vlan_core.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. #include <linux/skbuff.h>
  2. #include <linux/netdevice.h>
  3. #include <linux/if_vlan.h>
  4. #include <linux/netpoll.h>
  5. #include <linux/export.h>
  6. #include "vlan.h"
  7. bool vlan_do_receive(struct sk_buff **skbp)
  8. {
  9. struct sk_buff *skb = *skbp;
  10. __be16 vlan_proto = skb->vlan_proto;
  11. u16 vlan_id = vlan_tx_tag_get_id(skb);
  12. struct net_device *vlan_dev;
  13. struct vlan_pcpu_stats *rx_stats;
  14. vlan_dev = vlan_find_dev(skb->dev, vlan_proto, vlan_id);
  15. if (!vlan_dev)
  16. return false;
  17. skb = *skbp = skb_share_check(skb, GFP_ATOMIC);
  18. if (unlikely(!skb))
  19. return false;
  20. skb->dev = vlan_dev;
  21. if (skb->pkt_type == PACKET_OTHERHOST) {
  22. /* Our lower layer thinks this is not local, let's make sure.
  23. * This allows the VLAN to have a different MAC than the
  24. * underlying device, and still route correctly. */
  25. if (ether_addr_equal(eth_hdr(skb)->h_dest, vlan_dev->dev_addr))
  26. skb->pkt_type = PACKET_HOST;
  27. }
  28. if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR)) {
  29. unsigned int offset = skb->data - skb_mac_header(skb);
  30. /*
  31. * vlan_insert_tag expect skb->data pointing to mac header.
  32. * So change skb->data before calling it and change back to
  33. * original position later
  34. */
  35. skb_push(skb, offset);
  36. skb = *skbp = vlan_insert_tag(skb, skb->vlan_proto,
  37. skb->vlan_tci);
  38. if (!skb)
  39. return false;
  40. skb_pull(skb, offset + VLAN_HLEN);
  41. skb_reset_mac_len(skb);
  42. }
  43. skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci);
  44. skb->vlan_tci = 0;
  45. rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats);
  46. u64_stats_update_begin(&rx_stats->syncp);
  47. rx_stats->rx_packets++;
  48. rx_stats->rx_bytes += skb->len;
  49. if (skb->pkt_type == PACKET_MULTICAST)
  50. rx_stats->rx_multicast++;
  51. u64_stats_update_end(&rx_stats->syncp);
  52. return true;
  53. }
  54. /* Must be invoked with rcu_read_lock. */
  55. struct net_device *__vlan_find_dev_deep(struct net_device *dev,
  56. __be16 vlan_proto, u16 vlan_id)
  57. {
  58. struct vlan_info *vlan_info = rcu_dereference(dev->vlan_info);
  59. if (vlan_info) {
  60. return vlan_group_get_device(&vlan_info->grp,
  61. vlan_proto, vlan_id);
  62. } else {
  63. /*
  64. * Lower devices of master uppers (bonding, team) do not have
  65. * grp assigned to themselves. Grp is assigned to upper device
  66. * instead.
  67. */
  68. struct net_device *upper_dev;
  69. upper_dev = netdev_master_upper_dev_get_rcu(dev);
  70. if (upper_dev)
  71. return __vlan_find_dev_deep(upper_dev,
  72. vlan_proto, vlan_id);
  73. }
  74. return NULL;
  75. }
  76. EXPORT_SYMBOL(__vlan_find_dev_deep);
  77. struct net_device *vlan_dev_real_dev(const struct net_device *dev)
  78. {
  79. struct net_device *ret = vlan_dev_priv(dev)->real_dev;
  80. while (is_vlan_dev(ret))
  81. ret = vlan_dev_priv(ret)->real_dev;
  82. return ret;
  83. }
  84. EXPORT_SYMBOL(vlan_dev_real_dev);
  85. u16 vlan_dev_vlan_id(const struct net_device *dev)
  86. {
  87. return vlan_dev_priv(dev)->vlan_id;
  88. }
  89. EXPORT_SYMBOL(vlan_dev_vlan_id);
  90. static struct sk_buff *vlan_reorder_header(struct sk_buff *skb)
  91. {
  92. if (skb_cow(skb, skb_headroom(skb)) < 0)
  93. return NULL;
  94. memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
  95. skb->mac_header += VLAN_HLEN;
  96. return skb;
  97. }
  98. struct sk_buff *vlan_untag(struct sk_buff *skb)
  99. {
  100. struct vlan_hdr *vhdr;
  101. u16 vlan_tci;
  102. if (unlikely(vlan_tx_tag_present(skb))) {
  103. /* vlan_tci is already set-up so leave this for another time */
  104. return skb;
  105. }
  106. skb = skb_share_check(skb, GFP_ATOMIC);
  107. if (unlikely(!skb))
  108. goto err_free;
  109. if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
  110. goto err_free;
  111. vhdr = (struct vlan_hdr *) skb->data;
  112. vlan_tci = ntohs(vhdr->h_vlan_TCI);
  113. __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
  114. skb_pull_rcsum(skb, VLAN_HLEN);
  115. vlan_set_encap_proto(skb, vhdr);
  116. skb = vlan_reorder_header(skb);
  117. if (unlikely(!skb))
  118. goto err_free;
  119. skb_reset_network_header(skb);
  120. skb_reset_transport_header(skb);
  121. skb_reset_mac_len(skb);
  122. return skb;
  123. err_free:
  124. kfree_skb(skb);
  125. return NULL;
  126. }
  127. EXPORT_SYMBOL(vlan_untag);
  128. /*
  129. * vlan info and vid list
  130. */
  131. static void vlan_group_free(struct vlan_group *grp)
  132. {
  133. int i, j;
  134. for (i = 0; i < VLAN_PROTO_NUM; i++)
  135. for (j = 0; j < VLAN_GROUP_ARRAY_SPLIT_PARTS; j++)
  136. kfree(grp->vlan_devices_arrays[i][j]);
  137. }
  138. static void vlan_info_free(struct vlan_info *vlan_info)
  139. {
  140. vlan_group_free(&vlan_info->grp);
  141. kfree(vlan_info);
  142. }
  143. static void vlan_info_rcu_free(struct rcu_head *rcu)
  144. {
  145. vlan_info_free(container_of(rcu, struct vlan_info, rcu));
  146. }
  147. static struct vlan_info *vlan_info_alloc(struct net_device *dev)
  148. {
  149. struct vlan_info *vlan_info;
  150. vlan_info = kzalloc(sizeof(struct vlan_info), GFP_KERNEL);
  151. if (!vlan_info)
  152. return NULL;
  153. vlan_info->real_dev = dev;
  154. INIT_LIST_HEAD(&vlan_info->vid_list);
  155. return vlan_info;
  156. }
  157. struct vlan_vid_info {
  158. struct list_head list;
  159. __be16 proto;
  160. u16 vid;
  161. int refcount;
  162. };
  163. static bool vlan_hw_filter_capable(const struct net_device *dev,
  164. const struct vlan_vid_info *vid_info)
  165. {
  166. if (vid_info->proto == htons(ETH_P_8021Q) &&
  167. dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
  168. return true;
  169. if (vid_info->proto == htons(ETH_P_8021AD) &&
  170. dev->features & NETIF_F_HW_VLAN_STAG_FILTER)
  171. return true;
  172. return false;
  173. }
  174. static struct vlan_vid_info *vlan_vid_info_get(struct vlan_info *vlan_info,
  175. __be16 proto, u16 vid)
  176. {
  177. struct vlan_vid_info *vid_info;
  178. list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
  179. if (vid_info->proto == proto && vid_info->vid == vid)
  180. return vid_info;
  181. }
  182. return NULL;
  183. }
  184. static struct vlan_vid_info *vlan_vid_info_alloc(__be16 proto, u16 vid)
  185. {
  186. struct vlan_vid_info *vid_info;
  187. vid_info = kzalloc(sizeof(struct vlan_vid_info), GFP_KERNEL);
  188. if (!vid_info)
  189. return NULL;
  190. vid_info->proto = proto;
  191. vid_info->vid = vid;
  192. return vid_info;
  193. }
  194. static int __vlan_vid_add(struct vlan_info *vlan_info, __be16 proto, u16 vid,
  195. struct vlan_vid_info **pvid_info)
  196. {
  197. struct net_device *dev = vlan_info->real_dev;
  198. const struct net_device_ops *ops = dev->netdev_ops;
  199. struct vlan_vid_info *vid_info;
  200. int err;
  201. vid_info = vlan_vid_info_alloc(proto, vid);
  202. if (!vid_info)
  203. return -ENOMEM;
  204. if (vlan_hw_filter_capable(dev, vid_info)) {
  205. err = ops->ndo_vlan_rx_add_vid(dev, proto, vid);
  206. if (err) {
  207. kfree(vid_info);
  208. return err;
  209. }
  210. }
  211. list_add(&vid_info->list, &vlan_info->vid_list);
  212. vlan_info->nr_vids++;
  213. *pvid_info = vid_info;
  214. return 0;
  215. }
  216. int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid)
  217. {
  218. struct vlan_info *vlan_info;
  219. struct vlan_vid_info *vid_info;
  220. bool vlan_info_created = false;
  221. int err;
  222. ASSERT_RTNL();
  223. vlan_info = rtnl_dereference(dev->vlan_info);
  224. if (!vlan_info) {
  225. vlan_info = vlan_info_alloc(dev);
  226. if (!vlan_info)
  227. return -ENOMEM;
  228. vlan_info_created = true;
  229. }
  230. vid_info = vlan_vid_info_get(vlan_info, proto, vid);
  231. if (!vid_info) {
  232. err = __vlan_vid_add(vlan_info, proto, vid, &vid_info);
  233. if (err)
  234. goto out_free_vlan_info;
  235. }
  236. vid_info->refcount++;
  237. if (vlan_info_created)
  238. rcu_assign_pointer(dev->vlan_info, vlan_info);
  239. return 0;
  240. out_free_vlan_info:
  241. if (vlan_info_created)
  242. kfree(vlan_info);
  243. return err;
  244. }
  245. EXPORT_SYMBOL(vlan_vid_add);
  246. static void __vlan_vid_del(struct vlan_info *vlan_info,
  247. struct vlan_vid_info *vid_info)
  248. {
  249. struct net_device *dev = vlan_info->real_dev;
  250. const struct net_device_ops *ops = dev->netdev_ops;
  251. __be16 proto = vid_info->proto;
  252. u16 vid = vid_info->vid;
  253. int err;
  254. if (vlan_hw_filter_capable(dev, vid_info)) {
  255. err = ops->ndo_vlan_rx_kill_vid(dev, proto, vid);
  256. if (err) {
  257. pr_warn("failed to kill vid %04x/%d for device %s\n",
  258. proto, vid, dev->name);
  259. }
  260. }
  261. list_del(&vid_info->list);
  262. kfree(vid_info);
  263. vlan_info->nr_vids--;
  264. }
  265. void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid)
  266. {
  267. struct vlan_info *vlan_info;
  268. struct vlan_vid_info *vid_info;
  269. ASSERT_RTNL();
  270. vlan_info = rtnl_dereference(dev->vlan_info);
  271. if (!vlan_info)
  272. return;
  273. vid_info = vlan_vid_info_get(vlan_info, proto, vid);
  274. if (!vid_info)
  275. return;
  276. vid_info->refcount--;
  277. if (vid_info->refcount == 0) {
  278. __vlan_vid_del(vlan_info, vid_info);
  279. if (vlan_info->nr_vids == 0) {
  280. RCU_INIT_POINTER(dev->vlan_info, NULL);
  281. call_rcu(&vlan_info->rcu, vlan_info_rcu_free);
  282. }
  283. }
  284. }
  285. EXPORT_SYMBOL(vlan_vid_del);
  286. int vlan_vids_add_by_dev(struct net_device *dev,
  287. const struct net_device *by_dev)
  288. {
  289. struct vlan_vid_info *vid_info;
  290. struct vlan_info *vlan_info;
  291. int err;
  292. ASSERT_RTNL();
  293. vlan_info = rtnl_dereference(by_dev->vlan_info);
  294. if (!vlan_info)
  295. return 0;
  296. list_for_each_entry(vid_info, &vlan_info->vid_list, list) {
  297. err = vlan_vid_add(dev, vid_info->proto, vid_info->vid);
  298. if (err)
  299. goto unwind;
  300. }
  301. return 0;
  302. unwind:
  303. list_for_each_entry_continue_reverse(vid_info,
  304. &vlan_info->vid_list,
  305. list) {
  306. vlan_vid_del(dev, vid_info->proto, vid_info->vid);
  307. }
  308. return err;
  309. }
  310. EXPORT_SYMBOL(vlan_vids_add_by_dev);
  311. void vlan_vids_del_by_dev(struct net_device *dev,
  312. const struct net_device *by_dev)
  313. {
  314. struct vlan_vid_info *vid_info;
  315. struct vlan_info *vlan_info;
  316. ASSERT_RTNL();
  317. vlan_info = rtnl_dereference(by_dev->vlan_info);
  318. if (!vlan_info)
  319. return;
  320. list_for_each_entry(vid_info, &vlan_info->vid_list, list)
  321. vlan_vid_del(dev, vid_info->proto, vid_info->vid);
  322. }
  323. EXPORT_SYMBOL(vlan_vids_del_by_dev);
  324. bool vlan_uses_dev(const struct net_device *dev)
  325. {
  326. struct vlan_info *vlan_info;
  327. ASSERT_RTNL();
  328. vlan_info = rtnl_dereference(dev->vlan_info);
  329. if (!vlan_info)
  330. return false;
  331. return vlan_info->grp.nr_vlan_devs ? true : false;
  332. }
  333. EXPORT_SYMBOL(vlan_uses_dev);