xfs_buf_item.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  37. static inline int
  38. xfs_buf_log_format_size(
  39. struct xfs_buf_log_format *blfp)
  40. {
  41. return offsetof(struct xfs_buf_log_format, blf_data_map) +
  42. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  43. }
  44. /*
  45. * This returns the number of log iovecs needed to log the
  46. * given buf log item.
  47. *
  48. * It calculates this as 1 iovec for the buf log format structure
  49. * and 1 for each stretch of non-contiguous chunks to be logged.
  50. * Contiguous chunks are logged in a single iovec.
  51. *
  52. * If the XFS_BLI_STALE flag has been set, then log nothing.
  53. */
  54. STATIC void
  55. xfs_buf_item_size_segment(
  56. struct xfs_buf_log_item *bip,
  57. struct xfs_buf_log_format *blfp,
  58. int *nvecs,
  59. int *nbytes)
  60. {
  61. struct xfs_buf *bp = bip->bli_buf;
  62. int next_bit;
  63. int last_bit;
  64. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  65. if (last_bit == -1)
  66. return;
  67. /*
  68. * initial count for a dirty buffer is 2 vectors - the format structure
  69. * and the first dirty region.
  70. */
  71. *nvecs += 2;
  72. *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
  73. while (last_bit != -1) {
  74. /*
  75. * This takes the bit number to start looking from and
  76. * returns the next set bit from there. It returns -1
  77. * if there are no more bits set or the start bit is
  78. * beyond the end of the bitmap.
  79. */
  80. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  81. last_bit + 1);
  82. /*
  83. * If we run out of bits, leave the loop,
  84. * else if we find a new set of bits bump the number of vecs,
  85. * else keep scanning the current set of bits.
  86. */
  87. if (next_bit == -1) {
  88. break;
  89. } else if (next_bit != last_bit + 1) {
  90. last_bit = next_bit;
  91. (*nvecs)++;
  92. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  93. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  94. XFS_BLF_CHUNK)) {
  95. last_bit = next_bit;
  96. (*nvecs)++;
  97. } else {
  98. last_bit++;
  99. }
  100. *nbytes += XFS_BLF_CHUNK;
  101. }
  102. }
  103. /*
  104. * This returns the number of log iovecs needed to log the given buf log item.
  105. *
  106. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  107. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  108. * in a single iovec.
  109. *
  110. * Discontiguous buffers need a format structure per region that that is being
  111. * logged. This makes the changes in the buffer appear to log recovery as though
  112. * they came from separate buffers, just like would occur if multiple buffers
  113. * were used instead of a single discontiguous buffer. This enables
  114. * discontiguous buffers to be in-memory constructs, completely transparent to
  115. * what ends up on disk.
  116. *
  117. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  118. * format structures.
  119. */
  120. STATIC void
  121. xfs_buf_item_size(
  122. struct xfs_log_item *lip,
  123. int *nvecs,
  124. int *nbytes)
  125. {
  126. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  127. int i;
  128. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  129. if (bip->bli_flags & XFS_BLI_STALE) {
  130. /*
  131. * The buffer is stale, so all we need to log
  132. * is the buf log format structure with the
  133. * cancel flag in it.
  134. */
  135. trace_xfs_buf_item_size_stale(bip);
  136. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  137. *nvecs += bip->bli_format_count;
  138. for (i = 0; i < bip->bli_format_count; i++) {
  139. *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
  140. }
  141. return;
  142. }
  143. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  144. if (bip->bli_flags & XFS_BLI_ORDERED) {
  145. /*
  146. * The buffer has been logged just to order it.
  147. * It is not being included in the transaction
  148. * commit, so no vectors are used at all.
  149. */
  150. trace_xfs_buf_item_size_ordered(bip);
  151. *nvecs = XFS_LOG_VEC_ORDERED;
  152. return;
  153. }
  154. /*
  155. * the vector count is based on the number of buffer vectors we have
  156. * dirty bits in. This will only be greater than one when we have a
  157. * compound buffer with more than one segment dirty. Hence for compound
  158. * buffers we need to track which segment the dirty bits correspond to,
  159. * and when we move from one segment to the next increment the vector
  160. * count for the extra buf log format structure that will need to be
  161. * written.
  162. */
  163. for (i = 0; i < bip->bli_format_count; i++) {
  164. xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
  165. nvecs, nbytes);
  166. }
  167. trace_xfs_buf_item_size(bip);
  168. }
  169. static struct xfs_log_iovec *
  170. xfs_buf_item_format_segment(
  171. struct xfs_buf_log_item *bip,
  172. struct xfs_log_iovec *vecp,
  173. uint offset,
  174. struct xfs_buf_log_format *blfp)
  175. {
  176. struct xfs_buf *bp = bip->bli_buf;
  177. uint base_size;
  178. uint nvecs;
  179. int first_bit;
  180. int last_bit;
  181. int next_bit;
  182. uint nbits;
  183. uint buffer_offset;
  184. /* copy the flags across from the base format item */
  185. blfp->blf_flags = bip->__bli_format.blf_flags;
  186. /*
  187. * Base size is the actual size of the ondisk structure - it reflects
  188. * the actual size of the dirty bitmap rather than the size of the in
  189. * memory structure.
  190. */
  191. base_size = xfs_buf_log_format_size(blfp);
  192. nvecs = 0;
  193. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  194. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  195. /*
  196. * If the map is not be dirty in the transaction, mark
  197. * the size as zero and do not advance the vector pointer.
  198. */
  199. goto out;
  200. }
  201. vecp->i_addr = blfp;
  202. vecp->i_len = base_size;
  203. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  204. vecp++;
  205. nvecs = 1;
  206. if (bip->bli_flags & XFS_BLI_STALE) {
  207. /*
  208. * The buffer is stale, so all we need to log
  209. * is the buf log format structure with the
  210. * cancel flag in it.
  211. */
  212. trace_xfs_buf_item_format_stale(bip);
  213. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  214. goto out;
  215. }
  216. /*
  217. * Fill in an iovec for each set of contiguous chunks.
  218. */
  219. last_bit = first_bit;
  220. nbits = 1;
  221. for (;;) {
  222. /*
  223. * This takes the bit number to start looking from and
  224. * returns the next set bit from there. It returns -1
  225. * if there are no more bits set or the start bit is
  226. * beyond the end of the bitmap.
  227. */
  228. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  229. (uint)last_bit + 1);
  230. /*
  231. * If we run out of bits fill in the last iovec and get
  232. * out of the loop.
  233. * Else if we start a new set of bits then fill in the
  234. * iovec for the series we were looking at and start
  235. * counting the bits in the new one.
  236. * Else we're still in the same set of bits so just
  237. * keep counting and scanning.
  238. */
  239. if (next_bit == -1) {
  240. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  241. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  242. vecp->i_len = nbits * XFS_BLF_CHUNK;
  243. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  244. nvecs++;
  245. break;
  246. } else if (next_bit != last_bit + 1) {
  247. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  248. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  249. vecp->i_len = nbits * XFS_BLF_CHUNK;
  250. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  251. nvecs++;
  252. vecp++;
  253. first_bit = next_bit;
  254. last_bit = next_bit;
  255. nbits = 1;
  256. } else if (xfs_buf_offset(bp, offset +
  257. (next_bit << XFS_BLF_SHIFT)) !=
  258. (xfs_buf_offset(bp, offset +
  259. (last_bit << XFS_BLF_SHIFT)) +
  260. XFS_BLF_CHUNK)) {
  261. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  262. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  263. vecp->i_len = nbits * XFS_BLF_CHUNK;
  264. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  265. nvecs++;
  266. vecp++;
  267. first_bit = next_bit;
  268. last_bit = next_bit;
  269. nbits = 1;
  270. } else {
  271. last_bit++;
  272. nbits++;
  273. }
  274. }
  275. out:
  276. blfp->blf_size = nvecs;
  277. return vecp;
  278. }
  279. /*
  280. * This is called to fill in the vector of log iovecs for the
  281. * given log buf item. It fills the first entry with a buf log
  282. * format structure, and the rest point to contiguous chunks
  283. * within the buffer.
  284. */
  285. STATIC void
  286. xfs_buf_item_format(
  287. struct xfs_log_item *lip,
  288. struct xfs_log_iovec *vecp)
  289. {
  290. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  291. struct xfs_buf *bp = bip->bli_buf;
  292. uint offset = 0;
  293. int i;
  294. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  295. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  296. (bip->bli_flags & XFS_BLI_STALE));
  297. /*
  298. * If it is an inode buffer, transfer the in-memory state to the
  299. * format flags and clear the in-memory state.
  300. *
  301. * For buffer based inode allocation, we do not transfer
  302. * this state if the inode buffer allocation has not yet been committed
  303. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  304. * correct replay of the inode allocation.
  305. *
  306. * For icreate item based inode allocation, the buffers aren't written
  307. * to the journal during allocation, and hence we should always tag the
  308. * buffer as an inode buffer so that the correct unlinked list replay
  309. * occurs during recovery.
  310. */
  311. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  312. if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
  313. !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  314. xfs_log_item_in_current_chkpt(lip)))
  315. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  316. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  317. }
  318. if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
  319. XFS_BLI_ORDERED) {
  320. /*
  321. * The buffer has been logged just to order it. It is not being
  322. * included in the transaction commit, so don't format it.
  323. */
  324. trace_xfs_buf_item_format_ordered(bip);
  325. return;
  326. }
  327. for (i = 0; i < bip->bli_format_count; i++) {
  328. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  329. &bip->bli_formats[i]);
  330. offset += bp->b_maps[i].bm_len;
  331. }
  332. /*
  333. * Check to make sure everything is consistent.
  334. */
  335. trace_xfs_buf_item_format(bip);
  336. }
  337. /*
  338. * This is called to pin the buffer associated with the buf log item in memory
  339. * so it cannot be written out.
  340. *
  341. * We also always take a reference to the buffer log item here so that the bli
  342. * is held while the item is pinned in memory. This means that we can
  343. * unconditionally drop the reference count a transaction holds when the
  344. * transaction is completed.
  345. */
  346. STATIC void
  347. xfs_buf_item_pin(
  348. struct xfs_log_item *lip)
  349. {
  350. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  351. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  352. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  353. (bip->bli_flags & XFS_BLI_ORDERED) ||
  354. (bip->bli_flags & XFS_BLI_STALE));
  355. trace_xfs_buf_item_pin(bip);
  356. atomic_inc(&bip->bli_refcount);
  357. atomic_inc(&bip->bli_buf->b_pin_count);
  358. }
  359. /*
  360. * This is called to unpin the buffer associated with the buf log
  361. * item which was previously pinned with a call to xfs_buf_item_pin().
  362. *
  363. * Also drop the reference to the buf item for the current transaction.
  364. * If the XFS_BLI_STALE flag is set and we are the last reference,
  365. * then free up the buf log item and unlock the buffer.
  366. *
  367. * If the remove flag is set we are called from uncommit in the
  368. * forced-shutdown path. If that is true and the reference count on
  369. * the log item is going to drop to zero we need to free the item's
  370. * descriptor in the transaction.
  371. */
  372. STATIC void
  373. xfs_buf_item_unpin(
  374. struct xfs_log_item *lip,
  375. int remove)
  376. {
  377. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  378. xfs_buf_t *bp = bip->bli_buf;
  379. struct xfs_ail *ailp = lip->li_ailp;
  380. int stale = bip->bli_flags & XFS_BLI_STALE;
  381. int freed;
  382. ASSERT(bp->b_fspriv == bip);
  383. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  384. trace_xfs_buf_item_unpin(bip);
  385. freed = atomic_dec_and_test(&bip->bli_refcount);
  386. if (atomic_dec_and_test(&bp->b_pin_count))
  387. wake_up_all(&bp->b_waiters);
  388. if (freed && stale) {
  389. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  390. ASSERT(xfs_buf_islocked(bp));
  391. ASSERT(XFS_BUF_ISSTALE(bp));
  392. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  393. trace_xfs_buf_item_unpin_stale(bip);
  394. if (remove) {
  395. /*
  396. * If we are in a transaction context, we have to
  397. * remove the log item from the transaction as we are
  398. * about to release our reference to the buffer. If we
  399. * don't, the unlock that occurs later in
  400. * xfs_trans_uncommit() will try to reference the
  401. * buffer which we no longer have a hold on.
  402. */
  403. if (lip->li_desc)
  404. xfs_trans_del_item(lip);
  405. /*
  406. * Since the transaction no longer refers to the buffer,
  407. * the buffer should no longer refer to the transaction.
  408. */
  409. bp->b_transp = NULL;
  410. }
  411. /*
  412. * If we get called here because of an IO error, we may
  413. * or may not have the item on the AIL. xfs_trans_ail_delete()
  414. * will take care of that situation.
  415. * xfs_trans_ail_delete() drops the AIL lock.
  416. */
  417. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  418. xfs_buf_do_callbacks(bp);
  419. bp->b_fspriv = NULL;
  420. bp->b_iodone = NULL;
  421. } else {
  422. spin_lock(&ailp->xa_lock);
  423. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  424. xfs_buf_item_relse(bp);
  425. ASSERT(bp->b_fspriv == NULL);
  426. }
  427. xfs_buf_relse(bp);
  428. } else if (freed && remove) {
  429. /*
  430. * There are currently two references to the buffer - the active
  431. * LRU reference and the buf log item. What we are about to do
  432. * here - simulate a failed IO completion - requires 3
  433. * references.
  434. *
  435. * The LRU reference is removed by the xfs_buf_stale() call. The
  436. * buf item reference is removed by the xfs_buf_iodone()
  437. * callback that is run by xfs_buf_do_callbacks() during ioend
  438. * processing (via the bp->b_iodone callback), and then finally
  439. * the ioend processing will drop the IO reference if the buffer
  440. * is marked XBF_ASYNC.
  441. *
  442. * Hence we need to take an additional reference here so that IO
  443. * completion processing doesn't free the buffer prematurely.
  444. */
  445. xfs_buf_lock(bp);
  446. xfs_buf_hold(bp);
  447. bp->b_flags |= XBF_ASYNC;
  448. xfs_buf_ioerror(bp, EIO);
  449. XFS_BUF_UNDONE(bp);
  450. xfs_buf_stale(bp);
  451. xfs_buf_ioend(bp, 0);
  452. }
  453. }
  454. STATIC uint
  455. xfs_buf_item_push(
  456. struct xfs_log_item *lip,
  457. struct list_head *buffer_list)
  458. {
  459. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  460. struct xfs_buf *bp = bip->bli_buf;
  461. uint rval = XFS_ITEM_SUCCESS;
  462. if (xfs_buf_ispinned(bp))
  463. return XFS_ITEM_PINNED;
  464. if (!xfs_buf_trylock(bp)) {
  465. /*
  466. * If we have just raced with a buffer being pinned and it has
  467. * been marked stale, we could end up stalling until someone else
  468. * issues a log force to unpin the stale buffer. Check for the
  469. * race condition here so xfsaild recognizes the buffer is pinned
  470. * and queues a log force to move it along.
  471. */
  472. if (xfs_buf_ispinned(bp))
  473. return XFS_ITEM_PINNED;
  474. return XFS_ITEM_LOCKED;
  475. }
  476. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  477. trace_xfs_buf_item_push(bip);
  478. if (!xfs_buf_delwri_queue(bp, buffer_list))
  479. rval = XFS_ITEM_FLUSHING;
  480. xfs_buf_unlock(bp);
  481. return rval;
  482. }
  483. /*
  484. * Release the buffer associated with the buf log item. If there is no dirty
  485. * logged data associated with the buffer recorded in the buf log item, then
  486. * free the buf log item and remove the reference to it in the buffer.
  487. *
  488. * This call ignores the recursion count. It is only called when the buffer
  489. * should REALLY be unlocked, regardless of the recursion count.
  490. *
  491. * We unconditionally drop the transaction's reference to the log item. If the
  492. * item was logged, then another reference was taken when it was pinned, so we
  493. * can safely drop the transaction reference now. This also allows us to avoid
  494. * potential races with the unpin code freeing the bli by not referencing the
  495. * bli after we've dropped the reference count.
  496. *
  497. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  498. * if necessary but do not unlock the buffer. This is for support of
  499. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  500. * free the item.
  501. */
  502. STATIC void
  503. xfs_buf_item_unlock(
  504. struct xfs_log_item *lip)
  505. {
  506. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  507. struct xfs_buf *bp = bip->bli_buf;
  508. bool clean;
  509. bool aborted;
  510. int flags;
  511. /* Clear the buffer's association with this transaction. */
  512. bp->b_transp = NULL;
  513. /*
  514. * If this is a transaction abort, don't return early. Instead, allow
  515. * the brelse to happen. Normally it would be done for stale
  516. * (cancelled) buffers at unpin time, but we'll never go through the
  517. * pin/unpin cycle if we abort inside commit.
  518. */
  519. aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
  520. /*
  521. * Before possibly freeing the buf item, copy the per-transaction state
  522. * so we can reference it safely later after clearing it from the
  523. * buffer log item.
  524. */
  525. flags = bip->bli_flags;
  526. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
  527. /*
  528. * If the buf item is marked stale, then don't do anything. We'll
  529. * unlock the buffer and free the buf item when the buffer is unpinned
  530. * for the last time.
  531. */
  532. if (flags & XFS_BLI_STALE) {
  533. trace_xfs_buf_item_unlock_stale(bip);
  534. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  535. if (!aborted) {
  536. atomic_dec(&bip->bli_refcount);
  537. return;
  538. }
  539. }
  540. trace_xfs_buf_item_unlock(bip);
  541. /*
  542. * If the buf item isn't tracking any data, free it, otherwise drop the
  543. * reference we hold to it. If we are aborting the transaction, this may
  544. * be the only reference to the buf item, so we free it anyway
  545. * regardless of whether it is dirty or not. A dirty abort implies a
  546. * shutdown, anyway.
  547. *
  548. * Ordered buffers are dirty but may have no recorded changes, so ensure
  549. * we only release clean items here.
  550. */
  551. clean = (flags & XFS_BLI_DIRTY) ? false : true;
  552. if (clean) {
  553. int i;
  554. for (i = 0; i < bip->bli_format_count; i++) {
  555. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  556. bip->bli_formats[i].blf_map_size)) {
  557. clean = false;
  558. break;
  559. }
  560. }
  561. }
  562. /*
  563. * Clean buffers, by definition, cannot be in the AIL. However, aborted
  564. * buffers may be dirty and hence in the AIL. Therefore if we are
  565. * aborting a buffer and we've just taken the last refernce away, we
  566. * have to check if it is in the AIL before freeing it. We need to free
  567. * it in this case, because an aborted transaction has already shut the
  568. * filesystem down and this is the last chance we will have to do so.
  569. */
  570. if (atomic_dec_and_test(&bip->bli_refcount)) {
  571. if (clean)
  572. xfs_buf_item_relse(bp);
  573. else if (aborted) {
  574. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  575. if (lip->li_flags & XFS_LI_IN_AIL) {
  576. xfs_trans_ail_delete(lip->li_ailp, lip,
  577. SHUTDOWN_LOG_IO_ERROR);
  578. }
  579. xfs_buf_item_relse(bp);
  580. }
  581. }
  582. if (!(flags & XFS_BLI_HOLD))
  583. xfs_buf_relse(bp);
  584. }
  585. /*
  586. * This is called to find out where the oldest active copy of the
  587. * buf log item in the on disk log resides now that the last log
  588. * write of it completed at the given lsn.
  589. * We always re-log all the dirty data in a buffer, so usually the
  590. * latest copy in the on disk log is the only one that matters. For
  591. * those cases we simply return the given lsn.
  592. *
  593. * The one exception to this is for buffers full of newly allocated
  594. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  595. * flag set, indicating that only the di_next_unlinked fields from the
  596. * inodes in the buffers will be replayed during recovery. If the
  597. * original newly allocated inode images have not yet been flushed
  598. * when the buffer is so relogged, then we need to make sure that we
  599. * keep the old images in the 'active' portion of the log. We do this
  600. * by returning the original lsn of that transaction here rather than
  601. * the current one.
  602. */
  603. STATIC xfs_lsn_t
  604. xfs_buf_item_committed(
  605. struct xfs_log_item *lip,
  606. xfs_lsn_t lsn)
  607. {
  608. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  609. trace_xfs_buf_item_committed(bip);
  610. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  611. return lip->li_lsn;
  612. return lsn;
  613. }
  614. STATIC void
  615. xfs_buf_item_committing(
  616. struct xfs_log_item *lip,
  617. xfs_lsn_t commit_lsn)
  618. {
  619. }
  620. /*
  621. * This is the ops vector shared by all buf log items.
  622. */
  623. static const struct xfs_item_ops xfs_buf_item_ops = {
  624. .iop_size = xfs_buf_item_size,
  625. .iop_format = xfs_buf_item_format,
  626. .iop_pin = xfs_buf_item_pin,
  627. .iop_unpin = xfs_buf_item_unpin,
  628. .iop_unlock = xfs_buf_item_unlock,
  629. .iop_committed = xfs_buf_item_committed,
  630. .iop_push = xfs_buf_item_push,
  631. .iop_committing = xfs_buf_item_committing
  632. };
  633. STATIC int
  634. xfs_buf_item_get_format(
  635. struct xfs_buf_log_item *bip,
  636. int count)
  637. {
  638. ASSERT(bip->bli_formats == NULL);
  639. bip->bli_format_count = count;
  640. if (count == 1) {
  641. bip->bli_formats = &bip->__bli_format;
  642. return 0;
  643. }
  644. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  645. KM_SLEEP);
  646. if (!bip->bli_formats)
  647. return ENOMEM;
  648. return 0;
  649. }
  650. STATIC void
  651. xfs_buf_item_free_format(
  652. struct xfs_buf_log_item *bip)
  653. {
  654. if (bip->bli_formats != &bip->__bli_format) {
  655. kmem_free(bip->bli_formats);
  656. bip->bli_formats = NULL;
  657. }
  658. }
  659. /*
  660. * Allocate a new buf log item to go with the given buffer.
  661. * Set the buffer's b_fsprivate field to point to the new
  662. * buf log item. If there are other item's attached to the
  663. * buffer (see xfs_buf_attach_iodone() below), then put the
  664. * buf log item at the front.
  665. */
  666. void
  667. xfs_buf_item_init(
  668. xfs_buf_t *bp,
  669. xfs_mount_t *mp)
  670. {
  671. xfs_log_item_t *lip = bp->b_fspriv;
  672. xfs_buf_log_item_t *bip;
  673. int chunks;
  674. int map_size;
  675. int error;
  676. int i;
  677. /*
  678. * Check to see if there is already a buf log item for
  679. * this buffer. If there is, it is guaranteed to be
  680. * the first. If we do already have one, there is
  681. * nothing to do here so return.
  682. */
  683. ASSERT(bp->b_target->bt_mount == mp);
  684. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  685. return;
  686. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  687. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  688. bip->bli_buf = bp;
  689. xfs_buf_hold(bp);
  690. /*
  691. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  692. * can be divided into. Make sure not to truncate any pieces.
  693. * map_size is the size of the bitmap needed to describe the
  694. * chunks of the buffer.
  695. *
  696. * Discontiguous buffer support follows the layout of the underlying
  697. * buffer. This makes the implementation as simple as possible.
  698. */
  699. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  700. ASSERT(error == 0);
  701. for (i = 0; i < bip->bli_format_count; i++) {
  702. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  703. XFS_BLF_CHUNK);
  704. map_size = DIV_ROUND_UP(chunks, NBWORD);
  705. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  706. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  707. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  708. bip->bli_formats[i].blf_map_size = map_size;
  709. }
  710. #ifdef XFS_TRANS_DEBUG
  711. /*
  712. * Allocate the arrays for tracking what needs to be logged
  713. * and what our callers request to be logged. bli_orig
  714. * holds a copy of the original, clean buffer for comparison
  715. * against, and bli_logged keeps a 1 bit flag per byte in
  716. * the buffer to indicate which bytes the callers have asked
  717. * to have logged.
  718. */
  719. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  720. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  721. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  722. #endif
  723. /*
  724. * Put the buf item into the list of items attached to the
  725. * buffer at the front.
  726. */
  727. if (bp->b_fspriv)
  728. bip->bli_item.li_bio_list = bp->b_fspriv;
  729. bp->b_fspriv = bip;
  730. }
  731. /*
  732. * Mark bytes first through last inclusive as dirty in the buf
  733. * item's bitmap.
  734. */
  735. void
  736. xfs_buf_item_log_segment(
  737. struct xfs_buf_log_item *bip,
  738. uint first,
  739. uint last,
  740. uint *map)
  741. {
  742. uint first_bit;
  743. uint last_bit;
  744. uint bits_to_set;
  745. uint bits_set;
  746. uint word_num;
  747. uint *wordp;
  748. uint bit;
  749. uint end_bit;
  750. uint mask;
  751. /*
  752. * Convert byte offsets to bit numbers.
  753. */
  754. first_bit = first >> XFS_BLF_SHIFT;
  755. last_bit = last >> XFS_BLF_SHIFT;
  756. /*
  757. * Calculate the total number of bits to be set.
  758. */
  759. bits_to_set = last_bit - first_bit + 1;
  760. /*
  761. * Get a pointer to the first word in the bitmap
  762. * to set a bit in.
  763. */
  764. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  765. wordp = &map[word_num];
  766. /*
  767. * Calculate the starting bit in the first word.
  768. */
  769. bit = first_bit & (uint)(NBWORD - 1);
  770. /*
  771. * First set any bits in the first word of our range.
  772. * If it starts at bit 0 of the word, it will be
  773. * set below rather than here. That is what the variable
  774. * bit tells us. The variable bits_set tracks the number
  775. * of bits that have been set so far. End_bit is the number
  776. * of the last bit to be set in this word plus one.
  777. */
  778. if (bit) {
  779. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  780. mask = ((1 << (end_bit - bit)) - 1) << bit;
  781. *wordp |= mask;
  782. wordp++;
  783. bits_set = end_bit - bit;
  784. } else {
  785. bits_set = 0;
  786. }
  787. /*
  788. * Now set bits a whole word at a time that are between
  789. * first_bit and last_bit.
  790. */
  791. while ((bits_to_set - bits_set) >= NBWORD) {
  792. *wordp |= 0xffffffff;
  793. bits_set += NBWORD;
  794. wordp++;
  795. }
  796. /*
  797. * Finally, set any bits left to be set in one last partial word.
  798. */
  799. end_bit = bits_to_set - bits_set;
  800. if (end_bit) {
  801. mask = (1 << end_bit) - 1;
  802. *wordp |= mask;
  803. }
  804. }
  805. /*
  806. * Mark bytes first through last inclusive as dirty in the buf
  807. * item's bitmap.
  808. */
  809. void
  810. xfs_buf_item_log(
  811. xfs_buf_log_item_t *bip,
  812. uint first,
  813. uint last)
  814. {
  815. int i;
  816. uint start;
  817. uint end;
  818. struct xfs_buf *bp = bip->bli_buf;
  819. /*
  820. * walk each buffer segment and mark them dirty appropriately.
  821. */
  822. start = 0;
  823. for (i = 0; i < bip->bli_format_count; i++) {
  824. if (start > last)
  825. break;
  826. end = start + BBTOB(bp->b_maps[i].bm_len);
  827. if (first > end) {
  828. start += BBTOB(bp->b_maps[i].bm_len);
  829. continue;
  830. }
  831. if (first < start)
  832. first = start;
  833. if (end > last)
  834. end = last;
  835. xfs_buf_item_log_segment(bip, first, end,
  836. &bip->bli_formats[i].blf_data_map[0]);
  837. start += bp->b_maps[i].bm_len;
  838. }
  839. }
  840. /*
  841. * Return 1 if the buffer has been logged or ordered in a transaction (at any
  842. * point, not just the current transaction) and 0 if not.
  843. */
  844. uint
  845. xfs_buf_item_dirty(
  846. xfs_buf_log_item_t *bip)
  847. {
  848. return (bip->bli_flags & XFS_BLI_DIRTY);
  849. }
  850. STATIC void
  851. xfs_buf_item_free(
  852. xfs_buf_log_item_t *bip)
  853. {
  854. #ifdef XFS_TRANS_DEBUG
  855. kmem_free(bip->bli_orig);
  856. kmem_free(bip->bli_logged);
  857. #endif /* XFS_TRANS_DEBUG */
  858. xfs_buf_item_free_format(bip);
  859. kmem_zone_free(xfs_buf_item_zone, bip);
  860. }
  861. /*
  862. * This is called when the buf log item is no longer needed. It should
  863. * free the buf log item associated with the given buffer and clear
  864. * the buffer's pointer to the buf log item. If there are no more
  865. * items in the list, clear the b_iodone field of the buffer (see
  866. * xfs_buf_attach_iodone() below).
  867. */
  868. void
  869. xfs_buf_item_relse(
  870. xfs_buf_t *bp)
  871. {
  872. xfs_buf_log_item_t *bip = bp->b_fspriv;
  873. trace_xfs_buf_item_relse(bp, _RET_IP_);
  874. ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
  875. bp->b_fspriv = bip->bli_item.li_bio_list;
  876. if (bp->b_fspriv == NULL)
  877. bp->b_iodone = NULL;
  878. xfs_buf_rele(bp);
  879. xfs_buf_item_free(bip);
  880. }
  881. /*
  882. * Add the given log item with its callback to the list of callbacks
  883. * to be called when the buffer's I/O completes. If it is not set
  884. * already, set the buffer's b_iodone() routine to be
  885. * xfs_buf_iodone_callbacks() and link the log item into the list of
  886. * items rooted at b_fsprivate. Items are always added as the second
  887. * entry in the list if there is a first, because the buf item code
  888. * assumes that the buf log item is first.
  889. */
  890. void
  891. xfs_buf_attach_iodone(
  892. xfs_buf_t *bp,
  893. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  894. xfs_log_item_t *lip)
  895. {
  896. xfs_log_item_t *head_lip;
  897. ASSERT(xfs_buf_islocked(bp));
  898. lip->li_cb = cb;
  899. head_lip = bp->b_fspriv;
  900. if (head_lip) {
  901. lip->li_bio_list = head_lip->li_bio_list;
  902. head_lip->li_bio_list = lip;
  903. } else {
  904. bp->b_fspriv = lip;
  905. }
  906. ASSERT(bp->b_iodone == NULL ||
  907. bp->b_iodone == xfs_buf_iodone_callbacks);
  908. bp->b_iodone = xfs_buf_iodone_callbacks;
  909. }
  910. /*
  911. * We can have many callbacks on a buffer. Running the callbacks individually
  912. * can cause a lot of contention on the AIL lock, so we allow for a single
  913. * callback to be able to scan the remaining lip->li_bio_list for other items
  914. * of the same type and callback to be processed in the first call.
  915. *
  916. * As a result, the loop walking the callback list below will also modify the
  917. * list. it removes the first item from the list and then runs the callback.
  918. * The loop then restarts from the new head of the list. This allows the
  919. * callback to scan and modify the list attached to the buffer and we don't
  920. * have to care about maintaining a next item pointer.
  921. */
  922. STATIC void
  923. xfs_buf_do_callbacks(
  924. struct xfs_buf *bp)
  925. {
  926. struct xfs_log_item *lip;
  927. while ((lip = bp->b_fspriv) != NULL) {
  928. bp->b_fspriv = lip->li_bio_list;
  929. ASSERT(lip->li_cb != NULL);
  930. /*
  931. * Clear the next pointer so we don't have any
  932. * confusion if the item is added to another buf.
  933. * Don't touch the log item after calling its
  934. * callback, because it could have freed itself.
  935. */
  936. lip->li_bio_list = NULL;
  937. lip->li_cb(bp, lip);
  938. }
  939. }
  940. /*
  941. * This is the iodone() function for buffers which have had callbacks
  942. * attached to them by xfs_buf_attach_iodone(). It should remove each
  943. * log item from the buffer's list and call the callback of each in turn.
  944. * When done, the buffer's fsprivate field is set to NULL and the buffer
  945. * is unlocked with a call to iodone().
  946. */
  947. void
  948. xfs_buf_iodone_callbacks(
  949. struct xfs_buf *bp)
  950. {
  951. struct xfs_log_item *lip = bp->b_fspriv;
  952. struct xfs_mount *mp = lip->li_mountp;
  953. static ulong lasttime;
  954. static xfs_buftarg_t *lasttarg;
  955. if (likely(!xfs_buf_geterror(bp)))
  956. goto do_callbacks;
  957. /*
  958. * If we've already decided to shutdown the filesystem because of
  959. * I/O errors, there's no point in giving this a retry.
  960. */
  961. if (XFS_FORCED_SHUTDOWN(mp)) {
  962. xfs_buf_stale(bp);
  963. XFS_BUF_DONE(bp);
  964. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  965. goto do_callbacks;
  966. }
  967. if (bp->b_target != lasttarg ||
  968. time_after(jiffies, (lasttime + 5*HZ))) {
  969. lasttime = jiffies;
  970. xfs_buf_ioerror_alert(bp, __func__);
  971. }
  972. lasttarg = bp->b_target;
  973. /*
  974. * If the write was asynchronous then no one will be looking for the
  975. * error. Clear the error state and write the buffer out again.
  976. *
  977. * XXX: This helps against transient write errors, but we need to find
  978. * a way to shut the filesystem down if the writes keep failing.
  979. *
  980. * In practice we'll shut the filesystem down soon as non-transient
  981. * erorrs tend to affect the whole device and a failing log write
  982. * will make us give up. But we really ought to do better here.
  983. */
  984. if (XFS_BUF_ISASYNC(bp)) {
  985. ASSERT(bp->b_iodone != NULL);
  986. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  987. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  988. if (!XFS_BUF_ISSTALE(bp)) {
  989. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  990. xfs_buf_iorequest(bp);
  991. } else {
  992. xfs_buf_relse(bp);
  993. }
  994. return;
  995. }
  996. /*
  997. * If the write of the buffer was synchronous, we want to make
  998. * sure to return the error to the caller of xfs_bwrite().
  999. */
  1000. xfs_buf_stale(bp);
  1001. XFS_BUF_DONE(bp);
  1002. trace_xfs_buf_error_relse(bp, _RET_IP_);
  1003. do_callbacks:
  1004. xfs_buf_do_callbacks(bp);
  1005. bp->b_fspriv = NULL;
  1006. bp->b_iodone = NULL;
  1007. xfs_buf_ioend(bp, 0);
  1008. }
  1009. /*
  1010. * This is the iodone() function for buffers which have been
  1011. * logged. It is called when they are eventually flushed out.
  1012. * It should remove the buf item from the AIL, and free the buf item.
  1013. * It is called by xfs_buf_iodone_callbacks() above which will take
  1014. * care of cleaning up the buffer itself.
  1015. */
  1016. void
  1017. xfs_buf_iodone(
  1018. struct xfs_buf *bp,
  1019. struct xfs_log_item *lip)
  1020. {
  1021. struct xfs_ail *ailp = lip->li_ailp;
  1022. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  1023. xfs_buf_rele(bp);
  1024. /*
  1025. * If we are forcibly shutting down, this may well be
  1026. * off the AIL already. That's because we simulate the
  1027. * log-committed callbacks to unpin these buffers. Or we may never
  1028. * have put this item on AIL because of the transaction was
  1029. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  1030. *
  1031. * Either way, AIL is useless if we're forcing a shutdown.
  1032. */
  1033. spin_lock(&ailp->xa_lock);
  1034. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  1035. xfs_buf_item_free(BUF_ITEM(lip));
  1036. }