kvm_mips.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/fs.h>
  16. #include <linux/bootmem.h>
  17. #include <asm/page.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/mmu_context.h>
  20. #include <linux/kvm_host.h>
  21. #include "kvm_mips_int.h"
  22. #include "kvm_mips_comm.h"
  23. #define CREATE_TRACE_POINTS
  24. #include "trace.h"
  25. #ifndef VECTORSPACING
  26. #define VECTORSPACING 0x100 /* for EI/VI mode */
  27. #endif
  28. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  29. struct kvm_stats_debugfs_item debugfs_entries[] = {
  30. { "wait", VCPU_STAT(wait_exits) },
  31. { "cache", VCPU_STAT(cache_exits) },
  32. { "signal", VCPU_STAT(signal_exits) },
  33. { "interrupt", VCPU_STAT(int_exits) },
  34. { "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
  35. { "tlbmod", VCPU_STAT(tlbmod_exits) },
  36. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
  37. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
  38. { "addrerr_st", VCPU_STAT(addrerr_st_exits) },
  39. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
  40. { "syscall", VCPU_STAT(syscall_exits) },
  41. { "resvd_inst", VCPU_STAT(resvd_inst_exits) },
  42. { "break_inst", VCPU_STAT(break_inst_exits) },
  43. { "flush_dcache", VCPU_STAT(flush_dcache_exits) },
  44. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  45. {NULL}
  46. };
  47. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  48. {
  49. int i;
  50. for_each_possible_cpu(i) {
  51. vcpu->arch.guest_kernel_asid[i] = 0;
  52. vcpu->arch.guest_user_asid[i] = 0;
  53. }
  54. return 0;
  55. }
  56. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  57. {
  58. return gfn;
  59. }
  60. /* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
  61. * are "runnable" if interrupts are pending
  62. */
  63. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  64. {
  65. return !!(vcpu->arch.pending_exceptions);
  66. }
  67. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  68. {
  69. return 1;
  70. }
  71. int kvm_arch_hardware_enable(void *garbage)
  72. {
  73. return 0;
  74. }
  75. void kvm_arch_hardware_disable(void *garbage)
  76. {
  77. }
  78. int kvm_arch_hardware_setup(void)
  79. {
  80. return 0;
  81. }
  82. void kvm_arch_hardware_unsetup(void)
  83. {
  84. }
  85. void kvm_arch_check_processor_compat(void *rtn)
  86. {
  87. int *r = (int *)rtn;
  88. *r = 0;
  89. return;
  90. }
  91. static void kvm_mips_init_tlbs(struct kvm *kvm)
  92. {
  93. unsigned long wired;
  94. /* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
  95. wired = read_c0_wired();
  96. write_c0_wired(wired + 1);
  97. mtc0_tlbw_hazard();
  98. kvm->arch.commpage_tlb = wired;
  99. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  100. kvm->arch.commpage_tlb);
  101. }
  102. static void kvm_mips_init_vm_percpu(void *arg)
  103. {
  104. struct kvm *kvm = (struct kvm *)arg;
  105. kvm_mips_init_tlbs(kvm);
  106. kvm_mips_callbacks->vm_init(kvm);
  107. }
  108. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  109. {
  110. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  111. kvm_info("%s: 1st KVM instance, setup host TLB parameters\n",
  112. __func__);
  113. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  114. }
  115. return 0;
  116. }
  117. void kvm_mips_free_vcpus(struct kvm *kvm)
  118. {
  119. unsigned int i;
  120. struct kvm_vcpu *vcpu;
  121. /* Put the pages we reserved for the guest pmap */
  122. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  123. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  124. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  125. }
  126. if (kvm->arch.guest_pmap)
  127. kfree(kvm->arch.guest_pmap);
  128. kvm_for_each_vcpu(i, vcpu, kvm) {
  129. kvm_arch_vcpu_free(vcpu);
  130. }
  131. mutex_lock(&kvm->lock);
  132. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  133. kvm->vcpus[i] = NULL;
  134. atomic_set(&kvm->online_vcpus, 0);
  135. mutex_unlock(&kvm->lock);
  136. }
  137. void kvm_arch_sync_events(struct kvm *kvm)
  138. {
  139. }
  140. static void kvm_mips_uninit_tlbs(void *arg)
  141. {
  142. /* Restore wired count */
  143. write_c0_wired(0);
  144. mtc0_tlbw_hazard();
  145. /* Clear out all the TLBs */
  146. kvm_local_flush_tlb_all();
  147. }
  148. void kvm_arch_destroy_vm(struct kvm *kvm)
  149. {
  150. kvm_mips_free_vcpus(kvm);
  151. /* If this is the last instance, restore wired count */
  152. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  153. kvm_info("%s: last KVM instance, restoring TLB parameters\n",
  154. __func__);
  155. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  156. }
  157. }
  158. long
  159. kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  160. {
  161. return -ENOIOCTLCMD;
  162. }
  163. void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  164. struct kvm_memory_slot *dont)
  165. {
  166. }
  167. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  168. unsigned long npages)
  169. {
  170. return 0;
  171. }
  172. void kvm_arch_memslots_updated(struct kvm *kvm)
  173. {
  174. }
  175. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  176. struct kvm_memory_slot *memslot,
  177. struct kvm_userspace_memory_region *mem,
  178. enum kvm_mr_change change)
  179. {
  180. return 0;
  181. }
  182. void kvm_arch_commit_memory_region(struct kvm *kvm,
  183. struct kvm_userspace_memory_region *mem,
  184. const struct kvm_memory_slot *old,
  185. enum kvm_mr_change change)
  186. {
  187. unsigned long npages = 0;
  188. int i, err = 0;
  189. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  190. __func__, kvm, mem->slot, mem->guest_phys_addr,
  191. mem->memory_size, mem->userspace_addr);
  192. /* Setup Guest PMAP table */
  193. if (!kvm->arch.guest_pmap) {
  194. if (mem->slot == 0)
  195. npages = mem->memory_size >> PAGE_SHIFT;
  196. if (npages) {
  197. kvm->arch.guest_pmap_npages = npages;
  198. kvm->arch.guest_pmap =
  199. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  200. if (!kvm->arch.guest_pmap) {
  201. kvm_err("Failed to allocate guest PMAP");
  202. err = -ENOMEM;
  203. goto out;
  204. }
  205. kvm_info
  206. ("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  207. npages, kvm->arch.guest_pmap);
  208. /* Now setup the page table */
  209. for (i = 0; i < npages; i++) {
  210. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  211. }
  212. }
  213. }
  214. out:
  215. return;
  216. }
  217. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  218. {
  219. }
  220. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  221. struct kvm_memory_slot *slot)
  222. {
  223. }
  224. void kvm_arch_flush_shadow(struct kvm *kvm)
  225. {
  226. }
  227. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  228. {
  229. extern char mips32_exception[], mips32_exceptionEnd[];
  230. extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
  231. int err, size, offset;
  232. void *gebase;
  233. int i;
  234. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  235. if (!vcpu) {
  236. err = -ENOMEM;
  237. goto out;
  238. }
  239. err = kvm_vcpu_init(vcpu, kvm, id);
  240. if (err)
  241. goto out_free_cpu;
  242. kvm_info("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  243. /* Allocate space for host mode exception handlers that handle
  244. * guest mode exits
  245. */
  246. if (cpu_has_veic || cpu_has_vint) {
  247. size = 0x200 + VECTORSPACING * 64;
  248. } else {
  249. size = 0x200;
  250. }
  251. /* Save Linux EBASE */
  252. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  253. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  254. if (!gebase) {
  255. err = -ENOMEM;
  256. goto out_free_cpu;
  257. }
  258. kvm_info("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  259. ALIGN(size, PAGE_SIZE), gebase);
  260. /* Save new ebase */
  261. vcpu->arch.guest_ebase = gebase;
  262. /* Copy L1 Guest Exception handler to correct offset */
  263. /* TLB Refill, EXL = 0 */
  264. memcpy(gebase, mips32_exception,
  265. mips32_exceptionEnd - mips32_exception);
  266. /* General Exception Entry point */
  267. memcpy(gebase + 0x180, mips32_exception,
  268. mips32_exceptionEnd - mips32_exception);
  269. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  270. for (i = 0; i < 8; i++) {
  271. kvm_debug("L1 Vectored handler @ %p\n",
  272. gebase + 0x200 + (i * VECTORSPACING));
  273. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  274. mips32_exceptionEnd - mips32_exception);
  275. }
  276. /* General handler, relocate to unmapped space for sanity's sake */
  277. offset = 0x2000;
  278. kvm_info("Installing KVM Exception handlers @ %p, %#x bytes\n",
  279. gebase + offset,
  280. mips32_GuestExceptionEnd - mips32_GuestException);
  281. memcpy(gebase + offset, mips32_GuestException,
  282. mips32_GuestExceptionEnd - mips32_GuestException);
  283. /* Invalidate the icache for these ranges */
  284. mips32_SyncICache((unsigned long) gebase, ALIGN(size, PAGE_SIZE));
  285. /* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
  286. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  287. if (!vcpu->arch.kseg0_commpage) {
  288. err = -ENOMEM;
  289. goto out_free_gebase;
  290. }
  291. kvm_info("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  292. kvm_mips_commpage_init(vcpu);
  293. /* Init */
  294. vcpu->arch.last_sched_cpu = -1;
  295. /* Start off the timer */
  296. kvm_mips_emulate_count(vcpu);
  297. return vcpu;
  298. out_free_gebase:
  299. kfree(gebase);
  300. out_free_cpu:
  301. kfree(vcpu);
  302. out:
  303. return ERR_PTR(err);
  304. }
  305. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  306. {
  307. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  308. kvm_vcpu_uninit(vcpu);
  309. kvm_mips_dump_stats(vcpu);
  310. if (vcpu->arch.guest_ebase)
  311. kfree(vcpu->arch.guest_ebase);
  312. if (vcpu->arch.kseg0_commpage)
  313. kfree(vcpu->arch.kseg0_commpage);
  314. }
  315. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  316. {
  317. kvm_arch_vcpu_free(vcpu);
  318. }
  319. int
  320. kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  321. struct kvm_guest_debug *dbg)
  322. {
  323. return -ENOIOCTLCMD;
  324. }
  325. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  326. {
  327. int r = 0;
  328. sigset_t sigsaved;
  329. if (vcpu->sigset_active)
  330. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  331. if (vcpu->mmio_needed) {
  332. if (!vcpu->mmio_is_write)
  333. kvm_mips_complete_mmio_load(vcpu, run);
  334. vcpu->mmio_needed = 0;
  335. }
  336. /* Check if we have any exceptions/interrupts pending */
  337. kvm_mips_deliver_interrupts(vcpu,
  338. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  339. local_irq_disable();
  340. kvm_guest_enter();
  341. r = __kvm_mips_vcpu_run(run, vcpu);
  342. kvm_guest_exit();
  343. local_irq_enable();
  344. if (vcpu->sigset_active)
  345. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  346. return r;
  347. }
  348. int
  349. kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
  350. {
  351. int intr = (int)irq->irq;
  352. struct kvm_vcpu *dvcpu = NULL;
  353. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  354. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  355. (int)intr);
  356. if (irq->cpu == -1)
  357. dvcpu = vcpu;
  358. else
  359. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  360. if (intr == 2 || intr == 3 || intr == 4) {
  361. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  362. } else if (intr == -2 || intr == -3 || intr == -4) {
  363. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  364. } else {
  365. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  366. irq->cpu, irq->irq);
  367. return -EINVAL;
  368. }
  369. dvcpu->arch.wait = 0;
  370. if (waitqueue_active(&dvcpu->wq)) {
  371. wake_up_interruptible(&dvcpu->wq);
  372. }
  373. return 0;
  374. }
  375. int
  376. kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  377. struct kvm_mp_state *mp_state)
  378. {
  379. return -ENOIOCTLCMD;
  380. }
  381. int
  382. kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  383. struct kvm_mp_state *mp_state)
  384. {
  385. return -ENOIOCTLCMD;
  386. }
  387. #define MIPS_CP0_32(_R, _S) \
  388. (KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
  389. #define MIPS_CP0_64(_R, _S) \
  390. (KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
  391. #define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
  392. #define KVM_REG_MIPS_CP0_ENTRYLO0 MIPS_CP0_64(2, 0)
  393. #define KVM_REG_MIPS_CP0_ENTRYLO1 MIPS_CP0_64(3, 0)
  394. #define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
  395. #define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
  396. #define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
  397. #define KVM_REG_MIPS_CP0_PAGEGRAIN MIPS_CP0_32(5, 1)
  398. #define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
  399. #define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
  400. #define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
  401. #define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
  402. #define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
  403. #define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
  404. #define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
  405. #define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
  406. #define KVM_REG_MIPS_CP0_EBASE MIPS_CP0_64(15, 1)
  407. #define KVM_REG_MIPS_CP0_CONFIG MIPS_CP0_32(16, 0)
  408. #define KVM_REG_MIPS_CP0_CONFIG1 MIPS_CP0_32(16, 1)
  409. #define KVM_REG_MIPS_CP0_CONFIG2 MIPS_CP0_32(16, 2)
  410. #define KVM_REG_MIPS_CP0_CONFIG3 MIPS_CP0_32(16, 3)
  411. #define KVM_REG_MIPS_CP0_CONFIG7 MIPS_CP0_32(16, 7)
  412. #define KVM_REG_MIPS_CP0_XCONTEXT MIPS_CP0_64(20, 0)
  413. #define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
  414. static u64 kvm_mips_get_one_regs[] = {
  415. KVM_REG_MIPS_R0,
  416. KVM_REG_MIPS_R1,
  417. KVM_REG_MIPS_R2,
  418. KVM_REG_MIPS_R3,
  419. KVM_REG_MIPS_R4,
  420. KVM_REG_MIPS_R5,
  421. KVM_REG_MIPS_R6,
  422. KVM_REG_MIPS_R7,
  423. KVM_REG_MIPS_R8,
  424. KVM_REG_MIPS_R9,
  425. KVM_REG_MIPS_R10,
  426. KVM_REG_MIPS_R11,
  427. KVM_REG_MIPS_R12,
  428. KVM_REG_MIPS_R13,
  429. KVM_REG_MIPS_R14,
  430. KVM_REG_MIPS_R15,
  431. KVM_REG_MIPS_R16,
  432. KVM_REG_MIPS_R17,
  433. KVM_REG_MIPS_R18,
  434. KVM_REG_MIPS_R19,
  435. KVM_REG_MIPS_R20,
  436. KVM_REG_MIPS_R21,
  437. KVM_REG_MIPS_R22,
  438. KVM_REG_MIPS_R23,
  439. KVM_REG_MIPS_R24,
  440. KVM_REG_MIPS_R25,
  441. KVM_REG_MIPS_R26,
  442. KVM_REG_MIPS_R27,
  443. KVM_REG_MIPS_R28,
  444. KVM_REG_MIPS_R29,
  445. KVM_REG_MIPS_R30,
  446. KVM_REG_MIPS_R31,
  447. KVM_REG_MIPS_HI,
  448. KVM_REG_MIPS_LO,
  449. KVM_REG_MIPS_PC,
  450. KVM_REG_MIPS_CP0_INDEX,
  451. KVM_REG_MIPS_CP0_CONTEXT,
  452. KVM_REG_MIPS_CP0_PAGEMASK,
  453. KVM_REG_MIPS_CP0_WIRED,
  454. KVM_REG_MIPS_CP0_BADVADDR,
  455. KVM_REG_MIPS_CP0_ENTRYHI,
  456. KVM_REG_MIPS_CP0_STATUS,
  457. KVM_REG_MIPS_CP0_CAUSE,
  458. /* EPC set via kvm_regs, et al. */
  459. KVM_REG_MIPS_CP0_CONFIG,
  460. KVM_REG_MIPS_CP0_CONFIG1,
  461. KVM_REG_MIPS_CP0_CONFIG2,
  462. KVM_REG_MIPS_CP0_CONFIG3,
  463. KVM_REG_MIPS_CP0_CONFIG7,
  464. KVM_REG_MIPS_CP0_ERROREPC
  465. };
  466. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  467. const struct kvm_one_reg *reg)
  468. {
  469. struct mips_coproc *cop0 = vcpu->arch.cop0;
  470. s64 v;
  471. switch (reg->id) {
  472. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  473. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  474. break;
  475. case KVM_REG_MIPS_HI:
  476. v = (long)vcpu->arch.hi;
  477. break;
  478. case KVM_REG_MIPS_LO:
  479. v = (long)vcpu->arch.lo;
  480. break;
  481. case KVM_REG_MIPS_PC:
  482. v = (long)vcpu->arch.pc;
  483. break;
  484. case KVM_REG_MIPS_CP0_INDEX:
  485. v = (long)kvm_read_c0_guest_index(cop0);
  486. break;
  487. case KVM_REG_MIPS_CP0_CONTEXT:
  488. v = (long)kvm_read_c0_guest_context(cop0);
  489. break;
  490. case KVM_REG_MIPS_CP0_PAGEMASK:
  491. v = (long)kvm_read_c0_guest_pagemask(cop0);
  492. break;
  493. case KVM_REG_MIPS_CP0_WIRED:
  494. v = (long)kvm_read_c0_guest_wired(cop0);
  495. break;
  496. case KVM_REG_MIPS_CP0_BADVADDR:
  497. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  498. break;
  499. case KVM_REG_MIPS_CP0_ENTRYHI:
  500. v = (long)kvm_read_c0_guest_entryhi(cop0);
  501. break;
  502. case KVM_REG_MIPS_CP0_STATUS:
  503. v = (long)kvm_read_c0_guest_status(cop0);
  504. break;
  505. case KVM_REG_MIPS_CP0_CAUSE:
  506. v = (long)kvm_read_c0_guest_cause(cop0);
  507. break;
  508. case KVM_REG_MIPS_CP0_ERROREPC:
  509. v = (long)kvm_read_c0_guest_errorepc(cop0);
  510. break;
  511. case KVM_REG_MIPS_CP0_CONFIG:
  512. v = (long)kvm_read_c0_guest_config(cop0);
  513. break;
  514. case KVM_REG_MIPS_CP0_CONFIG1:
  515. v = (long)kvm_read_c0_guest_config1(cop0);
  516. break;
  517. case KVM_REG_MIPS_CP0_CONFIG2:
  518. v = (long)kvm_read_c0_guest_config2(cop0);
  519. break;
  520. case KVM_REG_MIPS_CP0_CONFIG3:
  521. v = (long)kvm_read_c0_guest_config3(cop0);
  522. break;
  523. case KVM_REG_MIPS_CP0_CONFIG7:
  524. v = (long)kvm_read_c0_guest_config7(cop0);
  525. break;
  526. default:
  527. return -EINVAL;
  528. }
  529. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  530. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  531. return put_user(v, uaddr64);
  532. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  533. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  534. u32 v32 = (u32)v;
  535. return put_user(v32, uaddr32);
  536. } else {
  537. return -EINVAL;
  538. }
  539. }
  540. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  541. const struct kvm_one_reg *reg)
  542. {
  543. struct mips_coproc *cop0 = vcpu->arch.cop0;
  544. u64 v;
  545. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  546. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  547. if (get_user(v, uaddr64) != 0)
  548. return -EFAULT;
  549. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  550. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  551. s32 v32;
  552. if (get_user(v32, uaddr32) != 0)
  553. return -EFAULT;
  554. v = (s64)v32;
  555. } else {
  556. return -EINVAL;
  557. }
  558. switch (reg->id) {
  559. case KVM_REG_MIPS_R0:
  560. /* Silently ignore requests to set $0 */
  561. break;
  562. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  563. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  564. break;
  565. case KVM_REG_MIPS_HI:
  566. vcpu->arch.hi = v;
  567. break;
  568. case KVM_REG_MIPS_LO:
  569. vcpu->arch.lo = v;
  570. break;
  571. case KVM_REG_MIPS_PC:
  572. vcpu->arch.pc = v;
  573. break;
  574. case KVM_REG_MIPS_CP0_INDEX:
  575. kvm_write_c0_guest_index(cop0, v);
  576. break;
  577. case KVM_REG_MIPS_CP0_CONTEXT:
  578. kvm_write_c0_guest_context(cop0, v);
  579. break;
  580. case KVM_REG_MIPS_CP0_PAGEMASK:
  581. kvm_write_c0_guest_pagemask(cop0, v);
  582. break;
  583. case KVM_REG_MIPS_CP0_WIRED:
  584. kvm_write_c0_guest_wired(cop0, v);
  585. break;
  586. case KVM_REG_MIPS_CP0_BADVADDR:
  587. kvm_write_c0_guest_badvaddr(cop0, v);
  588. break;
  589. case KVM_REG_MIPS_CP0_ENTRYHI:
  590. kvm_write_c0_guest_entryhi(cop0, v);
  591. break;
  592. case KVM_REG_MIPS_CP0_STATUS:
  593. kvm_write_c0_guest_status(cop0, v);
  594. break;
  595. case KVM_REG_MIPS_CP0_CAUSE:
  596. kvm_write_c0_guest_cause(cop0, v);
  597. break;
  598. case KVM_REG_MIPS_CP0_ERROREPC:
  599. kvm_write_c0_guest_errorepc(cop0, v);
  600. break;
  601. default:
  602. return -EINVAL;
  603. }
  604. return 0;
  605. }
  606. long
  607. kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  608. {
  609. struct kvm_vcpu *vcpu = filp->private_data;
  610. void __user *argp = (void __user *)arg;
  611. long r;
  612. switch (ioctl) {
  613. case KVM_SET_ONE_REG:
  614. case KVM_GET_ONE_REG: {
  615. struct kvm_one_reg reg;
  616. if (copy_from_user(&reg, argp, sizeof(reg)))
  617. return -EFAULT;
  618. if (ioctl == KVM_SET_ONE_REG)
  619. return kvm_mips_set_reg(vcpu, &reg);
  620. else
  621. return kvm_mips_get_reg(vcpu, &reg);
  622. }
  623. case KVM_GET_REG_LIST: {
  624. struct kvm_reg_list __user *user_list = argp;
  625. u64 __user *reg_dest;
  626. struct kvm_reg_list reg_list;
  627. unsigned n;
  628. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  629. return -EFAULT;
  630. n = reg_list.n;
  631. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  632. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  633. return -EFAULT;
  634. if (n < reg_list.n)
  635. return -E2BIG;
  636. reg_dest = user_list->reg;
  637. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  638. sizeof(kvm_mips_get_one_regs)))
  639. return -EFAULT;
  640. return 0;
  641. }
  642. case KVM_NMI:
  643. /* Treat the NMI as a CPU reset */
  644. r = kvm_mips_reset_vcpu(vcpu);
  645. break;
  646. case KVM_INTERRUPT:
  647. {
  648. struct kvm_mips_interrupt irq;
  649. r = -EFAULT;
  650. if (copy_from_user(&irq, argp, sizeof(irq)))
  651. goto out;
  652. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  653. irq.irq);
  654. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  655. break;
  656. }
  657. default:
  658. r = -ENOIOCTLCMD;
  659. }
  660. out:
  661. return r;
  662. }
  663. /*
  664. * Get (and clear) the dirty memory log for a memory slot.
  665. */
  666. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  667. {
  668. struct kvm_memory_slot *memslot;
  669. unsigned long ga, ga_end;
  670. int is_dirty = 0;
  671. int r;
  672. unsigned long n;
  673. mutex_lock(&kvm->slots_lock);
  674. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  675. if (r)
  676. goto out;
  677. /* If nothing is dirty, don't bother messing with page tables. */
  678. if (is_dirty) {
  679. memslot = &kvm->memslots->memslots[log->slot];
  680. ga = memslot->base_gfn << PAGE_SHIFT;
  681. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  682. printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  683. ga_end);
  684. n = kvm_dirty_bitmap_bytes(memslot);
  685. memset(memslot->dirty_bitmap, 0, n);
  686. }
  687. r = 0;
  688. out:
  689. mutex_unlock(&kvm->slots_lock);
  690. return r;
  691. }
  692. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  693. {
  694. long r;
  695. switch (ioctl) {
  696. default:
  697. r = -ENOIOCTLCMD;
  698. }
  699. return r;
  700. }
  701. int kvm_arch_init(void *opaque)
  702. {
  703. int ret;
  704. if (kvm_mips_callbacks) {
  705. kvm_err("kvm: module already exists\n");
  706. return -EEXIST;
  707. }
  708. ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
  709. return ret;
  710. }
  711. void kvm_arch_exit(void)
  712. {
  713. kvm_mips_callbacks = NULL;
  714. }
  715. int
  716. kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  717. {
  718. return -ENOIOCTLCMD;
  719. }
  720. int
  721. kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  722. {
  723. return -ENOIOCTLCMD;
  724. }
  725. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  726. {
  727. return 0;
  728. }
  729. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  730. {
  731. return -ENOIOCTLCMD;
  732. }
  733. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  734. {
  735. return -ENOIOCTLCMD;
  736. }
  737. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  738. {
  739. return VM_FAULT_SIGBUS;
  740. }
  741. int kvm_dev_ioctl_check_extension(long ext)
  742. {
  743. int r;
  744. switch (ext) {
  745. case KVM_CAP_ONE_REG:
  746. r = 1;
  747. break;
  748. case KVM_CAP_COALESCED_MMIO:
  749. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  750. break;
  751. default:
  752. r = 0;
  753. break;
  754. }
  755. return r;
  756. }
  757. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  758. {
  759. return kvm_mips_pending_timer(vcpu);
  760. }
  761. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  762. {
  763. int i;
  764. struct mips_coproc *cop0;
  765. if (!vcpu)
  766. return -1;
  767. printk("VCPU Register Dump:\n");
  768. printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
  769. printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  770. for (i = 0; i < 32; i += 4) {
  771. printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  772. vcpu->arch.gprs[i],
  773. vcpu->arch.gprs[i + 1],
  774. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  775. }
  776. printk("\thi: 0x%08lx\n", vcpu->arch.hi);
  777. printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
  778. cop0 = vcpu->arch.cop0;
  779. printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  780. kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
  781. printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  782. return 0;
  783. }
  784. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  785. {
  786. int i;
  787. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  788. vcpu->arch.gprs[i] = regs->gpr[i];
  789. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  790. vcpu->arch.hi = regs->hi;
  791. vcpu->arch.lo = regs->lo;
  792. vcpu->arch.pc = regs->pc;
  793. return 0;
  794. }
  795. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  796. {
  797. int i;
  798. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  799. regs->gpr[i] = vcpu->arch.gprs[i];
  800. regs->hi = vcpu->arch.hi;
  801. regs->lo = vcpu->arch.lo;
  802. regs->pc = vcpu->arch.pc;
  803. return 0;
  804. }
  805. void kvm_mips_comparecount_func(unsigned long data)
  806. {
  807. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  808. kvm_mips_callbacks->queue_timer_int(vcpu);
  809. vcpu->arch.wait = 0;
  810. if (waitqueue_active(&vcpu->wq)) {
  811. wake_up_interruptible(&vcpu->wq);
  812. }
  813. }
  814. /*
  815. * low level hrtimer wake routine.
  816. */
  817. enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  818. {
  819. struct kvm_vcpu *vcpu;
  820. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  821. kvm_mips_comparecount_func((unsigned long) vcpu);
  822. hrtimer_forward_now(&vcpu->arch.comparecount_timer,
  823. ktime_set(0, MS_TO_NS(10)));
  824. return HRTIMER_RESTART;
  825. }
  826. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  827. {
  828. kvm_mips_callbacks->vcpu_init(vcpu);
  829. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  830. HRTIMER_MODE_REL);
  831. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  832. kvm_mips_init_shadow_tlb(vcpu);
  833. return 0;
  834. }
  835. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  836. {
  837. return;
  838. }
  839. int
  840. kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
  841. {
  842. return 0;
  843. }
  844. /* Initial guest state */
  845. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  846. {
  847. return kvm_mips_callbacks->vcpu_setup(vcpu);
  848. }
  849. static
  850. void kvm_mips_set_c0_status(void)
  851. {
  852. uint32_t status = read_c0_status();
  853. if (cpu_has_fpu)
  854. status |= (ST0_CU1);
  855. if (cpu_has_dsp)
  856. status |= (ST0_MX);
  857. write_c0_status(status);
  858. ehb();
  859. }
  860. /*
  861. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  862. */
  863. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  864. {
  865. uint32_t cause = vcpu->arch.host_cp0_cause;
  866. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  867. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  868. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  869. enum emulation_result er = EMULATE_DONE;
  870. int ret = RESUME_GUEST;
  871. /* Set a default exit reason */
  872. run->exit_reason = KVM_EXIT_UNKNOWN;
  873. run->ready_for_interrupt_injection = 1;
  874. /* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
  875. kvm_mips_set_c0_status();
  876. local_irq_enable();
  877. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  878. cause, opc, run, vcpu);
  879. /* Do a privilege check, if in UM most of these exit conditions end up
  880. * causing an exception to be delivered to the Guest Kernel
  881. */
  882. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  883. if (er == EMULATE_PRIV_FAIL) {
  884. goto skip_emul;
  885. } else if (er == EMULATE_FAIL) {
  886. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  887. ret = RESUME_HOST;
  888. goto skip_emul;
  889. }
  890. switch (exccode) {
  891. case T_INT:
  892. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  893. ++vcpu->stat.int_exits;
  894. trace_kvm_exit(vcpu, INT_EXITS);
  895. if (need_resched()) {
  896. cond_resched();
  897. }
  898. ret = RESUME_GUEST;
  899. break;
  900. case T_COP_UNUSABLE:
  901. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  902. ++vcpu->stat.cop_unusable_exits;
  903. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  904. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  905. /* XXXKYMA: Might need to return to user space */
  906. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
  907. ret = RESUME_HOST;
  908. }
  909. break;
  910. case T_TLB_MOD:
  911. ++vcpu->stat.tlbmod_exits;
  912. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  913. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  914. break;
  915. case T_TLB_ST_MISS:
  916. kvm_debug
  917. ("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  918. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  919. badvaddr);
  920. ++vcpu->stat.tlbmiss_st_exits;
  921. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  922. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  923. break;
  924. case T_TLB_LD_MISS:
  925. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  926. cause, opc, badvaddr);
  927. ++vcpu->stat.tlbmiss_ld_exits;
  928. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  929. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  930. break;
  931. case T_ADDR_ERR_ST:
  932. ++vcpu->stat.addrerr_st_exits;
  933. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  934. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  935. break;
  936. case T_ADDR_ERR_LD:
  937. ++vcpu->stat.addrerr_ld_exits;
  938. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  939. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  940. break;
  941. case T_SYSCALL:
  942. ++vcpu->stat.syscall_exits;
  943. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  944. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  945. break;
  946. case T_RES_INST:
  947. ++vcpu->stat.resvd_inst_exits;
  948. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  949. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  950. break;
  951. case T_BREAK:
  952. ++vcpu->stat.break_inst_exits;
  953. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  954. ret = kvm_mips_callbacks->handle_break(vcpu);
  955. break;
  956. default:
  957. kvm_err
  958. ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  959. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  960. kvm_read_c0_guest_status(vcpu->arch.cop0));
  961. kvm_arch_vcpu_dump_regs(vcpu);
  962. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  963. ret = RESUME_HOST;
  964. break;
  965. }
  966. skip_emul:
  967. local_irq_disable();
  968. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  969. kvm_mips_deliver_interrupts(vcpu, cause);
  970. if (!(ret & RESUME_HOST)) {
  971. /* Only check for signals if not already exiting to userspace */
  972. if (signal_pending(current)) {
  973. run->exit_reason = KVM_EXIT_INTR;
  974. ret = (-EINTR << 2) | RESUME_HOST;
  975. ++vcpu->stat.signal_exits;
  976. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  977. }
  978. }
  979. return ret;
  980. }
  981. int __init kvm_mips_init(void)
  982. {
  983. int ret;
  984. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  985. if (ret)
  986. return ret;
  987. /* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
  988. * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
  989. * to avoid the possibility of double faulting. The issue is that the TLB code
  990. * references routines that are part of the the KVM module,
  991. * which are only available once the module is loaded.
  992. */
  993. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  994. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  995. kvm_mips_is_error_pfn = is_error_pfn;
  996. pr_info("KVM/MIPS Initialized\n");
  997. return 0;
  998. }
  999. void __exit kvm_mips_exit(void)
  1000. {
  1001. kvm_exit();
  1002. kvm_mips_gfn_to_pfn = NULL;
  1003. kvm_mips_release_pfn_clean = NULL;
  1004. kvm_mips_is_error_pfn = NULL;
  1005. pr_info("KVM/MIPS unloaded\n");
  1006. }
  1007. module_init(kvm_mips_init);
  1008. module_exit(kvm_mips_exit);
  1009. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);