swiotlb-xen.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
  36. #include <linux/bootmem.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/export.h>
  39. #include <xen/swiotlb-xen.h>
  40. #include <xen/page.h>
  41. #include <xen/xen-ops.h>
  42. #include <xen/hvc-console.h>
  43. /*
  44. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  45. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  46. * API.
  47. */
  48. static char *xen_io_tlb_start, *xen_io_tlb_end;
  49. static unsigned long xen_io_tlb_nslabs;
  50. /*
  51. * Quick lookup value of the bus address of the IOTLB.
  52. */
  53. static u64 start_dma_addr;
  54. static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  55. {
  56. return phys_to_machine(XPADDR(paddr)).maddr;
  57. }
  58. static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  59. {
  60. return machine_to_phys(XMADDR(baddr)).paddr;
  61. }
  62. static dma_addr_t xen_virt_to_bus(void *address)
  63. {
  64. return xen_phys_to_bus(virt_to_phys(address));
  65. }
  66. static int check_pages_physically_contiguous(unsigned long pfn,
  67. unsigned int offset,
  68. size_t length)
  69. {
  70. unsigned long next_mfn;
  71. int i;
  72. int nr_pages;
  73. next_mfn = pfn_to_mfn(pfn);
  74. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  75. for (i = 1; i < nr_pages; i++) {
  76. if (pfn_to_mfn(++pfn) != ++next_mfn)
  77. return 0;
  78. }
  79. return 1;
  80. }
  81. static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  82. {
  83. unsigned long pfn = PFN_DOWN(p);
  84. unsigned int offset = p & ~PAGE_MASK;
  85. if (offset + size <= PAGE_SIZE)
  86. return 0;
  87. if (check_pages_physically_contiguous(pfn, offset, size))
  88. return 0;
  89. return 1;
  90. }
  91. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  92. {
  93. unsigned long mfn = PFN_DOWN(dma_addr);
  94. unsigned long pfn = mfn_to_local_pfn(mfn);
  95. phys_addr_t paddr;
  96. /* If the address is outside our domain, it CAN
  97. * have the same virtual address as another address
  98. * in our domain. Therefore _only_ check address within our domain.
  99. */
  100. if (pfn_valid(pfn)) {
  101. paddr = PFN_PHYS(pfn);
  102. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  103. paddr < virt_to_phys(xen_io_tlb_end);
  104. }
  105. return 0;
  106. }
  107. static int max_dma_bits = 32;
  108. static int
  109. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  110. {
  111. int i, rc;
  112. int dma_bits;
  113. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  114. i = 0;
  115. do {
  116. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  117. do {
  118. rc = xen_create_contiguous_region(
  119. (unsigned long)buf + (i << IO_TLB_SHIFT),
  120. get_order(slabs << IO_TLB_SHIFT),
  121. dma_bits);
  122. } while (rc && dma_bits++ < max_dma_bits);
  123. if (rc)
  124. return rc;
  125. i += slabs;
  126. } while (i < nslabs);
  127. return 0;
  128. }
  129. static unsigned long xen_set_nslabs(unsigned long nr_tbl)
  130. {
  131. if (!nr_tbl) {
  132. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  133. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  134. } else
  135. xen_io_tlb_nslabs = nr_tbl;
  136. return xen_io_tlb_nslabs << IO_TLB_SHIFT;
  137. }
  138. enum xen_swiotlb_err {
  139. XEN_SWIOTLB_UNKNOWN = 0,
  140. XEN_SWIOTLB_ENOMEM,
  141. XEN_SWIOTLB_EFIXUP
  142. };
  143. static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
  144. {
  145. switch (err) {
  146. case XEN_SWIOTLB_ENOMEM:
  147. return "Cannot allocate Xen-SWIOTLB buffer\n";
  148. case XEN_SWIOTLB_EFIXUP:
  149. return "Failed to get contiguous memory for DMA from Xen!\n"\
  150. "You either: don't have the permissions, do not have"\
  151. " enough free memory under 4GB, or the hypervisor memory"\
  152. " is too fragmented!";
  153. default:
  154. break;
  155. }
  156. return "";
  157. }
  158. int __ref xen_swiotlb_init(int verbose, bool early)
  159. {
  160. unsigned long bytes, order;
  161. int rc = -ENOMEM;
  162. enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
  163. unsigned int repeat = 3;
  164. xen_io_tlb_nslabs = swiotlb_nr_tbl();
  165. retry:
  166. bytes = xen_set_nslabs(xen_io_tlb_nslabs);
  167. order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
  168. /*
  169. * Get IO TLB memory from any location.
  170. */
  171. if (early)
  172. xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
  173. else {
  174. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  175. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  176. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  177. xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
  178. if (xen_io_tlb_start)
  179. break;
  180. order--;
  181. }
  182. if (order != get_order(bytes)) {
  183. pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
  184. (PAGE_SIZE << order) >> 20);
  185. xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
  186. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  187. }
  188. }
  189. if (!xen_io_tlb_start) {
  190. m_ret = XEN_SWIOTLB_ENOMEM;
  191. goto error;
  192. }
  193. xen_io_tlb_end = xen_io_tlb_start + bytes;
  194. /*
  195. * And replace that memory with pages under 4GB.
  196. */
  197. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  198. bytes,
  199. xen_io_tlb_nslabs);
  200. if (rc) {
  201. if (early)
  202. free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
  203. else {
  204. free_pages((unsigned long)xen_io_tlb_start, order);
  205. xen_io_tlb_start = NULL;
  206. }
  207. m_ret = XEN_SWIOTLB_EFIXUP;
  208. goto error;
  209. }
  210. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  211. if (early) {
  212. if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
  213. verbose))
  214. panic("Cannot allocate SWIOTLB buffer");
  215. rc = 0;
  216. } else
  217. rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
  218. return rc;
  219. error:
  220. if (repeat--) {
  221. xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
  222. (xen_io_tlb_nslabs >> 1));
  223. pr_info("Lowering to %luMB\n",
  224. (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
  225. goto retry;
  226. }
  227. pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
  228. if (early)
  229. panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
  230. else
  231. free_pages((unsigned long)xen_io_tlb_start, order);
  232. return rc;
  233. }
  234. void *
  235. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  236. dma_addr_t *dma_handle, gfp_t flags,
  237. struct dma_attrs *attrs)
  238. {
  239. void *ret;
  240. int order = get_order(size);
  241. u64 dma_mask = DMA_BIT_MASK(32);
  242. unsigned long vstart;
  243. phys_addr_t phys;
  244. dma_addr_t dev_addr;
  245. /*
  246. * Ignore region specifiers - the kernel's ideas of
  247. * pseudo-phys memory layout has nothing to do with the
  248. * machine physical layout. We can't allocate highmem
  249. * because we can't return a pointer to it.
  250. */
  251. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  252. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  253. return ret;
  254. vstart = __get_free_pages(flags, order);
  255. ret = (void *)vstart;
  256. if (!ret)
  257. return ret;
  258. if (hwdev && hwdev->coherent_dma_mask)
  259. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  260. phys = virt_to_phys(ret);
  261. dev_addr = xen_phys_to_bus(phys);
  262. if (((dev_addr + size - 1 <= dma_mask)) &&
  263. !range_straddles_page_boundary(phys, size))
  264. *dma_handle = dev_addr;
  265. else {
  266. if (xen_create_contiguous_region(vstart, order,
  267. fls64(dma_mask)) != 0) {
  268. free_pages(vstart, order);
  269. return NULL;
  270. }
  271. *dma_handle = virt_to_machine(ret).maddr;
  272. }
  273. memset(ret, 0, size);
  274. return ret;
  275. }
  276. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  277. void
  278. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  279. dma_addr_t dev_addr, struct dma_attrs *attrs)
  280. {
  281. int order = get_order(size);
  282. phys_addr_t phys;
  283. u64 dma_mask = DMA_BIT_MASK(32);
  284. if (dma_release_from_coherent(hwdev, order, vaddr))
  285. return;
  286. if (hwdev && hwdev->coherent_dma_mask)
  287. dma_mask = hwdev->coherent_dma_mask;
  288. phys = virt_to_phys(vaddr);
  289. if (((dev_addr + size - 1 > dma_mask)) ||
  290. range_straddles_page_boundary(phys, size))
  291. xen_destroy_contiguous_region((unsigned long)vaddr, order);
  292. free_pages((unsigned long)vaddr, order);
  293. }
  294. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  295. /*
  296. * Map a single buffer of the indicated size for DMA in streaming mode. The
  297. * physical address to use is returned.
  298. *
  299. * Once the device is given the dma address, the device owns this memory until
  300. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  301. */
  302. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  303. unsigned long offset, size_t size,
  304. enum dma_data_direction dir,
  305. struct dma_attrs *attrs)
  306. {
  307. phys_addr_t map, phys = page_to_phys(page) + offset;
  308. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  309. BUG_ON(dir == DMA_NONE);
  310. /*
  311. * If the address happens to be in the device's DMA window,
  312. * we can safely return the device addr and not worry about bounce
  313. * buffering it.
  314. */
  315. if (dma_capable(dev, dev_addr, size) &&
  316. !range_straddles_page_boundary(phys, size) && !swiotlb_force)
  317. return dev_addr;
  318. /*
  319. * Oh well, have to allocate and map a bounce buffer.
  320. */
  321. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  322. if (map == SWIOTLB_MAP_ERROR)
  323. return DMA_ERROR_CODE;
  324. dev_addr = xen_phys_to_bus(map);
  325. /*
  326. * Ensure that the address returned is DMA'ble
  327. */
  328. if (!dma_capable(dev, dev_addr, size)) {
  329. swiotlb_tbl_unmap_single(dev, map, size, dir);
  330. dev_addr = 0;
  331. }
  332. return dev_addr;
  333. }
  334. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  335. /*
  336. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  337. * match what was provided for in a previous xen_swiotlb_map_page call. All
  338. * other usages are undefined.
  339. *
  340. * After this call, reads by the cpu to the buffer are guaranteed to see
  341. * whatever the device wrote there.
  342. */
  343. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  344. size_t size, enum dma_data_direction dir)
  345. {
  346. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  347. BUG_ON(dir == DMA_NONE);
  348. /* NOTE: We use dev_addr here, not paddr! */
  349. if (is_xen_swiotlb_buffer(dev_addr)) {
  350. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  351. return;
  352. }
  353. if (dir != DMA_FROM_DEVICE)
  354. return;
  355. /*
  356. * phys_to_virt doesn't work with hihgmem page but we could
  357. * call dma_mark_clean() with hihgmem page here. However, we
  358. * are fine since dma_mark_clean() is null on POWERPC. We can
  359. * make dma_mark_clean() take a physical address if necessary.
  360. */
  361. dma_mark_clean(phys_to_virt(paddr), size);
  362. }
  363. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  364. size_t size, enum dma_data_direction dir,
  365. struct dma_attrs *attrs)
  366. {
  367. xen_unmap_single(hwdev, dev_addr, size, dir);
  368. }
  369. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  370. /*
  371. * Make physical memory consistent for a single streaming mode DMA translation
  372. * after a transfer.
  373. *
  374. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  375. * using the cpu, yet do not wish to teardown the dma mapping, you must
  376. * call this function before doing so. At the next point you give the dma
  377. * address back to the card, you must first perform a
  378. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  379. */
  380. static void
  381. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  382. size_t size, enum dma_data_direction dir,
  383. enum dma_sync_target target)
  384. {
  385. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  386. BUG_ON(dir == DMA_NONE);
  387. /* NOTE: We use dev_addr here, not paddr! */
  388. if (is_xen_swiotlb_buffer(dev_addr)) {
  389. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  390. return;
  391. }
  392. if (dir != DMA_FROM_DEVICE)
  393. return;
  394. dma_mark_clean(phys_to_virt(paddr), size);
  395. }
  396. void
  397. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  398. size_t size, enum dma_data_direction dir)
  399. {
  400. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  401. }
  402. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  403. void
  404. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  405. size_t size, enum dma_data_direction dir)
  406. {
  407. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  408. }
  409. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  410. /*
  411. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  412. * This is the scatter-gather version of the above xen_swiotlb_map_page
  413. * interface. Here the scatter gather list elements are each tagged with the
  414. * appropriate dma address and length. They are obtained via
  415. * sg_dma_{address,length}(SG).
  416. *
  417. * NOTE: An implementation may be able to use a smaller number of
  418. * DMA address/length pairs than there are SG table elements.
  419. * (for example via virtual mapping capabilities)
  420. * The routine returns the number of addr/length pairs actually
  421. * used, at most nents.
  422. *
  423. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  424. * same here.
  425. */
  426. int
  427. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  428. int nelems, enum dma_data_direction dir,
  429. struct dma_attrs *attrs)
  430. {
  431. struct scatterlist *sg;
  432. int i;
  433. BUG_ON(dir == DMA_NONE);
  434. for_each_sg(sgl, sg, nelems, i) {
  435. phys_addr_t paddr = sg_phys(sg);
  436. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  437. if (swiotlb_force ||
  438. !dma_capable(hwdev, dev_addr, sg->length) ||
  439. range_straddles_page_boundary(paddr, sg->length)) {
  440. phys_addr_t map = swiotlb_tbl_map_single(hwdev,
  441. start_dma_addr,
  442. sg_phys(sg),
  443. sg->length,
  444. dir);
  445. if (map == SWIOTLB_MAP_ERROR) {
  446. /* Don't panic here, we expect map_sg users
  447. to do proper error handling. */
  448. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  449. attrs);
  450. sg_dma_len(sgl) = 0;
  451. return DMA_ERROR_CODE;
  452. }
  453. sg->dma_address = xen_phys_to_bus(map);
  454. } else
  455. sg->dma_address = dev_addr;
  456. sg_dma_len(sg) = sg->length;
  457. }
  458. return nelems;
  459. }
  460. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  461. /*
  462. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  463. * concerning calls here are the same as for swiotlb_unmap_page() above.
  464. */
  465. void
  466. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  467. int nelems, enum dma_data_direction dir,
  468. struct dma_attrs *attrs)
  469. {
  470. struct scatterlist *sg;
  471. int i;
  472. BUG_ON(dir == DMA_NONE);
  473. for_each_sg(sgl, sg, nelems, i)
  474. xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
  475. }
  476. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  477. /*
  478. * Make physical memory consistent for a set of streaming mode DMA translations
  479. * after a transfer.
  480. *
  481. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  482. * and usage.
  483. */
  484. static void
  485. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  486. int nelems, enum dma_data_direction dir,
  487. enum dma_sync_target target)
  488. {
  489. struct scatterlist *sg;
  490. int i;
  491. for_each_sg(sgl, sg, nelems, i)
  492. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  493. sg_dma_len(sg), dir, target);
  494. }
  495. void
  496. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  497. int nelems, enum dma_data_direction dir)
  498. {
  499. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  500. }
  501. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  502. void
  503. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  504. int nelems, enum dma_data_direction dir)
  505. {
  506. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  507. }
  508. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  509. int
  510. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  511. {
  512. return !dma_addr;
  513. }
  514. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  515. /*
  516. * Return whether the given device DMA address mask can be supported
  517. * properly. For example, if your device can only drive the low 24-bits
  518. * during bus mastering, then you would pass 0x00ffffff as the mask to
  519. * this function.
  520. */
  521. int
  522. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  523. {
  524. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  525. }
  526. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);