integrator_ap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /*
  2. * linux/arch/arm/mach-integrator/integrator_ap.c
  3. *
  4. * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <linux/types.h>
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/slab.h>
  26. #include <linux/string.h>
  27. #include <linux/sysdev.h>
  28. #include <linux/amba/bus.h>
  29. #include <linux/amba/kmi.h>
  30. #include <linux/clocksource.h>
  31. #include <linux/clockchips.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/io.h>
  34. #include <linux/mtd/physmap.h>
  35. #include <mach/hardware.h>
  36. #include <mach/platform.h>
  37. #include <asm/hardware/arm_timer.h>
  38. #include <asm/irq.h>
  39. #include <asm/setup.h>
  40. #include <asm/param.h> /* HZ */
  41. #include <asm/mach-types.h>
  42. #include <mach/lm.h>
  43. #include <asm/mach/arch.h>
  44. #include <asm/mach/irq.h>
  45. #include <asm/mach/map.h>
  46. #include <asm/mach/time.h>
  47. #include <plat/fpga-irq.h>
  48. #include "common.h"
  49. /*
  50. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  51. * is the (PA >> 12).
  52. *
  53. * Setup a VA for the Integrator interrupt controller (for header #0,
  54. * just for now).
  55. */
  56. #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
  57. #define VA_SC_BASE __io_address(INTEGRATOR_SC_BASE)
  58. #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE)
  59. #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC)
  60. /*
  61. * Logical Physical
  62. * e8000000 40000000 PCI memory PHYS_PCI_MEM_BASE (max 512M)
  63. * ec000000 61000000 PCI config space PHYS_PCI_CONFIG_BASE (max 16M)
  64. * ed000000 62000000 PCI V3 regs PHYS_PCI_V3_BASE (max 64k)
  65. * ee000000 60000000 PCI IO PHYS_PCI_IO_BASE (max 16M)
  66. * ef000000 Cache flush
  67. * f1000000 10000000 Core module registers
  68. * f1100000 11000000 System controller registers
  69. * f1200000 12000000 EBI registers
  70. * f1300000 13000000 Counter/Timer
  71. * f1400000 14000000 Interrupt controller
  72. * f1600000 16000000 UART 0
  73. * f1700000 17000000 UART 1
  74. * f1a00000 1a000000 Debug LEDs
  75. * f1b00000 1b000000 GPIO
  76. */
  77. static struct map_desc ap_io_desc[] __initdata = {
  78. {
  79. .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
  80. .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
  81. .length = SZ_4K,
  82. .type = MT_DEVICE
  83. }, {
  84. .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
  85. .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
  86. .length = SZ_4K,
  87. .type = MT_DEVICE
  88. }, {
  89. .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
  90. .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
  91. .length = SZ_4K,
  92. .type = MT_DEVICE
  93. }, {
  94. .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
  95. .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
  96. .length = SZ_4K,
  97. .type = MT_DEVICE
  98. }, {
  99. .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
  100. .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
  101. .length = SZ_4K,
  102. .type = MT_DEVICE
  103. }, {
  104. .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
  105. .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
  106. .length = SZ_4K,
  107. .type = MT_DEVICE
  108. }, {
  109. .virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
  110. .pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
  111. .length = SZ_4K,
  112. .type = MT_DEVICE
  113. }, {
  114. .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
  115. .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
  116. .length = SZ_4K,
  117. .type = MT_DEVICE
  118. }, {
  119. .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
  120. .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
  121. .length = SZ_4K,
  122. .type = MT_DEVICE
  123. }, {
  124. .virtual = PCI_MEMORY_VADDR,
  125. .pfn = __phys_to_pfn(PHYS_PCI_MEM_BASE),
  126. .length = SZ_16M,
  127. .type = MT_DEVICE
  128. }, {
  129. .virtual = PCI_CONFIG_VADDR,
  130. .pfn = __phys_to_pfn(PHYS_PCI_CONFIG_BASE),
  131. .length = SZ_16M,
  132. .type = MT_DEVICE
  133. }, {
  134. .virtual = PCI_V3_VADDR,
  135. .pfn = __phys_to_pfn(PHYS_PCI_V3_BASE),
  136. .length = SZ_64K,
  137. .type = MT_DEVICE
  138. }, {
  139. .virtual = PCI_IO_VADDR,
  140. .pfn = __phys_to_pfn(PHYS_PCI_IO_BASE),
  141. .length = SZ_64K,
  142. .type = MT_DEVICE
  143. }
  144. };
  145. static void __init ap_map_io(void)
  146. {
  147. iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
  148. }
  149. #define INTEGRATOR_SC_VALID_INT 0x003fffff
  150. static struct fpga_irq_data sc_irq_data = {
  151. .base = VA_IC_BASE,
  152. .irq_start = 0,
  153. .chip.name = "SC",
  154. };
  155. static void __init ap_init_irq(void)
  156. {
  157. /* Disable all interrupts initially. */
  158. /* Do the core module ones */
  159. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  160. /* do the header card stuff next */
  161. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  162. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  163. fpga_irq_init(-1, INTEGRATOR_SC_VALID_INT, &sc_irq_data);
  164. }
  165. #ifdef CONFIG_PM
  166. static unsigned long ic_irq_enable;
  167. static int irq_suspend(struct sys_device *dev, pm_message_t state)
  168. {
  169. ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
  170. return 0;
  171. }
  172. static int irq_resume(struct sys_device *dev)
  173. {
  174. /* disable all irq sources */
  175. writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR);
  176. writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
  177. writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
  178. writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
  179. return 0;
  180. }
  181. #else
  182. #define irq_suspend NULL
  183. #define irq_resume NULL
  184. #endif
  185. static struct sysdev_class irq_class = {
  186. .name = "irq",
  187. .suspend = irq_suspend,
  188. .resume = irq_resume,
  189. };
  190. static struct sys_device irq_device = {
  191. .id = 0,
  192. .cls = &irq_class,
  193. };
  194. static int __init irq_init_sysfs(void)
  195. {
  196. int ret = sysdev_class_register(&irq_class);
  197. if (ret == 0)
  198. ret = sysdev_register(&irq_device);
  199. return ret;
  200. }
  201. device_initcall(irq_init_sysfs);
  202. /*
  203. * Flash handling.
  204. */
  205. #define SC_CTRLC (VA_SC_BASE + INTEGRATOR_SC_CTRLC_OFFSET)
  206. #define SC_CTRLS (VA_SC_BASE + INTEGRATOR_SC_CTRLS_OFFSET)
  207. #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET)
  208. #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET)
  209. static int ap_flash_init(struct platform_device *dev)
  210. {
  211. u32 tmp;
  212. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  213. tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE;
  214. writel(tmp, EBI_CSR1);
  215. if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) {
  216. writel(0xa05f, EBI_LOCK);
  217. writel(tmp, EBI_CSR1);
  218. writel(0, EBI_LOCK);
  219. }
  220. return 0;
  221. }
  222. static void ap_flash_exit(struct platform_device *dev)
  223. {
  224. u32 tmp;
  225. writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, SC_CTRLC);
  226. tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE;
  227. writel(tmp, EBI_CSR1);
  228. if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) {
  229. writel(0xa05f, EBI_LOCK);
  230. writel(tmp, EBI_CSR1);
  231. writel(0, EBI_LOCK);
  232. }
  233. }
  234. static void ap_flash_set_vpp(struct map_info *map, int on)
  235. {
  236. void __iomem *reg = on ? SC_CTRLS : SC_CTRLC;
  237. writel(INTEGRATOR_SC_CTRL_nFLVPPEN, reg);
  238. }
  239. static struct physmap_flash_data ap_flash_data = {
  240. .width = 4,
  241. .init = ap_flash_init,
  242. .exit = ap_flash_exit,
  243. .set_vpp = ap_flash_set_vpp,
  244. };
  245. static struct resource cfi_flash_resource = {
  246. .start = INTEGRATOR_FLASH_BASE,
  247. .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1,
  248. .flags = IORESOURCE_MEM,
  249. };
  250. static struct platform_device cfi_flash_device = {
  251. .name = "physmap-flash",
  252. .id = 0,
  253. .dev = {
  254. .platform_data = &ap_flash_data,
  255. },
  256. .num_resources = 1,
  257. .resource = &cfi_flash_resource,
  258. };
  259. static void __init ap_init(void)
  260. {
  261. unsigned long sc_dec;
  262. int i;
  263. platform_device_register(&cfi_flash_device);
  264. sc_dec = readl(VA_SC_BASE + INTEGRATOR_SC_DEC_OFFSET);
  265. for (i = 0; i < 4; i++) {
  266. struct lm_device *lmdev;
  267. if ((sc_dec & (16 << i)) == 0)
  268. continue;
  269. lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
  270. if (!lmdev)
  271. continue;
  272. lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
  273. lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
  274. lmdev->resource.flags = IORESOURCE_MEM;
  275. lmdev->irq = IRQ_AP_EXPINT0 + i;
  276. lmdev->id = i;
  277. lm_device_register(lmdev);
  278. }
  279. }
  280. /*
  281. * Where is the timer (VA)?
  282. */
  283. #define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
  284. #define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
  285. #define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
  286. /*
  287. * How long is the timer interval?
  288. */
  289. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  290. #if TIMER_INTERVAL >= 0x100000
  291. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  292. #elif TIMER_INTERVAL >= 0x10000
  293. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  294. #else
  295. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  296. #endif
  297. static unsigned long timer_reload;
  298. static void __iomem * const clksrc_base = (void __iomem *)TIMER2_VA_BASE;
  299. static cycle_t timersp_read(struct clocksource *cs)
  300. {
  301. return ~(readl(clksrc_base + TIMER_VALUE) & 0xffff);
  302. }
  303. static struct clocksource clocksource_timersp = {
  304. .name = "timer2",
  305. .rating = 200,
  306. .read = timersp_read,
  307. .mask = CLOCKSOURCE_MASK(16),
  308. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  309. };
  310. static void integrator_clocksource_init(u32 khz)
  311. {
  312. struct clocksource *cs = &clocksource_timersp;
  313. void __iomem *base = clksrc_base;
  314. u32 ctrl = TIMER_CTRL_ENABLE;
  315. if (khz >= 1500) {
  316. khz /= 16;
  317. ctrl = TIMER_CTRL_DIV16;
  318. }
  319. writel(ctrl, base + TIMER_CTRL);
  320. writel(0xffff, base + TIMER_LOAD);
  321. clocksource_register_khz(cs, khz);
  322. }
  323. static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
  324. /*
  325. * IRQ handler for the timer
  326. */
  327. static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
  328. {
  329. struct clock_event_device *evt = dev_id;
  330. /* clear the interrupt */
  331. writel(1, clkevt_base + TIMER_INTCLR);
  332. evt->event_handler(evt);
  333. return IRQ_HANDLED;
  334. }
  335. static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
  336. {
  337. u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
  338. BUG_ON(mode == CLOCK_EVT_MODE_ONESHOT);
  339. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  340. writel(ctrl, clkevt_base + TIMER_CTRL);
  341. writel(timer_reload, clkevt_base + TIMER_LOAD);
  342. ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
  343. }
  344. writel(ctrl, clkevt_base + TIMER_CTRL);
  345. }
  346. static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
  347. {
  348. unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
  349. writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  350. writel(next, clkevt_base + TIMER_LOAD);
  351. writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
  352. return 0;
  353. }
  354. static struct clock_event_device integrator_clockevent = {
  355. .name = "timer1",
  356. .shift = 34,
  357. .features = CLOCK_EVT_FEAT_PERIODIC,
  358. .set_mode = clkevt_set_mode,
  359. .set_next_event = clkevt_set_next_event,
  360. .rating = 300,
  361. .cpumask = cpu_all_mask,
  362. };
  363. static struct irqaction integrator_timer_irq = {
  364. .name = "timer",
  365. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  366. .handler = integrator_timer_interrupt,
  367. .dev_id = &integrator_clockevent,
  368. };
  369. static void integrator_clockevent_init(u32 khz)
  370. {
  371. struct clock_event_device *evt = &integrator_clockevent;
  372. unsigned int ctrl = 0;
  373. if (khz * 1000 > 0x100000 * HZ) {
  374. khz /= 256;
  375. ctrl |= TIMER_CTRL_DIV256;
  376. } else if (khz * 1000 > 0x10000 * HZ) {
  377. khz /= 16;
  378. ctrl |= TIMER_CTRL_DIV16;
  379. }
  380. timer_reload = khz * 1000 / HZ;
  381. writel(ctrl, clkevt_base + TIMER_CTRL);
  382. evt->irq = IRQ_TIMERINT1;
  383. evt->mult = div_sc(khz, NSEC_PER_MSEC, evt->shift);
  384. evt->max_delta_ns = clockevent_delta2ns(0xffff, evt);
  385. evt->min_delta_ns = clockevent_delta2ns(0xf, evt);
  386. setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
  387. clockevents_register_device(evt);
  388. }
  389. /*
  390. * Set up timer(s).
  391. */
  392. static void __init ap_init_timer(void)
  393. {
  394. u32 khz = TICKS_PER_uSEC * 1000;
  395. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  396. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  397. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  398. integrator_clocksource_init(khz);
  399. integrator_clockevent_init(khz);
  400. }
  401. static struct sys_timer ap_timer = {
  402. .init = ap_init_timer,
  403. };
  404. MACHINE_START(INTEGRATOR, "ARM-Integrator")
  405. /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
  406. .boot_params = 0x00000100,
  407. .reserve = integrator_reserve,
  408. .map_io = ap_map_io,
  409. .init_early = integrator_init_early,
  410. .init_irq = ap_init_irq,
  411. .timer = &ap_timer,
  412. .init_machine = ap_init,
  413. MACHINE_END