sched_fair.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. /*
  83. * The exponential sliding window over which load is averaged for shares
  84. * distribution.
  85. * (default: 10msec)
  86. */
  87. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  88. static const struct sched_class fair_sched_class;
  89. /**************************************************************
  90. * CFS operations on generic schedulable entities:
  91. */
  92. #ifdef CONFIG_FAIR_GROUP_SCHED
  93. /* cpu runqueue to which this cfs_rq is attached */
  94. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  95. {
  96. return cfs_rq->rq;
  97. }
  98. /* An entity is a task if it doesn't "own" a runqueue */
  99. #define entity_is_task(se) (!se->my_q)
  100. static inline struct task_struct *task_of(struct sched_entity *se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!entity_is_task(se));
  104. #endif
  105. return container_of(se, struct task_struct, se);
  106. }
  107. /* Walk up scheduling entities hierarchy */
  108. #define for_each_sched_entity(se) \
  109. for (; se; se = se->parent)
  110. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  111. {
  112. return p->se.cfs_rq;
  113. }
  114. /* runqueue on which this entity is (to be) queued */
  115. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  116. {
  117. return se->cfs_rq;
  118. }
  119. /* runqueue "owned" by this group */
  120. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  121. {
  122. return grp->my_q;
  123. }
  124. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  125. * another cpu ('this_cpu')
  126. */
  127. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  128. {
  129. return cfs_rq->tg->cfs_rq[this_cpu];
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  235. {
  236. return &cpu_rq(this_cpu)->cfs;
  237. }
  238. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  239. {
  240. }
  241. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  242. {
  243. }
  244. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  245. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  246. static inline int
  247. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  248. {
  249. return 1;
  250. }
  251. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  252. {
  253. return NULL;
  254. }
  255. static inline void
  256. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  257. {
  258. }
  259. #endif /* CONFIG_FAIR_GROUP_SCHED */
  260. /**************************************************************
  261. * Scheduling class tree data structure manipulation methods:
  262. */
  263. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta > 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  271. {
  272. s64 delta = (s64)(vruntime - min_vruntime);
  273. if (delta < 0)
  274. min_vruntime = vruntime;
  275. return min_vruntime;
  276. }
  277. static inline int entity_before(struct sched_entity *a,
  278. struct sched_entity *b)
  279. {
  280. return (s64)(a->vruntime - b->vruntime) < 0;
  281. }
  282. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  283. {
  284. return se->vruntime - cfs_rq->min_vruntime;
  285. }
  286. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  287. {
  288. u64 vruntime = cfs_rq->min_vruntime;
  289. if (cfs_rq->curr)
  290. vruntime = cfs_rq->curr->vruntime;
  291. if (cfs_rq->rb_leftmost) {
  292. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  293. struct sched_entity,
  294. run_node);
  295. if (!cfs_rq->curr)
  296. vruntime = se->vruntime;
  297. else
  298. vruntime = min_vruntime(vruntime, se->vruntime);
  299. }
  300. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  301. }
  302. /*
  303. * Enqueue an entity into the rb-tree:
  304. */
  305. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  306. {
  307. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  308. struct rb_node *parent = NULL;
  309. struct sched_entity *entry;
  310. s64 key = entity_key(cfs_rq, se);
  311. int leftmost = 1;
  312. /*
  313. * Find the right place in the rbtree:
  314. */
  315. while (*link) {
  316. parent = *link;
  317. entry = rb_entry(parent, struct sched_entity, run_node);
  318. /*
  319. * We dont care about collisions. Nodes with
  320. * the same key stay together.
  321. */
  322. if (key < entity_key(cfs_rq, entry)) {
  323. link = &parent->rb_left;
  324. } else {
  325. link = &parent->rb_right;
  326. leftmost = 0;
  327. }
  328. }
  329. /*
  330. * Maintain a cache of leftmost tree entries (it is frequently
  331. * used):
  332. */
  333. if (leftmost)
  334. cfs_rq->rb_leftmost = &se->run_node;
  335. rb_link_node(&se->run_node, parent, link);
  336. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  337. }
  338. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  339. {
  340. if (cfs_rq->rb_leftmost == &se->run_node) {
  341. struct rb_node *next_node;
  342. next_node = rb_next(&se->run_node);
  343. cfs_rq->rb_leftmost = next_node;
  344. }
  345. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  348. {
  349. struct rb_node *left = cfs_rq->rb_leftmost;
  350. if (!left)
  351. return NULL;
  352. return rb_entry(left, struct sched_entity, run_node);
  353. }
  354. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  355. {
  356. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  357. if (!last)
  358. return NULL;
  359. return rb_entry(last, struct sched_entity, run_node);
  360. }
  361. /**************************************************************
  362. * Scheduling class statistics methods:
  363. */
  364. #ifdef CONFIG_SCHED_DEBUG
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. #endif
  465. }
  466. static void update_curr(struct cfs_rq *cfs_rq)
  467. {
  468. struct sched_entity *curr = cfs_rq->curr;
  469. u64 now = rq_of(cfs_rq)->clock_task;
  470. unsigned long delta_exec;
  471. if (unlikely(!curr))
  472. return;
  473. /*
  474. * Get the amount of time the current task was running
  475. * since the last time we changed load (this cannot
  476. * overflow on 32 bits):
  477. */
  478. delta_exec = (unsigned long)(now - curr->exec_start);
  479. if (!delta_exec)
  480. return;
  481. __update_curr(cfs_rq, curr, delta_exec);
  482. curr->exec_start = now;
  483. if (entity_is_task(curr)) {
  484. struct task_struct *curtask = task_of(curr);
  485. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  486. cpuacct_charge(curtask, delta_exec);
  487. account_group_exec_runtime(curtask, delta_exec);
  488. }
  489. }
  490. static inline void
  491. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  492. {
  493. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  494. }
  495. /*
  496. * Task is being enqueued - update stats:
  497. */
  498. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. /*
  501. * Are we enqueueing a waiting task? (for current tasks
  502. * a dequeue/enqueue event is a NOP)
  503. */
  504. if (se != cfs_rq->curr)
  505. update_stats_wait_start(cfs_rq, se);
  506. }
  507. static void
  508. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  509. {
  510. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  511. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  512. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  513. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  514. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  515. #ifdef CONFIG_SCHEDSTATS
  516. if (entity_is_task(se)) {
  517. trace_sched_stat_wait(task_of(se),
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. }
  520. #endif
  521. schedstat_set(se->statistics.wait_start, 0);
  522. }
  523. static inline void
  524. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. /*
  527. * Mark the end of the wait period if dequeueing a
  528. * waiting task:
  529. */
  530. if (se != cfs_rq->curr)
  531. update_stats_wait_end(cfs_rq, se);
  532. }
  533. /*
  534. * We are picking a new current task - update its stats:
  535. */
  536. static inline void
  537. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. /*
  540. * We are starting a new run period:
  541. */
  542. se->exec_start = rq_of(cfs_rq)->clock_task;
  543. }
  544. /**************************************************
  545. * Scheduling class queueing methods:
  546. */
  547. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  548. static void
  549. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  550. {
  551. cfs_rq->task_weight += weight;
  552. }
  553. #else
  554. static inline void
  555. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  556. {
  557. }
  558. #endif
  559. static void
  560. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  561. {
  562. update_load_add(&cfs_rq->load, se->load.weight);
  563. if (!parent_entity(se))
  564. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  565. if (entity_is_task(se)) {
  566. add_cfs_task_weight(cfs_rq, se->load.weight);
  567. list_add(&se->group_node, &cfs_rq->tasks);
  568. }
  569. cfs_rq->nr_running++;
  570. }
  571. static void
  572. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  573. {
  574. update_load_sub(&cfs_rq->load, se->load.weight);
  575. if (!parent_entity(se))
  576. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  577. if (entity_is_task(se)) {
  578. add_cfs_task_weight(cfs_rq, -se->load.weight);
  579. list_del_init(&se->group_node);
  580. }
  581. cfs_rq->nr_running--;
  582. }
  583. #ifdef CONFIG_FAIR_GROUP_SCHED
  584. # ifdef CONFIG_SMP
  585. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  586. int global_update)
  587. {
  588. struct task_group *tg = cfs_rq->tg;
  589. long load_avg;
  590. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  591. load_avg -= cfs_rq->load_contribution;
  592. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  593. atomic_add(load_avg, &tg->load_weight);
  594. cfs_rq->load_contribution += load_avg;
  595. }
  596. }
  597. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  598. {
  599. u64 period = sysctl_sched_shares_window;
  600. u64 now, delta;
  601. unsigned long load = cfs_rq->load.weight;
  602. if (cfs_rq->tg == &root_task_group)
  603. return;
  604. now = rq_of(cfs_rq)->clock_task;
  605. delta = now - cfs_rq->load_stamp;
  606. /* truncate load history at 4 idle periods */
  607. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  608. now - cfs_rq->load_last > 4 * period) {
  609. cfs_rq->load_period = 0;
  610. cfs_rq->load_avg = 0;
  611. delta = period - 1;
  612. }
  613. cfs_rq->load_stamp = now;
  614. cfs_rq->load_unacc_exec_time = 0;
  615. cfs_rq->load_period += delta;
  616. if (load) {
  617. cfs_rq->load_last = now;
  618. cfs_rq->load_avg += delta * load;
  619. }
  620. /* consider updating load contribution on each fold or truncate */
  621. if (global_update || cfs_rq->load_period > period
  622. || !cfs_rq->load_period)
  623. update_cfs_rq_load_contribution(cfs_rq, global_update);
  624. while (cfs_rq->load_period > period) {
  625. /*
  626. * Inline assembly required to prevent the compiler
  627. * optimising this loop into a divmod call.
  628. * See __iter_div_u64_rem() for another example of this.
  629. */
  630. asm("" : "+rm" (cfs_rq->load_period));
  631. cfs_rq->load_period /= 2;
  632. cfs_rq->load_avg /= 2;
  633. }
  634. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  635. list_del_leaf_cfs_rq(cfs_rq);
  636. }
  637. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  638. {
  639. long load_weight, load, shares;
  640. load = cfs_rq->load.weight;
  641. load_weight = atomic_read(&tg->load_weight);
  642. load_weight += load;
  643. load_weight -= cfs_rq->load_contribution;
  644. shares = (tg->shares * load);
  645. if (load_weight)
  646. shares /= load_weight;
  647. if (shares < MIN_SHARES)
  648. shares = MIN_SHARES;
  649. if (shares > tg->shares)
  650. shares = tg->shares;
  651. return shares;
  652. }
  653. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  654. {
  655. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  656. update_cfs_load(cfs_rq, 0);
  657. update_cfs_shares(cfs_rq);
  658. }
  659. }
  660. # else /* CONFIG_SMP */
  661. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  662. {
  663. }
  664. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  665. {
  666. return tg->shares;
  667. }
  668. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  669. {
  670. }
  671. # endif /* CONFIG_SMP */
  672. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  673. unsigned long weight)
  674. {
  675. if (se->on_rq) {
  676. /* commit outstanding execution time */
  677. if (cfs_rq->curr == se)
  678. update_curr(cfs_rq);
  679. account_entity_dequeue(cfs_rq, se);
  680. }
  681. update_load_set(&se->load, weight);
  682. if (se->on_rq)
  683. account_entity_enqueue(cfs_rq, se);
  684. }
  685. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  686. {
  687. struct task_group *tg;
  688. struct sched_entity *se;
  689. long shares;
  690. tg = cfs_rq->tg;
  691. se = tg->se[cpu_of(rq_of(cfs_rq))];
  692. if (!se)
  693. return;
  694. #ifndef CONFIG_SMP
  695. if (likely(se->load.weight == tg->shares))
  696. return;
  697. #endif
  698. shares = calc_cfs_shares(cfs_rq, tg);
  699. reweight_entity(cfs_rq_of(se), se, shares);
  700. }
  701. #else /* CONFIG_FAIR_GROUP_SCHED */
  702. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  703. {
  704. }
  705. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  706. {
  707. }
  708. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  709. {
  710. }
  711. #endif /* CONFIG_FAIR_GROUP_SCHED */
  712. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  713. {
  714. #ifdef CONFIG_SCHEDSTATS
  715. struct task_struct *tsk = NULL;
  716. if (entity_is_task(se))
  717. tsk = task_of(se);
  718. if (se->statistics.sleep_start) {
  719. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  720. if ((s64)delta < 0)
  721. delta = 0;
  722. if (unlikely(delta > se->statistics.sleep_max))
  723. se->statistics.sleep_max = delta;
  724. se->statistics.sleep_start = 0;
  725. se->statistics.sum_sleep_runtime += delta;
  726. if (tsk) {
  727. account_scheduler_latency(tsk, delta >> 10, 1);
  728. trace_sched_stat_sleep(tsk, delta);
  729. }
  730. }
  731. if (se->statistics.block_start) {
  732. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  733. if ((s64)delta < 0)
  734. delta = 0;
  735. if (unlikely(delta > se->statistics.block_max))
  736. se->statistics.block_max = delta;
  737. se->statistics.block_start = 0;
  738. se->statistics.sum_sleep_runtime += delta;
  739. if (tsk) {
  740. if (tsk->in_iowait) {
  741. se->statistics.iowait_sum += delta;
  742. se->statistics.iowait_count++;
  743. trace_sched_stat_iowait(tsk, delta);
  744. }
  745. /*
  746. * Blocking time is in units of nanosecs, so shift by
  747. * 20 to get a milliseconds-range estimation of the
  748. * amount of time that the task spent sleeping:
  749. */
  750. if (unlikely(prof_on == SLEEP_PROFILING)) {
  751. profile_hits(SLEEP_PROFILING,
  752. (void *)get_wchan(tsk),
  753. delta >> 20);
  754. }
  755. account_scheduler_latency(tsk, delta >> 10, 0);
  756. }
  757. }
  758. #endif
  759. }
  760. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  761. {
  762. #ifdef CONFIG_SCHED_DEBUG
  763. s64 d = se->vruntime - cfs_rq->min_vruntime;
  764. if (d < 0)
  765. d = -d;
  766. if (d > 3*sysctl_sched_latency)
  767. schedstat_inc(cfs_rq, nr_spread_over);
  768. #endif
  769. }
  770. static void
  771. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  772. {
  773. u64 vruntime = cfs_rq->min_vruntime;
  774. /*
  775. * The 'current' period is already promised to the current tasks,
  776. * however the extra weight of the new task will slow them down a
  777. * little, place the new task so that it fits in the slot that
  778. * stays open at the end.
  779. */
  780. if (initial && sched_feat(START_DEBIT))
  781. vruntime += sched_vslice(cfs_rq, se);
  782. /* sleeps up to a single latency don't count. */
  783. if (!initial) {
  784. unsigned long thresh = sysctl_sched_latency;
  785. /*
  786. * Halve their sleep time's effect, to allow
  787. * for a gentler effect of sleepers:
  788. */
  789. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  790. thresh >>= 1;
  791. vruntime -= thresh;
  792. }
  793. /* ensure we never gain time by being placed backwards. */
  794. vruntime = max_vruntime(se->vruntime, vruntime);
  795. se->vruntime = vruntime;
  796. }
  797. static void
  798. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  799. {
  800. /*
  801. * Update the normalized vruntime before updating min_vruntime
  802. * through callig update_curr().
  803. */
  804. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  805. se->vruntime += cfs_rq->min_vruntime;
  806. /*
  807. * Update run-time statistics of the 'current'.
  808. */
  809. update_curr(cfs_rq);
  810. update_cfs_load(cfs_rq, 0);
  811. account_entity_enqueue(cfs_rq, se);
  812. update_cfs_shares(cfs_rq);
  813. if (flags & ENQUEUE_WAKEUP) {
  814. place_entity(cfs_rq, se, 0);
  815. enqueue_sleeper(cfs_rq, se);
  816. }
  817. update_stats_enqueue(cfs_rq, se);
  818. check_spread(cfs_rq, se);
  819. if (se != cfs_rq->curr)
  820. __enqueue_entity(cfs_rq, se);
  821. se->on_rq = 1;
  822. if (cfs_rq->nr_running == 1)
  823. list_add_leaf_cfs_rq(cfs_rq);
  824. }
  825. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  826. {
  827. if (!se || cfs_rq->last == se)
  828. cfs_rq->last = NULL;
  829. if (!se || cfs_rq->next == se)
  830. cfs_rq->next = NULL;
  831. }
  832. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  833. {
  834. for_each_sched_entity(se)
  835. __clear_buddies(cfs_rq_of(se), se);
  836. }
  837. static void
  838. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  839. {
  840. /*
  841. * Update run-time statistics of the 'current'.
  842. */
  843. update_curr(cfs_rq);
  844. update_stats_dequeue(cfs_rq, se);
  845. if (flags & DEQUEUE_SLEEP) {
  846. #ifdef CONFIG_SCHEDSTATS
  847. if (entity_is_task(se)) {
  848. struct task_struct *tsk = task_of(se);
  849. if (tsk->state & TASK_INTERRUPTIBLE)
  850. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  851. if (tsk->state & TASK_UNINTERRUPTIBLE)
  852. se->statistics.block_start = rq_of(cfs_rq)->clock;
  853. }
  854. #endif
  855. }
  856. clear_buddies(cfs_rq, se);
  857. if (se != cfs_rq->curr)
  858. __dequeue_entity(cfs_rq, se);
  859. se->on_rq = 0;
  860. update_cfs_load(cfs_rq, 0);
  861. account_entity_dequeue(cfs_rq, se);
  862. update_min_vruntime(cfs_rq);
  863. update_cfs_shares(cfs_rq);
  864. /*
  865. * Normalize the entity after updating the min_vruntime because the
  866. * update can refer to the ->curr item and we need to reflect this
  867. * movement in our normalized position.
  868. */
  869. if (!(flags & DEQUEUE_SLEEP))
  870. se->vruntime -= cfs_rq->min_vruntime;
  871. }
  872. /*
  873. * Preempt the current task with a newly woken task if needed:
  874. */
  875. static void
  876. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  877. {
  878. unsigned long ideal_runtime, delta_exec;
  879. ideal_runtime = sched_slice(cfs_rq, curr);
  880. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  881. if (delta_exec > ideal_runtime) {
  882. resched_task(rq_of(cfs_rq)->curr);
  883. /*
  884. * The current task ran long enough, ensure it doesn't get
  885. * re-elected due to buddy favours.
  886. */
  887. clear_buddies(cfs_rq, curr);
  888. return;
  889. }
  890. /*
  891. * Ensure that a task that missed wakeup preemption by a
  892. * narrow margin doesn't have to wait for a full slice.
  893. * This also mitigates buddy induced latencies under load.
  894. */
  895. if (!sched_feat(WAKEUP_PREEMPT))
  896. return;
  897. if (delta_exec < sysctl_sched_min_granularity)
  898. return;
  899. if (cfs_rq->nr_running > 1) {
  900. struct sched_entity *se = __pick_next_entity(cfs_rq);
  901. s64 delta = curr->vruntime - se->vruntime;
  902. if (delta < 0)
  903. return;
  904. if (delta > ideal_runtime)
  905. resched_task(rq_of(cfs_rq)->curr);
  906. }
  907. }
  908. static void
  909. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  910. {
  911. /* 'current' is not kept within the tree. */
  912. if (se->on_rq) {
  913. /*
  914. * Any task has to be enqueued before it get to execute on
  915. * a CPU. So account for the time it spent waiting on the
  916. * runqueue.
  917. */
  918. update_stats_wait_end(cfs_rq, se);
  919. __dequeue_entity(cfs_rq, se);
  920. }
  921. update_stats_curr_start(cfs_rq, se);
  922. cfs_rq->curr = se;
  923. #ifdef CONFIG_SCHEDSTATS
  924. /*
  925. * Track our maximum slice length, if the CPU's load is at
  926. * least twice that of our own weight (i.e. dont track it
  927. * when there are only lesser-weight tasks around):
  928. */
  929. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  930. se->statistics.slice_max = max(se->statistics.slice_max,
  931. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  932. }
  933. #endif
  934. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  935. }
  936. static int
  937. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  938. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  939. {
  940. struct sched_entity *se = __pick_next_entity(cfs_rq);
  941. struct sched_entity *left = se;
  942. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  943. se = cfs_rq->next;
  944. /*
  945. * Prefer last buddy, try to return the CPU to a preempted task.
  946. */
  947. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  948. se = cfs_rq->last;
  949. clear_buddies(cfs_rq, se);
  950. return se;
  951. }
  952. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  953. {
  954. /*
  955. * If still on the runqueue then deactivate_task()
  956. * was not called and update_curr() has to be done:
  957. */
  958. if (prev->on_rq)
  959. update_curr(cfs_rq);
  960. check_spread(cfs_rq, prev);
  961. if (prev->on_rq) {
  962. update_stats_wait_start(cfs_rq, prev);
  963. /* Put 'current' back into the tree. */
  964. __enqueue_entity(cfs_rq, prev);
  965. }
  966. cfs_rq->curr = NULL;
  967. }
  968. static void
  969. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  970. {
  971. /*
  972. * Update run-time statistics of the 'current'.
  973. */
  974. update_curr(cfs_rq);
  975. /*
  976. * Update share accounting for long-running entities.
  977. */
  978. update_entity_shares_tick(cfs_rq);
  979. #ifdef CONFIG_SCHED_HRTICK
  980. /*
  981. * queued ticks are scheduled to match the slice, so don't bother
  982. * validating it and just reschedule.
  983. */
  984. if (queued) {
  985. resched_task(rq_of(cfs_rq)->curr);
  986. return;
  987. }
  988. /*
  989. * don't let the period tick interfere with the hrtick preemption
  990. */
  991. if (!sched_feat(DOUBLE_TICK) &&
  992. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  993. return;
  994. #endif
  995. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  996. check_preempt_tick(cfs_rq, curr);
  997. }
  998. /**************************************************
  999. * CFS operations on tasks:
  1000. */
  1001. #ifdef CONFIG_SCHED_HRTICK
  1002. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1003. {
  1004. struct sched_entity *se = &p->se;
  1005. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1006. WARN_ON(task_rq(p) != rq);
  1007. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1008. u64 slice = sched_slice(cfs_rq, se);
  1009. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1010. s64 delta = slice - ran;
  1011. if (delta < 0) {
  1012. if (rq->curr == p)
  1013. resched_task(p);
  1014. return;
  1015. }
  1016. /*
  1017. * Don't schedule slices shorter than 10000ns, that just
  1018. * doesn't make sense. Rely on vruntime for fairness.
  1019. */
  1020. if (rq->curr != p)
  1021. delta = max_t(s64, 10000LL, delta);
  1022. hrtick_start(rq, delta);
  1023. }
  1024. }
  1025. /*
  1026. * called from enqueue/dequeue and updates the hrtick when the
  1027. * current task is from our class and nr_running is low enough
  1028. * to matter.
  1029. */
  1030. static void hrtick_update(struct rq *rq)
  1031. {
  1032. struct task_struct *curr = rq->curr;
  1033. if (curr->sched_class != &fair_sched_class)
  1034. return;
  1035. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1036. hrtick_start_fair(rq, curr);
  1037. }
  1038. #else /* !CONFIG_SCHED_HRTICK */
  1039. static inline void
  1040. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1041. {
  1042. }
  1043. static inline void hrtick_update(struct rq *rq)
  1044. {
  1045. }
  1046. #endif
  1047. /*
  1048. * The enqueue_task method is called before nr_running is
  1049. * increased. Here we update the fair scheduling stats and
  1050. * then put the task into the rbtree:
  1051. */
  1052. static void
  1053. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1054. {
  1055. struct cfs_rq *cfs_rq;
  1056. struct sched_entity *se = &p->se;
  1057. for_each_sched_entity(se) {
  1058. if (se->on_rq)
  1059. break;
  1060. cfs_rq = cfs_rq_of(se);
  1061. enqueue_entity(cfs_rq, se, flags);
  1062. flags = ENQUEUE_WAKEUP;
  1063. }
  1064. for_each_sched_entity(se) {
  1065. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1066. update_cfs_load(cfs_rq, 0);
  1067. update_cfs_shares(cfs_rq);
  1068. }
  1069. hrtick_update(rq);
  1070. }
  1071. /*
  1072. * The dequeue_task method is called before nr_running is
  1073. * decreased. We remove the task from the rbtree and
  1074. * update the fair scheduling stats:
  1075. */
  1076. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1077. {
  1078. struct cfs_rq *cfs_rq;
  1079. struct sched_entity *se = &p->se;
  1080. for_each_sched_entity(se) {
  1081. cfs_rq = cfs_rq_of(se);
  1082. dequeue_entity(cfs_rq, se, flags);
  1083. /* Don't dequeue parent if it has other entities besides us */
  1084. if (cfs_rq->load.weight)
  1085. break;
  1086. flags |= DEQUEUE_SLEEP;
  1087. }
  1088. for_each_sched_entity(se) {
  1089. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1090. update_cfs_load(cfs_rq, 0);
  1091. update_cfs_shares(cfs_rq);
  1092. }
  1093. hrtick_update(rq);
  1094. }
  1095. /*
  1096. * sched_yield() support is very simple - we dequeue and enqueue.
  1097. *
  1098. * If compat_yield is turned on then we requeue to the end of the tree.
  1099. */
  1100. static void yield_task_fair(struct rq *rq)
  1101. {
  1102. struct task_struct *curr = rq->curr;
  1103. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1104. struct sched_entity *rightmost, *se = &curr->se;
  1105. /*
  1106. * Are we the only task in the tree?
  1107. */
  1108. if (unlikely(cfs_rq->nr_running == 1))
  1109. return;
  1110. clear_buddies(cfs_rq, se);
  1111. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1112. update_rq_clock(rq);
  1113. /*
  1114. * Update run-time statistics of the 'current'.
  1115. */
  1116. update_curr(cfs_rq);
  1117. return;
  1118. }
  1119. /*
  1120. * Find the rightmost entry in the rbtree:
  1121. */
  1122. rightmost = __pick_last_entity(cfs_rq);
  1123. /*
  1124. * Already in the rightmost position?
  1125. */
  1126. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1127. return;
  1128. /*
  1129. * Minimally necessary key value to be last in the tree:
  1130. * Upon rescheduling, sched_class::put_prev_task() will place
  1131. * 'current' within the tree based on its new key value.
  1132. */
  1133. se->vruntime = rightmost->vruntime + 1;
  1134. }
  1135. #ifdef CONFIG_SMP
  1136. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1137. {
  1138. struct sched_entity *se = &p->se;
  1139. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1140. se->vruntime -= cfs_rq->min_vruntime;
  1141. }
  1142. #ifdef CONFIG_FAIR_GROUP_SCHED
  1143. /*
  1144. * effective_load() calculates the load change as seen from the root_task_group
  1145. *
  1146. * Adding load to a group doesn't make a group heavier, but can cause movement
  1147. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1148. * can calculate the shift in shares.
  1149. */
  1150. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1151. {
  1152. struct sched_entity *se = tg->se[cpu];
  1153. if (!tg->parent)
  1154. return wl;
  1155. for_each_sched_entity(se) {
  1156. long lw, w;
  1157. tg = se->my_q->tg;
  1158. w = se->my_q->load.weight;
  1159. /* use this cpu's instantaneous contribution */
  1160. lw = atomic_read(&tg->load_weight);
  1161. lw -= se->my_q->load_contribution;
  1162. lw += w + wg;
  1163. wl += w;
  1164. if (lw > 0 && wl < lw)
  1165. wl = (wl * tg->shares) / lw;
  1166. else
  1167. wl = tg->shares;
  1168. /* zero point is MIN_SHARES */
  1169. if (wl < MIN_SHARES)
  1170. wl = MIN_SHARES;
  1171. wl -= se->load.weight;
  1172. wg = 0;
  1173. }
  1174. return wl;
  1175. }
  1176. #else
  1177. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1178. unsigned long wl, unsigned long wg)
  1179. {
  1180. return wl;
  1181. }
  1182. #endif
  1183. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1184. {
  1185. s64 this_load, load;
  1186. int idx, this_cpu, prev_cpu;
  1187. unsigned long tl_per_task;
  1188. struct task_group *tg;
  1189. unsigned long weight;
  1190. int balanced;
  1191. idx = sd->wake_idx;
  1192. this_cpu = smp_processor_id();
  1193. prev_cpu = task_cpu(p);
  1194. load = source_load(prev_cpu, idx);
  1195. this_load = target_load(this_cpu, idx);
  1196. /*
  1197. * If sync wakeup then subtract the (maximum possible)
  1198. * effect of the currently running task from the load
  1199. * of the current CPU:
  1200. */
  1201. rcu_read_lock();
  1202. if (sync) {
  1203. tg = task_group(current);
  1204. weight = current->se.load.weight;
  1205. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1206. load += effective_load(tg, prev_cpu, 0, -weight);
  1207. }
  1208. tg = task_group(p);
  1209. weight = p->se.load.weight;
  1210. /*
  1211. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1212. * due to the sync cause above having dropped this_load to 0, we'll
  1213. * always have an imbalance, but there's really nothing you can do
  1214. * about that, so that's good too.
  1215. *
  1216. * Otherwise check if either cpus are near enough in load to allow this
  1217. * task to be woken on this_cpu.
  1218. */
  1219. if (this_load > 0) {
  1220. s64 this_eff_load, prev_eff_load;
  1221. this_eff_load = 100;
  1222. this_eff_load *= power_of(prev_cpu);
  1223. this_eff_load *= this_load +
  1224. effective_load(tg, this_cpu, weight, weight);
  1225. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1226. prev_eff_load *= power_of(this_cpu);
  1227. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1228. balanced = this_eff_load <= prev_eff_load;
  1229. } else
  1230. balanced = true;
  1231. rcu_read_unlock();
  1232. /*
  1233. * If the currently running task will sleep within
  1234. * a reasonable amount of time then attract this newly
  1235. * woken task:
  1236. */
  1237. if (sync && balanced)
  1238. return 1;
  1239. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1240. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1241. if (balanced ||
  1242. (this_load <= load &&
  1243. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1244. /*
  1245. * This domain has SD_WAKE_AFFINE and
  1246. * p is cache cold in this domain, and
  1247. * there is no bad imbalance.
  1248. */
  1249. schedstat_inc(sd, ttwu_move_affine);
  1250. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1251. return 1;
  1252. }
  1253. return 0;
  1254. }
  1255. /*
  1256. * find_idlest_group finds and returns the least busy CPU group within the
  1257. * domain.
  1258. */
  1259. static struct sched_group *
  1260. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1261. int this_cpu, int load_idx)
  1262. {
  1263. struct sched_group *idlest = NULL, *group = sd->groups;
  1264. unsigned long min_load = ULONG_MAX, this_load = 0;
  1265. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1266. do {
  1267. unsigned long load, avg_load;
  1268. int local_group;
  1269. int i;
  1270. /* Skip over this group if it has no CPUs allowed */
  1271. if (!cpumask_intersects(sched_group_cpus(group),
  1272. &p->cpus_allowed))
  1273. continue;
  1274. local_group = cpumask_test_cpu(this_cpu,
  1275. sched_group_cpus(group));
  1276. /* Tally up the load of all CPUs in the group */
  1277. avg_load = 0;
  1278. for_each_cpu(i, sched_group_cpus(group)) {
  1279. /* Bias balancing toward cpus of our domain */
  1280. if (local_group)
  1281. load = source_load(i, load_idx);
  1282. else
  1283. load = target_load(i, load_idx);
  1284. avg_load += load;
  1285. }
  1286. /* Adjust by relative CPU power of the group */
  1287. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1288. if (local_group) {
  1289. this_load = avg_load;
  1290. } else if (avg_load < min_load) {
  1291. min_load = avg_load;
  1292. idlest = group;
  1293. }
  1294. } while (group = group->next, group != sd->groups);
  1295. if (!idlest || 100*this_load < imbalance*min_load)
  1296. return NULL;
  1297. return idlest;
  1298. }
  1299. /*
  1300. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1301. */
  1302. static int
  1303. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1304. {
  1305. unsigned long load, min_load = ULONG_MAX;
  1306. int idlest = -1;
  1307. int i;
  1308. /* Traverse only the allowed CPUs */
  1309. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1310. load = weighted_cpuload(i);
  1311. if (load < min_load || (load == min_load && i == this_cpu)) {
  1312. min_load = load;
  1313. idlest = i;
  1314. }
  1315. }
  1316. return idlest;
  1317. }
  1318. /*
  1319. * Try and locate an idle CPU in the sched_domain.
  1320. */
  1321. static int select_idle_sibling(struct task_struct *p, int target)
  1322. {
  1323. int cpu = smp_processor_id();
  1324. int prev_cpu = task_cpu(p);
  1325. struct sched_domain *sd;
  1326. int i;
  1327. /*
  1328. * If the task is going to be woken-up on this cpu and if it is
  1329. * already idle, then it is the right target.
  1330. */
  1331. if (target == cpu && idle_cpu(cpu))
  1332. return cpu;
  1333. /*
  1334. * If the task is going to be woken-up on the cpu where it previously
  1335. * ran and if it is currently idle, then it the right target.
  1336. */
  1337. if (target == prev_cpu && idle_cpu(prev_cpu))
  1338. return prev_cpu;
  1339. /*
  1340. * Otherwise, iterate the domains and find an elegible idle cpu.
  1341. */
  1342. for_each_domain(target, sd) {
  1343. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1344. break;
  1345. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1346. if (idle_cpu(i)) {
  1347. target = i;
  1348. break;
  1349. }
  1350. }
  1351. /*
  1352. * Lets stop looking for an idle sibling when we reached
  1353. * the domain that spans the current cpu and prev_cpu.
  1354. */
  1355. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1356. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1357. break;
  1358. }
  1359. return target;
  1360. }
  1361. /*
  1362. * sched_balance_self: balance the current task (running on cpu) in domains
  1363. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1364. * SD_BALANCE_EXEC.
  1365. *
  1366. * Balance, ie. select the least loaded group.
  1367. *
  1368. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1369. *
  1370. * preempt must be disabled.
  1371. */
  1372. static int
  1373. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1374. {
  1375. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1376. int cpu = smp_processor_id();
  1377. int prev_cpu = task_cpu(p);
  1378. int new_cpu = cpu;
  1379. int want_affine = 0;
  1380. int want_sd = 1;
  1381. int sync = wake_flags & WF_SYNC;
  1382. if (sd_flag & SD_BALANCE_WAKE) {
  1383. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1384. want_affine = 1;
  1385. new_cpu = prev_cpu;
  1386. }
  1387. for_each_domain(cpu, tmp) {
  1388. if (!(tmp->flags & SD_LOAD_BALANCE))
  1389. continue;
  1390. /*
  1391. * If power savings logic is enabled for a domain, see if we
  1392. * are not overloaded, if so, don't balance wider.
  1393. */
  1394. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1395. unsigned long power = 0;
  1396. unsigned long nr_running = 0;
  1397. unsigned long capacity;
  1398. int i;
  1399. for_each_cpu(i, sched_domain_span(tmp)) {
  1400. power += power_of(i);
  1401. nr_running += cpu_rq(i)->cfs.nr_running;
  1402. }
  1403. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1404. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1405. nr_running /= 2;
  1406. if (nr_running < capacity)
  1407. want_sd = 0;
  1408. }
  1409. /*
  1410. * If both cpu and prev_cpu are part of this domain,
  1411. * cpu is a valid SD_WAKE_AFFINE target.
  1412. */
  1413. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1414. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1415. affine_sd = tmp;
  1416. want_affine = 0;
  1417. }
  1418. if (!want_sd && !want_affine)
  1419. break;
  1420. if (!(tmp->flags & sd_flag))
  1421. continue;
  1422. if (want_sd)
  1423. sd = tmp;
  1424. }
  1425. if (affine_sd) {
  1426. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1427. return select_idle_sibling(p, cpu);
  1428. else
  1429. return select_idle_sibling(p, prev_cpu);
  1430. }
  1431. while (sd) {
  1432. int load_idx = sd->forkexec_idx;
  1433. struct sched_group *group;
  1434. int weight;
  1435. if (!(sd->flags & sd_flag)) {
  1436. sd = sd->child;
  1437. continue;
  1438. }
  1439. if (sd_flag & SD_BALANCE_WAKE)
  1440. load_idx = sd->wake_idx;
  1441. group = find_idlest_group(sd, p, cpu, load_idx);
  1442. if (!group) {
  1443. sd = sd->child;
  1444. continue;
  1445. }
  1446. new_cpu = find_idlest_cpu(group, p, cpu);
  1447. if (new_cpu == -1 || new_cpu == cpu) {
  1448. /* Now try balancing at a lower domain level of cpu */
  1449. sd = sd->child;
  1450. continue;
  1451. }
  1452. /* Now try balancing at a lower domain level of new_cpu */
  1453. cpu = new_cpu;
  1454. weight = sd->span_weight;
  1455. sd = NULL;
  1456. for_each_domain(cpu, tmp) {
  1457. if (weight <= tmp->span_weight)
  1458. break;
  1459. if (tmp->flags & sd_flag)
  1460. sd = tmp;
  1461. }
  1462. /* while loop will break here if sd == NULL */
  1463. }
  1464. return new_cpu;
  1465. }
  1466. #endif /* CONFIG_SMP */
  1467. static unsigned long
  1468. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1469. {
  1470. unsigned long gran = sysctl_sched_wakeup_granularity;
  1471. /*
  1472. * Since its curr running now, convert the gran from real-time
  1473. * to virtual-time in his units.
  1474. *
  1475. * By using 'se' instead of 'curr' we penalize light tasks, so
  1476. * they get preempted easier. That is, if 'se' < 'curr' then
  1477. * the resulting gran will be larger, therefore penalizing the
  1478. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1479. * be smaller, again penalizing the lighter task.
  1480. *
  1481. * This is especially important for buddies when the leftmost
  1482. * task is higher priority than the buddy.
  1483. */
  1484. if (unlikely(se->load.weight != NICE_0_LOAD))
  1485. gran = calc_delta_fair(gran, se);
  1486. return gran;
  1487. }
  1488. /*
  1489. * Should 'se' preempt 'curr'.
  1490. *
  1491. * |s1
  1492. * |s2
  1493. * |s3
  1494. * g
  1495. * |<--->|c
  1496. *
  1497. * w(c, s1) = -1
  1498. * w(c, s2) = 0
  1499. * w(c, s3) = 1
  1500. *
  1501. */
  1502. static int
  1503. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1504. {
  1505. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1506. if (vdiff <= 0)
  1507. return -1;
  1508. gran = wakeup_gran(curr, se);
  1509. if (vdiff > gran)
  1510. return 1;
  1511. return 0;
  1512. }
  1513. static void set_last_buddy(struct sched_entity *se)
  1514. {
  1515. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1516. for_each_sched_entity(se)
  1517. cfs_rq_of(se)->last = se;
  1518. }
  1519. }
  1520. static void set_next_buddy(struct sched_entity *se)
  1521. {
  1522. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1523. for_each_sched_entity(se)
  1524. cfs_rq_of(se)->next = se;
  1525. }
  1526. }
  1527. /*
  1528. * Preempt the current task with a newly woken task if needed:
  1529. */
  1530. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1531. {
  1532. struct task_struct *curr = rq->curr;
  1533. struct sched_entity *se = &curr->se, *pse = &p->se;
  1534. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1535. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1536. if (unlikely(se == pse))
  1537. return;
  1538. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1539. set_next_buddy(pse);
  1540. /*
  1541. * We can come here with TIF_NEED_RESCHED already set from new task
  1542. * wake up path.
  1543. */
  1544. if (test_tsk_need_resched(curr))
  1545. return;
  1546. /*
  1547. * Batch and idle tasks do not preempt (their preemption is driven by
  1548. * the tick):
  1549. */
  1550. if (unlikely(p->policy != SCHED_NORMAL))
  1551. return;
  1552. /* Idle tasks are by definition preempted by everybody. */
  1553. if (unlikely(curr->policy == SCHED_IDLE))
  1554. goto preempt;
  1555. if (!sched_feat(WAKEUP_PREEMPT))
  1556. return;
  1557. update_curr(cfs_rq);
  1558. find_matching_se(&se, &pse);
  1559. BUG_ON(!pse);
  1560. if (wakeup_preempt_entity(se, pse) == 1)
  1561. goto preempt;
  1562. return;
  1563. preempt:
  1564. resched_task(curr);
  1565. /*
  1566. * Only set the backward buddy when the current task is still
  1567. * on the rq. This can happen when a wakeup gets interleaved
  1568. * with schedule on the ->pre_schedule() or idle_balance()
  1569. * point, either of which can * drop the rq lock.
  1570. *
  1571. * Also, during early boot the idle thread is in the fair class,
  1572. * for obvious reasons its a bad idea to schedule back to it.
  1573. */
  1574. if (unlikely(!se->on_rq || curr == rq->idle))
  1575. return;
  1576. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1577. set_last_buddy(se);
  1578. }
  1579. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1580. {
  1581. struct task_struct *p;
  1582. struct cfs_rq *cfs_rq = &rq->cfs;
  1583. struct sched_entity *se;
  1584. if (!cfs_rq->nr_running)
  1585. return NULL;
  1586. do {
  1587. se = pick_next_entity(cfs_rq);
  1588. set_next_entity(cfs_rq, se);
  1589. cfs_rq = group_cfs_rq(se);
  1590. } while (cfs_rq);
  1591. p = task_of(se);
  1592. hrtick_start_fair(rq, p);
  1593. return p;
  1594. }
  1595. /*
  1596. * Account for a descheduled task:
  1597. */
  1598. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1599. {
  1600. struct sched_entity *se = &prev->se;
  1601. struct cfs_rq *cfs_rq;
  1602. for_each_sched_entity(se) {
  1603. cfs_rq = cfs_rq_of(se);
  1604. put_prev_entity(cfs_rq, se);
  1605. }
  1606. }
  1607. #ifdef CONFIG_SMP
  1608. /**************************************************
  1609. * Fair scheduling class load-balancing methods:
  1610. */
  1611. /*
  1612. * pull_task - move a task from a remote runqueue to the local runqueue.
  1613. * Both runqueues must be locked.
  1614. */
  1615. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1616. struct rq *this_rq, int this_cpu)
  1617. {
  1618. deactivate_task(src_rq, p, 0);
  1619. set_task_cpu(p, this_cpu);
  1620. activate_task(this_rq, p, 0);
  1621. check_preempt_curr(this_rq, p, 0);
  1622. }
  1623. /*
  1624. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1625. */
  1626. static
  1627. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1628. struct sched_domain *sd, enum cpu_idle_type idle,
  1629. int *all_pinned)
  1630. {
  1631. int tsk_cache_hot = 0;
  1632. /*
  1633. * We do not migrate tasks that are:
  1634. * 1) running (obviously), or
  1635. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1636. * 3) are cache-hot on their current CPU.
  1637. */
  1638. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1639. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1640. return 0;
  1641. }
  1642. *all_pinned = 0;
  1643. if (task_running(rq, p)) {
  1644. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1645. return 0;
  1646. }
  1647. /*
  1648. * Aggressive migration if:
  1649. * 1) task is cache cold, or
  1650. * 2) too many balance attempts have failed.
  1651. */
  1652. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1653. if (!tsk_cache_hot ||
  1654. sd->nr_balance_failed > sd->cache_nice_tries) {
  1655. #ifdef CONFIG_SCHEDSTATS
  1656. if (tsk_cache_hot) {
  1657. schedstat_inc(sd, lb_hot_gained[idle]);
  1658. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1659. }
  1660. #endif
  1661. return 1;
  1662. }
  1663. if (tsk_cache_hot) {
  1664. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1665. return 0;
  1666. }
  1667. return 1;
  1668. }
  1669. /*
  1670. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1671. * part of active balancing operations within "domain".
  1672. * Returns 1 if successful and 0 otherwise.
  1673. *
  1674. * Called with both runqueues locked.
  1675. */
  1676. static int
  1677. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1678. struct sched_domain *sd, enum cpu_idle_type idle)
  1679. {
  1680. struct task_struct *p, *n;
  1681. struct cfs_rq *cfs_rq;
  1682. int pinned = 0;
  1683. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1684. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1685. if (!can_migrate_task(p, busiest, this_cpu,
  1686. sd, idle, &pinned))
  1687. continue;
  1688. pull_task(busiest, p, this_rq, this_cpu);
  1689. /*
  1690. * Right now, this is only the second place pull_task()
  1691. * is called, so we can safely collect pull_task()
  1692. * stats here rather than inside pull_task().
  1693. */
  1694. schedstat_inc(sd, lb_gained[idle]);
  1695. return 1;
  1696. }
  1697. }
  1698. return 0;
  1699. }
  1700. static unsigned long
  1701. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1702. unsigned long max_load_move, struct sched_domain *sd,
  1703. enum cpu_idle_type idle, int *all_pinned,
  1704. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1705. {
  1706. int loops = 0, pulled = 0, pinned = 0;
  1707. long rem_load_move = max_load_move;
  1708. struct task_struct *p, *n;
  1709. if (max_load_move == 0)
  1710. goto out;
  1711. pinned = 1;
  1712. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1713. if (loops++ > sysctl_sched_nr_migrate)
  1714. break;
  1715. if ((p->se.load.weight >> 1) > rem_load_move ||
  1716. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1717. continue;
  1718. pull_task(busiest, p, this_rq, this_cpu);
  1719. pulled++;
  1720. rem_load_move -= p->se.load.weight;
  1721. #ifdef CONFIG_PREEMPT
  1722. /*
  1723. * NEWIDLE balancing is a source of latency, so preemptible
  1724. * kernels will stop after the first task is pulled to minimize
  1725. * the critical section.
  1726. */
  1727. if (idle == CPU_NEWLY_IDLE)
  1728. break;
  1729. #endif
  1730. /*
  1731. * We only want to steal up to the prescribed amount of
  1732. * weighted load.
  1733. */
  1734. if (rem_load_move <= 0)
  1735. break;
  1736. if (p->prio < *this_best_prio)
  1737. *this_best_prio = p->prio;
  1738. }
  1739. out:
  1740. /*
  1741. * Right now, this is one of only two places pull_task() is called,
  1742. * so we can safely collect pull_task() stats here rather than
  1743. * inside pull_task().
  1744. */
  1745. schedstat_add(sd, lb_gained[idle], pulled);
  1746. if (all_pinned)
  1747. *all_pinned = pinned;
  1748. return max_load_move - rem_load_move;
  1749. }
  1750. #ifdef CONFIG_FAIR_GROUP_SCHED
  1751. /*
  1752. * update tg->load_weight by folding this cpu's load_avg
  1753. */
  1754. static int update_shares_cpu(struct task_group *tg, int cpu)
  1755. {
  1756. struct cfs_rq *cfs_rq;
  1757. unsigned long flags;
  1758. struct rq *rq;
  1759. if (!tg->se[cpu])
  1760. return 0;
  1761. rq = cpu_rq(cpu);
  1762. cfs_rq = tg->cfs_rq[cpu];
  1763. raw_spin_lock_irqsave(&rq->lock, flags);
  1764. update_rq_clock(rq);
  1765. update_cfs_load(cfs_rq, 1);
  1766. /*
  1767. * We need to update shares after updating tg->load_weight in
  1768. * order to adjust the weight of groups with long running tasks.
  1769. */
  1770. update_cfs_shares(cfs_rq);
  1771. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1772. return 0;
  1773. }
  1774. static void update_shares(int cpu)
  1775. {
  1776. struct cfs_rq *cfs_rq;
  1777. struct rq *rq = cpu_rq(cpu);
  1778. rcu_read_lock();
  1779. for_each_leaf_cfs_rq(rq, cfs_rq)
  1780. update_shares_cpu(cfs_rq->tg, cpu);
  1781. rcu_read_unlock();
  1782. }
  1783. static unsigned long
  1784. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1785. unsigned long max_load_move,
  1786. struct sched_domain *sd, enum cpu_idle_type idle,
  1787. int *all_pinned, int *this_best_prio)
  1788. {
  1789. long rem_load_move = max_load_move;
  1790. int busiest_cpu = cpu_of(busiest);
  1791. struct task_group *tg;
  1792. rcu_read_lock();
  1793. update_h_load(busiest_cpu);
  1794. list_for_each_entry_rcu(tg, &task_groups, list) {
  1795. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1796. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1797. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1798. u64 rem_load, moved_load;
  1799. /*
  1800. * empty group
  1801. */
  1802. if (!busiest_cfs_rq->task_weight)
  1803. continue;
  1804. rem_load = (u64)rem_load_move * busiest_weight;
  1805. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1806. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1807. rem_load, sd, idle, all_pinned, this_best_prio,
  1808. busiest_cfs_rq);
  1809. if (!moved_load)
  1810. continue;
  1811. moved_load *= busiest_h_load;
  1812. moved_load = div_u64(moved_load, busiest_weight + 1);
  1813. rem_load_move -= moved_load;
  1814. if (rem_load_move < 0)
  1815. break;
  1816. }
  1817. rcu_read_unlock();
  1818. return max_load_move - rem_load_move;
  1819. }
  1820. #else
  1821. static inline void update_shares(int cpu)
  1822. {
  1823. }
  1824. static unsigned long
  1825. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1826. unsigned long max_load_move,
  1827. struct sched_domain *sd, enum cpu_idle_type idle,
  1828. int *all_pinned, int *this_best_prio)
  1829. {
  1830. return balance_tasks(this_rq, this_cpu, busiest,
  1831. max_load_move, sd, idle, all_pinned,
  1832. this_best_prio, &busiest->cfs);
  1833. }
  1834. #endif
  1835. /*
  1836. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1837. * this_rq, as part of a balancing operation within domain "sd".
  1838. * Returns 1 if successful and 0 otherwise.
  1839. *
  1840. * Called with both runqueues locked.
  1841. */
  1842. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1843. unsigned long max_load_move,
  1844. struct sched_domain *sd, enum cpu_idle_type idle,
  1845. int *all_pinned)
  1846. {
  1847. unsigned long total_load_moved = 0, load_moved;
  1848. int this_best_prio = this_rq->curr->prio;
  1849. do {
  1850. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1851. max_load_move - total_load_moved,
  1852. sd, idle, all_pinned, &this_best_prio);
  1853. total_load_moved += load_moved;
  1854. #ifdef CONFIG_PREEMPT
  1855. /*
  1856. * NEWIDLE balancing is a source of latency, so preemptible
  1857. * kernels will stop after the first task is pulled to minimize
  1858. * the critical section.
  1859. */
  1860. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1861. break;
  1862. if (raw_spin_is_contended(&this_rq->lock) ||
  1863. raw_spin_is_contended(&busiest->lock))
  1864. break;
  1865. #endif
  1866. } while (load_moved && max_load_move > total_load_moved);
  1867. return total_load_moved > 0;
  1868. }
  1869. /********** Helpers for find_busiest_group ************************/
  1870. /*
  1871. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1872. * during load balancing.
  1873. */
  1874. struct sd_lb_stats {
  1875. struct sched_group *busiest; /* Busiest group in this sd */
  1876. struct sched_group *this; /* Local group in this sd */
  1877. unsigned long total_load; /* Total load of all groups in sd */
  1878. unsigned long total_pwr; /* Total power of all groups in sd */
  1879. unsigned long avg_load; /* Average load across all groups in sd */
  1880. /** Statistics of this group */
  1881. unsigned long this_load;
  1882. unsigned long this_load_per_task;
  1883. unsigned long this_nr_running;
  1884. unsigned long this_has_capacity;
  1885. unsigned int this_idle_cpus;
  1886. /* Statistics of the busiest group */
  1887. unsigned int busiest_idle_cpus;
  1888. unsigned long max_load;
  1889. unsigned long busiest_load_per_task;
  1890. unsigned long busiest_nr_running;
  1891. unsigned long busiest_group_capacity;
  1892. unsigned long busiest_has_capacity;
  1893. unsigned int busiest_group_weight;
  1894. int group_imb; /* Is there imbalance in this sd */
  1895. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1896. int power_savings_balance; /* Is powersave balance needed for this sd */
  1897. struct sched_group *group_min; /* Least loaded group in sd */
  1898. struct sched_group *group_leader; /* Group which relieves group_min */
  1899. unsigned long min_load_per_task; /* load_per_task in group_min */
  1900. unsigned long leader_nr_running; /* Nr running of group_leader */
  1901. unsigned long min_nr_running; /* Nr running of group_min */
  1902. #endif
  1903. };
  1904. /*
  1905. * sg_lb_stats - stats of a sched_group required for load_balancing
  1906. */
  1907. struct sg_lb_stats {
  1908. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1909. unsigned long group_load; /* Total load over the CPUs of the group */
  1910. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1911. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1912. unsigned long group_capacity;
  1913. unsigned long idle_cpus;
  1914. unsigned long group_weight;
  1915. int group_imb; /* Is there an imbalance in the group ? */
  1916. int group_has_capacity; /* Is there extra capacity in the group? */
  1917. };
  1918. /**
  1919. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1920. * @group: The group whose first cpu is to be returned.
  1921. */
  1922. static inline unsigned int group_first_cpu(struct sched_group *group)
  1923. {
  1924. return cpumask_first(sched_group_cpus(group));
  1925. }
  1926. /**
  1927. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1928. * @sd: The sched_domain whose load_idx is to be obtained.
  1929. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1930. */
  1931. static inline int get_sd_load_idx(struct sched_domain *sd,
  1932. enum cpu_idle_type idle)
  1933. {
  1934. int load_idx;
  1935. switch (idle) {
  1936. case CPU_NOT_IDLE:
  1937. load_idx = sd->busy_idx;
  1938. break;
  1939. case CPU_NEWLY_IDLE:
  1940. load_idx = sd->newidle_idx;
  1941. break;
  1942. default:
  1943. load_idx = sd->idle_idx;
  1944. break;
  1945. }
  1946. return load_idx;
  1947. }
  1948. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1949. /**
  1950. * init_sd_power_savings_stats - Initialize power savings statistics for
  1951. * the given sched_domain, during load balancing.
  1952. *
  1953. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1954. * @sds: Variable containing the statistics for sd.
  1955. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1956. */
  1957. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1958. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1959. {
  1960. /*
  1961. * Busy processors will not participate in power savings
  1962. * balance.
  1963. */
  1964. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1965. sds->power_savings_balance = 0;
  1966. else {
  1967. sds->power_savings_balance = 1;
  1968. sds->min_nr_running = ULONG_MAX;
  1969. sds->leader_nr_running = 0;
  1970. }
  1971. }
  1972. /**
  1973. * update_sd_power_savings_stats - Update the power saving stats for a
  1974. * sched_domain while performing load balancing.
  1975. *
  1976. * @group: sched_group belonging to the sched_domain under consideration.
  1977. * @sds: Variable containing the statistics of the sched_domain
  1978. * @local_group: Does group contain the CPU for which we're performing
  1979. * load balancing ?
  1980. * @sgs: Variable containing the statistics of the group.
  1981. */
  1982. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1983. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1984. {
  1985. if (!sds->power_savings_balance)
  1986. return;
  1987. /*
  1988. * If the local group is idle or completely loaded
  1989. * no need to do power savings balance at this domain
  1990. */
  1991. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1992. !sds->this_nr_running))
  1993. sds->power_savings_balance = 0;
  1994. /*
  1995. * If a group is already running at full capacity or idle,
  1996. * don't include that group in power savings calculations
  1997. */
  1998. if (!sds->power_savings_balance ||
  1999. sgs->sum_nr_running >= sgs->group_capacity ||
  2000. !sgs->sum_nr_running)
  2001. return;
  2002. /*
  2003. * Calculate the group which has the least non-idle load.
  2004. * This is the group from where we need to pick up the load
  2005. * for saving power
  2006. */
  2007. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2008. (sgs->sum_nr_running == sds->min_nr_running &&
  2009. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2010. sds->group_min = group;
  2011. sds->min_nr_running = sgs->sum_nr_running;
  2012. sds->min_load_per_task = sgs->sum_weighted_load /
  2013. sgs->sum_nr_running;
  2014. }
  2015. /*
  2016. * Calculate the group which is almost near its
  2017. * capacity but still has some space to pick up some load
  2018. * from other group and save more power
  2019. */
  2020. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2021. return;
  2022. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2023. (sgs->sum_nr_running == sds->leader_nr_running &&
  2024. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2025. sds->group_leader = group;
  2026. sds->leader_nr_running = sgs->sum_nr_running;
  2027. }
  2028. }
  2029. /**
  2030. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2031. * @sds: Variable containing the statistics of the sched_domain
  2032. * under consideration.
  2033. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2034. * @imbalance: Variable to store the imbalance.
  2035. *
  2036. * Description:
  2037. * Check if we have potential to perform some power-savings balance.
  2038. * If yes, set the busiest group to be the least loaded group in the
  2039. * sched_domain, so that it's CPUs can be put to idle.
  2040. *
  2041. * Returns 1 if there is potential to perform power-savings balance.
  2042. * Else returns 0.
  2043. */
  2044. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2045. int this_cpu, unsigned long *imbalance)
  2046. {
  2047. if (!sds->power_savings_balance)
  2048. return 0;
  2049. if (sds->this != sds->group_leader ||
  2050. sds->group_leader == sds->group_min)
  2051. return 0;
  2052. *imbalance = sds->min_load_per_task;
  2053. sds->busiest = sds->group_min;
  2054. return 1;
  2055. }
  2056. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2057. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2058. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2059. {
  2060. return;
  2061. }
  2062. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2063. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2064. {
  2065. return;
  2066. }
  2067. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2068. int this_cpu, unsigned long *imbalance)
  2069. {
  2070. return 0;
  2071. }
  2072. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2073. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2074. {
  2075. return SCHED_LOAD_SCALE;
  2076. }
  2077. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2078. {
  2079. return default_scale_freq_power(sd, cpu);
  2080. }
  2081. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2082. {
  2083. unsigned long weight = sd->span_weight;
  2084. unsigned long smt_gain = sd->smt_gain;
  2085. smt_gain /= weight;
  2086. return smt_gain;
  2087. }
  2088. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2089. {
  2090. return default_scale_smt_power(sd, cpu);
  2091. }
  2092. unsigned long scale_rt_power(int cpu)
  2093. {
  2094. struct rq *rq = cpu_rq(cpu);
  2095. u64 total, available;
  2096. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2097. if (unlikely(total < rq->rt_avg)) {
  2098. /* Ensures that power won't end up being negative */
  2099. available = 0;
  2100. } else {
  2101. available = total - rq->rt_avg;
  2102. }
  2103. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2104. total = SCHED_LOAD_SCALE;
  2105. total >>= SCHED_LOAD_SHIFT;
  2106. return div_u64(available, total);
  2107. }
  2108. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2109. {
  2110. unsigned long weight = sd->span_weight;
  2111. unsigned long power = SCHED_LOAD_SCALE;
  2112. struct sched_group *sdg = sd->groups;
  2113. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2114. if (sched_feat(ARCH_POWER))
  2115. power *= arch_scale_smt_power(sd, cpu);
  2116. else
  2117. power *= default_scale_smt_power(sd, cpu);
  2118. power >>= SCHED_LOAD_SHIFT;
  2119. }
  2120. sdg->cpu_power_orig = power;
  2121. if (sched_feat(ARCH_POWER))
  2122. power *= arch_scale_freq_power(sd, cpu);
  2123. else
  2124. power *= default_scale_freq_power(sd, cpu);
  2125. power >>= SCHED_LOAD_SHIFT;
  2126. power *= scale_rt_power(cpu);
  2127. power >>= SCHED_LOAD_SHIFT;
  2128. if (!power)
  2129. power = 1;
  2130. cpu_rq(cpu)->cpu_power = power;
  2131. sdg->cpu_power = power;
  2132. }
  2133. static void update_group_power(struct sched_domain *sd, int cpu)
  2134. {
  2135. struct sched_domain *child = sd->child;
  2136. struct sched_group *group, *sdg = sd->groups;
  2137. unsigned long power;
  2138. if (!child) {
  2139. update_cpu_power(sd, cpu);
  2140. return;
  2141. }
  2142. power = 0;
  2143. group = child->groups;
  2144. do {
  2145. power += group->cpu_power;
  2146. group = group->next;
  2147. } while (group != child->groups);
  2148. sdg->cpu_power = power;
  2149. }
  2150. /*
  2151. * Try and fix up capacity for tiny siblings, this is needed when
  2152. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2153. * which on its own isn't powerful enough.
  2154. *
  2155. * See update_sd_pick_busiest() and check_asym_packing().
  2156. */
  2157. static inline int
  2158. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2159. {
  2160. /*
  2161. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2162. */
  2163. if (sd->level != SD_LV_SIBLING)
  2164. return 0;
  2165. /*
  2166. * If ~90% of the cpu_power is still there, we're good.
  2167. */
  2168. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2169. return 1;
  2170. return 0;
  2171. }
  2172. /**
  2173. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2174. * @sd: The sched_domain whose statistics are to be updated.
  2175. * @group: sched_group whose statistics are to be updated.
  2176. * @this_cpu: Cpu for which load balance is currently performed.
  2177. * @idle: Idle status of this_cpu
  2178. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2179. * @sd_idle: Idle status of the sched_domain containing group.
  2180. * @local_group: Does group contain this_cpu.
  2181. * @cpus: Set of cpus considered for load balancing.
  2182. * @balance: Should we balance.
  2183. * @sgs: variable to hold the statistics for this group.
  2184. */
  2185. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2186. struct sched_group *group, int this_cpu,
  2187. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2188. int local_group, const struct cpumask *cpus,
  2189. int *balance, struct sg_lb_stats *sgs)
  2190. {
  2191. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2192. int i;
  2193. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2194. unsigned long avg_load_per_task = 0;
  2195. if (local_group)
  2196. balance_cpu = group_first_cpu(group);
  2197. /* Tally up the load of all CPUs in the group */
  2198. max_cpu_load = 0;
  2199. min_cpu_load = ~0UL;
  2200. max_nr_running = 0;
  2201. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2202. struct rq *rq = cpu_rq(i);
  2203. if (*sd_idle && rq->nr_running)
  2204. *sd_idle = 0;
  2205. /* Bias balancing toward cpus of our domain */
  2206. if (local_group) {
  2207. if (idle_cpu(i) && !first_idle_cpu) {
  2208. first_idle_cpu = 1;
  2209. balance_cpu = i;
  2210. }
  2211. load = target_load(i, load_idx);
  2212. } else {
  2213. load = source_load(i, load_idx);
  2214. if (load > max_cpu_load) {
  2215. max_cpu_load = load;
  2216. max_nr_running = rq->nr_running;
  2217. }
  2218. if (min_cpu_load > load)
  2219. min_cpu_load = load;
  2220. }
  2221. sgs->group_load += load;
  2222. sgs->sum_nr_running += rq->nr_running;
  2223. sgs->sum_weighted_load += weighted_cpuload(i);
  2224. if (idle_cpu(i))
  2225. sgs->idle_cpus++;
  2226. }
  2227. /*
  2228. * First idle cpu or the first cpu(busiest) in this sched group
  2229. * is eligible for doing load balancing at this and above
  2230. * domains. In the newly idle case, we will allow all the cpu's
  2231. * to do the newly idle load balance.
  2232. */
  2233. if (idle != CPU_NEWLY_IDLE && local_group) {
  2234. if (balance_cpu != this_cpu) {
  2235. *balance = 0;
  2236. return;
  2237. }
  2238. update_group_power(sd, this_cpu);
  2239. }
  2240. /* Adjust by relative CPU power of the group */
  2241. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2242. /*
  2243. * Consider the group unbalanced when the imbalance is larger
  2244. * than the average weight of two tasks.
  2245. *
  2246. * APZ: with cgroup the avg task weight can vary wildly and
  2247. * might not be a suitable number - should we keep a
  2248. * normalized nr_running number somewhere that negates
  2249. * the hierarchy?
  2250. */
  2251. if (sgs->sum_nr_running)
  2252. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2253. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2254. sgs->group_imb = 1;
  2255. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2256. if (!sgs->group_capacity)
  2257. sgs->group_capacity = fix_small_capacity(sd, group);
  2258. sgs->group_weight = group->group_weight;
  2259. if (sgs->group_capacity > sgs->sum_nr_running)
  2260. sgs->group_has_capacity = 1;
  2261. }
  2262. /**
  2263. * update_sd_pick_busiest - return 1 on busiest group
  2264. * @sd: sched_domain whose statistics are to be checked
  2265. * @sds: sched_domain statistics
  2266. * @sg: sched_group candidate to be checked for being the busiest
  2267. * @sgs: sched_group statistics
  2268. * @this_cpu: the current cpu
  2269. *
  2270. * Determine if @sg is a busier group than the previously selected
  2271. * busiest group.
  2272. */
  2273. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2274. struct sd_lb_stats *sds,
  2275. struct sched_group *sg,
  2276. struct sg_lb_stats *sgs,
  2277. int this_cpu)
  2278. {
  2279. if (sgs->avg_load <= sds->max_load)
  2280. return false;
  2281. if (sgs->sum_nr_running > sgs->group_capacity)
  2282. return true;
  2283. if (sgs->group_imb)
  2284. return true;
  2285. /*
  2286. * ASYM_PACKING needs to move all the work to the lowest
  2287. * numbered CPUs in the group, therefore mark all groups
  2288. * higher than ourself as busy.
  2289. */
  2290. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2291. this_cpu < group_first_cpu(sg)) {
  2292. if (!sds->busiest)
  2293. return true;
  2294. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2295. return true;
  2296. }
  2297. return false;
  2298. }
  2299. /**
  2300. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2301. * @sd: sched_domain whose statistics are to be updated.
  2302. * @this_cpu: Cpu for which load balance is currently performed.
  2303. * @idle: Idle status of this_cpu
  2304. * @sd_idle: Idle status of the sched_domain containing sg.
  2305. * @cpus: Set of cpus considered for load balancing.
  2306. * @balance: Should we balance.
  2307. * @sds: variable to hold the statistics for this sched_domain.
  2308. */
  2309. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2310. enum cpu_idle_type idle, int *sd_idle,
  2311. const struct cpumask *cpus, int *balance,
  2312. struct sd_lb_stats *sds)
  2313. {
  2314. struct sched_domain *child = sd->child;
  2315. struct sched_group *sg = sd->groups;
  2316. struct sg_lb_stats sgs;
  2317. int load_idx, prefer_sibling = 0;
  2318. if (child && child->flags & SD_PREFER_SIBLING)
  2319. prefer_sibling = 1;
  2320. init_sd_power_savings_stats(sd, sds, idle);
  2321. load_idx = get_sd_load_idx(sd, idle);
  2322. do {
  2323. int local_group;
  2324. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2325. memset(&sgs, 0, sizeof(sgs));
  2326. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2327. local_group, cpus, balance, &sgs);
  2328. if (local_group && !(*balance))
  2329. return;
  2330. sds->total_load += sgs.group_load;
  2331. sds->total_pwr += sg->cpu_power;
  2332. /*
  2333. * In case the child domain prefers tasks go to siblings
  2334. * first, lower the sg capacity to one so that we'll try
  2335. * and move all the excess tasks away. We lower the capacity
  2336. * of a group only if the local group has the capacity to fit
  2337. * these excess tasks, i.e. nr_running < group_capacity. The
  2338. * extra check prevents the case where you always pull from the
  2339. * heaviest group when it is already under-utilized (possible
  2340. * with a large weight task outweighs the tasks on the system).
  2341. */
  2342. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2343. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2344. if (local_group) {
  2345. sds->this_load = sgs.avg_load;
  2346. sds->this = sg;
  2347. sds->this_nr_running = sgs.sum_nr_running;
  2348. sds->this_load_per_task = sgs.sum_weighted_load;
  2349. sds->this_has_capacity = sgs.group_has_capacity;
  2350. sds->this_idle_cpus = sgs.idle_cpus;
  2351. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2352. sds->max_load = sgs.avg_load;
  2353. sds->busiest = sg;
  2354. sds->busiest_nr_running = sgs.sum_nr_running;
  2355. sds->busiest_idle_cpus = sgs.idle_cpus;
  2356. sds->busiest_group_capacity = sgs.group_capacity;
  2357. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2358. sds->busiest_has_capacity = sgs.group_has_capacity;
  2359. sds->busiest_group_weight = sgs.group_weight;
  2360. sds->group_imb = sgs.group_imb;
  2361. }
  2362. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2363. sg = sg->next;
  2364. } while (sg != sd->groups);
  2365. }
  2366. int __weak arch_sd_sibling_asym_packing(void)
  2367. {
  2368. return 0*SD_ASYM_PACKING;
  2369. }
  2370. /**
  2371. * check_asym_packing - Check to see if the group is packed into the
  2372. * sched doman.
  2373. *
  2374. * This is primarily intended to used at the sibling level. Some
  2375. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2376. * case of POWER7, it can move to lower SMT modes only when higher
  2377. * threads are idle. When in lower SMT modes, the threads will
  2378. * perform better since they share less core resources. Hence when we
  2379. * have idle threads, we want them to be the higher ones.
  2380. *
  2381. * This packing function is run on idle threads. It checks to see if
  2382. * the busiest CPU in this domain (core in the P7 case) has a higher
  2383. * CPU number than the packing function is being run on. Here we are
  2384. * assuming lower CPU number will be equivalent to lower a SMT thread
  2385. * number.
  2386. *
  2387. * Returns 1 when packing is required and a task should be moved to
  2388. * this CPU. The amount of the imbalance is returned in *imbalance.
  2389. *
  2390. * @sd: The sched_domain whose packing is to be checked.
  2391. * @sds: Statistics of the sched_domain which is to be packed
  2392. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2393. * @imbalance: returns amount of imbalanced due to packing.
  2394. */
  2395. static int check_asym_packing(struct sched_domain *sd,
  2396. struct sd_lb_stats *sds,
  2397. int this_cpu, unsigned long *imbalance)
  2398. {
  2399. int busiest_cpu;
  2400. if (!(sd->flags & SD_ASYM_PACKING))
  2401. return 0;
  2402. if (!sds->busiest)
  2403. return 0;
  2404. busiest_cpu = group_first_cpu(sds->busiest);
  2405. if (this_cpu > busiest_cpu)
  2406. return 0;
  2407. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2408. SCHED_LOAD_SCALE);
  2409. return 1;
  2410. }
  2411. /**
  2412. * fix_small_imbalance - Calculate the minor imbalance that exists
  2413. * amongst the groups of a sched_domain, during
  2414. * load balancing.
  2415. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2416. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2417. * @imbalance: Variable to store the imbalance.
  2418. */
  2419. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2420. int this_cpu, unsigned long *imbalance)
  2421. {
  2422. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2423. unsigned int imbn = 2;
  2424. unsigned long scaled_busy_load_per_task;
  2425. if (sds->this_nr_running) {
  2426. sds->this_load_per_task /= sds->this_nr_running;
  2427. if (sds->busiest_load_per_task >
  2428. sds->this_load_per_task)
  2429. imbn = 1;
  2430. } else
  2431. sds->this_load_per_task =
  2432. cpu_avg_load_per_task(this_cpu);
  2433. scaled_busy_load_per_task = sds->busiest_load_per_task
  2434. * SCHED_LOAD_SCALE;
  2435. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2436. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2437. (scaled_busy_load_per_task * imbn)) {
  2438. *imbalance = sds->busiest_load_per_task;
  2439. return;
  2440. }
  2441. /*
  2442. * OK, we don't have enough imbalance to justify moving tasks,
  2443. * however we may be able to increase total CPU power used by
  2444. * moving them.
  2445. */
  2446. pwr_now += sds->busiest->cpu_power *
  2447. min(sds->busiest_load_per_task, sds->max_load);
  2448. pwr_now += sds->this->cpu_power *
  2449. min(sds->this_load_per_task, sds->this_load);
  2450. pwr_now /= SCHED_LOAD_SCALE;
  2451. /* Amount of load we'd subtract */
  2452. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2453. sds->busiest->cpu_power;
  2454. if (sds->max_load > tmp)
  2455. pwr_move += sds->busiest->cpu_power *
  2456. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2457. /* Amount of load we'd add */
  2458. if (sds->max_load * sds->busiest->cpu_power <
  2459. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2460. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2461. sds->this->cpu_power;
  2462. else
  2463. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2464. sds->this->cpu_power;
  2465. pwr_move += sds->this->cpu_power *
  2466. min(sds->this_load_per_task, sds->this_load + tmp);
  2467. pwr_move /= SCHED_LOAD_SCALE;
  2468. /* Move if we gain throughput */
  2469. if (pwr_move > pwr_now)
  2470. *imbalance = sds->busiest_load_per_task;
  2471. }
  2472. /**
  2473. * calculate_imbalance - Calculate the amount of imbalance present within the
  2474. * groups of a given sched_domain during load balance.
  2475. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2476. * @this_cpu: Cpu for which currently load balance is being performed.
  2477. * @imbalance: The variable to store the imbalance.
  2478. */
  2479. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2480. unsigned long *imbalance)
  2481. {
  2482. unsigned long max_pull, load_above_capacity = ~0UL;
  2483. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2484. if (sds->group_imb) {
  2485. sds->busiest_load_per_task =
  2486. min(sds->busiest_load_per_task, sds->avg_load);
  2487. }
  2488. /*
  2489. * In the presence of smp nice balancing, certain scenarios can have
  2490. * max load less than avg load(as we skip the groups at or below
  2491. * its cpu_power, while calculating max_load..)
  2492. */
  2493. if (sds->max_load < sds->avg_load) {
  2494. *imbalance = 0;
  2495. return fix_small_imbalance(sds, this_cpu, imbalance);
  2496. }
  2497. if (!sds->group_imb) {
  2498. /*
  2499. * Don't want to pull so many tasks that a group would go idle.
  2500. */
  2501. load_above_capacity = (sds->busiest_nr_running -
  2502. sds->busiest_group_capacity);
  2503. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2504. load_above_capacity /= sds->busiest->cpu_power;
  2505. }
  2506. /*
  2507. * We're trying to get all the cpus to the average_load, so we don't
  2508. * want to push ourselves above the average load, nor do we wish to
  2509. * reduce the max loaded cpu below the average load. At the same time,
  2510. * we also don't want to reduce the group load below the group capacity
  2511. * (so that we can implement power-savings policies etc). Thus we look
  2512. * for the minimum possible imbalance.
  2513. * Be careful of negative numbers as they'll appear as very large values
  2514. * with unsigned longs.
  2515. */
  2516. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2517. /* How much load to actually move to equalise the imbalance */
  2518. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2519. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2520. / SCHED_LOAD_SCALE;
  2521. /*
  2522. * if *imbalance is less than the average load per runnable task
  2523. * there is no gaurantee that any tasks will be moved so we'll have
  2524. * a think about bumping its value to force at least one task to be
  2525. * moved
  2526. */
  2527. if (*imbalance < sds->busiest_load_per_task)
  2528. return fix_small_imbalance(sds, this_cpu, imbalance);
  2529. }
  2530. /******* find_busiest_group() helpers end here *********************/
  2531. /**
  2532. * find_busiest_group - Returns the busiest group within the sched_domain
  2533. * if there is an imbalance. If there isn't an imbalance, and
  2534. * the user has opted for power-savings, it returns a group whose
  2535. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2536. * such a group exists.
  2537. *
  2538. * Also calculates the amount of weighted load which should be moved
  2539. * to restore balance.
  2540. *
  2541. * @sd: The sched_domain whose busiest group is to be returned.
  2542. * @this_cpu: The cpu for which load balancing is currently being performed.
  2543. * @imbalance: Variable which stores amount of weighted load which should
  2544. * be moved to restore balance/put a group to idle.
  2545. * @idle: The idle status of this_cpu.
  2546. * @sd_idle: The idleness of sd
  2547. * @cpus: The set of CPUs under consideration for load-balancing.
  2548. * @balance: Pointer to a variable indicating if this_cpu
  2549. * is the appropriate cpu to perform load balancing at this_level.
  2550. *
  2551. * Returns: - the busiest group if imbalance exists.
  2552. * - If no imbalance and user has opted for power-savings balance,
  2553. * return the least loaded group whose CPUs can be
  2554. * put to idle by rebalancing its tasks onto our group.
  2555. */
  2556. static struct sched_group *
  2557. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2558. unsigned long *imbalance, enum cpu_idle_type idle,
  2559. int *sd_idle, const struct cpumask *cpus, int *balance)
  2560. {
  2561. struct sd_lb_stats sds;
  2562. memset(&sds, 0, sizeof(sds));
  2563. /*
  2564. * Compute the various statistics relavent for load balancing at
  2565. * this level.
  2566. */
  2567. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2568. balance, &sds);
  2569. /* Cases where imbalance does not exist from POV of this_cpu */
  2570. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2571. * at this level.
  2572. * 2) There is no busy sibling group to pull from.
  2573. * 3) This group is the busiest group.
  2574. * 4) This group is more busy than the avg busieness at this
  2575. * sched_domain.
  2576. * 5) The imbalance is within the specified limit.
  2577. *
  2578. * Note: when doing newidle balance, if the local group has excess
  2579. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2580. * does not have any capacity, we force a load balance to pull tasks
  2581. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2582. */
  2583. if (!(*balance))
  2584. goto ret;
  2585. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2586. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2587. return sds.busiest;
  2588. if (!sds.busiest || sds.busiest_nr_running == 0)
  2589. goto out_balanced;
  2590. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2591. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2592. !sds.busiest_has_capacity)
  2593. goto force_balance;
  2594. if (sds.this_load >= sds.max_load)
  2595. goto out_balanced;
  2596. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2597. if (sds.this_load >= sds.avg_load)
  2598. goto out_balanced;
  2599. /*
  2600. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2601. * And to check for busy balance use !idle_cpu instead of
  2602. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2603. * even when they are idle.
  2604. */
  2605. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2606. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2607. goto out_balanced;
  2608. } else {
  2609. /*
  2610. * This cpu is idle. If the busiest group load doesn't
  2611. * have more tasks than the number of available cpu's and
  2612. * there is no imbalance between this and busiest group
  2613. * wrt to idle cpu's, it is balanced.
  2614. */
  2615. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2616. sds.busiest_nr_running <= sds.busiest_group_weight)
  2617. goto out_balanced;
  2618. }
  2619. force_balance:
  2620. /* Looks like there is an imbalance. Compute it */
  2621. calculate_imbalance(&sds, this_cpu, imbalance);
  2622. return sds.busiest;
  2623. out_balanced:
  2624. /*
  2625. * There is no obvious imbalance. But check if we can do some balancing
  2626. * to save power.
  2627. */
  2628. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2629. return sds.busiest;
  2630. ret:
  2631. *imbalance = 0;
  2632. return NULL;
  2633. }
  2634. /*
  2635. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2636. */
  2637. static struct rq *
  2638. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2639. enum cpu_idle_type idle, unsigned long imbalance,
  2640. const struct cpumask *cpus)
  2641. {
  2642. struct rq *busiest = NULL, *rq;
  2643. unsigned long max_load = 0;
  2644. int i;
  2645. for_each_cpu(i, sched_group_cpus(group)) {
  2646. unsigned long power = power_of(i);
  2647. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2648. unsigned long wl;
  2649. if (!capacity)
  2650. capacity = fix_small_capacity(sd, group);
  2651. if (!cpumask_test_cpu(i, cpus))
  2652. continue;
  2653. rq = cpu_rq(i);
  2654. wl = weighted_cpuload(i);
  2655. /*
  2656. * When comparing with imbalance, use weighted_cpuload()
  2657. * which is not scaled with the cpu power.
  2658. */
  2659. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2660. continue;
  2661. /*
  2662. * For the load comparisons with the other cpu's, consider
  2663. * the weighted_cpuload() scaled with the cpu power, so that
  2664. * the load can be moved away from the cpu that is potentially
  2665. * running at a lower capacity.
  2666. */
  2667. wl = (wl * SCHED_LOAD_SCALE) / power;
  2668. if (wl > max_load) {
  2669. max_load = wl;
  2670. busiest = rq;
  2671. }
  2672. }
  2673. return busiest;
  2674. }
  2675. /*
  2676. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2677. * so long as it is large enough.
  2678. */
  2679. #define MAX_PINNED_INTERVAL 512
  2680. /* Working cpumask for load_balance and load_balance_newidle. */
  2681. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2682. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2683. int busiest_cpu, int this_cpu)
  2684. {
  2685. if (idle == CPU_NEWLY_IDLE) {
  2686. /*
  2687. * ASYM_PACKING needs to force migrate tasks from busy but
  2688. * higher numbered CPUs in order to pack all tasks in the
  2689. * lowest numbered CPUs.
  2690. */
  2691. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2692. return 1;
  2693. /*
  2694. * The only task running in a non-idle cpu can be moved to this
  2695. * cpu in an attempt to completely freeup the other CPU
  2696. * package.
  2697. *
  2698. * The package power saving logic comes from
  2699. * find_busiest_group(). If there are no imbalance, then
  2700. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2701. * f_b_g() will select a group from which a running task may be
  2702. * pulled to this cpu in order to make the other package idle.
  2703. * If there is no opportunity to make a package idle and if
  2704. * there are no imbalance, then f_b_g() will return NULL and no
  2705. * action will be taken in load_balance_newidle().
  2706. *
  2707. * Under normal task pull operation due to imbalance, there
  2708. * will be more than one task in the source run queue and
  2709. * move_tasks() will succeed. ld_moved will be true and this
  2710. * active balance code will not be triggered.
  2711. */
  2712. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2713. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2714. return 0;
  2715. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2716. return 0;
  2717. }
  2718. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2719. }
  2720. static int active_load_balance_cpu_stop(void *data);
  2721. /*
  2722. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2723. * tasks if there is an imbalance.
  2724. */
  2725. static int load_balance(int this_cpu, struct rq *this_rq,
  2726. struct sched_domain *sd, enum cpu_idle_type idle,
  2727. int *balance)
  2728. {
  2729. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2730. struct sched_group *group;
  2731. unsigned long imbalance;
  2732. struct rq *busiest;
  2733. unsigned long flags;
  2734. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2735. cpumask_copy(cpus, cpu_active_mask);
  2736. /*
  2737. * When power savings policy is enabled for the parent domain, idle
  2738. * sibling can pick up load irrespective of busy siblings. In this case,
  2739. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2740. * portraying it as CPU_NOT_IDLE.
  2741. */
  2742. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2743. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2744. sd_idle = 1;
  2745. schedstat_inc(sd, lb_count[idle]);
  2746. redo:
  2747. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2748. cpus, balance);
  2749. if (*balance == 0)
  2750. goto out_balanced;
  2751. if (!group) {
  2752. schedstat_inc(sd, lb_nobusyg[idle]);
  2753. goto out_balanced;
  2754. }
  2755. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2756. if (!busiest) {
  2757. schedstat_inc(sd, lb_nobusyq[idle]);
  2758. goto out_balanced;
  2759. }
  2760. BUG_ON(busiest == this_rq);
  2761. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2762. ld_moved = 0;
  2763. if (busiest->nr_running > 1) {
  2764. /*
  2765. * Attempt to move tasks. If find_busiest_group has found
  2766. * an imbalance but busiest->nr_running <= 1, the group is
  2767. * still unbalanced. ld_moved simply stays zero, so it is
  2768. * correctly treated as an imbalance.
  2769. */
  2770. local_irq_save(flags);
  2771. double_rq_lock(this_rq, busiest);
  2772. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2773. imbalance, sd, idle, &all_pinned);
  2774. double_rq_unlock(this_rq, busiest);
  2775. local_irq_restore(flags);
  2776. /*
  2777. * some other cpu did the load balance for us.
  2778. */
  2779. if (ld_moved && this_cpu != smp_processor_id())
  2780. resched_cpu(this_cpu);
  2781. /* All tasks on this runqueue were pinned by CPU affinity */
  2782. if (unlikely(all_pinned)) {
  2783. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2784. if (!cpumask_empty(cpus))
  2785. goto redo;
  2786. goto out_balanced;
  2787. }
  2788. }
  2789. if (!ld_moved) {
  2790. schedstat_inc(sd, lb_failed[idle]);
  2791. /*
  2792. * Increment the failure counter only on periodic balance.
  2793. * We do not want newidle balance, which can be very
  2794. * frequent, pollute the failure counter causing
  2795. * excessive cache_hot migrations and active balances.
  2796. */
  2797. if (idle != CPU_NEWLY_IDLE)
  2798. sd->nr_balance_failed++;
  2799. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2800. this_cpu)) {
  2801. raw_spin_lock_irqsave(&busiest->lock, flags);
  2802. /* don't kick the active_load_balance_cpu_stop,
  2803. * if the curr task on busiest cpu can't be
  2804. * moved to this_cpu
  2805. */
  2806. if (!cpumask_test_cpu(this_cpu,
  2807. &busiest->curr->cpus_allowed)) {
  2808. raw_spin_unlock_irqrestore(&busiest->lock,
  2809. flags);
  2810. all_pinned = 1;
  2811. goto out_one_pinned;
  2812. }
  2813. /*
  2814. * ->active_balance synchronizes accesses to
  2815. * ->active_balance_work. Once set, it's cleared
  2816. * only after active load balance is finished.
  2817. */
  2818. if (!busiest->active_balance) {
  2819. busiest->active_balance = 1;
  2820. busiest->push_cpu = this_cpu;
  2821. active_balance = 1;
  2822. }
  2823. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2824. if (active_balance)
  2825. stop_one_cpu_nowait(cpu_of(busiest),
  2826. active_load_balance_cpu_stop, busiest,
  2827. &busiest->active_balance_work);
  2828. /*
  2829. * We've kicked active balancing, reset the failure
  2830. * counter.
  2831. */
  2832. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2833. }
  2834. } else
  2835. sd->nr_balance_failed = 0;
  2836. if (likely(!active_balance)) {
  2837. /* We were unbalanced, so reset the balancing interval */
  2838. sd->balance_interval = sd->min_interval;
  2839. } else {
  2840. /*
  2841. * If we've begun active balancing, start to back off. This
  2842. * case may not be covered by the all_pinned logic if there
  2843. * is only 1 task on the busy runqueue (because we don't call
  2844. * move_tasks).
  2845. */
  2846. if (sd->balance_interval < sd->max_interval)
  2847. sd->balance_interval *= 2;
  2848. }
  2849. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2850. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2851. ld_moved = -1;
  2852. goto out;
  2853. out_balanced:
  2854. schedstat_inc(sd, lb_balanced[idle]);
  2855. sd->nr_balance_failed = 0;
  2856. out_one_pinned:
  2857. /* tune up the balancing interval */
  2858. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2859. (sd->balance_interval < sd->max_interval))
  2860. sd->balance_interval *= 2;
  2861. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2862. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2863. ld_moved = -1;
  2864. else
  2865. ld_moved = 0;
  2866. out:
  2867. return ld_moved;
  2868. }
  2869. /*
  2870. * idle_balance is called by schedule() if this_cpu is about to become
  2871. * idle. Attempts to pull tasks from other CPUs.
  2872. */
  2873. static void idle_balance(int this_cpu, struct rq *this_rq)
  2874. {
  2875. struct sched_domain *sd;
  2876. int pulled_task = 0;
  2877. unsigned long next_balance = jiffies + HZ;
  2878. this_rq->idle_stamp = this_rq->clock;
  2879. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2880. return;
  2881. /*
  2882. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2883. */
  2884. raw_spin_unlock(&this_rq->lock);
  2885. update_shares(this_cpu);
  2886. for_each_domain(this_cpu, sd) {
  2887. unsigned long interval;
  2888. int balance = 1;
  2889. if (!(sd->flags & SD_LOAD_BALANCE))
  2890. continue;
  2891. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2892. /* If we've pulled tasks over stop searching: */
  2893. pulled_task = load_balance(this_cpu, this_rq,
  2894. sd, CPU_NEWLY_IDLE, &balance);
  2895. }
  2896. interval = msecs_to_jiffies(sd->balance_interval);
  2897. if (time_after(next_balance, sd->last_balance + interval))
  2898. next_balance = sd->last_balance + interval;
  2899. if (pulled_task) {
  2900. this_rq->idle_stamp = 0;
  2901. break;
  2902. }
  2903. }
  2904. raw_spin_lock(&this_rq->lock);
  2905. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2906. /*
  2907. * We are going idle. next_balance may be set based on
  2908. * a busy processor. So reset next_balance.
  2909. */
  2910. this_rq->next_balance = next_balance;
  2911. }
  2912. }
  2913. /*
  2914. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2915. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2916. * least 1 task to be running on each physical CPU where possible, and
  2917. * avoids physical / logical imbalances.
  2918. */
  2919. static int active_load_balance_cpu_stop(void *data)
  2920. {
  2921. struct rq *busiest_rq = data;
  2922. int busiest_cpu = cpu_of(busiest_rq);
  2923. int target_cpu = busiest_rq->push_cpu;
  2924. struct rq *target_rq = cpu_rq(target_cpu);
  2925. struct sched_domain *sd;
  2926. raw_spin_lock_irq(&busiest_rq->lock);
  2927. /* make sure the requested cpu hasn't gone down in the meantime */
  2928. if (unlikely(busiest_cpu != smp_processor_id() ||
  2929. !busiest_rq->active_balance))
  2930. goto out_unlock;
  2931. /* Is there any task to move? */
  2932. if (busiest_rq->nr_running <= 1)
  2933. goto out_unlock;
  2934. /*
  2935. * This condition is "impossible", if it occurs
  2936. * we need to fix it. Originally reported by
  2937. * Bjorn Helgaas on a 128-cpu setup.
  2938. */
  2939. BUG_ON(busiest_rq == target_rq);
  2940. /* move a task from busiest_rq to target_rq */
  2941. double_lock_balance(busiest_rq, target_rq);
  2942. /* Search for an sd spanning us and the target CPU. */
  2943. for_each_domain(target_cpu, sd) {
  2944. if ((sd->flags & SD_LOAD_BALANCE) &&
  2945. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2946. break;
  2947. }
  2948. if (likely(sd)) {
  2949. schedstat_inc(sd, alb_count);
  2950. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2951. sd, CPU_IDLE))
  2952. schedstat_inc(sd, alb_pushed);
  2953. else
  2954. schedstat_inc(sd, alb_failed);
  2955. }
  2956. double_unlock_balance(busiest_rq, target_rq);
  2957. out_unlock:
  2958. busiest_rq->active_balance = 0;
  2959. raw_spin_unlock_irq(&busiest_rq->lock);
  2960. return 0;
  2961. }
  2962. #ifdef CONFIG_NO_HZ
  2963. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2964. static void trigger_sched_softirq(void *data)
  2965. {
  2966. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2967. }
  2968. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2969. {
  2970. csd->func = trigger_sched_softirq;
  2971. csd->info = NULL;
  2972. csd->flags = 0;
  2973. csd->priv = 0;
  2974. }
  2975. /*
  2976. * idle load balancing details
  2977. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2978. * entering idle.
  2979. * - This idle load balancer CPU will also go into tickless mode when
  2980. * it is idle, just like all other idle CPUs
  2981. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2982. * needed, they will kick the idle load balancer, which then does idle
  2983. * load balancing for all the idle CPUs.
  2984. */
  2985. static struct {
  2986. atomic_t load_balancer;
  2987. atomic_t first_pick_cpu;
  2988. atomic_t second_pick_cpu;
  2989. cpumask_var_t idle_cpus_mask;
  2990. cpumask_var_t grp_idle_mask;
  2991. unsigned long next_balance; /* in jiffy units */
  2992. } nohz ____cacheline_aligned;
  2993. int get_nohz_load_balancer(void)
  2994. {
  2995. return atomic_read(&nohz.load_balancer);
  2996. }
  2997. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2998. /**
  2999. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3000. * @cpu: The cpu whose lowest level of sched domain is to
  3001. * be returned.
  3002. * @flag: The flag to check for the lowest sched_domain
  3003. * for the given cpu.
  3004. *
  3005. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3006. */
  3007. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3008. {
  3009. struct sched_domain *sd;
  3010. for_each_domain(cpu, sd)
  3011. if (sd && (sd->flags & flag))
  3012. break;
  3013. return sd;
  3014. }
  3015. /**
  3016. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3017. * @cpu: The cpu whose domains we're iterating over.
  3018. * @sd: variable holding the value of the power_savings_sd
  3019. * for cpu.
  3020. * @flag: The flag to filter the sched_domains to be iterated.
  3021. *
  3022. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3023. * set, starting from the lowest sched_domain to the highest.
  3024. */
  3025. #define for_each_flag_domain(cpu, sd, flag) \
  3026. for (sd = lowest_flag_domain(cpu, flag); \
  3027. (sd && (sd->flags & flag)); sd = sd->parent)
  3028. /**
  3029. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3030. * @ilb_group: group to be checked for semi-idleness
  3031. *
  3032. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3033. *
  3034. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3035. * and atleast one non-idle CPU. This helper function checks if the given
  3036. * sched_group is semi-idle or not.
  3037. */
  3038. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3039. {
  3040. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3041. sched_group_cpus(ilb_group));
  3042. /*
  3043. * A sched_group is semi-idle when it has atleast one busy cpu
  3044. * and atleast one idle cpu.
  3045. */
  3046. if (cpumask_empty(nohz.grp_idle_mask))
  3047. return 0;
  3048. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3049. return 0;
  3050. return 1;
  3051. }
  3052. /**
  3053. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3054. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3055. *
  3056. * Returns: Returns the id of the idle load balancer if it exists,
  3057. * Else, returns >= nr_cpu_ids.
  3058. *
  3059. * This algorithm picks the idle load balancer such that it belongs to a
  3060. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3061. * completely idle packages/cores just for the purpose of idle load balancing
  3062. * when there are other idle cpu's which are better suited for that job.
  3063. */
  3064. static int find_new_ilb(int cpu)
  3065. {
  3066. struct sched_domain *sd;
  3067. struct sched_group *ilb_group;
  3068. /*
  3069. * Have idle load balancer selection from semi-idle packages only
  3070. * when power-aware load balancing is enabled
  3071. */
  3072. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3073. goto out_done;
  3074. /*
  3075. * Optimize for the case when we have no idle CPUs or only one
  3076. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3077. */
  3078. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3079. goto out_done;
  3080. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3081. ilb_group = sd->groups;
  3082. do {
  3083. if (is_semi_idle_group(ilb_group))
  3084. return cpumask_first(nohz.grp_idle_mask);
  3085. ilb_group = ilb_group->next;
  3086. } while (ilb_group != sd->groups);
  3087. }
  3088. out_done:
  3089. return nr_cpu_ids;
  3090. }
  3091. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3092. static inline int find_new_ilb(int call_cpu)
  3093. {
  3094. return nr_cpu_ids;
  3095. }
  3096. #endif
  3097. /*
  3098. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3099. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3100. * CPU (if there is one).
  3101. */
  3102. static void nohz_balancer_kick(int cpu)
  3103. {
  3104. int ilb_cpu;
  3105. nohz.next_balance++;
  3106. ilb_cpu = get_nohz_load_balancer();
  3107. if (ilb_cpu >= nr_cpu_ids) {
  3108. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3109. if (ilb_cpu >= nr_cpu_ids)
  3110. return;
  3111. }
  3112. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3113. struct call_single_data *cp;
  3114. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3115. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3116. __smp_call_function_single(ilb_cpu, cp, 0);
  3117. }
  3118. return;
  3119. }
  3120. /*
  3121. * This routine will try to nominate the ilb (idle load balancing)
  3122. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3123. * load balancing on behalf of all those cpus.
  3124. *
  3125. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3126. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3127. * idle load balancing by kicking one of the idle CPUs.
  3128. *
  3129. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3130. * ilb owner CPU in future (when there is a need for idle load balancing on
  3131. * behalf of all idle CPUs).
  3132. */
  3133. void select_nohz_load_balancer(int stop_tick)
  3134. {
  3135. int cpu = smp_processor_id();
  3136. if (stop_tick) {
  3137. if (!cpu_active(cpu)) {
  3138. if (atomic_read(&nohz.load_balancer) != cpu)
  3139. return;
  3140. /*
  3141. * If we are going offline and still the leader,
  3142. * give up!
  3143. */
  3144. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3145. nr_cpu_ids) != cpu)
  3146. BUG();
  3147. return;
  3148. }
  3149. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3150. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3151. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3152. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3153. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3154. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3155. int new_ilb;
  3156. /* make me the ilb owner */
  3157. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3158. cpu) != nr_cpu_ids)
  3159. return;
  3160. /*
  3161. * Check to see if there is a more power-efficient
  3162. * ilb.
  3163. */
  3164. new_ilb = find_new_ilb(cpu);
  3165. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3166. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3167. resched_cpu(new_ilb);
  3168. return;
  3169. }
  3170. return;
  3171. }
  3172. } else {
  3173. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3174. return;
  3175. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3176. if (atomic_read(&nohz.load_balancer) == cpu)
  3177. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3178. nr_cpu_ids) != cpu)
  3179. BUG();
  3180. }
  3181. return;
  3182. }
  3183. #endif
  3184. static DEFINE_SPINLOCK(balancing);
  3185. /*
  3186. * It checks each scheduling domain to see if it is due to be balanced,
  3187. * and initiates a balancing operation if so.
  3188. *
  3189. * Balancing parameters are set up in arch_init_sched_domains.
  3190. */
  3191. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3192. {
  3193. int balance = 1;
  3194. struct rq *rq = cpu_rq(cpu);
  3195. unsigned long interval;
  3196. struct sched_domain *sd;
  3197. /* Earliest time when we have to do rebalance again */
  3198. unsigned long next_balance = jiffies + 60*HZ;
  3199. int update_next_balance = 0;
  3200. int need_serialize;
  3201. update_shares(cpu);
  3202. for_each_domain(cpu, sd) {
  3203. if (!(sd->flags & SD_LOAD_BALANCE))
  3204. continue;
  3205. interval = sd->balance_interval;
  3206. if (idle != CPU_IDLE)
  3207. interval *= sd->busy_factor;
  3208. /* scale ms to jiffies */
  3209. interval = msecs_to_jiffies(interval);
  3210. if (unlikely(!interval))
  3211. interval = 1;
  3212. if (interval > HZ*NR_CPUS/10)
  3213. interval = HZ*NR_CPUS/10;
  3214. need_serialize = sd->flags & SD_SERIALIZE;
  3215. if (need_serialize) {
  3216. if (!spin_trylock(&balancing))
  3217. goto out;
  3218. }
  3219. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3220. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3221. /*
  3222. * We've pulled tasks over so either we're no
  3223. * longer idle, or one of our SMT siblings is
  3224. * not idle.
  3225. */
  3226. idle = CPU_NOT_IDLE;
  3227. }
  3228. sd->last_balance = jiffies;
  3229. }
  3230. if (need_serialize)
  3231. spin_unlock(&balancing);
  3232. out:
  3233. if (time_after(next_balance, sd->last_balance + interval)) {
  3234. next_balance = sd->last_balance + interval;
  3235. update_next_balance = 1;
  3236. }
  3237. /*
  3238. * Stop the load balance at this level. There is another
  3239. * CPU in our sched group which is doing load balancing more
  3240. * actively.
  3241. */
  3242. if (!balance)
  3243. break;
  3244. }
  3245. /*
  3246. * next_balance will be updated only when there is a need.
  3247. * When the cpu is attached to null domain for ex, it will not be
  3248. * updated.
  3249. */
  3250. if (likely(update_next_balance))
  3251. rq->next_balance = next_balance;
  3252. }
  3253. #ifdef CONFIG_NO_HZ
  3254. /*
  3255. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3256. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3257. */
  3258. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3259. {
  3260. struct rq *this_rq = cpu_rq(this_cpu);
  3261. struct rq *rq;
  3262. int balance_cpu;
  3263. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3264. return;
  3265. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3266. if (balance_cpu == this_cpu)
  3267. continue;
  3268. /*
  3269. * If this cpu gets work to do, stop the load balancing
  3270. * work being done for other cpus. Next load
  3271. * balancing owner will pick it up.
  3272. */
  3273. if (need_resched()) {
  3274. this_rq->nohz_balance_kick = 0;
  3275. break;
  3276. }
  3277. raw_spin_lock_irq(&this_rq->lock);
  3278. update_rq_clock(this_rq);
  3279. update_cpu_load(this_rq);
  3280. raw_spin_unlock_irq(&this_rq->lock);
  3281. rebalance_domains(balance_cpu, CPU_IDLE);
  3282. rq = cpu_rq(balance_cpu);
  3283. if (time_after(this_rq->next_balance, rq->next_balance))
  3284. this_rq->next_balance = rq->next_balance;
  3285. }
  3286. nohz.next_balance = this_rq->next_balance;
  3287. this_rq->nohz_balance_kick = 0;
  3288. }
  3289. /*
  3290. * Current heuristic for kicking the idle load balancer
  3291. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3292. * idle load balancer when it has more than one process active. This
  3293. * eliminates the need for idle load balancing altogether when we have
  3294. * only one running process in the system (common case).
  3295. * - If there are more than one busy CPU, idle load balancer may have
  3296. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3297. * SMT or core siblings and can run better if they move to different
  3298. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3299. * which will kick idle load balancer as soon as it has any load.
  3300. */
  3301. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3302. {
  3303. unsigned long now = jiffies;
  3304. int ret;
  3305. int first_pick_cpu, second_pick_cpu;
  3306. if (time_before(now, nohz.next_balance))
  3307. return 0;
  3308. if (rq->idle_at_tick)
  3309. return 0;
  3310. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3311. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3312. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3313. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3314. return 0;
  3315. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3316. if (ret == nr_cpu_ids || ret == cpu) {
  3317. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3318. if (rq->nr_running > 1)
  3319. return 1;
  3320. } else {
  3321. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3322. if (ret == nr_cpu_ids || ret == cpu) {
  3323. if (rq->nr_running)
  3324. return 1;
  3325. }
  3326. }
  3327. return 0;
  3328. }
  3329. #else
  3330. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3331. #endif
  3332. /*
  3333. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3334. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3335. */
  3336. static void run_rebalance_domains(struct softirq_action *h)
  3337. {
  3338. int this_cpu = smp_processor_id();
  3339. struct rq *this_rq = cpu_rq(this_cpu);
  3340. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3341. CPU_IDLE : CPU_NOT_IDLE;
  3342. rebalance_domains(this_cpu, idle);
  3343. /*
  3344. * If this cpu has a pending nohz_balance_kick, then do the
  3345. * balancing on behalf of the other idle cpus whose ticks are
  3346. * stopped.
  3347. */
  3348. nohz_idle_balance(this_cpu, idle);
  3349. }
  3350. static inline int on_null_domain(int cpu)
  3351. {
  3352. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3353. }
  3354. /*
  3355. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3356. */
  3357. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3358. {
  3359. /* Don't need to rebalance while attached to NULL domain */
  3360. if (time_after_eq(jiffies, rq->next_balance) &&
  3361. likely(!on_null_domain(cpu)))
  3362. raise_softirq(SCHED_SOFTIRQ);
  3363. #ifdef CONFIG_NO_HZ
  3364. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3365. nohz_balancer_kick(cpu);
  3366. #endif
  3367. }
  3368. static void rq_online_fair(struct rq *rq)
  3369. {
  3370. update_sysctl();
  3371. }
  3372. static void rq_offline_fair(struct rq *rq)
  3373. {
  3374. update_sysctl();
  3375. }
  3376. #else /* CONFIG_SMP */
  3377. /*
  3378. * on UP we do not need to balance between CPUs:
  3379. */
  3380. static inline void idle_balance(int cpu, struct rq *rq)
  3381. {
  3382. }
  3383. #endif /* CONFIG_SMP */
  3384. /*
  3385. * scheduler tick hitting a task of our scheduling class:
  3386. */
  3387. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3388. {
  3389. struct cfs_rq *cfs_rq;
  3390. struct sched_entity *se = &curr->se;
  3391. for_each_sched_entity(se) {
  3392. cfs_rq = cfs_rq_of(se);
  3393. entity_tick(cfs_rq, se, queued);
  3394. }
  3395. }
  3396. /*
  3397. * called on fork with the child task as argument from the parent's context
  3398. * - child not yet on the tasklist
  3399. * - preemption disabled
  3400. */
  3401. static void task_fork_fair(struct task_struct *p)
  3402. {
  3403. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3404. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3405. int this_cpu = smp_processor_id();
  3406. struct rq *rq = this_rq();
  3407. unsigned long flags;
  3408. raw_spin_lock_irqsave(&rq->lock, flags);
  3409. update_rq_clock(rq);
  3410. if (unlikely(task_cpu(p) != this_cpu)) {
  3411. rcu_read_lock();
  3412. __set_task_cpu(p, this_cpu);
  3413. rcu_read_unlock();
  3414. }
  3415. update_curr(cfs_rq);
  3416. if (curr)
  3417. se->vruntime = curr->vruntime;
  3418. place_entity(cfs_rq, se, 1);
  3419. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3420. /*
  3421. * Upon rescheduling, sched_class::put_prev_task() will place
  3422. * 'current' within the tree based on its new key value.
  3423. */
  3424. swap(curr->vruntime, se->vruntime);
  3425. resched_task(rq->curr);
  3426. }
  3427. se->vruntime -= cfs_rq->min_vruntime;
  3428. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3429. }
  3430. /*
  3431. * Priority of the task has changed. Check to see if we preempt
  3432. * the current task.
  3433. */
  3434. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3435. int oldprio, int running)
  3436. {
  3437. /*
  3438. * Reschedule if we are currently running on this runqueue and
  3439. * our priority decreased, or if we are not currently running on
  3440. * this runqueue and our priority is higher than the current's
  3441. */
  3442. if (running) {
  3443. if (p->prio > oldprio)
  3444. resched_task(rq->curr);
  3445. } else
  3446. check_preempt_curr(rq, p, 0);
  3447. }
  3448. /*
  3449. * We switched to the sched_fair class.
  3450. */
  3451. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3452. int running)
  3453. {
  3454. /*
  3455. * We were most likely switched from sched_rt, so
  3456. * kick off the schedule if running, otherwise just see
  3457. * if we can still preempt the current task.
  3458. */
  3459. if (running)
  3460. resched_task(rq->curr);
  3461. else
  3462. check_preempt_curr(rq, p, 0);
  3463. }
  3464. /* Account for a task changing its policy or group.
  3465. *
  3466. * This routine is mostly called to set cfs_rq->curr field when a task
  3467. * migrates between groups/classes.
  3468. */
  3469. static void set_curr_task_fair(struct rq *rq)
  3470. {
  3471. struct sched_entity *se = &rq->curr->se;
  3472. for_each_sched_entity(se)
  3473. set_next_entity(cfs_rq_of(se), se);
  3474. }
  3475. #ifdef CONFIG_FAIR_GROUP_SCHED
  3476. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3477. {
  3478. /*
  3479. * If the task was not on the rq at the time of this cgroup movement
  3480. * it must have been asleep, sleeping tasks keep their ->vruntime
  3481. * absolute on their old rq until wakeup (needed for the fair sleeper
  3482. * bonus in place_entity()).
  3483. *
  3484. * If it was on the rq, we've just 'preempted' it, which does convert
  3485. * ->vruntime to a relative base.
  3486. *
  3487. * Make sure both cases convert their relative position when migrating
  3488. * to another cgroup's rq. This does somewhat interfere with the
  3489. * fair sleeper stuff for the first placement, but who cares.
  3490. */
  3491. if (!on_rq)
  3492. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3493. set_task_rq(p, task_cpu(p));
  3494. if (!on_rq)
  3495. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3496. }
  3497. #endif
  3498. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3499. {
  3500. struct sched_entity *se = &task->se;
  3501. unsigned int rr_interval = 0;
  3502. /*
  3503. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3504. * idle runqueue:
  3505. */
  3506. if (rq->cfs.load.weight)
  3507. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3508. return rr_interval;
  3509. }
  3510. /*
  3511. * All the scheduling class methods:
  3512. */
  3513. static const struct sched_class fair_sched_class = {
  3514. .next = &idle_sched_class,
  3515. .enqueue_task = enqueue_task_fair,
  3516. .dequeue_task = dequeue_task_fair,
  3517. .yield_task = yield_task_fair,
  3518. .check_preempt_curr = check_preempt_wakeup,
  3519. .pick_next_task = pick_next_task_fair,
  3520. .put_prev_task = put_prev_task_fair,
  3521. #ifdef CONFIG_SMP
  3522. .select_task_rq = select_task_rq_fair,
  3523. .rq_online = rq_online_fair,
  3524. .rq_offline = rq_offline_fair,
  3525. .task_waking = task_waking_fair,
  3526. #endif
  3527. .set_curr_task = set_curr_task_fair,
  3528. .task_tick = task_tick_fair,
  3529. .task_fork = task_fork_fair,
  3530. .prio_changed = prio_changed_fair,
  3531. .switched_to = switched_to_fair,
  3532. .get_rr_interval = get_rr_interval_fair,
  3533. #ifdef CONFIG_FAIR_GROUP_SCHED
  3534. .task_move_group = task_move_group_fair,
  3535. #endif
  3536. };
  3537. #ifdef CONFIG_SCHED_DEBUG
  3538. static void print_cfs_stats(struct seq_file *m, int cpu)
  3539. {
  3540. struct cfs_rq *cfs_rq;
  3541. rcu_read_lock();
  3542. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3543. print_cfs_rq(m, cpu, cfs_rq);
  3544. rcu_read_unlock();
  3545. }
  3546. #endif