509. * restart window, so that we send ACKs quickly.
  510. */
  511. tcp_incr_quickack(sk);
  512. sk_mem_reclaim(sk);
  513. }
  514. }
  515. icsk->icsk_ack.lrcvtime = now;
  516. TCP_ECN_check_ce(tp, skb);
  517. if (skb->len >= 128)
  518. tcp_grow_window(sk, skb);
  519. }
  520. static u32 tcp_rto_min(struct sock *sk)
  521. {
  522. struct dst_entry *dst = __sk_dst_get(sk);
  523. u32 rto_min = TCP_RTO_MIN;
  524. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  525. rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
  526. return rto_min;
  527. }
  528. /* Called to compute a smoothed rtt estimate. The data fed to this
  529. * routine either comes from timestamps, or from segments that were
  530. * known _not_ to have been retransmitted [see Karn/Partridge
  531. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  532. * piece by Van Jacobson.
  533. * NOTE: the next three routines used to be one big routine.
  534. * To save cycles in the RFC 1323 implementation it was better to break
  535. * it up into three procedures. -- erics
  536. */
  537. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  538. {
  539. struct tcp_sock *tp = tcp_sk(sk);
  540. long m = mrtt; /* RTT */
  541. /* The following amusing code comes from Jacobson's
  542. * article in SIGCOMM '88. Note that rtt and mdev
  543. * are scaled versions of rtt and mean deviation.
  544. * This is designed to be as fast as possible
  545. * m stands for "measurement".
  546. *
  547. * On a 1990 paper the rto value is changed to:
  548. * RTO = rtt + 4 * mdev
  549. *
  550. * Funny. This algorithm seems to be very broken.
  551. * These formulae increase RTO, when it should be decreased, increase
  552. * too slowly, when it should be increased quickly, decrease too quickly
  553. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  554. * does not matter how to _calculate_ it. Seems, it was trap
  555. * that VJ failed to avoid. 8)
  556. */
  557. if (m == 0)
  558. m = 1;
  559. if (tp->srtt != 0) {
  560. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  561. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  562. if (m < 0) {
  563. m = -m; /* m is now abs(error) */
  564. m -= (tp->mdev >> 2); /* similar update on mdev */
  565. /* This is similar to one of Eifel findings.
  566. * Eifel blocks mdev updates when rtt decreases.
  567. * This solution is a bit different: we use finer gain
  568. * for mdev in this case (alpha*beta).
  569. * Like Eifel it also prevents growth of rto,
  570. * but also it limits too fast rto decreases,
  571. * happening in pure Eifel.
  572. */
  573. if (m > 0)
  574. m >>= 3;
  575. } else {
  576. m -= (tp->mdev >> 2); /* similar update on mdev */
  577. }
  578. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  579. if (tp->mdev > tp->mdev_max) {
  580. tp->mdev_max = tp->mdev;
  581. if (tp->mdev_max > tp->rttvar)
  582. tp->rttvar = tp->mdev_max;
  583. }
  584. if (after(tp->snd_una, tp->rtt_seq)) {
  585. if (tp->mdev_max < tp->rttvar)
  586. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  587. tp->rtt_seq = tp->snd_nxt;
  588. tp->mdev_max = tcp_rto_min(sk);
  589. }
  590. } else {
  591. /* no previous measure. */
  592. tp->srtt = m << 3; /* take the measured time to be rtt */
  593. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  594. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  595. tp->rtt_seq = tp->snd_nxt;
  596. }
  597. }
  598. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  599. * routine referred to above.
  600. */
  601. static inline void tcp_set_rto(struct sock *sk)
  602. {
  603. const struct tcp_sock *tp = tcp_sk(sk);
  604. /* Old crap is replaced with new one. 8)
  605. *
  606. * More seriously:
  607. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  608. * It cannot be less due to utterly erratic ACK generation made
  609. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  610. * to do with delayed acks, because at cwnd>2 true delack timeout
  611. * is invisible. Actually, Linux-2.4 also generates erratic
  612. * ACKs in some circumstances.
  613. */
  614. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  615. /* 2. Fixups made earlier cannot be right.
  616. * If we do not estimate RTO correctly without them,
  617. * all the algo is pure shit and should be replaced
  618. * with correct one. It is exactly, which we pretend to do.
  619. */
  620. }
  621. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  622. * guarantees that rto is higher.
  623. */
  624. static inline void tcp_bound_rto(struct sock *sk)
  625. {
  626. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  627. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  628. }
  629. /* Save metrics learned by this TCP session.
  630. This function is called only, when TCP finishes successfully
  631. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  632. */
  633. void tcp_update_metrics(struct sock *sk)
  634. {
  635. struct tcp_sock *tp = tcp_sk(sk);
  636. struct dst_entry *dst = __sk_dst_get(sk);
  637. if (sysctl_tcp_nometrics_save)
  638. return;
  639. dst_confirm(dst);
  640. if (dst && (dst->flags & DST_HOST)) {
  641. const struct inet_connection_sock *icsk = inet_csk(sk);
  642. int m;
  643. unsigned long rtt;
  644. if (icsk->icsk_backoff || !tp->srtt) {
  645. /* This session failed to estimate rtt. Why?
  646. * Probably, no packets returned in time.
  647. * Reset our results.
  648. */
  649. if (!(dst_metric_locked(dst, RTAX_RTT)))
  650. dst->metrics[RTAX_RTT - 1] = 0;
  651. return;
  652. }
  653. rtt = dst_metric_rtt(dst, RTAX_RTT);
  654. m = rtt - tp->srtt;
  655. /* If newly calculated rtt larger than stored one,
  656. * store new one. Otherwise, use EWMA. Remember,
  657. * rtt overestimation is always better than underestimation.
  658. */
  659. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  660. if (m <= 0)
  661. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  662. else
  663. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  664. }
  665. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  666. unsigned long var;
  667. if (m < 0)
  668. m = -m;
  669. /* Scale deviation to rttvar fixed point */
  670. m >>= 1;
  671. if (m < tp->mdev)
  672. m = tp->mdev;
  673. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  674. if (m >= var)
  675. var = m;
  676. else
  677. var -= (var - m) >> 2;
  678. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  679. }
  680. if (tp->snd_ssthresh >= 0xFFFF) {
  681. /* Slow start still did not finish. */
  682. if (dst_metric(dst, RTAX_SSTHRESH) &&
  683. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  684. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  685. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  686. if (!dst_metric_locked(dst, RTAX_CWND) &&
  687. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  688. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  689. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  690. icsk->icsk_ca_state == TCP_CA_Open) {
  691. /* Cong. avoidance phase, cwnd is reliable. */
  692. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  693. dst->metrics[RTAX_SSTHRESH-1] =
  694. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  695. if (!dst_metric_locked(dst, RTAX_CWND))
  696. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
  703. if (dst_metric(dst, RTAX_SSTHRESH) &&
  704. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  705. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  706. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  707. }
  708. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  709. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  710. tp->reordering != sysctl_tcp_reordering)
  711. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  712. }
  713. }
  714. }
  715. /* Numbers are taken from RFC3390.
  716. *
  717. * John Heffner states:
  718. *
  719. * The RFC specifies a window of no more than 4380 bytes
  720. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  721. * is a bit misleading because they use a clamp at 4380 bytes
  722. * rather than use a multiplier in the relevant range.
  723. */
  724. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  725. {
  726. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  727. if (!cwnd) {
  728. if (tp->mss_cache > 1460)
  729. cwnd = 2;
  730. else
  731. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  732. }
  733. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  734. }
  735. /* Set slow start threshold and cwnd not falling to slow start */
  736. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  737. {
  738. struct tcp_sock *tp = tcp_sk(sk);
  739. const struct inet_connection_sock *icsk = inet_csk(sk);
  740. tp->prior_ssthresh = 0;
  741. tp->bytes_acked = 0;
  742. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  743. tp->undo_marker = 0;
  744. if (set_ssthresh)
  745. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  746. tp->snd_cwnd = min(tp->snd_cwnd,
  747. tcp_packets_in_flight(tp) + 1U);
  748. tp->snd_cwnd_cnt = 0;
  749. tp->high_seq = tp->snd_nxt;
  750. tp->snd_cwnd_stamp = tcp_time_stamp;
  751. TCP_ECN_queue_cwr(tp);
  752. tcp_set_ca_state(sk, TCP_CA_CWR);
  753. }
  754. }
  755. /*
  756. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  757. * disables it when reordering is detected
  758. */
  759. static void tcp_disable_fack(struct tcp_sock *tp)
  760. {
  761. /* RFC3517 uses different metric in lost marker => reset on change */
  762. if (tcp_is_fack(tp))
  763. tp->lost_skb_hint = NULL;
  764. tp->rx_opt.sack_ok &= ~2;
  765. }
  766. /* Take a notice that peer is sending D-SACKs */
  767. static void tcp_dsack_seen(struct tcp_sock *tp)
  768. {
  769. tp->rx_opt.sack_ok |= 4;
  770. }
  771. /* Initialize metrics on socket. */
  772. static void tcp_init_metrics(struct sock *sk)
  773. {
  774. struct tcp_sock *tp = tcp_sk(sk);
  775. struct dst_entry *dst = __sk_dst_get(sk);
  776. if (dst == NULL)
  777. goto reset;
  778. dst_confirm(dst);
  779. if (dst_metric_locked(dst, RTAX_CWND))
  780. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  781. if (dst_metric(dst, RTAX_SSTHRESH)) {
  782. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  783. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  784. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  785. }
  786. if (dst_metric(dst, RTAX_REORDERING) &&
  787. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  788. tcp_disable_fack(tp);
  789. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  790. }
  791. if (dst_metric(dst, RTAX_RTT) == 0)
  792. goto reset;
  793. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  794. goto reset;
  795. /* Initial rtt is determined from SYN,SYN-ACK.
  796. * The segment is small and rtt may appear much
  797. * less than real one. Use per-dst memory
  798. * to make it more realistic.
  799. *
  800. * A bit of theory. RTT is time passed after "normal" sized packet
  801. * is sent until it is ACKed. In normal circumstances sending small
  802. * packets force peer to delay ACKs and calculation is correct too.
  803. * The algorithm is adaptive and, provided we follow specs, it
  804. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  805. * tricks sort of "quick acks" for time long enough to decrease RTT
  806. * to low value, and then abruptly stops to do it and starts to delay
  807. * ACKs, wait for troubles.
  808. */
  809. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  810. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  811. tp->rtt_seq = tp->snd_nxt;
  812. }
  813. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  814. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  815. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  816. }
  817. tcp_set_rto(sk);
  818. tcp_bound_rto(sk);
  819. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  820. goto reset;
  821. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  822. tp->snd_cwnd_stamp = tcp_time_stamp;
  823. return;
  824. reset:
  825. /* Play conservative. If timestamps are not
  826. * supported, TCP will fail to recalculate correct
  827. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  828. */
  829. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  830. tp->srtt = 0;
  831. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  832. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  833. }
  834. }
  835. static void tcp_update_reordering(struct sock *sk, const int metric,
  836. const int ts)
  837. {
  838. struct tcp_sock *tp = tcp_sk(sk);
  839. if (metric > tp->reordering) {
  840. int mib_idx;
  841. tp->reordering = min(TCP_MAX_REORDERING, metric);
  842. /* This exciting event is worth to be remembered. 8) */
  843. if (ts)
  844. mib_idx = LINUX_MIB_TCPTSREORDER;
  845. else if (tcp_is_reno(tp))
  846. mib_idx = LINUX_MIB_TCPRENOREORDER;
  847. else if (tcp_is_fack(tp))
  848. mib_idx = LINUX_MIB_TCPFACKREORDER;
  849. else
  850. mib_idx = LINUX_MIB_TCPSACKREORDER;
  851. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  852. #if FASTRETRANS_DEBUG > 1
  853. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  854. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  855. tp->reordering,
  856. tp->fackets_out,
  857. tp->sacked_out,
  858. tp->undo_marker ? tp->undo_retrans : 0);
  859. #endif
  860. tcp_disable_fack(tp);
  861. }
  862. }
  863. /* This must be called before lost_out is incremented */
  864. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  865. {
  866. if ((tp->retransmit_skb_hint == NULL) ||
  867. before(TCP_SKB_CB(skb)->seq,
  868. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  869. tp->retransmit_skb_hint = skb;
  870. if (!tp->lost_out ||
  871. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  872. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  873. }
  874. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  875. {
  876. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  877. tcp_verify_retransmit_hint(tp, skb);
  878. tp->lost_out += tcp_skb_pcount(skb);
  879. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  880. }
  881. }
  882. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  883. {
  884. tcp_verify_retransmit_hint(tp, skb);
  885. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  886. tp->lost_out += tcp_skb_pcount(skb);
  887. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  888. }
  889. }
  890. /* This procedure tags the retransmission queue when SACKs arrive.
  891. *
  892. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  893. * Packets in queue with these bits set are counted in variables
  894. * sacked_out, retrans_out and lost_out, correspondingly.
  895. *
  896. * Valid combinations are:
  897. * Tag InFlight Description
  898. * 0 1 - orig segment is in flight.
  899. * S 0 - nothing flies, orig reached receiver.
  900. * L 0 - nothing flies, orig lost by net.
  901. * R 2 - both orig and retransmit are in flight.
  902. * L|R 1 - orig is lost, retransmit is in flight.
  903. * S|R 1 - orig reached receiver, retrans is still in flight.
  904. * (L|S|R is logically valid, it could occur when L|R is sacked,
  905. * but it is equivalent to plain S and code short-curcuits it to S.
  906. * L|S is logically invalid, it would mean -1 packet in flight 8))
  907. *
  908. * These 6 states form finite state machine, controlled by the following events:
  909. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  910. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  911. * 3. Loss detection event of one of three flavors:
  912. * A. Scoreboard estimator decided the packet is lost.
  913. * A'. Reno "three dupacks" marks head of queue lost.
  914. * A''. Its FACK modfication, head until snd.fack is lost.
  915. * B. SACK arrives sacking data transmitted after never retransmitted
  916. * hole was sent out.
  917. * C. SACK arrives sacking SND.NXT at the moment, when the
  918. * segment was retransmitted.
  919. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  920. *
  921. * It is pleasant to note, that state diagram turns out to be commutative,
  922. * so that we are allowed not to be bothered by order of our actions,
  923. * when multiple events arrive simultaneously. (see the function below).
  924. *
  925. * Reordering detection.
  926. * --------------------
  927. * Reordering metric is maximal distance, which a packet can be displaced
  928. * in packet stream. With SACKs we can estimate it:
  929. *
  930. * 1. SACK fills old hole and the corresponding segment was not
  931. * ever retransmitted -> reordering. Alas, we cannot use it
  932. * when segment was retransmitted.
  933. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  934. * for retransmitted and already SACKed segment -> reordering..
  935. * Both of these heuristics are not used in Loss state, when we cannot
  936. * account for retransmits accurately.
  937. *
  938. * SACK block validation.
  939. * ----------------------
  940. *
  941. * SACK block range validation checks that the received SACK block fits to
  942. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  943. * Note that SND.UNA is not included to the range though being valid because
  944. * it means that the receiver is rather inconsistent with itself reporting
  945. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  946. * perfectly valid, however, in light of RFC2018 which explicitly states
  947. * that "SACK block MUST reflect the newest segment. Even if the newest
  948. * segment is going to be discarded ...", not that it looks very clever
  949. * in case of head skb. Due to potentional receiver driven attacks, we
  950. * choose to avoid immediate execution of a walk in write queue due to
  951. * reneging and defer head skb's loss recovery to standard loss recovery
  952. * procedure that will eventually trigger (nothing forbids us doing this).
  953. *
  954. * Implements also blockage to start_seq wrap-around. Problem lies in the
  955. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  956. * there's no guarantee that it will be before snd_nxt (n). The problem
  957. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  958. * wrap (s_w):
  959. *
  960. * <- outs wnd -> <- wrapzone ->
  961. * u e n u_w e_w s n_w
  962. * | | | | | | |
  963. * |<------------+------+----- TCP seqno space --------------+---------->|
  964. * ...-- <2^31 ->| |<--------...
  965. * ...---- >2^31 ------>| |<--------...
  966. *
  967. * Current code wouldn't be vulnerable but it's better still to discard such
  968. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  969. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  970. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  971. * equal to the ideal case (infinite seqno space without wrap caused issues).
  972. *
  973. * With D-SACK the lower bound is extended to cover sequence space below
  974. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  975. * again, D-SACK block must not to go across snd_una (for the same reason as
  976. * for the normal SACK blocks, explained above). But there all simplicity
  977. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  978. * fully below undo_marker they do not affect behavior in anyway and can
  979. * therefore be safely ignored. In rare cases (which are more or less
  980. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  981. * fragmentation and packet reordering past skb's retransmission. To consider
  982. * them correctly, the acceptable range must be extended even more though
  983. * the exact amount is rather hard to quantify. However, tp->max_window can
  984. * be used as an exaggerated estimate.
  985. */
  986. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  987. u32 start_seq, u32 end_seq)
  988. {
  989. /* Too far in future, or reversed (interpretation is ambiguous) */
  990. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  991. return 0;
  992. /* Nasty start_seq wrap-around check (see comments above) */
  993. if (!before(start_seq, tp->snd_nxt))
  994. return 0;
  995. /* In outstanding window? ...This is valid exit for D-SACKs too.
  996. * start_seq == snd_una is non-sensical (see comments above)
  997. */
  998. if (after(start_seq, tp->snd_una))
  999. return 1;
  1000. if (!is_dsack || !tp->undo_marker)
  1001. return 0;
  1002. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1003. if (!after(end_seq, tp->snd_una))
  1004. return 0;
  1005. if (!before(start_seq, tp->undo_marker))
  1006. return 1;
  1007. /* Too old */
  1008. if (!after(end_seq, tp->undo_marker))
  1009. return 0;
  1010. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1011. * start_seq < undo_marker and end_seq >= undo_marker.
  1012. */
  1013. return !before(start_seq, end_seq - tp->max_window);
  1014. }
  1015. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1016. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1017. * for reordering! Ugly, but should help.
  1018. *
  1019. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1020. * less than what is now known to be received by the other end (derived from
  1021. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1022. * retransmitted skbs to avoid some costly processing per ACKs.
  1023. */
  1024. static void tcp_mark_lost_retrans(struct sock *sk)
  1025. {
  1026. const struct inet_connection_sock *icsk = inet_csk(sk);
  1027. struct tcp_sock *tp = tcp_sk(sk);
  1028. struct sk_buff *skb;
  1029. int cnt = 0;
  1030. u32 new_low_seq = tp->snd_nxt;
  1031. u32 received_upto = tcp_highest_sack_seq(tp);
  1032. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1033. !after(received_upto, tp->lost_retrans_low) ||
  1034. icsk->icsk_ca_state != TCP_CA_Recovery)
  1035. return;
  1036. tcp_for_write_queue(skb, sk) {
  1037. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1038. if (skb == tcp_send_head(sk))
  1039. break;
  1040. if (cnt == tp->retrans_out)
  1041. break;
  1042. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1043. continue;
  1044. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1045. continue;
  1046. if (after(received_upto, ack_seq) &&
  1047. (tcp_is_fack(tp) ||
  1048. !before(received_upto,
  1049. ack_seq + tp->reordering * tp->mss_cache))) {
  1050. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1051. tp->retrans_out -= tcp_skb_pcount(skb);
  1052. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1053. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1054. } else {
  1055. if (before(ack_seq, new_low_seq))
  1056. new_low_seq = ack_seq;
  1057. cnt += tcp_skb_pcount(skb);
  1058. }
  1059. }
  1060. if (tp->retrans_out)
  1061. tp->lost_retrans_low = new_low_seq;
  1062. }
  1063. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1064. struct tcp_sack_block_wire *sp, int num_sacks,
  1065. u32 prior_snd_una)
  1066. {
  1067. struct tcp_sock *tp = tcp_sk(sk);
  1068. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1069. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1070. int dup_sack = 0;
  1071. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1072. dup_sack = 1;
  1073. tcp_dsack_seen(tp);
  1074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1075. } else if (num_sacks > 1) {
  1076. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1077. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1078. if (!after(end_seq_0, end_seq_1) &&
  1079. !before(start_seq_0, start_seq_1)) {
  1080. dup_sack = 1;
  1081. tcp_dsack_seen(tp);
  1082. NET_INC_STATS_BH(sock_net(sk),
  1083. LINUX_MIB_TCPDSACKOFORECV);
  1084. }
  1085. }
  1086. /* D-SACK for already forgotten data... Do dumb counting. */
  1087. if (dup_sack &&
  1088. !after(end_seq_0, prior_snd_una) &&
  1089. after(end_seq_0, tp->undo_marker))
  1090. tp->undo_retrans--;
  1091. return dup_sack;
  1092. }
  1093. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1094. * the incoming SACK may not exactly match but we can find smaller MSS
  1095. * aligned portion of it that matches. Therefore we might need to fragment
  1096. * which may fail and creates some hassle (caller must handle error case
  1097. * returns).
  1098. */
  1099. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1100. u32 start_seq, u32 end_seq)
  1101. {
  1102. int in_sack, err;
  1103. unsigned int pkt_len;
  1104. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1105. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1106. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1107. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1108. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1109. if (!in_sack)
  1110. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1111. else
  1112. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1113. err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
  1114. if (err < 0)
  1115. return err;
  1116. }
  1117. return in_sack;
  1118. }
  1119. static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1120. int *reord, int dup_sack, int fack_count)
  1121. {
  1122. struct tcp_sock *tp = tcp_sk(sk);
  1123. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1124. int flag = 0;
  1125. /* Account D-SACK for retransmitted packet. */
  1126. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1127. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1128. tp->undo_retrans--;
  1129. if (sacked & TCPCB_SACKED_ACKED)
  1130. *reord = min(fack_count, *reord);
  1131. }
  1132. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1133. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1134. return flag;
  1135. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1136. if (sacked & TCPCB_SACKED_RETRANS) {
  1137. /* If the segment is not tagged as lost,
  1138. * we do not clear RETRANS, believing
  1139. * that retransmission is still in flight.
  1140. */
  1141. if (sacked & TCPCB_LOST) {
  1142. TCP_SKB_CB(skb)->sacked &=
  1143. ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1144. tp->lost_out -= tcp_skb_pcount(skb);
  1145. tp->retrans_out -= tcp_skb_pcount(skb);
  1146. /* clear lost hint */
  1147. tp->retransmit_skb_hint = NULL;
  1148. }
  1149. } else {
  1150. if (!(sacked & TCPCB_RETRANS)) {
  1151. /* New sack for not retransmitted frame,
  1152. * which was in hole. It is reordering.
  1153. */
  1154. if (before(TCP_SKB_CB(skb)->seq,
  1155. tcp_highest_sack_seq(tp)))
  1156. *reord = min(fack_count, *reord);
  1157. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1158. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1159. flag |= FLAG_ONLY_ORIG_SACKED;
  1160. }
  1161. if (sacked & TCPCB_LOST) {
  1162. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1163. tp->lost_out -= tcp_skb_pcount(skb);
  1164. /* clear lost hint */
  1165. tp->retransmit_skb_hint = NULL;
  1166. }
  1167. }
  1168. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1169. flag |= FLAG_DATA_SACKED;
  1170. tp->sacked_out += tcp_skb_pcount(skb);
  1171. fack_count += tcp_skb_pcount(skb);
  1172. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1173. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1174. before(TCP_SKB_CB(skb)->seq,
  1175. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1176. tp->lost_cnt_hint += tcp_skb_pcount(skb);
  1177. if (fack_count > tp->fackets_out)
  1178. tp->fackets_out = fack_count;
  1179. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  1180. tcp_advance_highest_sack(sk, skb);
  1181. }
  1182. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1183. * frames and clear it. undo_retrans is decreased above, L|R frames
  1184. * are accounted above as well.
  1185. */
  1186. if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
  1187. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1188. tp->retrans_out -= tcp_skb_pcount(skb);
  1189. tp->retransmit_skb_hint = NULL;
  1190. }
  1191. return flag;
  1192. }
  1193. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1194. struct tcp_sack_block *next_dup,
  1195. u32 start_seq, u32 end_seq,
  1196. int dup_sack_in, int *fack_count,
  1197. int *reord, int *flag)
  1198. {
  1199. tcp_for_write_queue_from(skb, sk) {
  1200. int in_sack = 0;
  1201. int dup_sack = dup_sack_in;
  1202. if (skb == tcp_send_head(sk))
  1203. break;
  1204. /* queue is in-order => we can short-circuit the walk early */
  1205. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1206. break;
  1207. if ((next_dup != NULL) &&
  1208. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1209. in_sack = tcp_match_skb_to_sack(sk, skb,
  1210. next_dup->start_seq,
  1211. next_dup->end_seq);
  1212. if (in_sack > 0)
  1213. dup_sack = 1;
  1214. }
  1215. if (in_sack <= 0)
  1216. in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
  1217. end_seq);
  1218. if (unlikely(in_sack < 0))
  1219. break;
  1220. if (in_sack)
  1221. *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
  1222. *fack_count);
  1223. *fack_count += tcp_skb_pcount(skb);
  1224. }
  1225. return skb;
  1226. }
  1227. /* Avoid all extra work that is being done by sacktag while walking in
  1228. * a normal way
  1229. */
  1230. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1231. u32 skip_to_seq, int *fack_count)
  1232. {
  1233. tcp_for_write_queue_from(skb, sk) {
  1234. if (skb == tcp_send_head(sk))
  1235. break;
  1236. if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1237. break;
  1238. *fack_count += tcp_skb_pcount(skb);
  1239. }
  1240. return skb;
  1241. }
  1242. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1243. struct sock *sk,
  1244. struct tcp_sack_block *next_dup,
  1245. u32 skip_to_seq,
  1246. int *fack_count, int *reord,
  1247. int *flag)
  1248. {
  1249. if (next_dup == NULL)
  1250. return skb;
  1251. if (before(next_dup->start_seq, skip_to_seq)) {
  1252. skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
  1253. skb = tcp_sacktag_walk(skb, sk, NULL,
  1254. next_dup->start_seq, next_dup->end_seq,
  1255. 1, fack_count, reord, flag);
  1256. }
  1257. return skb;
  1258. }
  1259. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1260. {
  1261. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1262. }
  1263. static int
  1264. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1265. u32 prior_snd_una)
  1266. {
  1267. const struct inet_connection_sock *icsk = inet_csk(sk);
  1268. struct tcp_sock *tp = tcp_sk(sk);
  1269. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1270. TCP_SKB_CB(ack_skb)->sacked);
  1271. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1272. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1273. struct tcp_sack_block *cache;
  1274. struct sk_buff *skb;
  1275. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1276. int used_sacks;
  1277. int reord = tp->packets_out;
  1278. int flag = 0;
  1279. int found_dup_sack = 0;
  1280. int fack_count;
  1281. int i, j;
  1282. int first_sack_index;
  1283. if (!tp->sacked_out) {
  1284. if (WARN_ON(tp->fackets_out))
  1285. tp->fackets_out = 0;
  1286. tcp_highest_sack_reset(sk);
  1287. }
  1288. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1289. num_sacks, prior_snd_una);
  1290. if (found_dup_sack)
  1291. flag |= FLAG_DSACKING_ACK;
  1292. /* Eliminate too old ACKs, but take into
  1293. * account more or less fresh ones, they can
  1294. * contain valid SACK info.
  1295. */
  1296. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1297. return 0;
  1298. if (!tp->packets_out)
  1299. goto out;
  1300. used_sacks = 0;
  1301. first_sack_index = 0;
  1302. for (i = 0; i < num_sacks; i++) {
  1303. int dup_sack = !i && found_dup_sack;
  1304. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1305. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1306. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1307. sp[used_sacks].start_seq,
  1308. sp[used_sacks].end_seq)) {
  1309. int mib_idx;
  1310. if (dup_sack) {
  1311. if (!tp->undo_marker)
  1312. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1313. else
  1314. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1315. } else {
  1316. /* Don't count olds caused by ACK reordering */
  1317. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1318. !after(sp[used_sacks].end_seq, tp->snd_una))
  1319. continue;
  1320. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1321. }
  1322. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1323. if (i == 0)
  1324. first_sack_index = -1;
  1325. continue;
  1326. }
  1327. /* Ignore very old stuff early */
  1328. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1329. continue;
  1330. used_sacks++;
  1331. }
  1332. /* order SACK blocks to allow in order walk of the retrans queue */
  1333. for (i = used_sacks - 1; i > 0; i--) {
  1334. for (j = 0; j < i; j++) {
  1335. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1336. struct tcp_sack_block tmp;
  1337. tmp = sp[j];
  1338. sp[j] = sp[j + 1];
  1339. sp[j + 1] = tmp;
  1340. /* Track where the first SACK block goes to */
  1341. if (j == first_sack_index)
  1342. first_sack_index = j + 1;
  1343. }
  1344. }
  1345. }
  1346. skb = tcp_write_queue_head(sk);
  1347. fack_count = 0;
  1348. i = 0;
  1349. if (!tp->sacked_out) {
  1350. /* It's already past, so skip checking against it */
  1351. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1352. } else {
  1353. cache = tp->recv_sack_cache;
  1354. /* Skip empty blocks in at head of the cache */
  1355. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1356. !cache->end_seq)
  1357. cache++;
  1358. }
  1359. while (i < used_sacks) {
  1360. u32 start_seq = sp[i].start_seq;
  1361. u32 end_seq = sp[i].end_seq;
  1362. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1363. struct tcp_sack_block *next_dup = NULL;
  1364. if (found_dup_sack && ((i + 1) == first_sack_index))
  1365. next_dup = &sp[i + 1];
  1366. /* Event "B" in the comment above. */
  1367. if (after(end_seq, tp->high_seq))
  1368. flag |= FLAG_DATA_LOST;
  1369. /* Skip too early cached blocks */
  1370. while (tcp_sack_cache_ok(tp, cache) &&
  1371. !before(start_seq, cache->end_seq))
  1372. cache++;
  1373. /* Can skip some work by looking recv_sack_cache? */
  1374. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1375. after(end_seq, cache->start_seq)) {
  1376. /* Head todo? */
  1377. if (before(start_seq, cache->start_seq)) {
  1378. skb = tcp_sacktag_skip(skb, sk, start_seq,
  1379. &fack_count);
  1380. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1381. start_seq,
  1382. cache->start_seq,
  1383. dup_sack, &fack_count,
  1384. &reord, &flag);
  1385. }
  1386. /* Rest of the block already fully processed? */
  1387. if (!after(end_seq, cache->end_seq))
  1388. goto advance_sp;
  1389. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1390. cache->end_seq,
  1391. &fack_count, &reord,
  1392. &flag);
  1393. /* ...tail remains todo... */
  1394. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1395. /* ...but better entrypoint exists! */
  1396. skb = tcp_highest_sack(sk);
  1397. if (skb == NULL)
  1398. break;
  1399. fack_count = tp->fackets_out;
  1400. cache++;
  1401. goto walk;
  1402. }
  1403. skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
  1404. &fack_count);
  1405. /* Check overlap against next cached too (past this one already) */
  1406. cache++;
  1407. continue;
  1408. }
  1409. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1410. skb = tcp_highest_sack(sk);
  1411. if (skb == NULL)
  1412. break;
  1413. fack_count = tp->fackets_out;
  1414. }
  1415. skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
  1416. walk:
  1417. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
  1418. dup_sack, &fack_count, &reord, &flag);
  1419. advance_sp:
  1420. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1421. * due to in-order walk
  1422. */
  1423. if (after(end_seq, tp->frto_highmark))
  1424. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1425. i++;
  1426. }
  1427. /* Clear the head of the cache sack blocks so we can skip it next time */
  1428. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1429. tp->recv_sack_cache[i].start_seq = 0;
  1430. tp->recv_sack_cache[i].end_seq = 0;
  1431. }
  1432. for (j = 0; j < used_sacks; j++)
  1433. tp->recv_sack_cache[i++] = sp[j];
  1434. tcp_mark_lost_retrans(sk);
  1435. tcp_verify_left_out(tp);
  1436. if ((reord < tp->fackets_out) &&
  1437. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1438. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1439. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  1440. out:
  1441. #if FASTRETRANS_DEBUG > 0
  1442. WARN_ON((int)tp->sacked_out < 0);
  1443. WARN_ON((int)tp->lost_out < 0);
  1444. WARN_ON((int)tp->retrans_out < 0);
  1445. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1446. #endif
  1447. return flag;
  1448. }
  1449. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1450. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1451. */
  1452. int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1453. {
  1454. u32 holes;
  1455. holes = max(tp->lost_out, 1U);
  1456. holes = min(holes, tp->packets_out);
  1457. if ((tp->sacked_out + holes) > tp->packets_out) {
  1458. tp->sacked_out = tp->packets_out - holes;
  1459. return 1;
  1460. }
  1461. return 0;
  1462. }
  1463. /* If we receive more dupacks than we expected counting segments
  1464. * in assumption of absent reordering, interpret this as reordering.
  1465. * The only another reason could be bug in receiver TCP.
  1466. */
  1467. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1468. {
  1469. struct tcp_sock *tp = tcp_sk(sk);
  1470. if (tcp_limit_reno_sacked(tp))
  1471. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1472. }
  1473. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1474. static void tcp_add_reno_sack(struct sock *sk)
  1475. {
  1476. struct tcp_sock *tp = tcp_sk(sk);
  1477. tp->sacked_out++;
  1478. tcp_check_reno_reordering(sk, 0);
  1479. tcp_verify_left_out(tp);
  1480. }
  1481. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1482. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1483. {
  1484. struct tcp_sock *tp = tcp_sk(sk);
  1485. if (acked > 0) {
  1486. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1487. if (acked - 1 >= tp->sacked_out)
  1488. tp->sacked_out = 0;
  1489. else
  1490. tp->sacked_out -= acked - 1;
  1491. }
  1492. tcp_check_reno_reordering(sk, acked);
  1493. tcp_verify_left_out(tp);
  1494. }
  1495. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1496. {
  1497. tp->sacked_out = 0;
  1498. }
  1499. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1500. {
  1501. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1502. }
  1503. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1504. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1505. */
  1506. int tcp_use_frto(struct sock *sk)
  1507. {
  1508. const struct tcp_sock *tp = tcp_sk(sk);
  1509. const struct inet_connection_sock *icsk = inet_csk(sk);
  1510. struct sk_buff *skb;
  1511. if (!sysctl_tcp_frto)
  1512. return 0;
  1513. /* MTU probe and F-RTO won't really play nicely along currently */
  1514. if (icsk->icsk_mtup.probe_size)
  1515. return 0;
  1516. if (tcp_is_sackfrto(tp))
  1517. return 1;
  1518. /* Avoid expensive walking of rexmit queue if possible */
  1519. if (tp->retrans_out > 1)
  1520. return 0;
  1521. skb = tcp_write_queue_head(sk);
  1522. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1523. tcp_for_write_queue_from(skb, sk) {
  1524. if (skb == tcp_send_head(sk))
  1525. break;
  1526. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1527. return 0;
  1528. /* Short-circuit when first non-SACKed skb has been checked */
  1529. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1530. break;
  1531. }
  1532. return 1;
  1533. }
  1534. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1535. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1536. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1537. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1538. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1539. * bits are handled if the Loss state is really to be entered (in
  1540. * tcp_enter_frto_loss).
  1541. *
  1542. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1543. * does:
  1544. * "Reduce ssthresh if it has not yet been made inside this window."
  1545. */
  1546. void tcp_enter_frto(struct sock *sk)
  1547. {
  1548. const struct inet_connection_sock *icsk = inet_csk(sk);
  1549. struct tcp_sock *tp = tcp_sk(sk);
  1550. struct sk_buff *skb;
  1551. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1552. tp->snd_una == tp->high_seq ||
  1553. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1554. !icsk->icsk_retransmits)) {
  1555. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1556. /* Our state is too optimistic in ssthresh() call because cwnd
  1557. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1558. * recovery has not yet completed. Pattern would be this: RTO,
  1559. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1560. * up here twice).
  1561. * RFC4138 should be more specific on what to do, even though
  1562. * RTO is quite unlikely to occur after the first Cumulative ACK
  1563. * due to back-off and complexity of triggering events ...
  1564. */
  1565. if (tp->frto_counter) {
  1566. u32 stored_cwnd;
  1567. stored_cwnd = tp->snd_cwnd;
  1568. tp->snd_cwnd = 2;
  1569. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1570. tp->snd_cwnd = stored_cwnd;
  1571. } else {
  1572. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1573. }
  1574. /* ... in theory, cong.control module could do "any tricks" in
  1575. * ssthresh(), which means that ca_state, lost bits and lost_out
  1576. * counter would have to be faked before the call occurs. We
  1577. * consider that too expensive, unlikely and hacky, so modules
  1578. * using these in ssthresh() must deal these incompatibility
  1579. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1580. */
  1581. tcp_ca_event(sk, CA_EVENT_FRTO);
  1582. }
  1583. tp->undo_marker = tp->snd_una;
  1584. tp->undo_retrans = 0;
  1585. skb = tcp_write_queue_head(sk);
  1586. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1587. tp->undo_marker = 0;
  1588. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1589. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1590. tp->retrans_out -= tcp_skb_pcount(skb);
  1591. }
  1592. tcp_verify_left_out(tp);
  1593. /* Too bad if TCP was application limited */
  1594. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1595. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1596. * The last condition is necessary at least in tp->frto_counter case.
  1597. */
  1598. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1599. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1600. after(tp->high_seq, tp->snd_una)) {
  1601. tp->frto_highmark = tp->high_seq;
  1602. } else {
  1603. tp->frto_highmark = tp->snd_nxt;
  1604. }
  1605. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1606. tp->high_seq = tp->snd_nxt;
  1607. tp->frto_counter = 1;
  1608. }
  1609. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1610. * which indicates that we should follow the traditional RTO recovery,
  1611. * i.e. mark everything lost and do go-back-N retransmission.
  1612. */
  1613. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1614. {
  1615. struct tcp_sock *tp = tcp_sk(sk);
  1616. struct sk_buff *skb;
  1617. tp->lost_out = 0;
  1618. tp->retrans_out = 0;
  1619. if (tcp_is_reno(tp))
  1620. tcp_reset_reno_sack(tp);
  1621. tcp_for_write_queue(skb, sk) {
  1622. if (skb == tcp_send_head(sk))
  1623. break;
  1624. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1625. /*
  1626. * Count the retransmission made on RTO correctly (only when
  1627. * waiting for the first ACK and did not get it)...
  1628. */
  1629. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1630. /* For some reason this R-bit might get cleared? */
  1631. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1632. tp->retrans_out += tcp_skb_pcount(skb);
  1633. /* ...enter this if branch just for the first segment */
  1634. flag |= FLAG_DATA_ACKED;
  1635. } else {
  1636. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1637. tp->undo_marker = 0;
  1638. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1639. }
  1640. /* Marking forward transmissions that were made after RTO lost
  1641. * can cause unnecessary retransmissions in some scenarios,
  1642. * SACK blocks will mitigate that in some but not in all cases.
  1643. * We used to not mark them but it was causing break-ups with
  1644. * receivers that do only in-order receival.
  1645. *
  1646. * TODO: we could detect presence of such receiver and select
  1647. * different behavior per flow.
  1648. */
  1649. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1650. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1651. tp->lost_out += tcp_skb_pcount(skb);
  1652. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1653. }
  1654. }
  1655. tcp_verify_left_out(tp);
  1656. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1657. tp->snd_cwnd_cnt = 0;
  1658. tp->snd_cwnd_stamp = tcp_time_stamp;
  1659. tp->frto_counter = 0;
  1660. tp->bytes_acked = 0;
  1661. tp->reordering = min_t(unsigned int, tp->reordering,
  1662. sysctl_tcp_reordering);
  1663. tcp_set_ca_state(sk, TCP_CA_Loss);
  1664. tp->high_seq = tp->snd_nxt;
  1665. TCP_ECN_queue_cwr(tp);
  1666. tcp_clear_all_retrans_hints(tp);
  1667. }
  1668. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1669. {
  1670. tp->retrans_out = 0;
  1671. tp->lost_out = 0;
  1672. tp->undo_marker = 0;
  1673. tp->undo_retrans = 0;
  1674. }
  1675. void tcp_clear_retrans(struct tcp_sock *tp)
  1676. {
  1677. tcp_clear_retrans_partial(tp);
  1678. tp->fackets_out = 0;
  1679. tp->sacked_out = 0;
  1680. }
  1681. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1682. * and reset tags completely, otherwise preserve SACKs. If receiver
  1683. * dropped its ofo queue, we will know this due to reneging detection.
  1684. */
  1685. void tcp_enter_loss(struct sock *sk, int how)
  1686. {
  1687. const struct inet_connection_sock *icsk = inet_csk(sk);
  1688. struct tcp_sock *tp = tcp_sk(sk);
  1689. struct sk_buff *skb;
  1690. /* Reduce ssthresh if it has not yet been made inside this window. */
  1691. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1692. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1693. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1694. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1695. tcp_ca_event(sk, CA_EVENT_LOSS);
  1696. }
  1697. tp->snd_cwnd = 1;
  1698. tp->snd_cwnd_cnt = 0;
  1699. tp->snd_cwnd_stamp = tcp_time_stamp;
  1700. tp->bytes_acked = 0;
  1701. tcp_clear_retrans_partial(tp);
  1702. if (tcp_is_reno(tp))
  1703. tcp_reset_reno_sack(tp);
  1704. if (!how) {
  1705. /* Push undo marker, if it was plain RTO and nothing
  1706. * was retransmitted. */
  1707. tp->undo_marker = tp->snd_una;
  1708. } else {
  1709. tp->sacked_out = 0;
  1710. tp->fackets_out = 0;
  1711. }
  1712. tcp_clear_all_retrans_hints(tp);
  1713. tcp_for_write_queue(skb, sk) {
  1714. if (skb == tcp_send_head(sk))
  1715. break;
  1716. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1717. tp->undo_marker = 0;
  1718. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1719. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1720. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1721. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1722. tp->lost_out += tcp_skb_pcount(skb);
  1723. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1724. }
  1725. }
  1726. tcp_verify_left_out(tp);
  1727. tp->reordering = min_t(unsigned int, tp->reordering,
  1728. sysctl_tcp_reordering);
  1729. tcp_set_ca_state(sk, TCP_CA_Loss);
  1730. tp->high_seq = tp->snd_nxt;
  1731. TCP_ECN_queue_cwr(tp);
  1732. /* Abort F-RTO algorithm if one is in progress */
  1733. tp->frto_counter = 0;
  1734. }
  1735. /* If ACK arrived pointing to a remembered SACK, it means that our
  1736. * remembered SACKs do not reflect real state of receiver i.e.
  1737. * receiver _host_ is heavily congested (or buggy).
  1738. *
  1739. * Do processing similar to RTO timeout.
  1740. */
  1741. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1742. {
  1743. if (flag & FLAG_SACK_RENEGING) {
  1744. struct inet_connection_sock *icsk = inet_csk(sk);
  1745. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1746. tcp_enter_loss(sk, 1);
  1747. icsk->icsk_retransmits++;
  1748. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1749. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1750. icsk->icsk_rto, TCP_RTO_MAX);
  1751. return 1;
  1752. }
  1753. return 0;
  1754. }
  1755. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1756. {
  1757. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1758. }
  1759. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1760. * counter when SACK is enabled (without SACK, sacked_out is used for
  1761. * that purpose).
  1762. *
  1763. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1764. * segments up to the highest received SACK block so far and holes in
  1765. * between them.
  1766. *
  1767. * With reordering, holes may still be in flight, so RFC3517 recovery
  1768. * uses pure sacked_out (total number of SACKed segments) even though
  1769. * it violates the RFC that uses duplicate ACKs, often these are equal
  1770. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1771. * they differ. Since neither occurs due to loss, TCP should really
  1772. * ignore them.
  1773. */
  1774. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  1775. {
  1776. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1777. }
  1778. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1779. {
  1780. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1781. }
  1782. static inline int tcp_head_timedout(struct sock *sk)
  1783. {
  1784. struct tcp_sock *tp = tcp_sk(sk);
  1785. return tp->packets_out &&
  1786. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1787. }
  1788. /* Linux NewReno/SACK/FACK/ECN state machine.
  1789. * --------------------------------------
  1790. *
  1791. * "Open" Normal state, no dubious events, fast path.
  1792. * "Disorder" In all the respects it is "Open",
  1793. * but requires a bit more attention. It is entered when
  1794. * we see some SACKs or dupacks. It is split of "Open"
  1795. * mainly to move some processing from fast path to slow one.
  1796. * "CWR" CWND was reduced due to some Congestion Notification event.
  1797. * It can be ECN, ICMP source quench, local device congestion.
  1798. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1799. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1800. *
  1801. * tcp_fastretrans_alert() is entered:
  1802. * - each incoming ACK, if state is not "Open"
  1803. * - when arrived ACK is unusual, namely:
  1804. * * SACK
  1805. * * Duplicate ACK.
  1806. * * ECN ECE.
  1807. *
  1808. * Counting packets in flight is pretty simple.
  1809. *
  1810. * in_flight = packets_out - left_out + retrans_out
  1811. *
  1812. * packets_out is SND.NXT-SND.UNA counted in packets.
  1813. *
  1814. * retrans_out is number of retransmitted segments.
  1815. *
  1816. * left_out is number of segments left network, but not ACKed yet.
  1817. *
  1818. * left_out = sacked_out + lost_out
  1819. *
  1820. * sacked_out: Packets, which arrived to receiver out of order
  1821. * and hence not ACKed. With SACKs this number is simply
  1822. * amount of SACKed data. Even without SACKs
  1823. * it is easy to give pretty reliable estimate of this number,
  1824. * counting duplicate ACKs.
  1825. *
  1826. * lost_out: Packets lost by network. TCP has no explicit
  1827. * "loss notification" feedback from network (for now).
  1828. * It means that this number can be only _guessed_.
  1829. * Actually, it is the heuristics to predict lossage that
  1830. * distinguishes different algorithms.
  1831. *
  1832. * F.e. after RTO, when all the queue is considered as lost,
  1833. * lost_out = packets_out and in_flight = retrans_out.
  1834. *
  1835. * Essentially, we have now two algorithms counting
  1836. * lost packets.
  1837. *
  1838. * FACK: It is the simplest heuristics. As soon as we decided
  1839. * that something is lost, we decide that _all_ not SACKed
  1840. * packets until the most forward SACK are lost. I.e.
  1841. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1842. * It is absolutely correct estimate, if network does not reorder
  1843. * packets. And it loses any connection to reality when reordering
  1844. * takes place. We use FACK by default until reordering
  1845. * is suspected on the path to this destination.
  1846. *
  1847. * NewReno: when Recovery is entered, we assume that one segment
  1848. * is lost (classic Reno). While we are in Recovery and
  1849. * a partial ACK arrives, we assume that one more packet
  1850. * is lost (NewReno). This heuristics are the same in NewReno
  1851. * and SACK.
  1852. *
  1853. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1854. * deflation etc. CWND is real congestion window, never inflated, changes
  1855. * only according to classic VJ rules.
  1856. *
  1857. * Really tricky (and requiring careful tuning) part of algorithm
  1858. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1859. * The first determines the moment _when_ we should reduce CWND and,
  1860. * hence, slow down forward transmission. In fact, it determines the moment
  1861. * when we decide that hole is caused by loss, rather than by a reorder.
  1862. *
  1863. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1864. * holes, caused by lost packets.
  1865. *
  1866. * And the most logically complicated part of algorithm is undo
  1867. * heuristics. We detect false retransmits due to both too early
  1868. * fast retransmit (reordering) and underestimated RTO, analyzing
  1869. * timestamps and D-SACKs. When we detect that some segments were
  1870. * retransmitted by mistake and CWND reduction was wrong, we undo
  1871. * window reduction and abort recovery phase. This logic is hidden
  1872. * inside several functions named tcp_try_undo_<something>.
  1873. */
  1874. /* This function decides, when we should leave Disordered state
  1875. * and enter Recovery phase, reducing congestion window.
  1876. *
  1877. * Main question: may we further continue forward transmission
  1878. * with the same cwnd?
  1879. */
  1880. static int tcp_time_to_recover(struct sock *sk)
  1881. {
  1882. struct tcp_sock *tp = tcp_sk(sk);
  1883. __u32 packets_out;
  1884. /* Do not perform any recovery during F-RTO algorithm */
  1885. if (tp->frto_counter)
  1886. return 0;
  1887. /* Trick#1: The loss is proven. */
  1888. if (tp->lost_out)
  1889. return 1;
  1890. /* Not-A-Trick#2 : Classic rule... */
  1891. if (tcp_dupack_heurestics(tp) > tp->reordering)
  1892. return 1;
  1893. /* Trick#3 : when we use RFC2988 timer restart, fast
  1894. * retransmit can be triggered by timeout of queue head.
  1895. */
  1896. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1897. return 1;
  1898. /* Trick#4: It is still not OK... But will it be useful to delay
  1899. * recovery more?
  1900. */
  1901. packets_out = tp->packets_out;
  1902. if (packets_out <= tp->reordering &&
  1903. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1904. !tcp_may_send_now(sk)) {
  1905. /* We have nothing to send. This connection is limited
  1906. * either by receiver window or by application.
  1907. */
  1908. return 1;
  1909. }
  1910. return 0;
  1911. }
  1912. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  1913. * is against sacked "cnt", otherwise it's against facked "cnt"
  1914. */
  1915. static void tcp_mark_head_lost(struct sock *sk, int packets)
  1916. {
  1917. struct tcp_sock *tp = tcp_sk(sk);
  1918. struct sk_buff *skb;
  1919. int cnt, oldcnt;
  1920. int err;
  1921. unsigned int mss;
  1922. WARN_ON(packets > tp->packets_out);
  1923. if (tp->lost_skb_hint) {
  1924. skb = tp->lost_skb_hint;
  1925. cnt = tp->lost_cnt_hint;
  1926. } else {
  1927. skb = tcp_write_queue_head(sk);
  1928. cnt = 0;
  1929. }
  1930. tcp_for_write_queue_from(skb, sk) {
  1931. if (skb == tcp_send_head(sk))
  1932. break;
  1933. /* TODO: do this better */
  1934. /* this is not the most efficient way to do this... */
  1935. tp->lost_skb_hint = skb;
  1936. tp->lost_cnt_hint = cnt;
  1937. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  1938. break;
  1939. oldcnt = cnt;
  1940. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1941. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1942. cnt += tcp_skb_pcount(skb);
  1943. if (cnt > packets) {
  1944. if (tcp_is_sack(tp) || (oldcnt >= packets))
  1945. break;
  1946. mss = skb_shinfo(skb)->gso_size;
  1947. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1948. if (err < 0)
  1949. break;
  1950. cnt = packets;
  1951. }
  1952. tcp_skb_mark_lost(tp, skb);
  1953. }
  1954. tcp_verify_left_out(tp);
  1955. }
  1956. /* Account newly detected lost packet(s) */
  1957. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1958. {
  1959. struct tcp_sock *tp = tcp_sk(sk);
  1960. if (tcp_is_reno(tp)) {
  1961. tcp_mark_head_lost(sk, 1);
  1962. } else if (tcp_is_fack(tp)) {
  1963. int lost = tp->fackets_out - tp->reordering;
  1964. if (lost <= 0)
  1965. lost = 1;
  1966. tcp_mark_head_lost(sk, lost);
  1967. } else {
  1968. int sacked_upto = tp->sacked_out - tp->reordering;
  1969. if (sacked_upto < fast_rexmit)
  1970. sacked_upto = fast_rexmit;
  1971. tcp_mark_head_lost(sk, sacked_upto);
  1972. }
  1973. /* New heuristics: it is possible only after we switched
  1974. * to restart timer each time when something is ACKed.
  1975. * Hence, we can detect timed out packets during fast
  1976. * retransmit without falling to slow start.
  1977. */
  1978. if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
  1979. struct sk_buff *skb;
  1980. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1981. : tcp_write_queue_head(sk);
  1982. tcp_for_write_queue_from(skb, sk) {
  1983. if (skb == tcp_send_head(sk))
  1984. break;
  1985. if (!tcp_skb_timedout(sk, skb))
  1986. break;
  1987. tcp_skb_mark_lost(tp, skb);
  1988. }
  1989. tp->scoreboard_skb_hint = skb;
  1990. tcp_verify_left_out(tp);
  1991. }
  1992. }
  1993. /* CWND moderation, preventing bursts due to too big ACKs
  1994. * in dubious situations.
  1995. */
  1996. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1997. {
  1998. tp->snd_cwnd = min(tp->snd_cwnd,
  1999. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2000. tp->snd_cwnd_stamp = tcp_time_stamp;
  2001. }
  2002. /* Lower bound on congestion window is slow start threshold
  2003. * unless congestion avoidance choice decides to overide it.
  2004. */
  2005. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2006. {
  2007. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2008. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2009. }
  2010. /* Decrease cwnd each second ack. */
  2011. static void tcp_cwnd_down(struct sock *sk, int flag)
  2012. {
  2013. struct tcp_sock *tp = tcp_sk(sk);
  2014. int decr = tp->snd_cwnd_cnt + 1;
  2015. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2016. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2017. tp->snd_cwnd_cnt = decr & 1;
  2018. decr >>= 1;
  2019. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2020. tp->snd_cwnd -= decr;
  2021. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2022. tp->snd_cwnd_stamp = tcp_time_stamp;
  2023. }
  2024. }
  2025. /* Nothing was retransmitted or returned timestamp is less
  2026. * than timestamp of the first retransmission.
  2027. */
  2028. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2029. {
  2030. return !tp->retrans_stamp ||
  2031. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2032. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2033. }
  2034. /* Undo procedures. */
  2035. #if FASTRETRANS_DEBUG > 1
  2036. static void DBGUNDO(struct sock *sk, const char *msg)
  2037. {
  2038. struct tcp_sock *tp = tcp_sk(sk);
  2039. struct inet_sock *inet = inet_sk(sk);
  2040. if (sk->sk_family == AF_INET) {
  2041. printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2042. msg,
  2043. NIPQUAD(inet->daddr), ntohs(inet->dport),
  2044. tp->snd_cwnd, tcp_left_out(tp),
  2045. tp->snd_ssthresh, tp->prior_ssthresh,
  2046. tp->packets_out);
  2047. }
  2048. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2049. else if (sk->sk_family == AF_INET6) {
  2050. struct ipv6_pinfo *np = inet6_sk(sk);
  2051. printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2052. msg,
  2053. NIP6(np->daddr), ntohs(inet->dport),
  2054. tp->snd_cwnd, tcp_left_out(tp),
  2055. tp->snd_ssthresh, tp->prior_ssthresh,
  2056. tp->packets_out);
  2057. }
  2058. #endif
  2059. }
  2060. #else
  2061. #define DBGUNDO(x...) do { } while (0)
  2062. #endif
  2063. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2064. {
  2065. struct tcp_sock *tp = tcp_sk(sk);
  2066. if (tp->prior_ssthresh) {
  2067. const struct inet_connection_sock *icsk = inet_csk(sk);
  2068. if (icsk->icsk_ca_ops->undo_cwnd)
  2069. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2070. else
  2071. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2072. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2073. tp->snd_ssthresh = tp->prior_ssthresh;
  2074. TCP_ECN_withdraw_cwr(tp);
  2075. }
  2076. } else {
  2077. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2078. }
  2079. tcp_moderate_cwnd(tp);
  2080. tp->snd_cwnd_stamp = tcp_time_stamp;
  2081. }
  2082. static inline int tcp_may_undo(struct tcp_sock *tp)
  2083. {
  2084. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2085. }
  2086. /* People celebrate: "We love our President!" */
  2087. static int tcp_try_undo_recovery(struct sock *sk)
  2088. {
  2089. struct tcp_sock *tp = tcp_sk(sk);
  2090. if (tcp_may_undo(tp)) {
  2091. int mib_idx;
  2092. /* Happy end! We did not retransmit anything
  2093. * or our original transmission succeeded.
  2094. */
  2095. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2096. tcp_undo_cwr(sk, 1);
  2097. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2098. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2099. else
  2100. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2101. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2102. tp->undo_marker = 0;
  2103. }
  2104. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2105. /* Hold old state until something *above* high_seq
  2106. * is ACKed. For Reno it is MUST to prevent false
  2107. * fast retransmits (RFC2582). SACK TCP is safe. */
  2108. tcp_moderate_cwnd(tp);
  2109. return 1;
  2110. }
  2111. tcp_set_ca_state(sk, TCP_CA_Open);
  2112. return 0;
  2113. }
  2114. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2115. static void tcp_try_undo_dsack(struct sock *sk)
  2116. {
  2117. struct tcp_sock *tp = tcp_sk(sk);
  2118. if (tp->undo_marker && !tp->undo_retrans) {
  2119. DBGUNDO(sk, "D-SACK");
  2120. tcp_undo_cwr(sk, 1);
  2121. tp->undo_marker = 0;
  2122. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2123. }
  2124. }
  2125. /* Undo during fast recovery after partial ACK. */
  2126. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2127. {
  2128. struct tcp_sock *tp = tcp_sk(sk);
  2129. /* Partial ACK arrived. Force Hoe's retransmit. */
  2130. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2131. if (tcp_may_undo(tp)) {
  2132. /* Plain luck! Hole if filled with delayed
  2133. * packet, rather than with a retransmit.
  2134. */
  2135. if (tp->retrans_out == 0)
  2136. tp->retrans_stamp = 0;
  2137. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2138. DBGUNDO(sk, "Hoe");
  2139. tcp_undo_cwr(sk, 0);
  2140. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2141. /* So... Do not make Hoe's retransmit yet.
  2142. * If the first packet was delayed, the rest
  2143. * ones are most probably delayed as well.
  2144. */
  2145. failed = 0;
  2146. }
  2147. return failed;
  2148. }
  2149. /* Undo during loss recovery after partial ACK. */
  2150. static int tcp_try_undo_loss(struct sock *sk)
  2151. {
  2152. struct tcp_sock *tp = tcp_sk(sk);
  2153. if (tcp_may_undo(tp)) {
  2154. struct sk_buff *skb;
  2155. tcp_for_write_queue(skb, sk) {
  2156. if (skb == tcp_send_head(sk))
  2157. break;
  2158. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2159. }
  2160. tcp_clear_all_retrans_hints(tp);
  2161. DBGUNDO(sk, "partial loss");
  2162. tp->lost_out = 0;
  2163. tcp_undo_cwr(sk, 1);
  2164. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2165. inet_csk(sk)->icsk_retransmits = 0;
  2166. tp->undo_marker = 0;
  2167. if (tcp_is_sack(tp))
  2168. tcp_set_ca_state(sk, TCP_CA_Open);
  2169. return 1;
  2170. }
  2171. return 0;
  2172. }
  2173. static inline void tcp_complete_cwr(struct sock *sk)
  2174. {
  2175. struct tcp_sock *tp = tcp_sk(sk);
  2176. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2177. tp->snd_cwnd_stamp = tcp_time_stamp;
  2178. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2179. }
  2180. static void tcp_try_keep_open(struct sock *sk)
  2181. {
  2182. struct tcp_sock *tp = tcp_sk(sk);
  2183. int state = TCP_CA_Open;
  2184. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2185. state = TCP_CA_Disorder;
  2186. if (inet_csk(sk)->icsk_ca_state != state) {
  2187. tcp_set_ca_state(sk, state);
  2188. tp->high_seq = tp->snd_nxt;
  2189. }
  2190. }
  2191. static void tcp_try_to_open(struct sock *sk, int flag)
  2192. {
  2193. struct tcp_sock *tp = tcp_sk(sk);
  2194. tcp_verify_left_out(tp);
  2195. if (!tp->frto_counter && tp->retrans_out == 0)
  2196. tp->retrans_stamp = 0;
  2197. if (flag & FLAG_ECE)
  2198. tcp_enter_cwr(sk, 1);
  2199. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2200. tcp_try_keep_open(sk);
  2201. tcp_moderate_cwnd(tp);
  2202. } else {
  2203. tcp_cwnd_down(sk, flag);
  2204. }
  2205. }
  2206. static void tcp_mtup_probe_failed(struct sock *sk)
  2207. {
  2208. struct inet_connection_sock *icsk = inet_csk(sk);
  2209. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2210. icsk->icsk_mtup.probe_size = 0;
  2211. }
  2212. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. struct inet_connection_sock *icsk = inet_csk(sk);
  2216. /* FIXME: breaks with very large cwnd */
  2217. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2218. tp->snd_cwnd = tp->snd_cwnd *
  2219. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2220. icsk->icsk_mtup.probe_size;
  2221. tp->snd_cwnd_cnt = 0;
  2222. tp->snd_cwnd_stamp = tcp_time_stamp;
  2223. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2224. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2225. icsk->icsk_mtup.probe_size = 0;
  2226. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2227. }
  2228. /* Process an event, which can update packets-in-flight not trivially.
  2229. * Main goal of this function is to calculate new estimate for left_out,
  2230. * taking into account both packets sitting in receiver's buffer and
  2231. * packets lost by network.
  2232. *
  2233. * Besides that it does CWND reduction, when packet loss is detected
  2234. * and changes state of machine.
  2235. *
  2236. * It does _not_ decide what to send, it is made in function
  2237. * tcp_xmit_retransmit_queue().
  2238. */
  2239. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2240. {
  2241. struct inet_connection_sock *icsk = inet_csk(sk);
  2242. struct tcp_sock *tp = tcp_sk(sk);
  2243. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2244. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2245. (tcp_fackets_out(tp) > tp->reordering));
  2246. int fast_rexmit = 0, mib_idx;
  2247. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2248. tp->sacked_out = 0;
  2249. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2250. tp->fackets_out = 0;
  2251. /* Now state machine starts.
  2252. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2253. if (flag & FLAG_ECE)
  2254. tp->prior_ssthresh = 0;
  2255. /* B. In all the states check for reneging SACKs. */
  2256. if (tcp_check_sack_reneging(sk, flag))
  2257. return;
  2258. /* C. Process data loss notification, provided it is valid. */
  2259. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2260. before(tp->snd_una, tp->high_seq) &&
  2261. icsk->icsk_ca_state != TCP_CA_Open &&
  2262. tp->fackets_out > tp->reordering) {
  2263. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2264. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2265. }
  2266. /* D. Check consistency of the current state. */
  2267. tcp_verify_left_out(tp);
  2268. /* E. Check state exit conditions. State can be terminated
  2269. * when high_seq is ACKed. */
  2270. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2271. WARN_ON(tp->retrans_out != 0);
  2272. tp->retrans_stamp = 0;
  2273. } else if (!before(tp->snd_una, tp->high_seq)) {
  2274. switch (icsk->icsk_ca_state) {
  2275. case TCP_CA_Loss:
  2276. icsk->icsk_retransmits = 0;
  2277. if (tcp_try_undo_recovery(sk))
  2278. return;
  2279. break;
  2280. case TCP_CA_CWR:
  2281. /* CWR is to be held something *above* high_seq
  2282. * is ACKed for CWR bit to reach receiver. */
  2283. if (tp->snd_una != tp->high_seq) {
  2284. tcp_complete_cwr(sk);
  2285. tcp_set_ca_state(sk, TCP_CA_Open);
  2286. }
  2287. break;
  2288. case TCP_CA_Disorder:
  2289. tcp_try_undo_dsack(sk);
  2290. if (!tp->undo_marker ||
  2291. /* For SACK case do not Open to allow to undo
  2292. * catching for all duplicate ACKs. */
  2293. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2294. tp->undo_marker = 0;
  2295. tcp_set_ca_state(sk, TCP_CA_Open);
  2296. }
  2297. break;
  2298. case TCP_CA_Recovery:
  2299. if (tcp_is_reno(tp))
  2300. tcp_reset_reno_sack(tp);
  2301. if (tcp_try_undo_recovery(sk))
  2302. return;
  2303. tcp_complete_cwr(sk);
  2304. break;
  2305. }
  2306. }
  2307. /* F. Process state. */
  2308. switch (icsk->icsk_ca_state) {
  2309. case TCP_CA_Recovery:
  2310. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2311. if (tcp_is_reno(tp) && is_dupack)
  2312. tcp_add_reno_sack(sk);
  2313. } else
  2314. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2315. break;
  2316. case TCP_CA_Loss:
  2317. if (flag & FLAG_DATA_ACKED)
  2318. icsk->icsk_retransmits = 0;
  2319. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2320. tcp_reset_reno_sack(tp);
  2321. if (!tcp_try_undo_loss(sk)) {
  2322. tcp_moderate_cwnd(tp);
  2323. tcp_xmit_retransmit_queue(sk);
  2324. return;
  2325. }
  2326. if (icsk->icsk_ca_state != TCP_CA_Open)
  2327. return;
  2328. /* Loss is undone; fall through to processing in Open state. */
  2329. default:
  2330. if (tcp_is_reno(tp)) {
  2331. if (flag & FLAG_SND_UNA_ADVANCED)
  2332. tcp_reset_reno_sack(tp);
  2333. if (is_dupack)
  2334. tcp_add_reno_sack(sk);
  2335. }
  2336. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2337. tcp_try_undo_dsack(sk);
  2338. if (!tcp_time_to_recover(sk)) {
  2339. tcp_try_to_open(sk, flag);
  2340. return;
  2341. }
  2342. /* MTU probe failure: don't reduce cwnd */
  2343. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2344. icsk->icsk_mtup.probe_size &&
  2345. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2346. tcp_mtup_probe_failed(sk);
  2347. /* Restores the reduction we did in tcp_mtup_probe() */
  2348. tp->snd_cwnd++;
  2349. tcp_simple_retransmit(sk);
  2350. return;
  2351. }
  2352. /* Otherwise enter Recovery state */
  2353. if (tcp_is_reno(tp))
  2354. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2355. else
  2356. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2357. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2358. tp->high_seq = tp->snd_nxt;
  2359. tp->prior_ssthresh = 0;
  2360. tp->undo_marker = tp->snd_una;
  2361. tp->undo_retrans = tp->retrans_out;
  2362. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2363. if (!(flag & FLAG_ECE))
  2364. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2365. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2366. TCP_ECN_queue_cwr(tp);
  2367. }
  2368. tp->bytes_acked = 0;
  2369. tp->snd_cwnd_cnt = 0;
  2370. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2371. fast_rexmit = 1;
  2372. }
  2373. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2374. tcp_update_scoreboard(sk, fast_rexmit);
  2375. tcp_cwnd_down(sk, flag);
  2376. tcp_xmit_retransmit_queue(sk);
  2377. }
  2378. /* Read draft-ietf-tcplw-high-performance before mucking
  2379. * with this code. (Supersedes RFC1323)
  2380. */
  2381. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2382. {
  2383. /* RTTM Rule: A TSecr value received in a segment is used to
  2384. * update the averaged RTT measurement only if the segment
  2385. * acknowledges some new data, i.e., only if it advances the
  2386. * left edge of the send window.
  2387. *
  2388. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2389. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2390. *
  2391. * Changed: reset backoff as soon as we see the first valid sample.
  2392. * If we do not, we get strongly overestimated rto. With timestamps
  2393. * samples are accepted even from very old segments: f.e., when rtt=1
  2394. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2395. * answer arrives rto becomes 120 seconds! If at least one of segments
  2396. * in window is lost... Voila. --ANK (010210)
  2397. */
  2398. struct tcp_sock *tp = tcp_sk(sk);
  2399. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2400. tcp_rtt_estimator(sk, seq_rtt);
  2401. tcp_set_rto(sk);
  2402. inet_csk(sk)->icsk_backoff = 0;
  2403. tcp_bound_rto(sk);
  2404. }
  2405. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2406. {
  2407. /* We don't have a timestamp. Can only use
  2408. * packets that are not retransmitted to determine
  2409. * rtt estimates. Also, we must not reset the
  2410. * backoff for rto until we get a non-retransmitted
  2411. * packet. This allows us to deal with a situation
  2412. * where the network delay has increased suddenly.
  2413. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2414. */
  2415. if (flag & FLAG_RETRANS_DATA_ACKED)
  2416. return;
  2417. tcp_rtt_estimator(sk, seq_rtt);
  2418. tcp_set_rto(sk);
  2419. inet_csk(sk)->icsk_backoff = 0;
  2420. tcp_bound_rto(sk);
  2421. }
  2422. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2423. const s32 seq_rtt)
  2424. {
  2425. const struct tcp_sock *tp = tcp_sk(sk);
  2426. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2427. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2428. tcp_ack_saw_tstamp(sk, flag);
  2429. else if (seq_rtt >= 0)
  2430. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2431. }
  2432. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2433. {
  2434. const struct inet_connection_sock *icsk = inet_csk(sk);
  2435. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2436. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2437. }
  2438. /* Restart timer after forward progress on connection.
  2439. * RFC2988 recommends to restart timer to now+rto.
  2440. */
  2441. static void tcp_rearm_rto(struct sock *sk)
  2442. {
  2443. struct tcp_sock *tp = tcp_sk(sk);
  2444. if (!tp->packets_out) {
  2445. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2446. } else {
  2447. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2448. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2449. }
  2450. }
  2451. /* If we get here, the whole TSO packet has not been acked. */
  2452. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2453. {
  2454. struct tcp_sock *tp = tcp_sk(sk);
  2455. u32 packets_acked;
  2456. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2457. packets_acked = tcp_skb_pcount(skb);
  2458. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2459. return 0;
  2460. packets_acked -= tcp_skb_pcount(skb);
  2461. if (packets_acked) {
  2462. BUG_ON(tcp_skb_pcount(skb) == 0);
  2463. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2464. }
  2465. return packets_acked;
  2466. }
  2467. /* Remove acknowledged frames from the retransmission queue. If our packet
  2468. * is before the ack sequence we can discard it as it's confirmed to have
  2469. * arrived at the other end.
  2470. */
  2471. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
  2472. {
  2473. struct tcp_sock *tp = tcp_sk(sk);
  2474. const struct inet_connection_sock *icsk = inet_csk(sk);
  2475. struct sk_buff *skb;
  2476. u32 now = tcp_time_stamp;
  2477. int fully_acked = 1;
  2478. int flag = 0;
  2479. u32 pkts_acked = 0;
  2480. u32 reord = tp->packets_out;
  2481. s32 seq_rtt = -1;
  2482. s32 ca_seq_rtt = -1;
  2483. ktime_t last_ackt = net_invalid_timestamp();
  2484. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2485. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2486. u32 end_seq;
  2487. u32 acked_pcount;
  2488. u8 sacked = scb->sacked;
  2489. /* Determine how many packets and what bytes were acked, tso and else */
  2490. if (after(scb->end_seq, tp->snd_una)) {
  2491. if (tcp_skb_pcount(skb) == 1 ||
  2492. !after(tp->snd_una, scb->seq))
  2493. break;
  2494. acked_pcount = tcp_tso_acked(sk, skb);
  2495. if (!acked_pcount)
  2496. break;
  2497. fully_acked = 0;
  2498. end_seq = tp->snd_una;
  2499. } else {
  2500. acked_pcount = tcp_skb_pcount(skb);
  2501. end_seq = scb->end_seq;
  2502. }
  2503. /* MTU probing checks */
  2504. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2505. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2506. tcp_mtup_probe_success(sk, skb);
  2507. }
  2508. if (sacked & TCPCB_RETRANS) {
  2509. if (sacked & TCPCB_SACKED_RETRANS)
  2510. tp->retrans_out -= acked_pcount;
  2511. flag |= FLAG_RETRANS_DATA_ACKED;
  2512. ca_seq_rtt = -1;
  2513. seq_rtt = -1;
  2514. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2515. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2516. } else {
  2517. ca_seq_rtt = now - scb->when;
  2518. last_ackt = skb->tstamp;
  2519. if (seq_rtt < 0) {
  2520. seq_rtt = ca_seq_rtt;
  2521. }
  2522. if (!(sacked & TCPCB_SACKED_ACKED))
  2523. reord = min(pkts_acked, reord);
  2524. }
  2525. if (sacked & TCPCB_SACKED_ACKED)
  2526. tp->sacked_out -= acked_pcount;
  2527. if (sacked & TCPCB_LOST)
  2528. tp->lost_out -= acked_pcount;
  2529. if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
  2530. tp->urg_mode = 0;
  2531. tp->packets_out -= acked_pcount;
  2532. pkts_acked += acked_pcount;
  2533. /* Initial outgoing SYN's get put onto the write_queue
  2534. * just like anything else we transmit. It is not
  2535. * true data, and if we misinform our callers that
  2536. * this ACK acks real data, we will erroneously exit
  2537. * connection startup slow start one packet too
  2538. * quickly. This is severely frowned upon behavior.
  2539. */
  2540. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2541. flag |= FLAG_DATA_ACKED;
  2542. } else {
  2543. flag |= FLAG_SYN_ACKED;
  2544. tp->retrans_stamp = 0;
  2545. }
  2546. if (!fully_acked)
  2547. break;
  2548. tcp_unlink_write_queue(skb, sk);
  2549. sk_wmem_free_skb(sk, skb);
  2550. tcp_clear_all_retrans_hints(tp);
  2551. }
  2552. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2553. flag |= FLAG_SACK_RENEGING;
  2554. if (flag & FLAG_ACKED) {
  2555. const struct tcp_congestion_ops *ca_ops
  2556. = inet_csk(sk)->icsk_ca_ops;
  2557. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2558. tcp_rearm_rto(sk);
  2559. if (tcp_is_reno(tp)) {
  2560. tcp_remove_reno_sacks(sk, pkts_acked);
  2561. } else {
  2562. /* Non-retransmitted hole got filled? That's reordering */
  2563. if (reord < prior_fackets)
  2564. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2565. }
  2566. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2567. if (ca_ops->pkts_acked) {
  2568. s32 rtt_us = -1;
  2569. /* Is the ACK triggering packet unambiguous? */
  2570. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2571. /* High resolution needed and available? */
  2572. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2573. !ktime_equal(last_ackt,
  2574. net_invalid_timestamp()))
  2575. rtt_us = ktime_us_delta(ktime_get_real(),
  2576. last_ackt);
  2577. else if (ca_seq_rtt > 0)
  2578. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2579. }
  2580. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2581. }
  2582. }
  2583. #if FASTRETRANS_DEBUG > 0
  2584. WARN_ON((int)tp->sacked_out < 0);
  2585. WARN_ON((int)tp->lost_out < 0);
  2586. WARN_ON((int)tp->retrans_out < 0);
  2587. if (!tp->packets_out && tcp_is_sack(tp)) {
  2588. icsk = inet_csk(sk);
  2589. if (tp->lost_out) {
  2590. printk(KERN_DEBUG "Leak l=%u %d\n",
  2591. tp->lost_out, icsk->icsk_ca_state);
  2592. tp->lost_out = 0;
  2593. }
  2594. if (tp->sacked_out) {
  2595. printk(KERN_DEBUG "Leak s=%u %d\n",
  2596. tp->sacked_out, icsk->icsk_ca_state);
  2597. tp->sacked_out = 0;
  2598. }
  2599. if (tp->retrans_out) {
  2600. printk(KERN_DEBUG "Leak r=%u %d\n",
  2601. tp->retrans_out, icsk->icsk_ca_state);
  2602. tp->retrans_out = 0;
  2603. }
  2604. }
  2605. #endif
  2606. return flag;
  2607. }
  2608. static void tcp_ack_probe(struct sock *sk)
  2609. {
  2610. const struct tcp_sock *tp = tcp_sk(sk);
  2611. struct inet_connection_sock *icsk = inet_csk(sk);
  2612. /* Was it a usable window open? */
  2613. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2614. icsk->icsk_backoff = 0;
  2615. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2616. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2617. * This function is not for random using!
  2618. */
  2619. } else {
  2620. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2621. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2622. TCP_RTO_MAX);
  2623. }
  2624. }
  2625. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2626. {
  2627. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2628. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2629. }
  2630. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2631. {
  2632. const struct tcp_sock *tp = tcp_sk(sk);
  2633. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2634. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2635. }
  2636. /* Check that window update is acceptable.
  2637. * The function assumes that snd_una<=ack<=snd_next.
  2638. */
  2639. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2640. const u32 ack, const u32 ack_seq,
  2641. const u32 nwin)
  2642. {
  2643. return (after(ack, tp->snd_una) ||
  2644. after(ack_seq, tp->snd_wl1) ||
  2645. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2646. }
  2647. /* Update our send window.
  2648. *
  2649. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2650. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2651. */
  2652. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2653. u32 ack_seq)
  2654. {
  2655. struct tcp_sock *tp = tcp_sk(sk);
  2656. int flag = 0;
  2657. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2658. if (likely(!tcp_hdr(skb)->syn))
  2659. nwin <<= tp->rx_opt.snd_wscale;
  2660. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2661. flag |= FLAG_WIN_UPDATE;
  2662. tcp_update_wl(tp, ack, ack_seq);
  2663. if (tp->snd_wnd != nwin) {
  2664. tp->snd_wnd = nwin;
  2665. /* Note, it is the only place, where
  2666. * fast path is recovered for sending TCP.
  2667. */
  2668. tp->pred_flags = 0;
  2669. tcp_fast_path_check(sk);
  2670. if (nwin > tp->max_window) {
  2671. tp->max_window = nwin;
  2672. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2673. }
  2674. }
  2675. }
  2676. tp->snd_una = ack;
  2677. return flag;
  2678. }
  2679. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2680. * continue in congestion avoidance.
  2681. */
  2682. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2683. {
  2684. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2685. tp->snd_cwnd_cnt = 0;
  2686. tp->bytes_acked = 0;
  2687. TCP_ECN_queue_cwr(tp);
  2688. tcp_moderate_cwnd(tp);
  2689. }
  2690. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2691. * rate halving and continue in congestion avoidance.
  2692. */
  2693. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2694. {
  2695. tcp_enter_cwr(sk, 0);
  2696. }
  2697. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2698. {
  2699. if (flag & FLAG_ECE)
  2700. tcp_ratehalving_spur_to_response(sk);
  2701. else
  2702. tcp_undo_cwr(sk, 1);
  2703. }
  2704. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2705. *
  2706. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2707. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2708. * window (but not to or beyond highest sequence sent before RTO):
  2709. * On First ACK, send two new segments out.
  2710. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2711. * algorithm is not part of the F-RTO detection algorithm
  2712. * given in RFC4138 but can be selected separately).
  2713. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2714. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2715. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2716. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2717. *
  2718. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2719. * original window even after we transmit two new data segments.
  2720. *
  2721. * SACK version:
  2722. * on first step, wait until first cumulative ACK arrives, then move to
  2723. * the second step. In second step, the next ACK decides.
  2724. *
  2725. * F-RTO is implemented (mainly) in four functions:
  2726. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2727. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2728. * called when tcp_use_frto() showed green light
  2729. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2730. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2731. * to prove that the RTO is indeed spurious. It transfers the control
  2732. * from F-RTO to the conventional RTO recovery
  2733. */
  2734. static int tcp_process_frto(struct sock *sk, int flag)
  2735. {
  2736. struct tcp_sock *tp = tcp_sk(sk);
  2737. tcp_verify_left_out(tp);
  2738. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2739. if (flag & FLAG_DATA_ACKED)
  2740. inet_csk(sk)->icsk_retransmits = 0;
  2741. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  2742. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  2743. tp->undo_marker = 0;
  2744. if (!before(tp->snd_una, tp->frto_highmark)) {
  2745. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2746. return 1;
  2747. }
  2748. if (!tcp_is_sackfrto(tp)) {
  2749. /* RFC4138 shortcoming in step 2; should also have case c):
  2750. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2751. * data, winupdate
  2752. */
  2753. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  2754. return 1;
  2755. if (!(flag & FLAG_DATA_ACKED)) {
  2756. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2757. flag);
  2758. return 1;
  2759. }
  2760. } else {
  2761. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2762. /* Prevent sending of new data. */
  2763. tp->snd_cwnd = min(tp->snd_cwnd,
  2764. tcp_packets_in_flight(tp));
  2765. return 1;
  2766. }
  2767. if ((tp->frto_counter >= 2) &&
  2768. (!(flag & FLAG_FORWARD_PROGRESS) ||
  2769. ((flag & FLAG_DATA_SACKED) &&
  2770. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  2771. /* RFC4138 shortcoming (see comment above) */
  2772. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  2773. (flag & FLAG_NOT_DUP))
  2774. return 1;
  2775. tcp_enter_frto_loss(sk, 3, flag);
  2776. return 1;
  2777. }
  2778. }
  2779. if (tp->frto_counter == 1) {
  2780. /* tcp_may_send_now needs to see updated state */
  2781. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2782. tp->frto_counter = 2;
  2783. if (!tcp_may_send_now(sk))
  2784. tcp_enter_frto_loss(sk, 2, flag);
  2785. return 1;
  2786. } else {
  2787. switch (sysctl_tcp_frto_response) {
  2788. case 2:
  2789. tcp_undo_spur_to_response(sk, flag);
  2790. break;
  2791. case 1:
  2792. tcp_conservative_spur_to_response(tp);
  2793. break;
  2794. default:
  2795. tcp_ratehalving_spur_to_response(sk);
  2796. break;
  2797. }
  2798. tp->frto_counter = 0;
  2799. tp->undo_marker = 0;
  2800. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  2801. }
  2802. return 0;
  2803. }
  2804. /* This routine deals with incoming acks, but not outgoing ones. */
  2805. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2806. {
  2807. struct inet_connection_sock *icsk = inet_csk(sk);
  2808. struct tcp_sock *tp = tcp_sk(sk);
  2809. u32 prior_snd_una = tp->snd_una;
  2810. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2811. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2812. u32 prior_in_flight;
  2813. u32 prior_fackets;
  2814. int prior_packets;
  2815. int frto_cwnd = 0;
  2816. /* If the ack is newer than sent or older than previous acks
  2817. * then we can probably ignore it.
  2818. */
  2819. if (after(ack, tp->snd_nxt))
  2820. goto uninteresting_ack;
  2821. if (before(ack, prior_snd_una))
  2822. goto old_ack;
  2823. if (after(ack, prior_snd_una))
  2824. flag |= FLAG_SND_UNA_ADVANCED;
  2825. if (sysctl_tcp_abc) {
  2826. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2827. tp->bytes_acked += ack - prior_snd_una;
  2828. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2829. /* we assume just one segment left network */
  2830. tp->bytes_acked += min(ack - prior_snd_una,
  2831. tp->mss_cache);
  2832. }
  2833. prior_fackets = tp->fackets_out;
  2834. prior_in_flight = tcp_packets_in_flight(tp);
  2835. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2836. /* Window is constant, pure forward advance.
  2837. * No more checks are required.
  2838. * Note, we use the fact that SND.UNA>=SND.WL2.
  2839. */
  2840. tcp_update_wl(tp, ack, ack_seq);
  2841. tp->snd_una = ack;
  2842. flag |= FLAG_WIN_UPDATE;
  2843. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2844. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2845. } else {
  2846. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2847. flag |= FLAG_DATA;
  2848. else
  2849. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2850. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2851. if (TCP_SKB_CB(skb)->sacked)
  2852. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2853. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2854. flag |= FLAG_ECE;
  2855. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2856. }
  2857. /* We passed data and got it acked, remove any soft error
  2858. * log. Something worked...
  2859. */
  2860. sk->sk_err_soft = 0;
  2861. icsk->icsk_probes_out = 0;
  2862. tp->rcv_tstamp = tcp_time_stamp;
  2863. prior_packets = tp->packets_out;
  2864. if (!prior_packets)
  2865. goto no_queue;
  2866. /* See if we can take anything off of the retransmit queue. */
  2867. flag |= tcp_clean_rtx_queue(sk, prior_fackets);
  2868. if (tp->frto_counter)
  2869. frto_cwnd = tcp_process_frto(sk, flag);
  2870. /* Guarantee sacktag reordering detection against wrap-arounds */
  2871. if (before(tp->frto_highmark, tp->snd_una))
  2872. tp->frto_highmark = 0;
  2873. if (tcp_ack_is_dubious(sk, flag)) {
  2874. /* Advance CWND, if state allows this. */
  2875. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2876. tcp_may_raise_cwnd(sk, flag))
  2877. tcp_cong_avoid(sk, ack, prior_in_flight);
  2878. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  2879. flag);
  2880. } else {
  2881. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2882. tcp_cong_avoid(sk, ack, prior_in_flight);
  2883. }
  2884. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  2885. dst_confirm(sk->sk_dst_cache);
  2886. return 1;
  2887. no_queue:
  2888. /* If this ack opens up a zero window, clear backoff. It was
  2889. * being used to time the probes, and is probably far higher than
  2890. * it needs to be for normal retransmission.
  2891. */
  2892. if (tcp_send_head(sk))
  2893. tcp_ack_probe(sk);
  2894. return 1;
  2895. old_ack:
  2896. if (TCP_SKB_CB(skb)->sacked) {
  2897. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2898. if (icsk->icsk_ca_state == TCP_CA_Open)
  2899. tcp_try_keep_open(sk);
  2900. }
  2901. uninteresting_ack:
  2902. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2903. return 0;
  2904. }
  2905. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2906. * But, this can also be called on packets in the established flow when
  2907. * the fast version below fails.
  2908. */
  2909. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  2910. int estab)
  2911. {
  2912. unsigned char *ptr;
  2913. struct tcphdr *th = tcp_hdr(skb);
  2914. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2915. ptr = (unsigned char *)(th + 1);
  2916. opt_rx->saw_tstamp = 0;
  2917. while (length > 0) {
  2918. int opcode = *ptr++;
  2919. int opsize;
  2920. switch (opcode) {
  2921. case TCPOPT_EOL:
  2922. return;
  2923. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2924. length--;
  2925. continue;
  2926. default:
  2927. opsize = *ptr++;
  2928. if (opsize < 2) /* "silly options" */
  2929. return;
  2930. if (opsize > length)
  2931. return; /* don't parse partial options */
  2932. switch (opcode) {
  2933. case TCPOPT_MSS:
  2934. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2935. u16 in_mss = get_unaligned_be16(ptr);
  2936. if (in_mss) {
  2937. if (opt_rx->user_mss &&
  2938. opt_rx->user_mss < in_mss)
  2939. in_mss = opt_rx->user_mss;
  2940. opt_rx->mss_clamp = in_mss;
  2941. }
  2942. }
  2943. break;
  2944. case TCPOPT_WINDOW:
  2945. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2946. !estab && sysctl_tcp_window_scaling) {
  2947. __u8 snd_wscale = *(__u8 *)ptr;
  2948. opt_rx->wscale_ok = 1;
  2949. if (snd_wscale > 14) {
  2950. if (net_ratelimit())
  2951. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2952. "scaling value %d >14 received.\n",
  2953. snd_wscale);
  2954. snd_wscale = 14;
  2955. }
  2956. opt_rx->snd_wscale = snd_wscale;
  2957. }
  2958. break;
  2959. case TCPOPT_TIMESTAMP:
  2960. if ((opsize == TCPOLEN_TIMESTAMP) &&
  2961. ((estab && opt_rx->tstamp_ok) ||
  2962. (!estab && sysctl_tcp_timestamps))) {
  2963. opt_rx->saw_tstamp = 1;
  2964. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  2965. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  2966. }
  2967. break;
  2968. case TCPOPT_SACK_PERM:
  2969. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  2970. !estab && sysctl_tcp_sack) {
  2971. opt_rx->sack_ok = 1;
  2972. tcp_sack_reset(opt_rx);
  2973. }
  2974. break;
  2975. case TCPOPT_SACK:
  2976. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2977. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2978. opt_rx->sack_ok) {
  2979. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2980. }
  2981. break;
  2982. #ifdef CONFIG_TCP_MD5SIG
  2983. case TCPOPT_MD5SIG:
  2984. /*
  2985. * The MD5 Hash has already been
  2986. * checked (see tcp_v{4,6}_do_rcv()).
  2987. */
  2988. break;
  2989. #endif
  2990. }
  2991. ptr += opsize-2;
  2992. length -= opsize;
  2993. }
  2994. }
  2995. }
  2996. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  2997. {
  2998. __be32 *ptr = (__be32 *)(th + 1);
  2999. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3000. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3001. tp->rx_opt.saw_tstamp = 1;
  3002. ++ptr;
  3003. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3004. ++ptr;
  3005. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3006. return 1;
  3007. }
  3008. return 0;
  3009. }
  3010. /* Fast parse options. This hopes to only see timestamps.
  3011. * If it is wrong it falls back on tcp_parse_options().
  3012. */
  3013. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3014. struct tcp_sock *tp)
  3015. {
  3016. if (th->doff == sizeof(struct tcphdr) >> 2) {
  3017. tp->rx_opt.saw_tstamp = 0;
  3018. return 0;
  3019. } else if (tp->rx_opt.tstamp_ok &&
  3020. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  3021. if (tcp_parse_aligned_timestamp(tp, th))
  3022. return 1;
  3023. }
  3024. tcp_parse_options(skb, &tp->rx_opt, 1);
  3025. return 1;
  3026. }
  3027. #ifdef CONFIG_TCP_MD5SIG
  3028. /*
  3029. * Parse MD5 Signature option
  3030. */
  3031. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3032. {
  3033. int length = (th->doff << 2) - sizeof (*th);
  3034. u8 *ptr = (u8*)(th + 1);
  3035. /* If the TCP option is too short, we can short cut */
  3036. if (length < TCPOLEN_MD5SIG)
  3037. return NULL;
  3038. while (length > 0) {
  3039. int opcode = *ptr++;
  3040. int opsize;
  3041. switch(opcode) {
  3042. case TCPOPT_EOL:
  3043. return NULL;
  3044. case TCPOPT_NOP:
  3045. length--;
  3046. continue;
  3047. default:
  3048. opsize = *ptr++;
  3049. if (opsize < 2 || opsize > length)
  3050. return NULL;
  3051. if (opcode == TCPOPT_MD5SIG)
  3052. return ptr;
  3053. }
  3054. ptr += opsize - 2;
  3055. length -= opsize;
  3056. }
  3057. return NULL;
  3058. }
  3059. #endif
  3060. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3061. {
  3062. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3063. tp->rx_opt.ts_recent_stamp = get_seconds();
  3064. }
  3065. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3066. {
  3067. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3068. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3069. * extra check below makes sure this can only happen
  3070. * for pure ACK frames. -DaveM
  3071. *
  3072. * Not only, also it occurs for expired timestamps.
  3073. */
  3074. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  3075. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  3076. tcp_store_ts_recent(tp);
  3077. }
  3078. }
  3079. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3080. *
  3081. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3082. * it can pass through stack. So, the following predicate verifies that
  3083. * this segment is not used for anything but congestion avoidance or
  3084. * fast retransmit. Moreover, we even are able to eliminate most of such
  3085. * second order effects, if we apply some small "replay" window (~RTO)
  3086. * to timestamp space.
  3087. *
  3088. * All these measures still do not guarantee that we reject wrapped ACKs
  3089. * on networks with high bandwidth, when sequence space is recycled fastly,
  3090. * but it guarantees that such events will be very rare and do not affect
  3091. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3092. * buggy extension.
  3093. *
  3094. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3095. * states that events when retransmit arrives after original data are rare.
  3096. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3097. * the biggest problem on large power networks even with minor reordering.
  3098. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3099. * up to bandwidth of 18Gigabit/sec. 8) ]
  3100. */
  3101. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3102. {
  3103. struct tcp_sock *tp = tcp_sk(sk);
  3104. struct tcphdr *th = tcp_hdr(skb);
  3105. u32 seq = TCP_SKB_CB(skb)->seq;
  3106. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3107. return (/* 1. Pure ACK with correct sequence number. */
  3108. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3109. /* 2. ... and duplicate ACK. */
  3110. ack == tp->snd_una &&
  3111. /* 3. ... and does not update window. */
  3112. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3113. /* 4. ... and sits in replay window. */
  3114. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3115. }
  3116. static inline int tcp_paws_discard(const struct sock *sk,
  3117. const struct sk_buff *skb)
  3118. {
  3119. const struct tcp_sock *tp = tcp_sk(sk);
  3120. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  3121. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  3122. !tcp_disordered_ack(sk, skb));
  3123. }
  3124. /* Check segment sequence number for validity.
  3125. *
  3126. * Segment controls are considered valid, if the segment
  3127. * fits to the window after truncation to the window. Acceptability
  3128. * of data (and SYN, FIN, of course) is checked separately.
  3129. * See tcp_data_queue(), for example.
  3130. *
  3131. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3132. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3133. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3134. * (borrowed from freebsd)
  3135. */
  3136. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3137. {
  3138. return !before(end_seq, tp->rcv_wup) &&
  3139. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3140. }
  3141. /* When we get a reset we do this. */
  3142. static void tcp_reset(struct sock *sk)
  3143. {
  3144. /* We want the right error as BSD sees it (and indeed as we do). */
  3145. switch (sk->sk_state) {
  3146. case TCP_SYN_SENT:
  3147. sk->sk_err = ECONNREFUSED;
  3148. break;
  3149. case TCP_CLOSE_WAIT:
  3150. sk->sk_err = EPIPE;
  3151. break;
  3152. case TCP_CLOSE:
  3153. return;
  3154. default:
  3155. sk->sk_err = ECONNRESET;
  3156. }
  3157. if (!sock_flag(sk, SOCK_DEAD))
  3158. sk->sk_error_report(sk);
  3159. tcp_done(sk);
  3160. }
  3161. /*
  3162. * Process the FIN bit. This now behaves as it is supposed to work
  3163. * and the FIN takes effect when it is validly part of sequence
  3164. * space. Not before when we get holes.
  3165. *
  3166. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3167. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3168. * TIME-WAIT)
  3169. *
  3170. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3171. * close and we go into CLOSING (and later onto TIME-WAIT)
  3172. *
  3173. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3174. */
  3175. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3176. {
  3177. struct tcp_sock *tp = tcp_sk(sk);
  3178. inet_csk_schedule_ack(sk);
  3179. sk->sk_shutdown |= RCV_SHUTDOWN;
  3180. sock_set_flag(sk, SOCK_DONE);
  3181. switch (sk->sk_state) {
  3182. case TCP_SYN_RECV:
  3183. case TCP_ESTABLISHED:
  3184. /* Move to CLOSE_WAIT */
  3185. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3186. inet_csk(sk)->icsk_ack.pingpong = 1;
  3187. break;
  3188. case TCP_CLOSE_WAIT:
  3189. case TCP_CLOSING:
  3190. /* Received a retransmission of the FIN, do
  3191. * nothing.
  3192. */
  3193. break;
  3194. case TCP_LAST_ACK:
  3195. /* RFC793: Remain in the LAST-ACK state. */
  3196. break;
  3197. case TCP_FIN_WAIT1:
  3198. /* This case occurs when a simultaneous close
  3199. * happens, we must ack the received FIN and
  3200. * enter the CLOSING state.
  3201. */
  3202. tcp_send_ack(sk);
  3203. tcp_set_state(sk, TCP_CLOSING);
  3204. break;
  3205. case TCP_FIN_WAIT2:
  3206. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3207. tcp_send_ack(sk);
  3208. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3209. break;
  3210. default:
  3211. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3212. * cases we should never reach this piece of code.
  3213. */
  3214. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3215. __func__, sk->sk_state);
  3216. break;
  3217. }
  3218. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3219. * Probably, we should reset in this case. For now drop them.
  3220. */
  3221. __skb_queue_purge(&tp->out_of_order_queue);
  3222. if (tcp_is_sack(tp))
  3223. tcp_sack_reset(&tp->rx_opt);
  3224. sk_mem_reclaim(sk);
  3225. if (!sock_flag(sk, SOCK_DEAD)) {
  3226. sk->sk_state_change(sk);
  3227. /* Do not send POLL_HUP for half duplex close. */
  3228. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3229. sk->sk_state == TCP_CLOSE)
  3230. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3231. else
  3232. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3233. }
  3234. }
  3235. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3236. u32 end_seq)
  3237. {
  3238. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3239. if (before(seq, sp->start_seq))
  3240. sp->start_seq = seq;
  3241. if (after(end_seq, sp->end_seq))
  3242. sp->end_seq = end_seq;
  3243. return 1;
  3244. }
  3245. return 0;
  3246. }
  3247. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3248. {
  3249. struct tcp_sock *tp = tcp_sk(sk);
  3250. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3251. int mib_idx;
  3252. if (before(seq, tp->rcv_nxt))
  3253. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3254. else
  3255. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3256. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3257. tp->rx_opt.dsack = 1;
  3258. tp->duplicate_sack[0].start_seq = seq;
  3259. tp->duplicate_sack[0].end_seq = end_seq;
  3260. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
  3261. }
  3262. }
  3263. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3264. {
  3265. struct tcp_sock *tp = tcp_sk(sk);
  3266. if (!tp->rx_opt.dsack)
  3267. tcp_dsack_set(sk, seq, end_seq);
  3268. else
  3269. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3270. }
  3271. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3272. {
  3273. struct tcp_sock *tp = tcp_sk(sk);
  3274. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3275. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3276. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3277. tcp_enter_quickack_mode(sk);
  3278. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3279. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3280. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3281. end_seq = tp->rcv_nxt;
  3282. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3283. }
  3284. }
  3285. tcp_send_ack(sk);
  3286. }
  3287. /* These routines update the SACK block as out-of-order packets arrive or
  3288. * in-order packets close up the sequence space.
  3289. */
  3290. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3291. {
  3292. int this_sack;
  3293. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3294. struct tcp_sack_block *swalk = sp + 1;
  3295. /* See if the recent change to the first SACK eats into
  3296. * or hits the sequence space of other SACK blocks, if so coalesce.
  3297. */
  3298. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3299. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3300. int i;
  3301. /* Zap SWALK, by moving every further SACK up by one slot.
  3302. * Decrease num_sacks.
  3303. */
  3304. tp->rx_opt.num_sacks--;
  3305. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3306. tp->rx_opt.dsack;
  3307. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3308. sp[i] = sp[i + 1];
  3309. continue;
  3310. }
  3311. this_sack++, swalk++;
  3312. }
  3313. }
  3314. static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
  3315. struct tcp_sack_block *sack2)
  3316. {
  3317. __u32 tmp;
  3318. tmp = sack1->start_seq;
  3319. sack1->start_seq = sack2->start_seq;
  3320. sack2->start_seq = tmp;
  3321. tmp = sack1->end_seq;
  3322. sack1->end_seq = sack2->end_seq;
  3323. sack2->end_seq = tmp;
  3324. }
  3325. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3326. {
  3327. struct tcp_sock *tp = tcp_sk(sk);
  3328. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3329. int cur_sacks = tp->rx_opt.num_sacks;
  3330. int this_sack;
  3331. if (!cur_sacks)
  3332. goto new_sack;
  3333. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3334. if (tcp_sack_extend(sp, seq, end_seq)) {
  3335. /* Rotate this_sack to the first one. */
  3336. for (; this_sack > 0; this_sack--, sp--)
  3337. tcp_sack_swap(sp, sp - 1);
  3338. if (cur_sacks > 1)
  3339. tcp_sack_maybe_coalesce(tp);
  3340. return;
  3341. }
  3342. }
  3343. /* Could not find an adjacent existing SACK, build a new one,
  3344. * put it at the front, and shift everyone else down. We
  3345. * always know there is at least one SACK present already here.
  3346. *
  3347. * If the sack array is full, forget about the last one.
  3348. */
  3349. if (this_sack >= TCP_NUM_SACKS) {
  3350. this_sack--;
  3351. tp->rx_opt.num_sacks--;
  3352. sp--;
  3353. }
  3354. for (; this_sack > 0; this_sack--, sp--)
  3355. *sp = *(sp - 1);
  3356. new_sack:
  3357. /* Build the new head SACK, and we're done. */
  3358. sp->start_seq = seq;
  3359. sp->end_seq = end_seq;
  3360. tp->rx_opt.num_sacks++;
  3361. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  3362. }
  3363. /* RCV.NXT advances, some SACKs should be eaten. */
  3364. static void tcp_sack_remove(struct tcp_sock *tp)
  3365. {
  3366. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3367. int num_sacks = tp->rx_opt.num_sacks;
  3368. int this_sack;
  3369. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3370. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3371. tp->rx_opt.num_sacks = 0;
  3372. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3373. return;
  3374. }
  3375. for (this_sack = 0; this_sack < num_sacks;) {
  3376. /* Check if the start of the sack is covered by RCV.NXT. */
  3377. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3378. int i;
  3379. /* RCV.NXT must cover all the block! */
  3380. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3381. /* Zap this SACK, by moving forward any other SACKS. */
  3382. for (i=this_sack+1; i < num_sacks; i++)
  3383. tp->selective_acks[i-1] = tp->selective_acks[i];
  3384. num_sacks--;
  3385. continue;
  3386. }
  3387. this_sack++;
  3388. sp++;
  3389. }
  3390. if (num_sacks != tp->rx_opt.num_sacks) {
  3391. tp->rx_opt.num_sacks = num_sacks;
  3392. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3393. tp->rx_opt.dsack;
  3394. }
  3395. }
  3396. /* This one checks to see if we can put data from the
  3397. * out_of_order queue into the receive_queue.
  3398. */
  3399. static void tcp_ofo_queue(struct sock *sk)
  3400. {
  3401. struct tcp_sock *tp = tcp_sk(sk);
  3402. __u32 dsack_high = tp->rcv_nxt;
  3403. struct sk_buff *skb;
  3404. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3405. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3406. break;
  3407. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3408. __u32 dsack = dsack_high;
  3409. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3410. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3411. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3412. }
  3413. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3414. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3415. __skb_unlink(skb, &tp->out_of_order_queue);
  3416. __kfree_skb(skb);
  3417. continue;
  3418. }
  3419. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3420. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3421. TCP_SKB_CB(skb)->end_seq);
  3422. __skb_unlink(skb, &tp->out_of_order_queue);
  3423. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3424. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3425. if (tcp_hdr(skb)->fin)
  3426. tcp_fin(skb, sk, tcp_hdr(skb));
  3427. }
  3428. }
  3429. static int tcp_prune_ofo_queue(struct sock *sk);
  3430. static int tcp_prune_queue(struct sock *sk);
  3431. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3432. {
  3433. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3434. !sk_rmem_schedule(sk, size)) {
  3435. if (tcp_prune_queue(sk) < 0)
  3436. return -1;
  3437. if (!sk_rmem_schedule(sk, size)) {
  3438. if (!tcp_prune_ofo_queue(sk))
  3439. return -1;
  3440. if (!sk_rmem_schedule(sk, size))
  3441. return -1;
  3442. }
  3443. }
  3444. return 0;
  3445. }
  3446. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3447. {
  3448. struct tcphdr *th = tcp_hdr(skb);
  3449. struct tcp_sock *tp = tcp_sk(sk);
  3450. int eaten = -1;
  3451. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3452. goto drop;
  3453. __skb_pull(skb, th->doff * 4);
  3454. TCP_ECN_accept_cwr(tp, skb);
  3455. if (tp->rx_opt.dsack) {
  3456. tp->rx_opt.dsack = 0;
  3457. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
  3458. }
  3459. /* Queue data for delivery to the user.
  3460. * Packets in sequence go to the receive queue.
  3461. * Out of sequence packets to the out_of_order_queue.
  3462. */
  3463. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3464. if (tcp_receive_window(tp) == 0)
  3465. goto out_of_window;
  3466. /* Ok. In sequence. In window. */
  3467. if (tp->ucopy.task == current &&
  3468. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3469. sock_owned_by_user(sk) && !tp->urg_data) {
  3470. int chunk = min_t(unsigned int, skb->len,
  3471. tp->ucopy.len);
  3472. __set_current_state(TASK_RUNNING);
  3473. local_bh_enable();
  3474. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3475. tp->ucopy.len -= chunk;
  3476. tp->copied_seq += chunk;
  3477. eaten = (chunk == skb->len && !th->fin);
  3478. tcp_rcv_space_adjust(sk);
  3479. }
  3480. local_bh_disable();
  3481. }
  3482. if (eaten <= 0) {
  3483. queue_and_out:
  3484. if (eaten < 0 &&
  3485. tcp_try_rmem_schedule(sk, skb->truesize))
  3486. goto drop;
  3487. skb_set_owner_r(skb, sk);
  3488. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3489. }
  3490. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3491. if (skb->len)
  3492. tcp_event_data_recv(sk, skb);
  3493. if (th->fin)
  3494. tcp_fin(skb, sk, th);
  3495. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3496. tcp_ofo_queue(sk);
  3497. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3498. * gap in queue is filled.
  3499. */
  3500. if (skb_queue_empty(&tp->out_of_order_queue))
  3501. inet_csk(sk)->icsk_ack.pingpong = 0;
  3502. }
  3503. if (tp->rx_opt.num_sacks)
  3504. tcp_sack_remove(tp);
  3505. tcp_fast_path_check(sk);
  3506. if (eaten > 0)
  3507. __kfree_skb(skb);
  3508. else if (!sock_flag(sk, SOCK_DEAD))
  3509. sk->sk_data_ready(sk, 0);
  3510. return;
  3511. }
  3512. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3513. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3514. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3515. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3516. out_of_window:
  3517. tcp_enter_quickack_mode(sk);
  3518. inet_csk_schedule_ack(sk);
  3519. drop:
  3520. __kfree_skb(skb);
  3521. return;
  3522. }
  3523. /* Out of window. F.e. zero window probe. */
  3524. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3525. goto out_of_window;
  3526. tcp_enter_quickack_mode(sk);
  3527. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3528. /* Partial packet, seq < rcv_next < end_seq */
  3529. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3530. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3531. TCP_SKB_CB(skb)->end_seq);
  3532. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3533. /* If window is closed, drop tail of packet. But after
  3534. * remembering D-SACK for its head made in previous line.
  3535. */
  3536. if (!tcp_receive_window(tp))
  3537. goto out_of_window;
  3538. goto queue_and_out;
  3539. }
  3540. TCP_ECN_check_ce(tp, skb);
  3541. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3542. goto drop;
  3543. /* Disable header prediction. */
  3544. tp->pred_flags = 0;
  3545. inet_csk_schedule_ack(sk);
  3546. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3547. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3548. skb_set_owner_r(skb, sk);
  3549. if (!skb_peek(&tp->out_of_order_queue)) {
  3550. /* Initial out of order segment, build 1 SACK. */
  3551. if (tcp_is_sack(tp)) {
  3552. tp->rx_opt.num_sacks = 1;
  3553. tp->rx_opt.dsack = 0;
  3554. tp->rx_opt.eff_sacks = 1;
  3555. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3556. tp->selective_acks[0].end_seq =
  3557. TCP_SKB_CB(skb)->end_seq;
  3558. }
  3559. __skb_queue_head(&tp->out_of_order_queue, skb);
  3560. } else {
  3561. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3562. u32 seq = TCP_SKB_CB(skb)->seq;
  3563. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3564. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3565. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3566. if (!tp->rx_opt.num_sacks ||
  3567. tp->selective_acks[0].end_seq != seq)
  3568. goto add_sack;
  3569. /* Common case: data arrive in order after hole. */
  3570. tp->selective_acks[0].end_seq = end_seq;
  3571. return;
  3572. }
  3573. /* Find place to insert this segment. */
  3574. do {
  3575. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3576. break;
  3577. } while ((skb1 = skb1->prev) !=
  3578. (struct sk_buff *)&tp->out_of_order_queue);
  3579. /* Do skb overlap to previous one? */
  3580. if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
  3581. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3582. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3583. /* All the bits are present. Drop. */
  3584. __kfree_skb(skb);
  3585. tcp_dsack_set(sk, seq, end_seq);
  3586. goto add_sack;
  3587. }
  3588. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3589. /* Partial overlap. */
  3590. tcp_dsack_set(sk, seq,
  3591. TCP_SKB_CB(skb1)->end_seq);
  3592. } else {
  3593. skb1 = skb1->prev;
  3594. }
  3595. }
  3596. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3597. /* And clean segments covered by new one as whole. */
  3598. while ((skb1 = skb->next) !=
  3599. (struct sk_buff *)&tp->out_of_order_queue &&
  3600. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3601. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3602. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3603. end_seq);
  3604. break;
  3605. }
  3606. __skb_unlink(skb1, &tp->out_of_order_queue);
  3607. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3608. TCP_SKB_CB(skb1)->end_seq);
  3609. __kfree_skb(skb1);
  3610. }
  3611. add_sack:
  3612. if (tcp_is_sack(tp))
  3613. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3614. }
  3615. }
  3616. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3617. struct sk_buff_head *list)
  3618. {
  3619. struct sk_buff *next = skb->next;
  3620. __skb_unlink(skb, list);
  3621. __kfree_skb(skb);
  3622. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3623. return next;
  3624. }
  3625. /* Collapse contiguous sequence of skbs head..tail with
  3626. * sequence numbers start..end.
  3627. * Segments with FIN/SYN are not collapsed (only because this
  3628. * simplifies code)
  3629. */
  3630. static void
  3631. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3632. struct sk_buff *head, struct sk_buff *tail,
  3633. u32 start, u32 end)
  3634. {
  3635. struct sk_buff *skb;
  3636. /* First, check that queue is collapsible and find
  3637. * the point where collapsing can be useful. */
  3638. for (skb = head; skb != tail;) {
  3639. /* No new bits? It is possible on ofo queue. */
  3640. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3641. skb = tcp_collapse_one(sk, skb, list);
  3642. continue;
  3643. }
  3644. /* The first skb to collapse is:
  3645. * - not SYN/FIN and
  3646. * - bloated or contains data before "start" or
  3647. * overlaps to the next one.
  3648. */
  3649. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3650. (tcp_win_from_space(skb->truesize) > skb->len ||
  3651. before(TCP_SKB_CB(skb)->seq, start) ||
  3652. (skb->next != tail &&
  3653. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3654. break;
  3655. /* Decided to skip this, advance start seq. */
  3656. start = TCP_SKB_CB(skb)->end_seq;
  3657. skb = skb->next;
  3658. }
  3659. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3660. return;
  3661. while (before(start, end)) {
  3662. struct sk_buff *nskb;
  3663. unsigned int header = skb_headroom(skb);
  3664. int copy = SKB_MAX_ORDER(header, 0);
  3665. /* Too big header? This can happen with IPv6. */
  3666. if (copy < 0)
  3667. return;
  3668. if (end - start < copy)
  3669. copy = end - start;
  3670. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3671. if (!nskb)
  3672. return;
  3673. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3674. skb_set_network_header(nskb, (skb_network_header(skb) -
  3675. skb->head));
  3676. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3677. skb->head));
  3678. skb_reserve(nskb, header);
  3679. memcpy(nskb->head, skb->head, header);
  3680. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3681. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3682. __skb_insert(nskb, skb->prev, skb, list);
  3683. skb_set_owner_r(nskb, sk);
  3684. /* Copy data, releasing collapsed skbs. */
  3685. while (copy > 0) {
  3686. int offset = start - TCP_SKB_CB(skb)->seq;
  3687. int size = TCP_SKB_CB(skb)->end_seq - start;
  3688. BUG_ON(offset < 0);
  3689. if (size > 0) {
  3690. size = min(copy, size);
  3691. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3692. BUG();
  3693. TCP_SKB_CB(nskb)->end_seq += size;
  3694. copy -= size;
  3695. start += size;
  3696. }
  3697. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3698. skb = tcp_collapse_one(sk, skb, list);
  3699. if (skb == tail ||
  3700. tcp_hdr(skb)->syn ||
  3701. tcp_hdr(skb)->fin)
  3702. return;
  3703. }
  3704. }
  3705. }
  3706. }
  3707. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3708. * and tcp_collapse() them until all the queue is collapsed.
  3709. */
  3710. static void tcp_collapse_ofo_queue(struct sock *sk)
  3711. {
  3712. struct tcp_sock *tp = tcp_sk(sk);
  3713. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3714. struct sk_buff *head;
  3715. u32 start, end;
  3716. if (skb == NULL)
  3717. return;
  3718. start = TCP_SKB_CB(skb)->seq;
  3719. end = TCP_SKB_CB(skb)->end_seq;
  3720. head = skb;
  3721. for (;;) {
  3722. skb = skb->next;
  3723. /* Segment is terminated when we see gap or when
  3724. * we are at the end of all the queue. */
  3725. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3726. after(TCP_SKB_CB(skb)->seq, end) ||
  3727. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3728. tcp_collapse(sk, &tp->out_of_order_queue,
  3729. head, skb, start, end);
  3730. head = skb;
  3731. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3732. break;
  3733. /* Start new segment */
  3734. start = TCP_SKB_CB(skb)->seq;
  3735. end = TCP_SKB_CB(skb)->end_seq;
  3736. } else {
  3737. if (before(TCP_SKB_CB(skb)->seq, start))
  3738. start = TCP_SKB_CB(skb)->seq;
  3739. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3740. end = TCP_SKB_CB(skb)->end_seq;
  3741. }
  3742. }
  3743. }
  3744. /*
  3745. * Purge the out-of-order queue.
  3746. * Return true if queue was pruned.
  3747. */
  3748. static int tcp_prune_ofo_queue(struct sock *sk)
  3749. {
  3750. struct tcp_sock *tp = tcp_sk(sk);
  3751. int res = 0;
  3752. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3753. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3754. __skb_queue_purge(&tp->out_of_order_queue);
  3755. /* Reset SACK state. A conforming SACK implementation will
  3756. * do the same at a timeout based retransmit. When a connection
  3757. * is in a sad state like this, we care only about integrity
  3758. * of the connection not performance.
  3759. */
  3760. if (tp->rx_opt.sack_ok)
  3761. tcp_sack_reset(&tp->rx_opt);
  3762. sk_mem_reclaim(sk);
  3763. res = 1;
  3764. }
  3765. return res;
  3766. }
  3767. /* Reduce allocated memory if we can, trying to get
  3768. * the socket within its memory limits again.
  3769. *
  3770. * Return less than zero if we should start dropping frames
  3771. * until the socket owning process reads some of the data
  3772. * to stabilize the situation.
  3773. */
  3774. static int tcp_prune_queue(struct sock *sk)
  3775. {
  3776. struct tcp_sock *tp = tcp_sk(sk);
  3777. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3778. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3779. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3780. tcp_clamp_window(sk);
  3781. else if (tcp_memory_pressure)
  3782. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3783. tcp_collapse_ofo_queue(sk);
  3784. tcp_collapse(sk, &sk->sk_receive_queue,
  3785. sk->sk_receive_queue.next,
  3786. (struct sk_buff *)&sk->sk_receive_queue,
  3787. tp->copied_seq, tp->rcv_nxt);
  3788. sk_mem_reclaim(sk);
  3789. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3790. return 0;
  3791. /* Collapsing did not help, destructive actions follow.
  3792. * This must not ever occur. */
  3793. tcp_prune_ofo_queue(sk);
  3794. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3795. return 0;
  3796. /* If we are really being abused, tell the caller to silently
  3797. * drop receive data on the floor. It will get retransmitted
  3798. * and hopefully then we'll have sufficient space.
  3799. */
  3800. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  3801. /* Massive buffer overcommit. */
  3802. tp->pred_flags = 0;
  3803. return -1;
  3804. }
  3805. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3806. * As additional protections, we do not touch cwnd in retransmission phases,
  3807. * and if application hit its sndbuf limit recently.
  3808. */
  3809. void tcp_cwnd_application_limited(struct sock *sk)
  3810. {
  3811. struct tcp_sock *tp = tcp_sk(sk);
  3812. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3813. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3814. /* Limited by application or receiver window. */
  3815. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3816. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3817. if (win_used < tp->snd_cwnd) {
  3818. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3819. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3820. }
  3821. tp->snd_cwnd_used = 0;
  3822. }
  3823. tp->snd_cwnd_stamp = tcp_time_stamp;
  3824. }
  3825. static int tcp_should_expand_sndbuf(struct sock *sk)
  3826. {
  3827. struct tcp_sock *tp = tcp_sk(sk);
  3828. /* If the user specified a specific send buffer setting, do
  3829. * not modify it.
  3830. */
  3831. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3832. return 0;
  3833. /* If we are under global TCP memory pressure, do not expand. */
  3834. if (tcp_memory_pressure)
  3835. return 0;
  3836. /* If we are under soft global TCP memory pressure, do not expand. */
  3837. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3838. return 0;
  3839. /* If we filled the congestion window, do not expand. */
  3840. if (tp->packets_out >= tp->snd_cwnd)
  3841. return 0;
  3842. return 1;
  3843. }
  3844. /* When incoming ACK allowed to free some skb from write_queue,
  3845. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3846. * on the exit from tcp input handler.
  3847. *
  3848. * PROBLEM: sndbuf expansion does not work well with largesend.
  3849. */
  3850. static void tcp_new_space(struct sock *sk)
  3851. {
  3852. struct tcp_sock *tp = tcp_sk(sk);
  3853. if (tcp_should_expand_sndbuf(sk)) {
  3854. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3855. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3856. demanded = max_t(unsigned int, tp->snd_cwnd,
  3857. tp->reordering + 1);
  3858. sndmem *= 2 * demanded;
  3859. if (sndmem > sk->sk_sndbuf)
  3860. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3861. tp->snd_cwnd_stamp = tcp_time_stamp;
  3862. }
  3863. sk->sk_write_space(sk);
  3864. }
  3865. static void tcp_check_space(struct sock *sk)
  3866. {
  3867. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3868. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3869. if (sk->sk_socket &&
  3870. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3871. tcp_new_space(sk);
  3872. }
  3873. }
  3874. static inline void tcp_data_snd_check(struct sock *sk)
  3875. {
  3876. tcp_push_pending_frames(sk);
  3877. tcp_check_space(sk);
  3878. }
  3879. /*
  3880. * Check if sending an ack is needed.
  3881. */
  3882. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3883. {
  3884. struct tcp_sock *tp = tcp_sk(sk);
  3885. /* More than one full frame received... */
  3886. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3887. /* ... and right edge of window advances far enough.
  3888. * (tcp_recvmsg() will send ACK otherwise). Or...
  3889. */
  3890. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3891. /* We ACK each frame or... */
  3892. tcp_in_quickack_mode(sk) ||
  3893. /* We have out of order data. */
  3894. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  3895. /* Then ack it now */
  3896. tcp_send_ack(sk);
  3897. } else {
  3898. /* Else, send delayed ack. */
  3899. tcp_send_delayed_ack(sk);
  3900. }
  3901. }
  3902. static inline void tcp_ack_snd_check(struct sock *sk)
  3903. {
  3904. if (!inet_csk_ack_scheduled(sk)) {
  3905. /* We sent a data segment already. */
  3906. return;
  3907. }
  3908. __tcp_ack_snd_check(sk, 1);
  3909. }
  3910. /*
  3911. * This routine is only called when we have urgent data
  3912. * signaled. Its the 'slow' part of tcp_urg. It could be
  3913. * moved inline now as tcp_urg is only called from one
  3914. * place. We handle URGent data wrong. We have to - as
  3915. * BSD still doesn't use the correction from RFC961.
  3916. * For 1003.1g we should support a new option TCP_STDURG to permit
  3917. * either form (or just set the sysctl tcp_stdurg).
  3918. */
  3919. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  3920. {
  3921. struct tcp_sock *tp = tcp_sk(sk);
  3922. u32 ptr = ntohs(th->urg_ptr);
  3923. if (ptr && !sysctl_tcp_stdurg)
  3924. ptr--;
  3925. ptr += ntohl(th->seq);
  3926. /* Ignore urgent data that we've already seen and read. */
  3927. if (after(tp->copied_seq, ptr))
  3928. return;
  3929. /* Do not replay urg ptr.
  3930. *
  3931. * NOTE: interesting situation not covered by specs.
  3932. * Misbehaving sender may send urg ptr, pointing to segment,
  3933. * which we already have in ofo queue. We are not able to fetch
  3934. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3935. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3936. * situations. But it is worth to think about possibility of some
  3937. * DoSes using some hypothetical application level deadlock.
  3938. */
  3939. if (before(ptr, tp->rcv_nxt))
  3940. return;
  3941. /* Do we already have a newer (or duplicate) urgent pointer? */
  3942. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3943. return;
  3944. /* Tell the world about our new urgent pointer. */
  3945. sk_send_sigurg(sk);
  3946. /* We may be adding urgent data when the last byte read was
  3947. * urgent. To do this requires some care. We cannot just ignore
  3948. * tp->copied_seq since we would read the last urgent byte again
  3949. * as data, nor can we alter copied_seq until this data arrives
  3950. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3951. *
  3952. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3953. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3954. * and expect that both A and B disappear from stream. This is _wrong_.
  3955. * Though this happens in BSD with high probability, this is occasional.
  3956. * Any application relying on this is buggy. Note also, that fix "works"
  3957. * only in this artificial test. Insert some normal data between A and B and we will
  3958. * decline of BSD again. Verdict: it is better to remove to trap
  3959. * buggy users.
  3960. */
  3961. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3962. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  3963. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3964. tp->copied_seq++;
  3965. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3966. __skb_unlink(skb, &sk->sk_receive_queue);
  3967. __kfree_skb(skb);
  3968. }
  3969. }
  3970. tp->urg_data = TCP_URG_NOTYET;
  3971. tp->urg_seq = ptr;
  3972. /* Disable header prediction. */
  3973. tp->pred_flags = 0;
  3974. }
  3975. /* This is the 'fast' part of urgent handling. */
  3976. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3977. {
  3978. struct tcp_sock *tp = tcp_sk(sk);
  3979. /* Check if we get a new urgent pointer - normally not. */
  3980. if (th->urg)
  3981. tcp_check_urg(sk, th);
  3982. /* Do we wait for any urgent data? - normally not... */
  3983. if (tp->urg_data == TCP_URG_NOTYET) {
  3984. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3985. th->syn;
  3986. /* Is the urgent pointer pointing into this packet? */
  3987. if (ptr < skb->len) {
  3988. u8 tmp;
  3989. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3990. BUG();
  3991. tp->urg_data = TCP_URG_VALID | tmp;
  3992. if (!sock_flag(sk, SOCK_DEAD))
  3993. sk->sk_data_ready(sk, 0);
  3994. }
  3995. }
  3996. }
  3997. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3998. {
  3999. struct tcp_sock *tp = tcp_sk(sk);
  4000. int chunk = skb->len - hlen;
  4001. int err;
  4002. local_bh_enable();
  4003. if (skb_csum_unnecessary(skb))
  4004. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4005. else
  4006. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4007. tp->ucopy.iov);
  4008. if (!err) {
  4009. tp->ucopy.len -= chunk;
  4010. tp->copied_seq += chunk;
  4011. tcp_rcv_space_adjust(sk);
  4012. }
  4013. local_bh_disable();
  4014. return err;
  4015. }
  4016. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4017. struct sk_buff *skb)
  4018. {
  4019. __sum16 result;
  4020. if (sock_owned_by_user(sk)) {
  4021. local_bh_enable();
  4022. result = __tcp_checksum_complete(skb);
  4023. local_bh_disable();
  4024. } else {
  4025. result = __tcp_checksum_complete(skb);
  4026. }
  4027. return result;
  4028. }
  4029. static inline int tcp_checksum_complete_user(struct sock *sk,
  4030. struct sk_buff *skb)
  4031. {
  4032. return !skb_csum_unnecessary(skb) &&
  4033. __tcp_checksum_complete_user(sk, skb);
  4034. }
  4035. #ifdef CONFIG_NET_DMA
  4036. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4037. int hlen)
  4038. {
  4039. struct tcp_sock *tp = tcp_sk(sk);
  4040. int chunk = skb->len - hlen;
  4041. int dma_cookie;
  4042. int copied_early = 0;
  4043. if (tp->ucopy.wakeup)
  4044. return 0;
  4045. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4046. tp->ucopy.dma_chan = get_softnet_dma();
  4047. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4048. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4049. skb, hlen,
  4050. tp->ucopy.iov, chunk,
  4051. tp->ucopy.pinned_list);
  4052. if (dma_cookie < 0)
  4053. goto out;
  4054. tp->ucopy.dma_cookie = dma_cookie;
  4055. copied_early = 1;
  4056. tp->ucopy.len -= chunk;
  4057. tp->copied_seq += chunk;
  4058. tcp_rcv_space_adjust(sk);
  4059. if ((tp->ucopy.len == 0) ||
  4060. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4061. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4062. tp->ucopy.wakeup = 1;
  4063. sk->sk_data_ready(sk, 0);
  4064. }
  4065. } else if (chunk > 0) {
  4066. tp->ucopy.wakeup = 1;
  4067. sk->sk_data_ready(sk, 0);
  4068. }
  4069. out:
  4070. return copied_early;
  4071. }
  4072. #endif /* CONFIG_NET_DMA */
  4073. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4074. * play significant role here.
  4075. */
  4076. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4077. struct tcphdr *th, int syn_inerr)
  4078. {
  4079. struct tcp_sock *tp = tcp_sk(sk);
  4080. /* RFC1323: H1. Apply PAWS check first. */
  4081. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4082. tcp_paws_discard(sk, skb)) {
  4083. if (!th->rst) {
  4084. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4085. tcp_send_dupack(sk, skb);
  4086. goto discard;
  4087. }
  4088. /* Reset is accepted even if it did not pass PAWS. */
  4089. }
  4090. /* Step 1: check sequence number */
  4091. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4092. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4093. * (RST) segments are validated by checking their SEQ-fields."
  4094. * And page 69: "If an incoming segment is not acceptable,
  4095. * an acknowledgment should be sent in reply (unless the RST
  4096. * bit is set, if so drop the segment and return)".
  4097. */
  4098. if (!th->rst)
  4099. tcp_send_dupack(sk, skb);
  4100. goto discard;
  4101. }
  4102. /* Step 2: check RST bit */
  4103. if (th->rst) {
  4104. tcp_reset(sk);
  4105. goto discard;
  4106. }
  4107. /* ts_recent update must be made after we are sure that the packet
  4108. * is in window.
  4109. */
  4110. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4111. /* step 3: check security and precedence [ignored] */
  4112. /* step 4: Check for a SYN in window. */
  4113. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4114. if (syn_inerr)
  4115. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4116. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4117. tcp_reset(sk);
  4118. return -1;
  4119. }
  4120. return 1;
  4121. discard:
  4122. __kfree_skb(skb);
  4123. return 0;
  4124. }
  4125. /*
  4126. * TCP receive function for the ESTABLISHED state.
  4127. *
  4128. * It is split into a fast path and a slow path. The fast path is
  4129. * disabled when:
  4130. * - A zero window was announced from us - zero window probing
  4131. * is only handled properly in the slow path.
  4132. * - Out of order segments arrived.
  4133. * - Urgent data is expected.
  4134. * - There is no buffer space left
  4135. * - Unexpected TCP flags/window values/header lengths are received
  4136. * (detected by checking the TCP header against pred_flags)
  4137. * - Data is sent in both directions. Fast path only supports pure senders
  4138. * or pure receivers (this means either the sequence number or the ack
  4139. * value must stay constant)
  4140. * - Unexpected TCP option.
  4141. *
  4142. * When these conditions are not satisfied it drops into a standard
  4143. * receive procedure patterned after RFC793 to handle all cases.
  4144. * The first three cases are guaranteed by proper pred_flags setting,
  4145. * the rest is checked inline. Fast processing is turned on in
  4146. * tcp_data_queue when everything is OK.
  4147. */
  4148. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4149. struct tcphdr *th, unsigned len)
  4150. {
  4151. struct tcp_sock *tp = tcp_sk(sk);
  4152. int res;
  4153. /*
  4154. * Header prediction.
  4155. * The code loosely follows the one in the famous
  4156. * "30 instruction TCP receive" Van Jacobson mail.
  4157. *
  4158. * Van's trick is to deposit buffers into socket queue
  4159. * on a device interrupt, to call tcp_recv function
  4160. * on the receive process context and checksum and copy
  4161. * the buffer to user space. smart...
  4162. *
  4163. * Our current scheme is not silly either but we take the
  4164. * extra cost of the net_bh soft interrupt processing...
  4165. * We do checksum and copy also but from device to kernel.
  4166. */
  4167. tp->rx_opt.saw_tstamp = 0;
  4168. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4169. * if header_prediction is to be made
  4170. * 'S' will always be tp->tcp_header_len >> 2
  4171. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4172. * turn it off (when there are holes in the receive
  4173. * space for instance)
  4174. * PSH flag is ignored.
  4175. */
  4176. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4177. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4178. int tcp_header_len = tp->tcp_header_len;
  4179. /* Timestamp header prediction: tcp_header_len
  4180. * is automatically equal to th->doff*4 due to pred_flags
  4181. * match.
  4182. */
  4183. /* Check timestamp */
  4184. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4185. /* No? Slow path! */
  4186. if (!tcp_parse_aligned_timestamp(tp, th))
  4187. goto slow_path;
  4188. /* If PAWS failed, check it more carefully in slow path */
  4189. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4190. goto slow_path;
  4191. /* DO NOT update ts_recent here, if checksum fails
  4192. * and timestamp was corrupted part, it will result
  4193. * in a hung connection since we will drop all
  4194. * future packets due to the PAWS test.
  4195. */
  4196. }
  4197. if (len <= tcp_header_len) {
  4198. /* Bulk data transfer: sender */
  4199. if (len == tcp_header_len) {
  4200. /* Predicted packet is in window by definition.
  4201. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4202. * Hence, check seq<=rcv_wup reduces to:
  4203. */
  4204. if (tcp_header_len ==
  4205. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4206. tp->rcv_nxt == tp->rcv_wup)
  4207. tcp_store_ts_recent(tp);
  4208. /* We know that such packets are checksummed
  4209. * on entry.
  4210. */
  4211. tcp_ack(sk, skb, 0);
  4212. __kfree_skb(skb);
  4213. tcp_data_snd_check(sk);
  4214. return 0;
  4215. } else { /* Header too small */
  4216. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4217. goto discard;
  4218. }
  4219. } else {
  4220. int eaten = 0;
  4221. int copied_early = 0;
  4222. if (tp->copied_seq == tp->rcv_nxt &&
  4223. len - tcp_header_len <= tp->ucopy.len) {
  4224. #ifdef CONFIG_NET_DMA
  4225. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4226. copied_early = 1;
  4227. eaten = 1;
  4228. }
  4229. #endif
  4230. if (tp->ucopy.task == current &&
  4231. sock_owned_by_user(sk) && !copied_early) {
  4232. __set_current_state(TASK_RUNNING);
  4233. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4234. eaten = 1;
  4235. }
  4236. if (eaten) {
  4237. /* Predicted packet is in window by definition.
  4238. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4239. * Hence, check seq<=rcv_wup reduces to:
  4240. */
  4241. if (tcp_header_len ==
  4242. (sizeof(struct tcphdr) +
  4243. TCPOLEN_TSTAMP_ALIGNED) &&
  4244. tp->rcv_nxt == tp->rcv_wup)
  4245. tcp_store_ts_recent(tp);
  4246. tcp_rcv_rtt_measure_ts(sk, skb);
  4247. __skb_pull(skb, tcp_header_len);
  4248. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4249. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4250. }
  4251. if (copied_early)
  4252. tcp_cleanup_rbuf(sk, skb->len);
  4253. }
  4254. if (!eaten) {
  4255. if (tcp_checksum_complete_user(sk, skb))
  4256. goto csum_error;
  4257. /* Predicted packet is in window by definition.
  4258. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4259. * Hence, check seq<=rcv_wup reduces to:
  4260. */
  4261. if (tcp_header_len ==
  4262. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4263. tp->rcv_nxt == tp->rcv_wup)
  4264. tcp_store_ts_recent(tp);
  4265. tcp_rcv_rtt_measure_ts(sk, skb);
  4266. if ((int)skb->truesize > sk->sk_forward_alloc)
  4267. goto step5;
  4268. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4269. /* Bulk data transfer: receiver */
  4270. __skb_pull(skb, tcp_header_len);
  4271. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4272. skb_set_owner_r(skb, sk);
  4273. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4274. }
  4275. tcp_event_data_recv(sk, skb);
  4276. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4277. /* Well, only one small jumplet in fast path... */
  4278. tcp_ack(sk, skb, FLAG_DATA);
  4279. tcp_data_snd_check(sk);
  4280. if (!inet_csk_ack_scheduled(sk))
  4281. goto no_ack;
  4282. }
  4283. __tcp_ack_snd_check(sk, 0);
  4284. no_ack:
  4285. #ifdef CONFIG_NET_DMA
  4286. if (copied_early)
  4287. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4288. else
  4289. #endif
  4290. if (eaten)
  4291. __kfree_skb(skb);
  4292. else
  4293. sk->sk_data_ready(sk, 0);
  4294. return 0;
  4295. }
  4296. }
  4297. slow_path:
  4298. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4299. goto csum_error;
  4300. /*
  4301. * Standard slow path.
  4302. */
  4303. res = tcp_validate_incoming(sk, skb, th, 1);
  4304. if (res <= 0)
  4305. return -res;
  4306. step5:
  4307. if (th->ack)
  4308. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4309. tcp_rcv_rtt_measure_ts(sk, skb);
  4310. /* Process urgent data. */
  4311. tcp_urg(sk, skb, th);
  4312. /* step 7: process the segment text */
  4313. tcp_data_queue(sk, skb);
  4314. tcp_data_snd_check(sk);
  4315. tcp_ack_snd_check(sk);
  4316. return 0;
  4317. csum_error:
  4318. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4319. discard:
  4320. __kfree_skb(skb);
  4321. return 0;
  4322. }
  4323. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4324. struct tcphdr *th, unsigned len)
  4325. {
  4326. struct tcp_sock *tp = tcp_sk(sk);
  4327. struct inet_connection_sock *icsk = inet_csk(sk);
  4328. int saved_clamp = tp->rx_opt.mss_clamp;
  4329. tcp_parse_options(skb, &tp->rx_opt, 0);
  4330. if (th->ack) {
  4331. /* rfc793:
  4332. * "If the state is SYN-SENT then
  4333. * first check the ACK bit
  4334. * If the ACK bit is set
  4335. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4336. * a reset (unless the RST bit is set, if so drop
  4337. * the segment and return)"
  4338. *
  4339. * We do not send data with SYN, so that RFC-correct
  4340. * test reduces to:
  4341. */
  4342. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4343. goto reset_and_undo;
  4344. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4345. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4346. tcp_time_stamp)) {
  4347. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4348. goto reset_and_undo;
  4349. }
  4350. /* Now ACK is acceptable.
  4351. *
  4352. * "If the RST bit is set
  4353. * If the ACK was acceptable then signal the user "error:
  4354. * connection reset", drop the segment, enter CLOSED state,
  4355. * delete TCB, and return."
  4356. */
  4357. if (th->rst) {
  4358. tcp_reset(sk);
  4359. goto discard;
  4360. }
  4361. /* rfc793:
  4362. * "fifth, if neither of the SYN or RST bits is set then
  4363. * drop the segment and return."
  4364. *
  4365. * See note below!
  4366. * --ANK(990513)
  4367. */
  4368. if (!th->syn)
  4369. goto discard_and_undo;
  4370. /* rfc793:
  4371. * "If the SYN bit is on ...
  4372. * are acceptable then ...
  4373. * (our SYN has been ACKed), change the connection
  4374. * state to ESTABLISHED..."
  4375. */
  4376. TCP_ECN_rcv_synack(tp, th);
  4377. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4378. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4379. /* Ok.. it's good. Set up sequence numbers and
  4380. * move to established.
  4381. */
  4382. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4383. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4384. /* RFC1323: The window in SYN & SYN/ACK segments is
  4385. * never scaled.
  4386. */
  4387. tp->snd_wnd = ntohs(th->window);
  4388. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4389. if (!tp->rx_opt.wscale_ok) {
  4390. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4391. tp->window_clamp = min(tp->window_clamp, 65535U);
  4392. }
  4393. if (tp->rx_opt.saw_tstamp) {
  4394. tp->rx_opt.tstamp_ok = 1;
  4395. tp->tcp_header_len =
  4396. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4397. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4398. tcp_store_ts_recent(tp);
  4399. } else {
  4400. tp->tcp_header_len = sizeof(struct tcphdr);
  4401. }
  4402. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4403. tcp_enable_fack(tp);
  4404. tcp_mtup_init(sk);
  4405. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4406. tcp_initialize_rcv_mss(sk);
  4407. /* Remember, tcp_poll() does not lock socket!
  4408. * Change state from SYN-SENT only after copied_seq
  4409. * is initialized. */
  4410. tp->copied_seq = tp->rcv_nxt;
  4411. smp_mb();
  4412. tcp_set_state(sk, TCP_ESTABLISHED);
  4413. security_inet_conn_established(sk, skb);
  4414. /* Make sure socket is routed, for correct metrics. */
  4415. icsk->icsk_af_ops->rebuild_header(sk);
  4416. tcp_init_metrics(sk);
  4417. tcp_init_congestion_control(sk);
  4418. /* Prevent spurious tcp_cwnd_restart() on first data
  4419. * packet.
  4420. */
  4421. tp->lsndtime = tcp_time_stamp;
  4422. tcp_init_buffer_space(sk);
  4423. if (sock_flag(sk, SOCK_KEEPOPEN))
  4424. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4425. if (!tp->rx_opt.snd_wscale)
  4426. __tcp_fast_path_on(tp, tp->snd_wnd);
  4427. else
  4428. tp->pred_flags = 0;
  4429. if (!sock_flag(sk, SOCK_DEAD)) {
  4430. sk->sk_state_change(sk);
  4431. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4432. }
  4433. if (sk->sk_write_pending ||
  4434. icsk->icsk_accept_queue.rskq_defer_accept ||
  4435. icsk->icsk_ack.pingpong) {
  4436. /* Save one ACK. Data will be ready after
  4437. * several ticks, if write_pending is set.
  4438. *
  4439. * It may be deleted, but with this feature tcpdumps
  4440. * look so _wonderfully_ clever, that I was not able
  4441. * to stand against the temptation 8) --ANK
  4442. */
  4443. inet_csk_schedule_ack(sk);
  4444. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4445. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4446. tcp_incr_quickack(sk);
  4447. tcp_enter_quickack_mode(sk);
  4448. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4449. TCP_DELACK_MAX, TCP_RTO_MAX);
  4450. discard:
  4451. __kfree_skb(skb);
  4452. return 0;
  4453. } else {
  4454. tcp_send_ack(sk);
  4455. }
  4456. return -1;
  4457. }
  4458. /* No ACK in the segment */
  4459. if (th->rst) {
  4460. /* rfc793:
  4461. * "If the RST bit is set
  4462. *
  4463. * Otherwise (no ACK) drop the segment and return."
  4464. */
  4465. goto discard_and_undo;
  4466. }
  4467. /* PAWS check. */
  4468. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4469. tcp_paws_check(&tp->rx_opt, 0))
  4470. goto discard_and_undo;
  4471. if (th->syn) {
  4472. /* We see SYN without ACK. It is attempt of
  4473. * simultaneous connect with crossed SYNs.
  4474. * Particularly, it can be connect to self.
  4475. */
  4476. tcp_set_state(sk, TCP_SYN_RECV);
  4477. if (tp->rx_opt.saw_tstamp) {
  4478. tp->rx_opt.tstamp_ok = 1;
  4479. tcp_store_ts_recent(tp);
  4480. tp->tcp_header_len =
  4481. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4482. } else {
  4483. tp->tcp_header_len = sizeof(struct tcphdr);
  4484. }
  4485. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4486. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4487. /* RFC1323: The window in SYN & SYN/ACK segments is
  4488. * never scaled.
  4489. */
  4490. tp->snd_wnd = ntohs(th->window);
  4491. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4492. tp->max_window = tp->snd_wnd;
  4493. TCP_ECN_rcv_syn(tp, th);
  4494. tcp_mtup_init(sk);
  4495. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4496. tcp_initialize_rcv_mss(sk);
  4497. tcp_send_synack(sk);
  4498. #if 0
  4499. /* Note, we could accept data and URG from this segment.
  4500. * There are no obstacles to make this.
  4501. *
  4502. * However, if we ignore data in ACKless segments sometimes,
  4503. * we have no reasons to accept it sometimes.
  4504. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4505. * is not flawless. So, discard packet for sanity.
  4506. * Uncomment this return to process the data.
  4507. */
  4508. return -1;
  4509. #else
  4510. goto discard;
  4511. #endif
  4512. }
  4513. /* "fifth, if neither of the SYN or RST bits is set then
  4514. * drop the segment and return."
  4515. */
  4516. discard_and_undo:
  4517. tcp_clear_options(&tp->rx_opt);
  4518. tp->rx_opt.mss_clamp = saved_clamp;
  4519. goto discard;
  4520. reset_and_undo:
  4521. tcp_clear_options(&tp->rx_opt);
  4522. tp->rx_opt.mss_clamp = saved_clamp;
  4523. return 1;
  4524. }
  4525. /*
  4526. * This function implements the receiving procedure of RFC 793 for
  4527. * all states except ESTABLISHED and TIME_WAIT.
  4528. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4529. * address independent.
  4530. */
  4531. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4532. struct tcphdr *th, unsigned len)
  4533. {
  4534. struct tcp_sock *tp = tcp_sk(sk);
  4535. struct inet_connection_sock *icsk = inet_csk(sk);
  4536. int queued = 0;
  4537. int res;
  4538. tp->rx_opt.saw_tstamp = 0;
  4539. switch (sk->sk_state) {
  4540. case TCP_CLOSE:
  4541. goto discard;
  4542. case TCP_LISTEN:
  4543. if (th->ack)
  4544. return 1;
  4545. if (th->rst)
  4546. goto discard;
  4547. if (th->syn) {
  4548. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4549. return 1;
  4550. /* Now we have several options: In theory there is
  4551. * nothing else in the frame. KA9Q has an option to
  4552. * send data with the syn, BSD accepts data with the
  4553. * syn up to the [to be] advertised window and
  4554. * Solaris 2.1 gives you a protocol error. For now
  4555. * we just ignore it, that fits the spec precisely
  4556. * and avoids incompatibilities. It would be nice in
  4557. * future to drop through and process the data.
  4558. *
  4559. * Now that TTCP is starting to be used we ought to
  4560. * queue this data.
  4561. * But, this leaves one open to an easy denial of
  4562. * service attack, and SYN cookies can't defend
  4563. * against this problem. So, we drop the data
  4564. * in the interest of security over speed unless
  4565. * it's still in use.
  4566. */
  4567. kfree_skb(skb);
  4568. return 0;
  4569. }
  4570. goto discard;
  4571. case TCP_SYN_SENT:
  4572. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4573. if (queued >= 0)
  4574. return queued;
  4575. /* Do step6 onward by hand. */
  4576. tcp_urg(sk, skb, th);
  4577. __kfree_skb(skb);
  4578. tcp_data_snd_check(sk);
  4579. return 0;
  4580. }
  4581. res = tcp_validate_incoming(sk, skb, th, 0);
  4582. if (res <= 0)
  4583. return -res;
  4584. /* step 5: check the ACK field */
  4585. if (th->ack) {
  4586. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4587. switch (sk->sk_state) {
  4588. case TCP_SYN_RECV:
  4589. if (acceptable) {
  4590. tp->copied_seq = tp->rcv_nxt;
  4591. smp_mb();
  4592. tcp_set_state(sk, TCP_ESTABLISHED);
  4593. sk->sk_state_change(sk);
  4594. /* Note, that this wakeup is only for marginal
  4595. * crossed SYN case. Passively open sockets
  4596. * are not waked up, because sk->sk_sleep ==
  4597. * NULL and sk->sk_socket == NULL.
  4598. */
  4599. if (sk->sk_socket)
  4600. sk_wake_async(sk,
  4601. SOCK_WAKE_IO, POLL_OUT);
  4602. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4603. tp->snd_wnd = ntohs(th->window) <<
  4604. tp->rx_opt.snd_wscale;
  4605. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4606. TCP_SKB_CB(skb)->seq);
  4607. /* tcp_ack considers this ACK as duplicate
  4608. * and does not calculate rtt.
  4609. * Fix it at least with timestamps.
  4610. */
  4611. if (tp->rx_opt.saw_tstamp &&
  4612. tp->rx_opt.rcv_tsecr && !tp->srtt)
  4613. tcp_ack_saw_tstamp(sk, 0);
  4614. if (tp->rx_opt.tstamp_ok)
  4615. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4616. /* Make sure socket is routed, for
  4617. * correct metrics.
  4618. */
  4619. icsk->icsk_af_ops->rebuild_header(sk);
  4620. tcp_init_metrics(sk);
  4621. tcp_init_congestion_control(sk);
  4622. /* Prevent spurious tcp_cwnd_restart() on
  4623. * first data packet.
  4624. */
  4625. tp->lsndtime = tcp_time_stamp;
  4626. tcp_mtup_init(sk);
  4627. tcp_initialize_rcv_mss(sk);
  4628. tcp_init_buffer_space(sk);
  4629. tcp_fast_path_on(tp);
  4630. } else {
  4631. return 1;
  4632. }
  4633. break;
  4634. case TCP_FIN_WAIT1:
  4635. if (tp->snd_una == tp->write_seq) {
  4636. tcp_set_state(sk, TCP_FIN_WAIT2);
  4637. sk->sk_shutdown |= SEND_SHUTDOWN;
  4638. dst_confirm(sk->sk_dst_cache);
  4639. if (!sock_flag(sk, SOCK_DEAD))
  4640. /* Wake up lingering close() */
  4641. sk->sk_state_change(sk);
  4642. else {
  4643. int tmo;
  4644. if (tp->linger2 < 0 ||
  4645. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4646. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4647. tcp_done(sk);
  4648. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4649. return 1;
  4650. }
  4651. tmo = tcp_fin_time(sk);
  4652. if (tmo > TCP_TIMEWAIT_LEN) {
  4653. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4654. } else if (th->fin || sock_owned_by_user(sk)) {
  4655. /* Bad case. We could lose such FIN otherwise.
  4656. * It is not a big problem, but it looks confusing
  4657. * and not so rare event. We still can lose it now,
  4658. * if it spins in bh_lock_sock(), but it is really
  4659. * marginal case.
  4660. */
  4661. inet_csk_reset_keepalive_timer(sk, tmo);
  4662. } else {
  4663. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4664. goto discard;
  4665. }
  4666. }
  4667. }
  4668. break;
  4669. case TCP_CLOSING:
  4670. if (tp->snd_una == tp->write_seq) {
  4671. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4672. goto discard;
  4673. }
  4674. break;
  4675. case TCP_LAST_ACK:
  4676. if (tp->snd_una == tp->write_seq) {
  4677. tcp_update_metrics(sk);
  4678. tcp_done(sk);
  4679. goto discard;
  4680. }
  4681. break;
  4682. }
  4683. } else
  4684. goto discard;
  4685. /* step 6: check the URG bit */
  4686. tcp_urg(sk, skb, th);
  4687. /* step 7: process the segment text */
  4688. switch (sk->sk_state) {
  4689. case TCP_CLOSE_WAIT:
  4690. case TCP_CLOSING:
  4691. case TCP_LAST_ACK:
  4692. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4693. break;
  4694. case TCP_FIN_WAIT1:
  4695. case TCP_FIN_WAIT2:
  4696. /* RFC 793 says to queue data in these states,
  4697. * RFC 1122 says we MUST send a reset.
  4698. * BSD 4.4 also does reset.
  4699. */
  4700. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4701. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4702. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4703. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4704. tcp_reset(sk);
  4705. return 1;
  4706. }
  4707. }
  4708. /* Fall through */
  4709. case TCP_ESTABLISHED:
  4710. tcp_data_queue(sk, skb);
  4711. queued = 1;
  4712. break;
  4713. }
  4714. /* tcp_data could move socket to TIME-WAIT */
  4715. if (sk->sk_state != TCP_CLOSE) {
  4716. tcp_data_snd_check(sk);
  4717. tcp_ack_snd_check(sk);
  4718. }
  4719. if (!queued) {
  4720. discard:
  4721. __kfree_skb(skb);
  4722. }
  4723. return 0;
  4724. }
  4725. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4726. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4727. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  4728. EXPORT_SYMBOL(tcp_parse_options);
  4729. #ifdef CONFIG_TCP_MD5SIG
  4730. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  4731. #endif
  4732. EXPORT_SYMBOL(tcp_rcv_established);
  4733. EXPORT_SYMBOL(tcp_rcv_state_process);
  4734. EXPORT_SYMBOL(tcp_initialize_rcv_mss);