futex.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  23. * enough at me, Linus for the original (flawed) idea, Matthew
  24. * Kirkwood for proof-of-concept implementation.
  25. *
  26. * "The futexes are also cursed."
  27. * "But they come in a choice of three flavours!"
  28. *
  29. * This program is free software; you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation; either version 2 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * This program is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with this program; if not, write to the Free Software
  41. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  42. */
  43. #include <linux/slab.h>
  44. #include <linux/poll.h>
  45. #include <linux/fs.h>
  46. #include <linux/file.h>
  47. #include <linux/jhash.h>
  48. #include <linux/init.h>
  49. #include <linux/futex.h>
  50. #include <linux/mount.h>
  51. #include <linux/pagemap.h>
  52. #include <linux/syscalls.h>
  53. #include <linux/signal.h>
  54. #include <linux/module.h>
  55. #include <linux/magic.h>
  56. #include <linux/pid.h>
  57. #include <linux/nsproxy.h>
  58. #include <asm/futex.h>
  59. #include "rtmutex_common.h"
  60. int __read_mostly futex_cmpxchg_enabled;
  61. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  62. /*
  63. * Priority Inheritance state:
  64. */
  65. struct futex_pi_state {
  66. /*
  67. * list of 'owned' pi_state instances - these have to be
  68. * cleaned up in do_exit() if the task exits prematurely:
  69. */
  70. struct list_head list;
  71. /*
  72. * The PI object:
  73. */
  74. struct rt_mutex pi_mutex;
  75. struct task_struct *owner;
  76. atomic_t refcount;
  77. union futex_key key;
  78. };
  79. /*
  80. * We use this hashed waitqueue instead of a normal wait_queue_t, so
  81. * we can wake only the relevant ones (hashed queues may be shared).
  82. *
  83. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  84. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  85. * The order of wakup is always to make the first condition true, then
  86. * wake up q->waiter, then make the second condition true.
  87. */
  88. struct futex_q {
  89. struct plist_node list;
  90. /* There can only be a single waiter */
  91. wait_queue_head_t waiter;
  92. /* Which hash list lock to use: */
  93. spinlock_t *lock_ptr;
  94. /* Key which the futex is hashed on: */
  95. union futex_key key;
  96. /* Optional priority inheritance state: */
  97. struct futex_pi_state *pi_state;
  98. struct task_struct *task;
  99. /* Bitset for the optional bitmasked wakeup */
  100. u32 bitset;
  101. };
  102. /*
  103. * Hash buckets are shared by all the futex_keys that hash to the same
  104. * location. Each key may have multiple futex_q structures, one for each task
  105. * waiting on a futex.
  106. */
  107. struct futex_hash_bucket {
  108. spinlock_t lock;
  109. struct plist_head chain;
  110. };
  111. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  112. /*
  113. * We hash on the keys returned from get_futex_key (see below).
  114. */
  115. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  116. {
  117. u32 hash = jhash2((u32*)&key->both.word,
  118. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  119. key->both.offset);
  120. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  121. }
  122. /*
  123. * Return 1 if two futex_keys are equal, 0 otherwise.
  124. */
  125. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  126. {
  127. return (key1->both.word == key2->both.word
  128. && key1->both.ptr == key2->both.ptr
  129. && key1->both.offset == key2->both.offset);
  130. }
  131. /*
  132. * Take a reference to the resource addressed by a key.
  133. * Can be called while holding spinlocks.
  134. *
  135. */
  136. static void get_futex_key_refs(union futex_key *key)
  137. {
  138. if (!key->both.ptr)
  139. return;
  140. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  141. case FUT_OFF_INODE:
  142. atomic_inc(&key->shared.inode->i_count);
  143. break;
  144. case FUT_OFF_MMSHARED:
  145. atomic_inc(&key->private.mm->mm_count);
  146. break;
  147. }
  148. }
  149. /*
  150. * Drop a reference to the resource addressed by a key.
  151. * The hash bucket spinlock must not be held.
  152. */
  153. static void drop_futex_key_refs(union futex_key *key)
  154. {
  155. if (!key->both.ptr) {
  156. /* If we're here then we tried to put a key we failed to get */
  157. WARN_ON_ONCE(1);
  158. return;
  159. }
  160. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  161. case FUT_OFF_INODE:
  162. iput(key->shared.inode);
  163. break;
  164. case FUT_OFF_MMSHARED:
  165. mmdrop(key->private.mm);
  166. break;
  167. }
  168. }
  169. /**
  170. * get_futex_key - Get parameters which are the keys for a futex.
  171. * @uaddr: virtual address of the futex
  172. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  173. * @key: address where result is stored.
  174. *
  175. * Returns a negative error code or 0
  176. * The key words are stored in *key on success.
  177. *
  178. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  179. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  180. * We can usually work out the index without swapping in the page.
  181. *
  182. * lock_page() might sleep, the caller should not hold a spinlock.
  183. */
  184. static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
  185. {
  186. unsigned long address = (unsigned long)uaddr;
  187. struct mm_struct *mm = current->mm;
  188. struct page *page;
  189. int err;
  190. /*
  191. * The futex address must be "naturally" aligned.
  192. */
  193. key->both.offset = address % PAGE_SIZE;
  194. if (unlikely((address % sizeof(u32)) != 0))
  195. return -EINVAL;
  196. address -= key->both.offset;
  197. /*
  198. * PROCESS_PRIVATE futexes are fast.
  199. * As the mm cannot disappear under us and the 'key' only needs
  200. * virtual address, we dont even have to find the underlying vma.
  201. * Note : We do have to check 'uaddr' is a valid user address,
  202. * but access_ok() should be faster than find_vma()
  203. */
  204. if (!fshared) {
  205. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  206. return -EFAULT;
  207. key->private.mm = mm;
  208. key->private.address = address;
  209. get_futex_key_refs(key);
  210. return 0;
  211. }
  212. again:
  213. err = get_user_pages_fast(address, 1, 0, &page);
  214. if (err < 0)
  215. return err;
  216. lock_page(page);
  217. if (!page->mapping) {
  218. unlock_page(page);
  219. put_page(page);
  220. goto again;
  221. }
  222. /*
  223. * Private mappings are handled in a simple way.
  224. *
  225. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  226. * it's a read-only handle, it's expected that futexes attach to
  227. * the object not the particular process.
  228. */
  229. if (PageAnon(page)) {
  230. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  231. key->private.mm = mm;
  232. key->private.address = address;
  233. } else {
  234. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  235. key->shared.inode = page->mapping->host;
  236. key->shared.pgoff = page->index;
  237. }
  238. get_futex_key_refs(key);
  239. unlock_page(page);
  240. put_page(page);
  241. return 0;
  242. }
  243. static inline
  244. void put_futex_key(int fshared, union futex_key *key)
  245. {
  246. drop_futex_key_refs(key);
  247. }
  248. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  249. {
  250. u32 curval;
  251. pagefault_disable();
  252. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  253. pagefault_enable();
  254. return curval;
  255. }
  256. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  257. {
  258. int ret;
  259. pagefault_disable();
  260. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  261. pagefault_enable();
  262. return ret ? -EFAULT : 0;
  263. }
  264. /*
  265. * PI code:
  266. */
  267. static int refill_pi_state_cache(void)
  268. {
  269. struct futex_pi_state *pi_state;
  270. if (likely(current->pi_state_cache))
  271. return 0;
  272. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  273. if (!pi_state)
  274. return -ENOMEM;
  275. INIT_LIST_HEAD(&pi_state->list);
  276. /* pi_mutex gets initialized later */
  277. pi_state->owner = NULL;
  278. atomic_set(&pi_state->refcount, 1);
  279. pi_state->key = FUTEX_KEY_INIT;
  280. current->pi_state_cache = pi_state;
  281. return 0;
  282. }
  283. static struct futex_pi_state * alloc_pi_state(void)
  284. {
  285. struct futex_pi_state *pi_state = current->pi_state_cache;
  286. WARN_ON(!pi_state);
  287. current->pi_state_cache = NULL;
  288. return pi_state;
  289. }
  290. static void free_pi_state(struct futex_pi_state *pi_state)
  291. {
  292. if (!atomic_dec_and_test(&pi_state->refcount))
  293. return;
  294. /*
  295. * If pi_state->owner is NULL, the owner is most probably dying
  296. * and has cleaned up the pi_state already
  297. */
  298. if (pi_state->owner) {
  299. spin_lock_irq(&pi_state->owner->pi_lock);
  300. list_del_init(&pi_state->list);
  301. spin_unlock_irq(&pi_state->owner->pi_lock);
  302. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  303. }
  304. if (current->pi_state_cache)
  305. kfree(pi_state);
  306. else {
  307. /*
  308. * pi_state->list is already empty.
  309. * clear pi_state->owner.
  310. * refcount is at 0 - put it back to 1.
  311. */
  312. pi_state->owner = NULL;
  313. atomic_set(&pi_state->refcount, 1);
  314. current->pi_state_cache = pi_state;
  315. }
  316. }
  317. /*
  318. * Look up the task based on what TID userspace gave us.
  319. * We dont trust it.
  320. */
  321. static struct task_struct * futex_find_get_task(pid_t pid)
  322. {
  323. struct task_struct *p;
  324. const struct cred *cred = current_cred(), *pcred;
  325. rcu_read_lock();
  326. p = find_task_by_vpid(pid);
  327. if (!p) {
  328. p = ERR_PTR(-ESRCH);
  329. } else {
  330. pcred = __task_cred(p);
  331. if (cred->euid != pcred->euid &&
  332. cred->euid != pcred->uid)
  333. p = ERR_PTR(-ESRCH);
  334. else
  335. get_task_struct(p);
  336. }
  337. rcu_read_unlock();
  338. return p;
  339. }
  340. /*
  341. * This task is holding PI mutexes at exit time => bad.
  342. * Kernel cleans up PI-state, but userspace is likely hosed.
  343. * (Robust-futex cleanup is separate and might save the day for userspace.)
  344. */
  345. void exit_pi_state_list(struct task_struct *curr)
  346. {
  347. struct list_head *next, *head = &curr->pi_state_list;
  348. struct futex_pi_state *pi_state;
  349. struct futex_hash_bucket *hb;
  350. union futex_key key = FUTEX_KEY_INIT;
  351. if (!futex_cmpxchg_enabled)
  352. return;
  353. /*
  354. * We are a ZOMBIE and nobody can enqueue itself on
  355. * pi_state_list anymore, but we have to be careful
  356. * versus waiters unqueueing themselves:
  357. */
  358. spin_lock_irq(&curr->pi_lock);
  359. while (!list_empty(head)) {
  360. next = head->next;
  361. pi_state = list_entry(next, struct futex_pi_state, list);
  362. key = pi_state->key;
  363. hb = hash_futex(&key);
  364. spin_unlock_irq(&curr->pi_lock);
  365. spin_lock(&hb->lock);
  366. spin_lock_irq(&curr->pi_lock);
  367. /*
  368. * We dropped the pi-lock, so re-check whether this
  369. * task still owns the PI-state:
  370. */
  371. if (head->next != next) {
  372. spin_unlock(&hb->lock);
  373. continue;
  374. }
  375. WARN_ON(pi_state->owner != curr);
  376. WARN_ON(list_empty(&pi_state->list));
  377. list_del_init(&pi_state->list);
  378. pi_state->owner = NULL;
  379. spin_unlock_irq(&curr->pi_lock);
  380. rt_mutex_unlock(&pi_state->pi_mutex);
  381. spin_unlock(&hb->lock);
  382. spin_lock_irq(&curr->pi_lock);
  383. }
  384. spin_unlock_irq(&curr->pi_lock);
  385. }
  386. static int
  387. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  388. union futex_key *key, struct futex_pi_state **ps)
  389. {
  390. struct futex_pi_state *pi_state = NULL;
  391. struct futex_q *this, *next;
  392. struct plist_head *head;
  393. struct task_struct *p;
  394. pid_t pid = uval & FUTEX_TID_MASK;
  395. head = &hb->chain;
  396. plist_for_each_entry_safe(this, next, head, list) {
  397. if (match_futex(&this->key, key)) {
  398. /*
  399. * Another waiter already exists - bump up
  400. * the refcount and return its pi_state:
  401. */
  402. pi_state = this->pi_state;
  403. /*
  404. * Userspace might have messed up non PI and PI futexes
  405. */
  406. if (unlikely(!pi_state))
  407. return -EINVAL;
  408. WARN_ON(!atomic_read(&pi_state->refcount));
  409. WARN_ON(pid && pi_state->owner &&
  410. pi_state->owner->pid != pid);
  411. atomic_inc(&pi_state->refcount);
  412. *ps = pi_state;
  413. return 0;
  414. }
  415. }
  416. /*
  417. * We are the first waiter - try to look up the real owner and attach
  418. * the new pi_state to it, but bail out when TID = 0
  419. */
  420. if (!pid)
  421. return -ESRCH;
  422. p = futex_find_get_task(pid);
  423. if (IS_ERR(p))
  424. return PTR_ERR(p);
  425. /*
  426. * We need to look at the task state flags to figure out,
  427. * whether the task is exiting. To protect against the do_exit
  428. * change of the task flags, we do this protected by
  429. * p->pi_lock:
  430. */
  431. spin_lock_irq(&p->pi_lock);
  432. if (unlikely(p->flags & PF_EXITING)) {
  433. /*
  434. * The task is on the way out. When PF_EXITPIDONE is
  435. * set, we know that the task has finished the
  436. * cleanup:
  437. */
  438. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  439. spin_unlock_irq(&p->pi_lock);
  440. put_task_struct(p);
  441. return ret;
  442. }
  443. pi_state = alloc_pi_state();
  444. /*
  445. * Initialize the pi_mutex in locked state and make 'p'
  446. * the owner of it:
  447. */
  448. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  449. /* Store the key for possible exit cleanups: */
  450. pi_state->key = *key;
  451. WARN_ON(!list_empty(&pi_state->list));
  452. list_add(&pi_state->list, &p->pi_state_list);
  453. pi_state->owner = p;
  454. spin_unlock_irq(&p->pi_lock);
  455. put_task_struct(p);
  456. *ps = pi_state;
  457. return 0;
  458. }
  459. /*
  460. * The hash bucket lock must be held when this is called.
  461. * Afterwards, the futex_q must not be accessed.
  462. */
  463. static void wake_futex(struct futex_q *q)
  464. {
  465. plist_del(&q->list, &q->list.plist);
  466. /*
  467. * The lock in wake_up_all() is a crucial memory barrier after the
  468. * plist_del() and also before assigning to q->lock_ptr.
  469. */
  470. wake_up(&q->waiter);
  471. /*
  472. * The waiting task can free the futex_q as soon as this is written,
  473. * without taking any locks. This must come last.
  474. *
  475. * A memory barrier is required here to prevent the following store to
  476. * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
  477. * end of wake_up() does not prevent this store from moving.
  478. */
  479. smp_wmb();
  480. q->lock_ptr = NULL;
  481. }
  482. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  483. {
  484. struct task_struct *new_owner;
  485. struct futex_pi_state *pi_state = this->pi_state;
  486. u32 curval, newval;
  487. if (!pi_state)
  488. return -EINVAL;
  489. spin_lock(&pi_state->pi_mutex.wait_lock);
  490. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  491. /*
  492. * This happens when we have stolen the lock and the original
  493. * pending owner did not enqueue itself back on the rt_mutex.
  494. * Thats not a tragedy. We know that way, that a lock waiter
  495. * is on the fly. We make the futex_q waiter the pending owner.
  496. */
  497. if (!new_owner)
  498. new_owner = this->task;
  499. /*
  500. * We pass it to the next owner. (The WAITERS bit is always
  501. * kept enabled while there is PI state around. We must also
  502. * preserve the owner died bit.)
  503. */
  504. if (!(uval & FUTEX_OWNER_DIED)) {
  505. int ret = 0;
  506. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  507. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  508. if (curval == -EFAULT)
  509. ret = -EFAULT;
  510. else if (curval != uval)
  511. ret = -EINVAL;
  512. if (ret) {
  513. spin_unlock(&pi_state->pi_mutex.wait_lock);
  514. return ret;
  515. }
  516. }
  517. spin_lock_irq(&pi_state->owner->pi_lock);
  518. WARN_ON(list_empty(&pi_state->list));
  519. list_del_init(&pi_state->list);
  520. spin_unlock_irq(&pi_state->owner->pi_lock);
  521. spin_lock_irq(&new_owner->pi_lock);
  522. WARN_ON(!list_empty(&pi_state->list));
  523. list_add(&pi_state->list, &new_owner->pi_state_list);
  524. pi_state->owner = new_owner;
  525. spin_unlock_irq(&new_owner->pi_lock);
  526. spin_unlock(&pi_state->pi_mutex.wait_lock);
  527. rt_mutex_unlock(&pi_state->pi_mutex);
  528. return 0;
  529. }
  530. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  531. {
  532. u32 oldval;
  533. /*
  534. * There is no waiter, so we unlock the futex. The owner died
  535. * bit has not to be preserved here. We are the owner:
  536. */
  537. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  538. if (oldval == -EFAULT)
  539. return oldval;
  540. if (oldval != uval)
  541. return -EAGAIN;
  542. return 0;
  543. }
  544. /*
  545. * Express the locking dependencies for lockdep:
  546. */
  547. static inline void
  548. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  549. {
  550. if (hb1 <= hb2) {
  551. spin_lock(&hb1->lock);
  552. if (hb1 < hb2)
  553. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  554. } else { /* hb1 > hb2 */
  555. spin_lock(&hb2->lock);
  556. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  557. }
  558. }
  559. static inline void
  560. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  561. {
  562. spin_unlock(&hb1->lock);
  563. spin_unlock(&hb2->lock);
  564. }
  565. /*
  566. * Wake up waiters matching bitset queued on this futex (uaddr).
  567. */
  568. static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
  569. {
  570. struct futex_hash_bucket *hb;
  571. struct futex_q *this, *next;
  572. struct plist_head *head;
  573. union futex_key key = FUTEX_KEY_INIT;
  574. int ret;
  575. if (!bitset)
  576. return -EINVAL;
  577. ret = get_futex_key(uaddr, fshared, &key);
  578. if (unlikely(ret != 0))
  579. goto out;
  580. hb = hash_futex(&key);
  581. spin_lock(&hb->lock);
  582. head = &hb->chain;
  583. plist_for_each_entry_safe(this, next, head, list) {
  584. if (match_futex (&this->key, &key)) {
  585. if (this->pi_state) {
  586. ret = -EINVAL;
  587. break;
  588. }
  589. /* Check if one of the bits is set in both bitsets */
  590. if (!(this->bitset & bitset))
  591. continue;
  592. wake_futex(this);
  593. if (++ret >= nr_wake)
  594. break;
  595. }
  596. }
  597. spin_unlock(&hb->lock);
  598. put_futex_key(fshared, &key);
  599. out:
  600. return ret;
  601. }
  602. /*
  603. * Wake up all waiters hashed on the physical page that is mapped
  604. * to this virtual address:
  605. */
  606. static int
  607. futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  608. int nr_wake, int nr_wake2, int op)
  609. {
  610. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  611. struct futex_hash_bucket *hb1, *hb2;
  612. struct plist_head *head;
  613. struct futex_q *this, *next;
  614. int ret, op_ret;
  615. retry:
  616. ret = get_futex_key(uaddr1, fshared, &key1);
  617. if (unlikely(ret != 0))
  618. goto out;
  619. ret = get_futex_key(uaddr2, fshared, &key2);
  620. if (unlikely(ret != 0))
  621. goto out_put_key1;
  622. hb1 = hash_futex(&key1);
  623. hb2 = hash_futex(&key2);
  624. double_lock_hb(hb1, hb2);
  625. retry_private:
  626. op_ret = futex_atomic_op_inuser(op, uaddr2);
  627. if (unlikely(op_ret < 0)) {
  628. u32 dummy;
  629. double_unlock_hb(hb1, hb2);
  630. #ifndef CONFIG_MMU
  631. /*
  632. * we don't get EFAULT from MMU faults if we don't have an MMU,
  633. * but we might get them from range checking
  634. */
  635. ret = op_ret;
  636. goto out_put_keys;
  637. #endif
  638. if (unlikely(op_ret != -EFAULT)) {
  639. ret = op_ret;
  640. goto out_put_keys;
  641. }
  642. ret = get_user(dummy, uaddr2);
  643. if (ret)
  644. goto out_put_keys;
  645. if (!fshared)
  646. goto retry_private;
  647. put_futex_key(fshared, &key2);
  648. put_futex_key(fshared, &key1);
  649. goto retry;
  650. }
  651. head = &hb1->chain;
  652. plist_for_each_entry_safe(this, next, head, list) {
  653. if (match_futex (&this->key, &key1)) {
  654. wake_futex(this);
  655. if (++ret >= nr_wake)
  656. break;
  657. }
  658. }
  659. if (op_ret > 0) {
  660. head = &hb2->chain;
  661. op_ret = 0;
  662. plist_for_each_entry_safe(this, next, head, list) {
  663. if (match_futex (&this->key, &key2)) {
  664. wake_futex(this);
  665. if (++op_ret >= nr_wake2)
  666. break;
  667. }
  668. }
  669. ret += op_ret;
  670. }
  671. double_unlock_hb(hb1, hb2);
  672. out_put_keys:
  673. put_futex_key(fshared, &key2);
  674. out_put_key1:
  675. put_futex_key(fshared, &key1);
  676. out:
  677. return ret;
  678. }
  679. /*
  680. * Requeue all waiters hashed on one physical page to another
  681. * physical page.
  682. */
  683. static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  684. int nr_wake, int nr_requeue, u32 *cmpval)
  685. {
  686. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  687. struct futex_hash_bucket *hb1, *hb2;
  688. struct plist_head *head1;
  689. struct futex_q *this, *next;
  690. int ret, drop_count = 0;
  691. retry:
  692. ret = get_futex_key(uaddr1, fshared, &key1);
  693. if (unlikely(ret != 0))
  694. goto out;
  695. ret = get_futex_key(uaddr2, fshared, &key2);
  696. if (unlikely(ret != 0))
  697. goto out_put_key1;
  698. hb1 = hash_futex(&key1);
  699. hb2 = hash_futex(&key2);
  700. retry_private:
  701. double_lock_hb(hb1, hb2);
  702. if (likely(cmpval != NULL)) {
  703. u32 curval;
  704. ret = get_futex_value_locked(&curval, uaddr1);
  705. if (unlikely(ret)) {
  706. double_unlock_hb(hb1, hb2);
  707. ret = get_user(curval, uaddr1);
  708. if (ret)
  709. goto out_put_keys;
  710. if (!fshared)
  711. goto retry_private;
  712. put_futex_key(fshared, &key2);
  713. put_futex_key(fshared, &key1);
  714. goto retry;
  715. }
  716. if (curval != *cmpval) {
  717. ret = -EAGAIN;
  718. goto out_unlock;
  719. }
  720. }
  721. head1 = &hb1->chain;
  722. plist_for_each_entry_safe(this, next, head1, list) {
  723. if (!match_futex (&this->key, &key1))
  724. continue;
  725. if (++ret <= nr_wake) {
  726. wake_futex(this);
  727. } else {
  728. /*
  729. * If key1 and key2 hash to the same bucket, no need to
  730. * requeue.
  731. */
  732. if (likely(head1 != &hb2->chain)) {
  733. plist_del(&this->list, &hb1->chain);
  734. plist_add(&this->list, &hb2->chain);
  735. this->lock_ptr = &hb2->lock;
  736. #ifdef CONFIG_DEBUG_PI_LIST
  737. this->list.plist.lock = &hb2->lock;
  738. #endif
  739. }
  740. this->key = key2;
  741. get_futex_key_refs(&key2);
  742. drop_count++;
  743. if (ret - nr_wake >= nr_requeue)
  744. break;
  745. }
  746. }
  747. out_unlock:
  748. double_unlock_hb(hb1, hb2);
  749. /* drop_futex_key_refs() must be called outside the spinlocks. */
  750. while (--drop_count >= 0)
  751. drop_futex_key_refs(&key1);
  752. out_put_keys:
  753. put_futex_key(fshared, &key2);
  754. out_put_key1:
  755. put_futex_key(fshared, &key1);
  756. out:
  757. return ret;
  758. }
  759. /* The key must be already stored in q->key. */
  760. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  761. {
  762. struct futex_hash_bucket *hb;
  763. init_waitqueue_head(&q->waiter);
  764. get_futex_key_refs(&q->key);
  765. hb = hash_futex(&q->key);
  766. q->lock_ptr = &hb->lock;
  767. spin_lock(&hb->lock);
  768. return hb;
  769. }
  770. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  771. {
  772. int prio;
  773. /*
  774. * The priority used to register this element is
  775. * - either the real thread-priority for the real-time threads
  776. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  777. * - or MAX_RT_PRIO for non-RT threads.
  778. * Thus, all RT-threads are woken first in priority order, and
  779. * the others are woken last, in FIFO order.
  780. */
  781. prio = min(current->normal_prio, MAX_RT_PRIO);
  782. plist_node_init(&q->list, prio);
  783. #ifdef CONFIG_DEBUG_PI_LIST
  784. q->list.plist.lock = &hb->lock;
  785. #endif
  786. plist_add(&q->list, &hb->chain);
  787. q->task = current;
  788. spin_unlock(&hb->lock);
  789. }
  790. static inline void
  791. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  792. {
  793. spin_unlock(&hb->lock);
  794. drop_futex_key_refs(&q->key);
  795. }
  796. /*
  797. * queue_me and unqueue_me must be called as a pair, each
  798. * exactly once. They are called with the hashed spinlock held.
  799. */
  800. /* Return 1 if we were still queued (ie. 0 means we were woken) */
  801. static int unqueue_me(struct futex_q *q)
  802. {
  803. spinlock_t *lock_ptr;
  804. int ret = 0;
  805. /* In the common case we don't take the spinlock, which is nice. */
  806. retry:
  807. lock_ptr = q->lock_ptr;
  808. barrier();
  809. if (lock_ptr != NULL) {
  810. spin_lock(lock_ptr);
  811. /*
  812. * q->lock_ptr can change between reading it and
  813. * spin_lock(), causing us to take the wrong lock. This
  814. * corrects the race condition.
  815. *
  816. * Reasoning goes like this: if we have the wrong lock,
  817. * q->lock_ptr must have changed (maybe several times)
  818. * between reading it and the spin_lock(). It can
  819. * change again after the spin_lock() but only if it was
  820. * already changed before the spin_lock(). It cannot,
  821. * however, change back to the original value. Therefore
  822. * we can detect whether we acquired the correct lock.
  823. */
  824. if (unlikely(lock_ptr != q->lock_ptr)) {
  825. spin_unlock(lock_ptr);
  826. goto retry;
  827. }
  828. WARN_ON(plist_node_empty(&q->list));
  829. plist_del(&q->list, &q->list.plist);
  830. BUG_ON(q->pi_state);
  831. spin_unlock(lock_ptr);
  832. ret = 1;
  833. }
  834. drop_futex_key_refs(&q->key);
  835. return ret;
  836. }
  837. /*
  838. * PI futexes can not be requeued and must remove themself from the
  839. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  840. * and dropped here.
  841. */
  842. static void unqueue_me_pi(struct futex_q *q)
  843. {
  844. WARN_ON(plist_node_empty(&q->list));
  845. plist_del(&q->list, &q->list.plist);
  846. BUG_ON(!q->pi_state);
  847. free_pi_state(q->pi_state);
  848. q->pi_state = NULL;
  849. spin_unlock(q->lock_ptr);
  850. drop_futex_key_refs(&q->key);
  851. }
  852. /*
  853. * Fixup the pi_state owner with the new owner.
  854. *
  855. * Must be called with hash bucket lock held and mm->sem held for non
  856. * private futexes.
  857. */
  858. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  859. struct task_struct *newowner, int fshared)
  860. {
  861. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  862. struct futex_pi_state *pi_state = q->pi_state;
  863. struct task_struct *oldowner = pi_state->owner;
  864. u32 uval, curval, newval;
  865. int ret;
  866. /* Owner died? */
  867. if (!pi_state->owner)
  868. newtid |= FUTEX_OWNER_DIED;
  869. /*
  870. * We are here either because we stole the rtmutex from the
  871. * pending owner or we are the pending owner which failed to
  872. * get the rtmutex. We have to replace the pending owner TID
  873. * in the user space variable. This must be atomic as we have
  874. * to preserve the owner died bit here.
  875. *
  876. * Note: We write the user space value _before_ changing the pi_state
  877. * because we can fault here. Imagine swapped out pages or a fork
  878. * that marked all the anonymous memory readonly for cow.
  879. *
  880. * Modifying pi_state _before_ the user space value would
  881. * leave the pi_state in an inconsistent state when we fault
  882. * here, because we need to drop the hash bucket lock to
  883. * handle the fault. This might be observed in the PID check
  884. * in lookup_pi_state.
  885. */
  886. retry:
  887. if (get_futex_value_locked(&uval, uaddr))
  888. goto handle_fault;
  889. while (1) {
  890. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  891. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  892. if (curval == -EFAULT)
  893. goto handle_fault;
  894. if (curval == uval)
  895. break;
  896. uval = curval;
  897. }
  898. /*
  899. * We fixed up user space. Now we need to fix the pi_state
  900. * itself.
  901. */
  902. if (pi_state->owner != NULL) {
  903. spin_lock_irq(&pi_state->owner->pi_lock);
  904. WARN_ON(list_empty(&pi_state->list));
  905. list_del_init(&pi_state->list);
  906. spin_unlock_irq(&pi_state->owner->pi_lock);
  907. }
  908. pi_state->owner = newowner;
  909. spin_lock_irq(&newowner->pi_lock);
  910. WARN_ON(!list_empty(&pi_state->list));
  911. list_add(&pi_state->list, &newowner->pi_state_list);
  912. spin_unlock_irq(&newowner->pi_lock);
  913. return 0;
  914. /*
  915. * To handle the page fault we need to drop the hash bucket
  916. * lock here. That gives the other task (either the pending
  917. * owner itself or the task which stole the rtmutex) the
  918. * chance to try the fixup of the pi_state. So once we are
  919. * back from handling the fault we need to check the pi_state
  920. * after reacquiring the hash bucket lock and before trying to
  921. * do another fixup. When the fixup has been done already we
  922. * simply return.
  923. */
  924. handle_fault:
  925. spin_unlock(q->lock_ptr);
  926. ret = get_user(uval, uaddr);
  927. spin_lock(q->lock_ptr);
  928. /*
  929. * Check if someone else fixed it for us:
  930. */
  931. if (pi_state->owner != oldowner)
  932. return 0;
  933. if (ret)
  934. return ret;
  935. goto retry;
  936. }
  937. /*
  938. * In case we must use restart_block to restart a futex_wait,
  939. * we encode in the 'flags' shared capability
  940. */
  941. #define FLAGS_SHARED 0x01
  942. #define FLAGS_CLOCKRT 0x02
  943. static long futex_wait_restart(struct restart_block *restart);
  944. static int futex_wait(u32 __user *uaddr, int fshared,
  945. u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
  946. {
  947. struct task_struct *curr = current;
  948. struct restart_block *restart;
  949. DECLARE_WAITQUEUE(wait, curr);
  950. struct futex_hash_bucket *hb;
  951. struct futex_q q;
  952. u32 uval;
  953. int ret;
  954. struct hrtimer_sleeper t;
  955. int rem = 0;
  956. if (!bitset)
  957. return -EINVAL;
  958. q.pi_state = NULL;
  959. q.bitset = bitset;
  960. retry:
  961. q.key = FUTEX_KEY_INIT;
  962. ret = get_futex_key(uaddr, fshared, &q.key);
  963. if (unlikely(ret != 0))
  964. goto out;
  965. retry_private:
  966. hb = queue_lock(&q);
  967. /*
  968. * Access the page AFTER the hash-bucket is locked.
  969. * Order is important:
  970. *
  971. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  972. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  973. *
  974. * The basic logical guarantee of a futex is that it blocks ONLY
  975. * if cond(var) is known to be true at the time of blocking, for
  976. * any cond. If we queued after testing *uaddr, that would open
  977. * a race condition where we could block indefinitely with
  978. * cond(var) false, which would violate the guarantee.
  979. *
  980. * A consequence is that futex_wait() can return zero and absorb
  981. * a wakeup when *uaddr != val on entry to the syscall. This is
  982. * rare, but normal.
  983. *
  984. * For shared futexes, we hold the mmap semaphore, so the mapping
  985. * cannot have changed since we looked it up in get_futex_key.
  986. */
  987. ret = get_futex_value_locked(&uval, uaddr);
  988. if (unlikely(ret)) {
  989. queue_unlock(&q, hb);
  990. ret = get_user(uval, uaddr);
  991. if (ret)
  992. goto out_put_key;
  993. if (!fshared)
  994. goto retry_private;
  995. put_futex_key(fshared, &q.key);
  996. goto retry;
  997. }
  998. ret = -EWOULDBLOCK;
  999. if (unlikely(uval != val)) {
  1000. queue_unlock(&q, hb);
  1001. goto out_put_key;
  1002. }
  1003. /* Only actually queue if *uaddr contained val. */
  1004. queue_me(&q, hb);
  1005. /*
  1006. * There might have been scheduling since the queue_me(), as we
  1007. * cannot hold a spinlock across the get_user() in case it
  1008. * faults, and we cannot just set TASK_INTERRUPTIBLE state when
  1009. * queueing ourselves into the futex hash. This code thus has to
  1010. * rely on the futex_wake() code removing us from hash when it
  1011. * wakes us up.
  1012. */
  1013. /* add_wait_queue is the barrier after __set_current_state. */
  1014. __set_current_state(TASK_INTERRUPTIBLE);
  1015. add_wait_queue(&q.waiter, &wait);
  1016. /*
  1017. * !plist_node_empty() is safe here without any lock.
  1018. * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
  1019. */
  1020. if (likely(!plist_node_empty(&q.list))) {
  1021. if (!abs_time)
  1022. schedule();
  1023. else {
  1024. hrtimer_init_on_stack(&t.timer,
  1025. clockrt ? CLOCK_REALTIME :
  1026. CLOCK_MONOTONIC,
  1027. HRTIMER_MODE_ABS);
  1028. hrtimer_init_sleeper(&t, current);
  1029. hrtimer_set_expires_range_ns(&t.timer, *abs_time,
  1030. current->timer_slack_ns);
  1031. hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
  1032. if (!hrtimer_active(&t.timer))
  1033. t.task = NULL;
  1034. /*
  1035. * the timer could have already expired, in which
  1036. * case current would be flagged for rescheduling.
  1037. * Don't bother calling schedule.
  1038. */
  1039. if (likely(t.task))
  1040. schedule();
  1041. hrtimer_cancel(&t.timer);
  1042. /* Flag if a timeout occured */
  1043. rem = (t.task == NULL);
  1044. destroy_hrtimer_on_stack(&t.timer);
  1045. }
  1046. }
  1047. __set_current_state(TASK_RUNNING);
  1048. /*
  1049. * NOTE: we don't remove ourselves from the waitqueue because
  1050. * we are the only user of it.
  1051. */
  1052. /* If we were woken (and unqueued), we succeeded, whatever. */
  1053. ret = 0;
  1054. if (!unqueue_me(&q))
  1055. goto out_put_key;
  1056. ret = -ETIMEDOUT;
  1057. if (rem)
  1058. goto out_put_key;
  1059. /*
  1060. * We expect signal_pending(current), but another thread may
  1061. * have handled it for us already.
  1062. */
  1063. ret = -ERESTARTSYS;
  1064. if (!abs_time)
  1065. goto out_put_key;
  1066. restart = &current_thread_info()->restart_block;
  1067. restart->fn = futex_wait_restart;
  1068. restart->futex.uaddr = (u32 *)uaddr;
  1069. restart->futex.val = val;
  1070. restart->futex.time = abs_time->tv64;
  1071. restart->futex.bitset = bitset;
  1072. restart->futex.flags = 0;
  1073. if (fshared)
  1074. restart->futex.flags |= FLAGS_SHARED;
  1075. if (clockrt)
  1076. restart->futex.flags |= FLAGS_CLOCKRT;
  1077. ret = -ERESTART_RESTARTBLOCK;
  1078. out_put_key:
  1079. put_futex_key(fshared, &q.key);
  1080. out:
  1081. return ret;
  1082. }
  1083. static long futex_wait_restart(struct restart_block *restart)
  1084. {
  1085. u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
  1086. int fshared = 0;
  1087. ktime_t t;
  1088. t.tv64 = restart->futex.time;
  1089. restart->fn = do_no_restart_syscall;
  1090. if (restart->futex.flags & FLAGS_SHARED)
  1091. fshared = 1;
  1092. return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
  1093. restart->futex.bitset,
  1094. restart->futex.flags & FLAGS_CLOCKRT);
  1095. }
  1096. /*
  1097. * Userspace tried a 0 -> TID atomic transition of the futex value
  1098. * and failed. The kernel side here does the whole locking operation:
  1099. * if there are waiters then it will block, it does PI, etc. (Due to
  1100. * races the kernel might see a 0 value of the futex too.)
  1101. */
  1102. static int futex_lock_pi(u32 __user *uaddr, int fshared,
  1103. int detect, ktime_t *time, int trylock)
  1104. {
  1105. struct hrtimer_sleeper timeout, *to = NULL;
  1106. struct task_struct *curr = current;
  1107. struct futex_hash_bucket *hb;
  1108. u32 uval, newval, curval;
  1109. struct futex_q q;
  1110. int ret, lock_taken, ownerdied = 0;
  1111. if (refill_pi_state_cache())
  1112. return -ENOMEM;
  1113. if (time) {
  1114. to = &timeout;
  1115. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1116. HRTIMER_MODE_ABS);
  1117. hrtimer_init_sleeper(to, current);
  1118. hrtimer_set_expires(&to->timer, *time);
  1119. }
  1120. q.pi_state = NULL;
  1121. retry:
  1122. q.key = FUTEX_KEY_INIT;
  1123. ret = get_futex_key(uaddr, fshared, &q.key);
  1124. if (unlikely(ret != 0))
  1125. goto out;
  1126. retry_private:
  1127. hb = queue_lock(&q);
  1128. retry_locked:
  1129. ret = lock_taken = 0;
  1130. /*
  1131. * To avoid races, we attempt to take the lock here again
  1132. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  1133. * the locks. It will most likely not succeed.
  1134. */
  1135. newval = task_pid_vnr(current);
  1136. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  1137. if (unlikely(curval == -EFAULT))
  1138. goto uaddr_faulted;
  1139. /*
  1140. * Detect deadlocks. In case of REQUEUE_PI this is a valid
  1141. * situation and we return success to user space.
  1142. */
  1143. if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
  1144. ret = -EDEADLK;
  1145. goto out_unlock_put_key;
  1146. }
  1147. /*
  1148. * Surprise - we got the lock. Just return to userspace:
  1149. */
  1150. if (unlikely(!curval))
  1151. goto out_unlock_put_key;
  1152. uval = curval;
  1153. /*
  1154. * Set the WAITERS flag, so the owner will know it has someone
  1155. * to wake at next unlock
  1156. */
  1157. newval = curval | FUTEX_WAITERS;
  1158. /*
  1159. * There are two cases, where a futex might have no owner (the
  1160. * owner TID is 0): OWNER_DIED. We take over the futex in this
  1161. * case. We also do an unconditional take over, when the owner
  1162. * of the futex died.
  1163. *
  1164. * This is safe as we are protected by the hash bucket lock !
  1165. */
  1166. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  1167. /* Keep the OWNER_DIED bit */
  1168. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
  1169. ownerdied = 0;
  1170. lock_taken = 1;
  1171. }
  1172. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1173. if (unlikely(curval == -EFAULT))
  1174. goto uaddr_faulted;
  1175. if (unlikely(curval != uval))
  1176. goto retry_locked;
  1177. /*
  1178. * We took the lock due to owner died take over.
  1179. */
  1180. if (unlikely(lock_taken))
  1181. goto out_unlock_put_key;
  1182. /*
  1183. * We dont have the lock. Look up the PI state (or create it if
  1184. * we are the first waiter):
  1185. */
  1186. ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
  1187. if (unlikely(ret)) {
  1188. switch (ret) {
  1189. case -EAGAIN:
  1190. /*
  1191. * Task is exiting and we just wait for the
  1192. * exit to complete.
  1193. */
  1194. queue_unlock(&q, hb);
  1195. put_futex_key(fshared, &q.key);
  1196. cond_resched();
  1197. goto retry;
  1198. case -ESRCH:
  1199. /*
  1200. * No owner found for this futex. Check if the
  1201. * OWNER_DIED bit is set to figure out whether
  1202. * this is a robust futex or not.
  1203. */
  1204. if (get_futex_value_locked(&curval, uaddr))
  1205. goto uaddr_faulted;
  1206. /*
  1207. * We simply start over in case of a robust
  1208. * futex. The code above will take the futex
  1209. * and return happy.
  1210. */
  1211. if (curval & FUTEX_OWNER_DIED) {
  1212. ownerdied = 1;
  1213. goto retry_locked;
  1214. }
  1215. default:
  1216. goto out_unlock_put_key;
  1217. }
  1218. }
  1219. /*
  1220. * Only actually queue now that the atomic ops are done:
  1221. */
  1222. queue_me(&q, hb);
  1223. WARN_ON(!q.pi_state);
  1224. /*
  1225. * Block on the PI mutex:
  1226. */
  1227. if (!trylock)
  1228. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1229. else {
  1230. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1231. /* Fixup the trylock return value: */
  1232. ret = ret ? 0 : -EWOULDBLOCK;
  1233. }
  1234. spin_lock(q.lock_ptr);
  1235. if (!ret) {
  1236. /*
  1237. * Got the lock. We might not be the anticipated owner
  1238. * if we did a lock-steal - fix up the PI-state in
  1239. * that case:
  1240. */
  1241. if (q.pi_state->owner != curr)
  1242. ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
  1243. } else {
  1244. /*
  1245. * Catch the rare case, where the lock was released
  1246. * when we were on the way back before we locked the
  1247. * hash bucket.
  1248. */
  1249. if (q.pi_state->owner == curr) {
  1250. /*
  1251. * Try to get the rt_mutex now. This might
  1252. * fail as some other task acquired the
  1253. * rt_mutex after we removed ourself from the
  1254. * rt_mutex waiters list.
  1255. */
  1256. if (rt_mutex_trylock(&q.pi_state->pi_mutex))
  1257. ret = 0;
  1258. else {
  1259. /*
  1260. * pi_state is incorrect, some other
  1261. * task did a lock steal and we
  1262. * returned due to timeout or signal
  1263. * without taking the rt_mutex. Too
  1264. * late. We can access the
  1265. * rt_mutex_owner without locking, as
  1266. * the other task is now blocked on
  1267. * the hash bucket lock. Fix the state
  1268. * up.
  1269. */
  1270. struct task_struct *owner;
  1271. int res;
  1272. owner = rt_mutex_owner(&q.pi_state->pi_mutex);
  1273. res = fixup_pi_state_owner(uaddr, &q, owner,
  1274. fshared);
  1275. /* propagate -EFAULT, if the fixup failed */
  1276. if (res)
  1277. ret = res;
  1278. }
  1279. } else {
  1280. /*
  1281. * Paranoia check. If we did not take the lock
  1282. * in the trylock above, then we should not be
  1283. * the owner of the rtmutex, neither the real
  1284. * nor the pending one:
  1285. */
  1286. if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
  1287. printk(KERN_ERR "futex_lock_pi: ret = %d "
  1288. "pi-mutex: %p pi-state %p\n", ret,
  1289. q.pi_state->pi_mutex.owner,
  1290. q.pi_state->owner);
  1291. }
  1292. }
  1293. /*
  1294. * If fixup_pi_state_owner() faulted and was unable to handle the
  1295. * fault, unlock it and return the fault to userspace.
  1296. */
  1297. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1298. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1299. /* Unqueue and drop the lock */
  1300. unqueue_me_pi(&q);
  1301. if (to)
  1302. destroy_hrtimer_on_stack(&to->timer);
  1303. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1304. out_unlock_put_key:
  1305. queue_unlock(&q, hb);
  1306. out_put_key:
  1307. put_futex_key(fshared, &q.key);
  1308. out:
  1309. if (to)
  1310. destroy_hrtimer_on_stack(&to->timer);
  1311. return ret;
  1312. uaddr_faulted:
  1313. /*
  1314. * We have to r/w *(int __user *)uaddr, and we have to modify it
  1315. * atomically. Therefore, if we continue to fault after get_user()
  1316. * below, we need to handle the fault ourselves, while still holding
  1317. * the mmap_sem. This can occur if the uaddr is under contention as
  1318. * we have to drop the mmap_sem in order to call get_user().
  1319. */
  1320. queue_unlock(&q, hb);
  1321. ret = get_user(uval, uaddr);
  1322. if (ret)
  1323. goto out_put_key;
  1324. if (!fshared)
  1325. goto retry_private;
  1326. put_futex_key(fshared, &q.key);
  1327. goto retry;
  1328. }
  1329. /*
  1330. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1331. * This is the in-kernel slowpath: we look up the PI state (if any),
  1332. * and do the rt-mutex unlock.
  1333. */
  1334. static int futex_unlock_pi(u32 __user *uaddr, int fshared)
  1335. {
  1336. struct futex_hash_bucket *hb;
  1337. struct futex_q *this, *next;
  1338. u32 uval;
  1339. struct plist_head *head;
  1340. union futex_key key = FUTEX_KEY_INIT;
  1341. int ret;
  1342. retry:
  1343. if (get_user(uval, uaddr))
  1344. return -EFAULT;
  1345. /*
  1346. * We release only a lock we actually own:
  1347. */
  1348. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1349. return -EPERM;
  1350. ret = get_futex_key(uaddr, fshared, &key);
  1351. if (unlikely(ret != 0))
  1352. goto out;
  1353. hb = hash_futex(&key);
  1354. spin_lock(&hb->lock);
  1355. /*
  1356. * To avoid races, try to do the TID -> 0 atomic transition
  1357. * again. If it succeeds then we can return without waking
  1358. * anyone else up:
  1359. */
  1360. if (!(uval & FUTEX_OWNER_DIED))
  1361. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1362. if (unlikely(uval == -EFAULT))
  1363. goto pi_faulted;
  1364. /*
  1365. * Rare case: we managed to release the lock atomically,
  1366. * no need to wake anyone else up:
  1367. */
  1368. if (unlikely(uval == task_pid_vnr(current)))
  1369. goto out_unlock;
  1370. /*
  1371. * Ok, other tasks may need to be woken up - check waiters
  1372. * and do the wakeup if necessary:
  1373. */
  1374. head = &hb->chain;
  1375. plist_for_each_entry_safe(this, next, head, list) {
  1376. if (!match_futex (&this->key, &key))
  1377. continue;
  1378. ret = wake_futex_pi(uaddr, uval, this);
  1379. /*
  1380. * The atomic access to the futex value
  1381. * generated a pagefault, so retry the
  1382. * user-access and the wakeup:
  1383. */
  1384. if (ret == -EFAULT)
  1385. goto pi_faulted;
  1386. goto out_unlock;
  1387. }
  1388. /*
  1389. * No waiters - kernel unlocks the futex:
  1390. */
  1391. if (!(uval & FUTEX_OWNER_DIED)) {
  1392. ret = unlock_futex_pi(uaddr, uval);
  1393. if (ret == -EFAULT)
  1394. goto pi_faulted;
  1395. }
  1396. out_unlock:
  1397. spin_unlock(&hb->lock);
  1398. put_futex_key(fshared, &key);
  1399. out:
  1400. return ret;
  1401. pi_faulted:
  1402. /*
  1403. * We have to r/w *(int __user *)uaddr, and we have to modify it
  1404. * atomically. Therefore, if we continue to fault after get_user()
  1405. * below, we need to handle the fault ourselves, while still holding
  1406. * the mmap_sem. This can occur if the uaddr is under contention as
  1407. * we have to drop the mmap_sem in order to call get_user().
  1408. */
  1409. spin_unlock(&hb->lock);
  1410. put_futex_key(fshared, &key);
  1411. ret = get_user(uval, uaddr);
  1412. if (!ret)
  1413. goto retry;
  1414. return ret;
  1415. }
  1416. /*
  1417. * Support for robust futexes: the kernel cleans up held futexes at
  1418. * thread exit time.
  1419. *
  1420. * Implementation: user-space maintains a per-thread list of locks it
  1421. * is holding. Upon do_exit(), the kernel carefully walks this list,
  1422. * and marks all locks that are owned by this thread with the
  1423. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  1424. * always manipulated with the lock held, so the list is private and
  1425. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  1426. * field, to allow the kernel to clean up if the thread dies after
  1427. * acquiring the lock, but just before it could have added itself to
  1428. * the list. There can only be one such pending lock.
  1429. */
  1430. /**
  1431. * sys_set_robust_list - set the robust-futex list head of a task
  1432. * @head: pointer to the list-head
  1433. * @len: length of the list-head, as userspace expects
  1434. */
  1435. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  1436. size_t, len)
  1437. {
  1438. if (!futex_cmpxchg_enabled)
  1439. return -ENOSYS;
  1440. /*
  1441. * The kernel knows only one size for now:
  1442. */
  1443. if (unlikely(len != sizeof(*head)))
  1444. return -EINVAL;
  1445. current->robust_list = head;
  1446. return 0;
  1447. }
  1448. /**
  1449. * sys_get_robust_list - get the robust-futex list head of a task
  1450. * @pid: pid of the process [zero for current task]
  1451. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  1452. * @len_ptr: pointer to a length field, the kernel fills in the header size
  1453. */
  1454. SYSCALL_DEFINE3(get_robust_list, int, pid,
  1455. struct robust_list_head __user * __user *, head_ptr,
  1456. size_t __user *, len_ptr)
  1457. {
  1458. struct robust_list_head __user *head;
  1459. unsigned long ret;
  1460. const struct cred *cred = current_cred(), *pcred;
  1461. if (!futex_cmpxchg_enabled)
  1462. return -ENOSYS;
  1463. if (!pid)
  1464. head = current->robust_list;
  1465. else {
  1466. struct task_struct *p;
  1467. ret = -ESRCH;
  1468. rcu_read_lock();
  1469. p = find_task_by_vpid(pid);
  1470. if (!p)
  1471. goto err_unlock;
  1472. ret = -EPERM;
  1473. pcred = __task_cred(p);
  1474. if (cred->euid != pcred->euid &&
  1475. cred->euid != pcred->uid &&
  1476. !capable(CAP_SYS_PTRACE))
  1477. goto err_unlock;
  1478. head = p->robust_list;
  1479. rcu_read_unlock();
  1480. }
  1481. if (put_user(sizeof(*head), len_ptr))
  1482. return -EFAULT;
  1483. return put_user(head, head_ptr);
  1484. err_unlock:
  1485. rcu_read_unlock();
  1486. return ret;
  1487. }
  1488. /*
  1489. * Process a futex-list entry, check whether it's owned by the
  1490. * dying task, and do notification if so:
  1491. */
  1492. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  1493. {
  1494. u32 uval, nval, mval;
  1495. retry:
  1496. if (get_user(uval, uaddr))
  1497. return -1;
  1498. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  1499. /*
  1500. * Ok, this dying thread is truly holding a futex
  1501. * of interest. Set the OWNER_DIED bit atomically
  1502. * via cmpxchg, and if the value had FUTEX_WAITERS
  1503. * set, wake up a waiter (if any). (We have to do a
  1504. * futex_wake() even if OWNER_DIED is already set -
  1505. * to handle the rare but possible case of recursive
  1506. * thread-death.) The rest of the cleanup is done in
  1507. * userspace.
  1508. */
  1509. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  1510. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  1511. if (nval == -EFAULT)
  1512. return -1;
  1513. if (nval != uval)
  1514. goto retry;
  1515. /*
  1516. * Wake robust non-PI futexes here. The wakeup of
  1517. * PI futexes happens in exit_pi_state():
  1518. */
  1519. if (!pi && (uval & FUTEX_WAITERS))
  1520. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  1521. }
  1522. return 0;
  1523. }
  1524. /*
  1525. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  1526. */
  1527. static inline int fetch_robust_entry(struct robust_list __user **entry,
  1528. struct robust_list __user * __user *head,
  1529. int *pi)
  1530. {
  1531. unsigned long uentry;
  1532. if (get_user(uentry, (unsigned long __user *)head))
  1533. return -EFAULT;
  1534. *entry = (void __user *)(uentry & ~1UL);
  1535. *pi = uentry & 1;
  1536. return 0;
  1537. }
  1538. /*
  1539. * Walk curr->robust_list (very carefully, it's a userspace list!)
  1540. * and mark any locks found there dead, and notify any waiters.
  1541. *
  1542. * We silently return on any sign of list-walking problem.
  1543. */
  1544. void exit_robust_list(struct task_struct *curr)
  1545. {
  1546. struct robust_list_head __user *head = curr->robust_list;
  1547. struct robust_list __user *entry, *next_entry, *pending;
  1548. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  1549. unsigned long futex_offset;
  1550. int rc;
  1551. if (!futex_cmpxchg_enabled)
  1552. return;
  1553. /*
  1554. * Fetch the list head (which was registered earlier, via
  1555. * sys_set_robust_list()):
  1556. */
  1557. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  1558. return;
  1559. /*
  1560. * Fetch the relative futex offset:
  1561. */
  1562. if (get_user(futex_offset, &head->futex_offset))
  1563. return;
  1564. /*
  1565. * Fetch any possibly pending lock-add first, and handle it
  1566. * if it exists:
  1567. */
  1568. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  1569. return;
  1570. next_entry = NULL; /* avoid warning with gcc */
  1571. while (entry != &head->list) {
  1572. /*
  1573. * Fetch the next entry in the list before calling
  1574. * handle_futex_death:
  1575. */
  1576. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  1577. /*
  1578. * A pending lock might already be on the list, so
  1579. * don't process it twice:
  1580. */
  1581. if (entry != pending)
  1582. if (handle_futex_death((void __user *)entry + futex_offset,
  1583. curr, pi))
  1584. return;
  1585. if (rc)
  1586. return;
  1587. entry = next_entry;
  1588. pi = next_pi;
  1589. /*
  1590. * Avoid excessively long or circular lists:
  1591. */
  1592. if (!--limit)
  1593. break;
  1594. cond_resched();
  1595. }
  1596. if (pending)
  1597. handle_futex_death((void __user *)pending + futex_offset,
  1598. curr, pip);
  1599. }
  1600. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  1601. u32 __user *uaddr2, u32 val2, u32 val3)
  1602. {
  1603. int clockrt, ret = -ENOSYS;
  1604. int cmd = op & FUTEX_CMD_MASK;
  1605. int fshared = 0;
  1606. if (!(op & FUTEX_PRIVATE_FLAG))
  1607. fshared = 1;
  1608. clockrt = op & FUTEX_CLOCK_REALTIME;
  1609. if (clockrt && cmd != FUTEX_WAIT_BITSET)
  1610. return -ENOSYS;
  1611. switch (cmd) {
  1612. case FUTEX_WAIT:
  1613. val3 = FUTEX_BITSET_MATCH_ANY;
  1614. case FUTEX_WAIT_BITSET:
  1615. ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
  1616. break;
  1617. case FUTEX_WAKE:
  1618. val3 = FUTEX_BITSET_MATCH_ANY;
  1619. case FUTEX_WAKE_BITSET:
  1620. ret = futex_wake(uaddr, fshared, val, val3);
  1621. break;
  1622. case FUTEX_REQUEUE:
  1623. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
  1624. break;
  1625. case FUTEX_CMP_REQUEUE:
  1626. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
  1627. break;
  1628. case FUTEX_WAKE_OP:
  1629. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  1630. break;
  1631. case FUTEX_LOCK_PI:
  1632. if (futex_cmpxchg_enabled)
  1633. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  1634. break;
  1635. case FUTEX_UNLOCK_PI:
  1636. if (futex_cmpxchg_enabled)
  1637. ret = futex_unlock_pi(uaddr, fshared);
  1638. break;
  1639. case FUTEX_TRYLOCK_PI:
  1640. if (futex_cmpxchg_enabled)
  1641. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  1642. break;
  1643. default:
  1644. ret = -ENOSYS;
  1645. }
  1646. return ret;
  1647. }
  1648. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  1649. struct timespec __user *, utime, u32 __user *, uaddr2,
  1650. u32, val3)
  1651. {
  1652. struct timespec ts;
  1653. ktime_t t, *tp = NULL;
  1654. u32 val2 = 0;
  1655. int cmd = op & FUTEX_CMD_MASK;
  1656. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  1657. cmd == FUTEX_WAIT_BITSET)) {
  1658. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  1659. return -EFAULT;
  1660. if (!timespec_valid(&ts))
  1661. return -EINVAL;
  1662. t = timespec_to_ktime(ts);
  1663. if (cmd == FUTEX_WAIT)
  1664. t = ktime_add_safe(ktime_get(), t);
  1665. tp = &t;
  1666. }
  1667. /*
  1668. * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
  1669. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  1670. */
  1671. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  1672. cmd == FUTEX_WAKE_OP)
  1673. val2 = (u32) (unsigned long) utime;
  1674. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  1675. }
  1676. static int __init futex_init(void)
  1677. {
  1678. u32 curval;
  1679. int i;
  1680. /*
  1681. * This will fail and we want it. Some arch implementations do
  1682. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  1683. * functionality. We want to know that before we call in any
  1684. * of the complex code paths. Also we want to prevent
  1685. * registration of robust lists in that case. NULL is
  1686. * guaranteed to fault and we get -EFAULT on functional
  1687. * implementation, the non functional ones will return
  1688. * -ENOSYS.
  1689. */
  1690. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  1691. if (curval == -EFAULT)
  1692. futex_cmpxchg_enabled = 1;
  1693. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  1694. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  1695. spin_lock_init(&futex_queues[i].lock);
  1696. }
  1697. return 0;
  1698. }
  1699. __initcall(futex_init);