pch_udc.c 88 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. #include <linux/gpio.h>
  19. #include <linux/irq.h>
  20. /* GPIO port for VBUS detecting */
  21. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  22. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  23. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  24. /* Address offset of Registers */
  25. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  26. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  27. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  28. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  29. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  30. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  31. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  32. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  33. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  34. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  35. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  36. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  37. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  38. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  39. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  40. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  41. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  42. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  43. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  44. /* Endpoint control register */
  45. /* Bit position */
  46. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  47. #define UDC_EPCTL_RRDY (1 << 9)
  48. #define UDC_EPCTL_CNAK (1 << 8)
  49. #define UDC_EPCTL_SNAK (1 << 7)
  50. #define UDC_EPCTL_NAK (1 << 6)
  51. #define UDC_EPCTL_P (1 << 3)
  52. #define UDC_EPCTL_F (1 << 1)
  53. #define UDC_EPCTL_S (1 << 0)
  54. #define UDC_EPCTL_ET_SHIFT 4
  55. /* Mask patern */
  56. #define UDC_EPCTL_ET_MASK 0x00000030
  57. /* Value for ET field */
  58. #define UDC_EPCTL_ET_CONTROL 0
  59. #define UDC_EPCTL_ET_ISO 1
  60. #define UDC_EPCTL_ET_BULK 2
  61. #define UDC_EPCTL_ET_INTERRUPT 3
  62. /* Endpoint status register */
  63. /* Bit position */
  64. #define UDC_EPSTS_XFERDONE (1 << 27)
  65. #define UDC_EPSTS_RSS (1 << 26)
  66. #define UDC_EPSTS_RCS (1 << 25)
  67. #define UDC_EPSTS_TXEMPTY (1 << 24)
  68. #define UDC_EPSTS_TDC (1 << 10)
  69. #define UDC_EPSTS_HE (1 << 9)
  70. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  71. #define UDC_EPSTS_BNA (1 << 7)
  72. #define UDC_EPSTS_IN (1 << 6)
  73. #define UDC_EPSTS_OUT_SHIFT 4
  74. /* Mask patern */
  75. #define UDC_EPSTS_OUT_MASK 0x00000030
  76. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  77. /* Value for OUT field */
  78. #define UDC_EPSTS_OUT_SETUP 2
  79. #define UDC_EPSTS_OUT_DATA 1
  80. /* Device configuration register */
  81. /* Bit position */
  82. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  83. #define UDC_DEVCFG_SP (1 << 3)
  84. /* SPD Valee */
  85. #define UDC_DEVCFG_SPD_HS 0x0
  86. #define UDC_DEVCFG_SPD_FS 0x1
  87. #define UDC_DEVCFG_SPD_LS 0x2
  88. /* Device control register */
  89. /* Bit position */
  90. #define UDC_DEVCTL_THLEN_SHIFT 24
  91. #define UDC_DEVCTL_BRLEN_SHIFT 16
  92. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  93. #define UDC_DEVCTL_SD (1 << 10)
  94. #define UDC_DEVCTL_MODE (1 << 9)
  95. #define UDC_DEVCTL_BREN (1 << 8)
  96. #define UDC_DEVCTL_THE (1 << 7)
  97. #define UDC_DEVCTL_DU (1 << 4)
  98. #define UDC_DEVCTL_TDE (1 << 3)
  99. #define UDC_DEVCTL_RDE (1 << 2)
  100. #define UDC_DEVCTL_RES (1 << 0)
  101. /* Device status register */
  102. /* Bit position */
  103. #define UDC_DEVSTS_TS_SHIFT 18
  104. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  105. #define UDC_DEVSTS_ALT_SHIFT 8
  106. #define UDC_DEVSTS_INTF_SHIFT 4
  107. #define UDC_DEVSTS_CFG_SHIFT 0
  108. /* Mask patern */
  109. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  110. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  111. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  112. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  113. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  114. /* value for maximum speed for SPEED field */
  115. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  116. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  117. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  118. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  119. /* Device irq register */
  120. /* Bit position */
  121. #define UDC_DEVINT_RWKP (1 << 7)
  122. #define UDC_DEVINT_ENUM (1 << 6)
  123. #define UDC_DEVINT_SOF (1 << 5)
  124. #define UDC_DEVINT_US (1 << 4)
  125. #define UDC_DEVINT_UR (1 << 3)
  126. #define UDC_DEVINT_ES (1 << 2)
  127. #define UDC_DEVINT_SI (1 << 1)
  128. #define UDC_DEVINT_SC (1 << 0)
  129. /* Mask patern */
  130. #define UDC_DEVINT_MSK 0x7f
  131. /* Endpoint irq register */
  132. /* Bit position */
  133. #define UDC_EPINT_IN_SHIFT 0
  134. #define UDC_EPINT_OUT_SHIFT 16
  135. #define UDC_EPINT_IN_EP0 (1 << 0)
  136. #define UDC_EPINT_OUT_EP0 (1 << 16)
  137. /* Mask patern */
  138. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  139. /* UDC_CSR_BUSY Status register */
  140. /* Bit position */
  141. #define UDC_CSR_BUSY (1 << 0)
  142. /* SOFT RESET register */
  143. /* Bit position */
  144. #define UDC_PSRST (1 << 1)
  145. #define UDC_SRST (1 << 0)
  146. /* USB_DEVICE endpoint register */
  147. /* Bit position */
  148. #define UDC_CSR_NE_NUM_SHIFT 0
  149. #define UDC_CSR_NE_DIR_SHIFT 4
  150. #define UDC_CSR_NE_TYPE_SHIFT 5
  151. #define UDC_CSR_NE_CFG_SHIFT 7
  152. #define UDC_CSR_NE_INTF_SHIFT 11
  153. #define UDC_CSR_NE_ALT_SHIFT 15
  154. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  155. /* Mask patern */
  156. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  157. #define UDC_CSR_NE_DIR_MASK 0x00000010
  158. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  159. #define UDC_CSR_NE_CFG_MASK 0x00000780
  160. #define UDC_CSR_NE_INTF_MASK 0x00007800
  161. #define UDC_CSR_NE_ALT_MASK 0x00078000
  162. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  163. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  164. #define PCH_UDC_EPINT(in, num)\
  165. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  166. /* Index of endpoint */
  167. #define UDC_EP0IN_IDX 0
  168. #define UDC_EP0OUT_IDX 1
  169. #define UDC_EPIN_IDX(ep) (ep * 2)
  170. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  171. #define PCH_UDC_EP0 0
  172. #define PCH_UDC_EP1 1
  173. #define PCH_UDC_EP2 2
  174. #define PCH_UDC_EP3 3
  175. /* Number of endpoint */
  176. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  177. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  178. /* Length Value */
  179. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  180. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  181. /* Value of EP Buffer Size */
  182. #define UDC_EP0IN_BUFF_SIZE 16
  183. #define UDC_EPIN_BUFF_SIZE 256
  184. #define UDC_EP0OUT_BUFF_SIZE 16
  185. #define UDC_EPOUT_BUFF_SIZE 256
  186. /* Value of EP maximum packet size */
  187. #define UDC_EP0IN_MAX_PKT_SIZE 64
  188. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  189. #define UDC_BULK_MAX_PKT_SIZE 512
  190. /* DMA */
  191. #define DMA_DIR_RX 1 /* DMA for data receive */
  192. #define DMA_DIR_TX 2 /* DMA for data transmit */
  193. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  194. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  195. /**
  196. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  197. * for data
  198. * @status: Status quadlet
  199. * @reserved: Reserved
  200. * @dataptr: Buffer descriptor
  201. * @next: Next descriptor
  202. */
  203. struct pch_udc_data_dma_desc {
  204. u32 status;
  205. u32 reserved;
  206. u32 dataptr;
  207. u32 next;
  208. };
  209. /**
  210. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  211. * for control data
  212. * @status: Status
  213. * @reserved: Reserved
  214. * @data12: First setup word
  215. * @data34: Second setup word
  216. */
  217. struct pch_udc_stp_dma_desc {
  218. u32 status;
  219. u32 reserved;
  220. struct usb_ctrlrequest request;
  221. } __attribute((packed));
  222. /* DMA status definitions */
  223. /* Buffer status */
  224. #define PCH_UDC_BUFF_STS 0xC0000000
  225. #define PCH_UDC_BS_HST_RDY 0x00000000
  226. #define PCH_UDC_BS_DMA_BSY 0x40000000
  227. #define PCH_UDC_BS_DMA_DONE 0x80000000
  228. #define PCH_UDC_BS_HST_BSY 0xC0000000
  229. /* Rx/Tx Status */
  230. #define PCH_UDC_RXTX_STS 0x30000000
  231. #define PCH_UDC_RTS_SUCC 0x00000000
  232. #define PCH_UDC_RTS_DESERR 0x10000000
  233. #define PCH_UDC_RTS_BUFERR 0x30000000
  234. /* Last Descriptor Indication */
  235. #define PCH_UDC_DMA_LAST 0x08000000
  236. /* Number of Rx/Tx Bytes Mask */
  237. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  238. /**
  239. * struct pch_udc_cfg_data - Structure to hold current configuration
  240. * and interface information
  241. * @cur_cfg: current configuration in use
  242. * @cur_intf: current interface in use
  243. * @cur_alt: current alt interface in use
  244. */
  245. struct pch_udc_cfg_data {
  246. u16 cur_cfg;
  247. u16 cur_intf;
  248. u16 cur_alt;
  249. };
  250. /**
  251. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  252. * @ep: embedded ep request
  253. * @td_stp_phys: for setup request
  254. * @td_data_phys: for data request
  255. * @td_stp: for setup request
  256. * @td_data: for data request
  257. * @dev: reference to device struct
  258. * @offset_addr: offset address of ep register
  259. * @desc: for this ep
  260. * @queue: queue for requests
  261. * @num: endpoint number
  262. * @in: endpoint is IN
  263. * @halted: endpoint halted?
  264. * @epsts: Endpoint status
  265. */
  266. struct pch_udc_ep {
  267. struct usb_ep ep;
  268. dma_addr_t td_stp_phys;
  269. dma_addr_t td_data_phys;
  270. struct pch_udc_stp_dma_desc *td_stp;
  271. struct pch_udc_data_dma_desc *td_data;
  272. struct pch_udc_dev *dev;
  273. unsigned long offset_addr;
  274. struct list_head queue;
  275. unsigned num:5,
  276. in:1,
  277. halted:1;
  278. unsigned long epsts;
  279. };
  280. /**
  281. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  282. * for detecting VBUS
  283. * @port: gpio port number
  284. * @intr: gpio interrupt number
  285. * @irq_work_fall Structure for WorkQueue
  286. * @irq_work_rise Structure for WorkQueue
  287. */
  288. struct pch_vbus_gpio_data {
  289. int port;
  290. int intr;
  291. struct work_struct irq_work_fall;
  292. struct work_struct irq_work_rise;
  293. };
  294. /**
  295. * struct pch_udc_dev - Structure holding complete information
  296. * of the PCH USB device
  297. * @gadget: gadget driver data
  298. * @driver: reference to gadget driver bound
  299. * @pdev: reference to the PCI device
  300. * @ep: array of endpoints
  301. * @lock: protects all state
  302. * @active: enabled the PCI device
  303. * @stall: stall requested
  304. * @prot_stall: protcol stall requested
  305. * @irq_registered: irq registered with system
  306. * @mem_region: device memory mapped
  307. * @registered: driver regsitered with system
  308. * @suspended: driver in suspended state
  309. * @connected: gadget driver associated
  310. * @vbus_session: required vbus_session state
  311. * @set_cfg_not_acked: pending acknowledgement 4 setup
  312. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  313. * @data_requests: DMA pool for data requests
  314. * @stp_requests: DMA pool for setup requests
  315. * @dma_addr: DMA pool for received
  316. * @ep0out_buf: Buffer for DMA
  317. * @setup_data: Received setup data
  318. * @phys_addr: of device memory
  319. * @base_addr: for mapped device memory
  320. * @irq: IRQ line for the device
  321. * @cfg_data: current cfg, intf, and alt in use
  322. * @vbus_gpio: GPIO informaton for detecting VBUS
  323. */
  324. struct pch_udc_dev {
  325. struct usb_gadget gadget;
  326. struct usb_gadget_driver *driver;
  327. struct pci_dev *pdev;
  328. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  329. spinlock_t lock; /* protects all state */
  330. unsigned active:1,
  331. stall:1,
  332. prot_stall:1,
  333. irq_registered:1,
  334. mem_region:1,
  335. suspended:1,
  336. connected:1,
  337. vbus_session:1,
  338. set_cfg_not_acked:1,
  339. waiting_zlp_ack:1;
  340. struct pci_pool *data_requests;
  341. struct pci_pool *stp_requests;
  342. dma_addr_t dma_addr;
  343. void *ep0out_buf;
  344. struct usb_ctrlrequest setup_data;
  345. unsigned long phys_addr;
  346. void __iomem *base_addr;
  347. unsigned irq;
  348. struct pch_udc_cfg_data cfg_data;
  349. struct pch_vbus_gpio_data vbus_gpio;
  350. };
  351. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  352. #define PCH_UDC_PCI_BAR 1
  353. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  354. #define PCI_VENDOR_ID_ROHM 0x10DB
  355. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  356. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  357. static const char ep0_string[] = "ep0in";
  358. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  359. static bool speed_fs;
  360. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  361. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  362. /**
  363. * struct pch_udc_request - Structure holding a PCH USB device request packet
  364. * @req: embedded ep request
  365. * @td_data_phys: phys. address
  366. * @td_data: first dma desc. of chain
  367. * @td_data_last: last dma desc. of chain
  368. * @queue: associated queue
  369. * @dma_going: DMA in progress for request
  370. * @dma_mapped: DMA memory mapped for request
  371. * @dma_done: DMA completed for request
  372. * @chain_len: chain length
  373. * @buf: Buffer memory for align adjustment
  374. * @dma: DMA memory for align adjustment
  375. */
  376. struct pch_udc_request {
  377. struct usb_request req;
  378. dma_addr_t td_data_phys;
  379. struct pch_udc_data_dma_desc *td_data;
  380. struct pch_udc_data_dma_desc *td_data_last;
  381. struct list_head queue;
  382. unsigned dma_going:1,
  383. dma_mapped:1,
  384. dma_done:1;
  385. unsigned chain_len;
  386. void *buf;
  387. dma_addr_t dma;
  388. };
  389. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  390. {
  391. return ioread32(dev->base_addr + reg);
  392. }
  393. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  394. unsigned long val, unsigned long reg)
  395. {
  396. iowrite32(val, dev->base_addr + reg);
  397. }
  398. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  399. unsigned long reg,
  400. unsigned long bitmask)
  401. {
  402. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  403. }
  404. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  405. unsigned long reg,
  406. unsigned long bitmask)
  407. {
  408. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  409. }
  410. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  411. {
  412. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  413. }
  414. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  415. unsigned long val, unsigned long reg)
  416. {
  417. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  418. }
  419. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  420. unsigned long reg,
  421. unsigned long bitmask)
  422. {
  423. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  424. }
  425. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  426. unsigned long reg,
  427. unsigned long bitmask)
  428. {
  429. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  430. }
  431. /**
  432. * pch_udc_csr_busy() - Wait till idle.
  433. * @dev: Reference to pch_udc_dev structure
  434. */
  435. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  436. {
  437. unsigned int count = 200;
  438. /* Wait till idle */
  439. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  440. && --count)
  441. cpu_relax();
  442. if (!count)
  443. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  444. }
  445. /**
  446. * pch_udc_write_csr() - Write the command and status registers.
  447. * @dev: Reference to pch_udc_dev structure
  448. * @val: value to be written to CSR register
  449. * @addr: address of CSR register
  450. */
  451. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  452. unsigned int ep)
  453. {
  454. unsigned long reg = PCH_UDC_CSR(ep);
  455. pch_udc_csr_busy(dev); /* Wait till idle */
  456. pch_udc_writel(dev, val, reg);
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. }
  459. /**
  460. * pch_udc_read_csr() - Read the command and status registers.
  461. * @dev: Reference to pch_udc_dev structure
  462. * @addr: address of CSR register
  463. *
  464. * Return codes: content of CSR register
  465. */
  466. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  467. {
  468. unsigned long reg = PCH_UDC_CSR(ep);
  469. pch_udc_csr_busy(dev); /* Wait till idle */
  470. pch_udc_readl(dev, reg); /* Dummy read */
  471. pch_udc_csr_busy(dev); /* Wait till idle */
  472. return pch_udc_readl(dev, reg);
  473. }
  474. /**
  475. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  476. * @dev: Reference to pch_udc_dev structure
  477. */
  478. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  479. {
  480. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  481. mdelay(1);
  482. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  483. }
  484. /**
  485. * pch_udc_get_frame() - Get the current frame from device status register
  486. * @dev: Reference to pch_udc_dev structure
  487. * Retern current frame
  488. */
  489. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  490. {
  491. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  492. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  493. }
  494. /**
  495. * pch_udc_clear_selfpowered() - Clear the self power control
  496. * @dev: Reference to pch_udc_regs structure
  497. */
  498. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  499. {
  500. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  501. }
  502. /**
  503. * pch_udc_set_selfpowered() - Set the self power control
  504. * @dev: Reference to pch_udc_regs structure
  505. */
  506. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  507. {
  508. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  509. }
  510. /**
  511. * pch_udc_set_disconnect() - Set the disconnect status.
  512. * @dev: Reference to pch_udc_regs structure
  513. */
  514. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  515. {
  516. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  517. }
  518. /**
  519. * pch_udc_clear_disconnect() - Clear the disconnect status.
  520. * @dev: Reference to pch_udc_regs structure
  521. */
  522. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  523. {
  524. /* Clear the disconnect */
  525. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  526. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  527. mdelay(1);
  528. /* Resume USB signalling */
  529. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  530. }
  531. /**
  532. * pch_udc_reconnect() - This API initializes usb device controller,
  533. * and clear the disconnect status.
  534. * @dev: Reference to pch_udc_regs structure
  535. */
  536. static void pch_udc_init(struct pch_udc_dev *dev);
  537. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  538. {
  539. pch_udc_init(dev);
  540. /* enable device interrupts */
  541. /* pch_udc_enable_interrupts() */
  542. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  543. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  544. /* Clear the disconnect */
  545. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  546. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  547. mdelay(1);
  548. /* Resume USB signalling */
  549. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  550. }
  551. /**
  552. * pch_udc_vbus_session() - set or clearr the disconnect status.
  553. * @dev: Reference to pch_udc_regs structure
  554. * @is_active: Parameter specifying the action
  555. * 0: indicating VBUS power is ending
  556. * !0: indicating VBUS power is starting
  557. */
  558. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  559. int is_active)
  560. {
  561. if (is_active) {
  562. pch_udc_reconnect(dev);
  563. dev->vbus_session = 1;
  564. } else {
  565. if (dev->driver && dev->driver->disconnect) {
  566. spin_unlock(&dev->lock);
  567. dev->driver->disconnect(&dev->gadget);
  568. spin_lock(&dev->lock);
  569. }
  570. pch_udc_set_disconnect(dev);
  571. dev->vbus_session = 0;
  572. }
  573. }
  574. /**
  575. * pch_udc_ep_set_stall() - Set the stall of endpoint
  576. * @ep: Reference to structure of type pch_udc_ep_regs
  577. */
  578. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  579. {
  580. if (ep->in) {
  581. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  582. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  583. } else {
  584. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  585. }
  586. }
  587. /**
  588. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  589. * @ep: Reference to structure of type pch_udc_ep_regs
  590. */
  591. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  592. {
  593. /* Clear the stall */
  594. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  595. /* Clear NAK by writing CNAK */
  596. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  597. }
  598. /**
  599. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  600. * @ep: Reference to structure of type pch_udc_ep_regs
  601. * @type: Type of endpoint
  602. */
  603. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  604. u8 type)
  605. {
  606. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  607. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  608. }
  609. /**
  610. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  611. * @ep: Reference to structure of type pch_udc_ep_regs
  612. * @buf_size: The buffer word size
  613. */
  614. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  615. u32 buf_size, u32 ep_in)
  616. {
  617. u32 data;
  618. if (ep_in) {
  619. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  620. data = (data & 0xffff0000) | (buf_size & 0xffff);
  621. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  622. } else {
  623. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  624. data = (buf_size << 16) | (data & 0xffff);
  625. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  626. }
  627. }
  628. /**
  629. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  630. * @ep: Reference to structure of type pch_udc_ep_regs
  631. * @pkt_size: The packet byte size
  632. */
  633. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  634. {
  635. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  636. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  637. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  638. }
  639. /**
  640. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  641. * @ep: Reference to structure of type pch_udc_ep_regs
  642. * @addr: Address of the register
  643. */
  644. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  645. {
  646. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  647. }
  648. /**
  649. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  650. * @ep: Reference to structure of type pch_udc_ep_regs
  651. * @addr: Address of the register
  652. */
  653. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  654. {
  655. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  656. }
  657. /**
  658. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  659. * @ep: Reference to structure of type pch_udc_ep_regs
  660. */
  661. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  662. {
  663. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  664. }
  665. /**
  666. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  667. * @ep: Reference to structure of type pch_udc_ep_regs
  668. */
  669. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  670. {
  671. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  672. }
  673. /**
  674. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  675. * @ep: Reference to structure of type pch_udc_ep_regs
  676. */
  677. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  678. {
  679. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  680. }
  681. /**
  682. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  683. * register depending on the direction specified
  684. * @dev: Reference to structure of type pch_udc_regs
  685. * @dir: whether Tx or Rx
  686. * DMA_DIR_RX: Receive
  687. * DMA_DIR_TX: Transmit
  688. */
  689. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  690. {
  691. if (dir == DMA_DIR_RX)
  692. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  693. else if (dir == DMA_DIR_TX)
  694. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  695. }
  696. /**
  697. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  698. * register depending on the direction specified
  699. * @dev: Reference to structure of type pch_udc_regs
  700. * @dir: Whether Tx or Rx
  701. * DMA_DIR_RX: Receive
  702. * DMA_DIR_TX: Transmit
  703. */
  704. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  705. {
  706. if (dir == DMA_DIR_RX)
  707. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  708. else if (dir == DMA_DIR_TX)
  709. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  710. }
  711. /**
  712. * pch_udc_set_csr_done() - Set the device control register
  713. * CSR done field (bit 13)
  714. * @dev: reference to structure of type pch_udc_regs
  715. */
  716. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  717. {
  718. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  719. }
  720. /**
  721. * pch_udc_disable_interrupts() - Disables the specified interrupts
  722. * @dev: Reference to structure of type pch_udc_regs
  723. * @mask: Mask to disable interrupts
  724. */
  725. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  726. u32 mask)
  727. {
  728. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  729. }
  730. /**
  731. * pch_udc_enable_interrupts() - Enable the specified interrupts
  732. * @dev: Reference to structure of type pch_udc_regs
  733. * @mask: Mask to enable interrupts
  734. */
  735. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  736. u32 mask)
  737. {
  738. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  739. }
  740. /**
  741. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  742. * @dev: Reference to structure of type pch_udc_regs
  743. * @mask: Mask to disable interrupts
  744. */
  745. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  746. u32 mask)
  747. {
  748. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  749. }
  750. /**
  751. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  752. * @dev: Reference to structure of type pch_udc_regs
  753. * @mask: Mask to enable interrupts
  754. */
  755. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  756. u32 mask)
  757. {
  758. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  759. }
  760. /**
  761. * pch_udc_read_device_interrupts() - Read the device interrupts
  762. * @dev: Reference to structure of type pch_udc_regs
  763. * Retern The device interrupts
  764. */
  765. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  766. {
  767. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  768. }
  769. /**
  770. * pch_udc_write_device_interrupts() - Write device interrupts
  771. * @dev: Reference to structure of type pch_udc_regs
  772. * @val: The value to be written to interrupt register
  773. */
  774. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  775. u32 val)
  776. {
  777. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  778. }
  779. /**
  780. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  781. * @dev: Reference to structure of type pch_udc_regs
  782. * Retern The endpoint interrupt
  783. */
  784. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  785. {
  786. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  787. }
  788. /**
  789. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  790. * @dev: Reference to structure of type pch_udc_regs
  791. * @val: The value to be written to interrupt register
  792. */
  793. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  794. u32 val)
  795. {
  796. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  797. }
  798. /**
  799. * pch_udc_read_device_status() - Read the device status
  800. * @dev: Reference to structure of type pch_udc_regs
  801. * Retern The device status
  802. */
  803. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  804. {
  805. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  806. }
  807. /**
  808. * pch_udc_read_ep_control() - Read the endpoint control
  809. * @ep: Reference to structure of type pch_udc_ep_regs
  810. * Retern The endpoint control register value
  811. */
  812. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  813. {
  814. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  815. }
  816. /**
  817. * pch_udc_clear_ep_control() - Clear the endpoint control register
  818. * @ep: Reference to structure of type pch_udc_ep_regs
  819. * Retern The endpoint control register value
  820. */
  821. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  822. {
  823. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  824. }
  825. /**
  826. * pch_udc_read_ep_status() - Read the endpoint status
  827. * @ep: Reference to structure of type pch_udc_ep_regs
  828. * Retern The endpoint status
  829. */
  830. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  831. {
  832. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  833. }
  834. /**
  835. * pch_udc_clear_ep_status() - Clear the endpoint status
  836. * @ep: Reference to structure of type pch_udc_ep_regs
  837. * @stat: Endpoint status
  838. */
  839. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  840. u32 stat)
  841. {
  842. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  843. }
  844. /**
  845. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  846. * of the endpoint control register
  847. * @ep: Reference to structure of type pch_udc_ep_regs
  848. */
  849. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  850. {
  851. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  852. }
  853. /**
  854. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  855. * of the endpoint control register
  856. * @ep: reference to structure of type pch_udc_ep_regs
  857. */
  858. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  859. {
  860. unsigned int loopcnt = 0;
  861. struct pch_udc_dev *dev = ep->dev;
  862. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  863. return;
  864. if (!ep->in) {
  865. loopcnt = 10000;
  866. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  867. --loopcnt)
  868. udelay(5);
  869. if (!loopcnt)
  870. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  871. __func__);
  872. }
  873. loopcnt = 10000;
  874. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  875. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  876. udelay(5);
  877. }
  878. if (!loopcnt)
  879. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  880. __func__, ep->num, (ep->in ? "in" : "out"));
  881. }
  882. /**
  883. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  884. * @ep: reference to structure of type pch_udc_ep_regs
  885. * @dir: direction of endpoint
  886. * 0: endpoint is OUT
  887. * !0: endpoint is IN
  888. */
  889. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  890. {
  891. if (dir) { /* IN ep */
  892. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  893. return;
  894. }
  895. }
  896. /**
  897. * pch_udc_ep_enable() - This api enables endpoint
  898. * @regs: Reference to structure pch_udc_ep_regs
  899. * @desc: endpoint descriptor
  900. */
  901. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  902. struct pch_udc_cfg_data *cfg,
  903. const struct usb_endpoint_descriptor *desc)
  904. {
  905. u32 val = 0;
  906. u32 buff_size = 0;
  907. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  908. if (ep->in)
  909. buff_size = UDC_EPIN_BUFF_SIZE;
  910. else
  911. buff_size = UDC_EPOUT_BUFF_SIZE;
  912. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  913. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  914. pch_udc_ep_set_nak(ep);
  915. pch_udc_ep_fifo_flush(ep, ep->in);
  916. /* Configure the endpoint */
  917. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  918. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  919. UDC_CSR_NE_TYPE_SHIFT) |
  920. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  921. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  922. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  923. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  924. if (ep->in)
  925. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  926. else
  927. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  928. }
  929. /**
  930. * pch_udc_ep_disable() - This api disables endpoint
  931. * @regs: Reference to structure pch_udc_ep_regs
  932. */
  933. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  934. {
  935. if (ep->in) {
  936. /* flush the fifo */
  937. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  938. /* set NAK */
  939. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  940. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  941. } else {
  942. /* set NAK */
  943. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  944. }
  945. /* reset desc pointer */
  946. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  947. }
  948. /**
  949. * pch_udc_wait_ep_stall() - Wait EP stall.
  950. * @dev: Reference to pch_udc_dev structure
  951. */
  952. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  953. {
  954. unsigned int count = 10000;
  955. /* Wait till idle */
  956. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  957. udelay(5);
  958. if (!count)
  959. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  960. }
  961. /**
  962. * pch_udc_init() - This API initializes usb device controller
  963. * @dev: Rreference to pch_udc_regs structure
  964. */
  965. static void pch_udc_init(struct pch_udc_dev *dev)
  966. {
  967. if (NULL == dev) {
  968. pr_err("%s: Invalid address\n", __func__);
  969. return;
  970. }
  971. /* Soft Reset and Reset PHY */
  972. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  973. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  974. mdelay(1);
  975. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  976. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  977. mdelay(1);
  978. /* mask and clear all device interrupts */
  979. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  980. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  981. /* mask and clear all ep interrupts */
  982. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  983. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  984. /* enable dynamic CSR programmingi, self powered and device speed */
  985. if (speed_fs)
  986. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  987. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  988. else /* defaul high speed */
  989. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  990. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  991. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  992. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  993. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  994. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  995. UDC_DEVCTL_THE);
  996. }
  997. /**
  998. * pch_udc_exit() - This API exit usb device controller
  999. * @dev: Reference to pch_udc_regs structure
  1000. */
  1001. static void pch_udc_exit(struct pch_udc_dev *dev)
  1002. {
  1003. /* mask all device interrupts */
  1004. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  1005. /* mask all ep interrupts */
  1006. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  1007. /* put device in disconnected state */
  1008. pch_udc_set_disconnect(dev);
  1009. }
  1010. /**
  1011. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1012. * @gadget: Reference to the gadget driver
  1013. *
  1014. * Return codes:
  1015. * 0: Success
  1016. * -EINVAL: If the gadget passed is NULL
  1017. */
  1018. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1019. {
  1020. struct pch_udc_dev *dev;
  1021. if (!gadget)
  1022. return -EINVAL;
  1023. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1024. return pch_udc_get_frame(dev);
  1025. }
  1026. /**
  1027. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1028. * @gadget: Reference to the gadget driver
  1029. *
  1030. * Return codes:
  1031. * 0: Success
  1032. * -EINVAL: If the gadget passed is NULL
  1033. */
  1034. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1035. {
  1036. struct pch_udc_dev *dev;
  1037. unsigned long flags;
  1038. if (!gadget)
  1039. return -EINVAL;
  1040. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1041. spin_lock_irqsave(&dev->lock, flags);
  1042. pch_udc_rmt_wakeup(dev);
  1043. spin_unlock_irqrestore(&dev->lock, flags);
  1044. return 0;
  1045. }
  1046. /**
  1047. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1048. * is self powered or not
  1049. * @gadget: Reference to the gadget driver
  1050. * @value: Specifies self powered or not
  1051. *
  1052. * Return codes:
  1053. * 0: Success
  1054. * -EINVAL: If the gadget passed is NULL
  1055. */
  1056. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1057. {
  1058. struct pch_udc_dev *dev;
  1059. if (!gadget)
  1060. return -EINVAL;
  1061. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1062. if (value)
  1063. pch_udc_set_selfpowered(dev);
  1064. else
  1065. pch_udc_clear_selfpowered(dev);
  1066. return 0;
  1067. }
  1068. /**
  1069. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1070. * visible/invisible to the host
  1071. * @gadget: Reference to the gadget driver
  1072. * @is_on: Specifies whether the pull up is made active or inactive
  1073. *
  1074. * Return codes:
  1075. * 0: Success
  1076. * -EINVAL: If the gadget passed is NULL
  1077. */
  1078. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1079. {
  1080. struct pch_udc_dev *dev;
  1081. if (!gadget)
  1082. return -EINVAL;
  1083. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1084. if (is_on) {
  1085. pch_udc_reconnect(dev);
  1086. } else {
  1087. if (dev->driver && dev->driver->disconnect) {
  1088. spin_unlock(&dev->lock);
  1089. dev->driver->disconnect(&dev->gadget);
  1090. spin_lock(&dev->lock);
  1091. }
  1092. pch_udc_set_disconnect(dev);
  1093. }
  1094. return 0;
  1095. }
  1096. /**
  1097. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1098. * transceiver (or GPIO) that
  1099. * detects a VBUS power session starting/ending
  1100. * @gadget: Reference to the gadget driver
  1101. * @is_active: specifies whether the session is starting or ending
  1102. *
  1103. * Return codes:
  1104. * 0: Success
  1105. * -EINVAL: If the gadget passed is NULL
  1106. */
  1107. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1108. {
  1109. struct pch_udc_dev *dev;
  1110. if (!gadget)
  1111. return -EINVAL;
  1112. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1113. pch_udc_vbus_session(dev, is_active);
  1114. return 0;
  1115. }
  1116. /**
  1117. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1118. * SET_CONFIGURATION calls to
  1119. * specify how much power the device can consume
  1120. * @gadget: Reference to the gadget driver
  1121. * @mA: specifies the current limit in 2mA unit
  1122. *
  1123. * Return codes:
  1124. * -EINVAL: If the gadget passed is NULL
  1125. * -EOPNOTSUPP:
  1126. */
  1127. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1128. {
  1129. return -EOPNOTSUPP;
  1130. }
  1131. static int pch_udc_start(struct usb_gadget *g,
  1132. struct usb_gadget_driver *driver);
  1133. static int pch_udc_stop(struct usb_gadget *g,
  1134. struct usb_gadget_driver *driver);
  1135. static const struct usb_gadget_ops pch_udc_ops = {
  1136. .get_frame = pch_udc_pcd_get_frame,
  1137. .wakeup = pch_udc_pcd_wakeup,
  1138. .set_selfpowered = pch_udc_pcd_selfpowered,
  1139. .pullup = pch_udc_pcd_pullup,
  1140. .vbus_session = pch_udc_pcd_vbus_session,
  1141. .vbus_draw = pch_udc_pcd_vbus_draw,
  1142. .udc_start = pch_udc_start,
  1143. .udc_stop = pch_udc_stop,
  1144. };
  1145. /**
  1146. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1147. * @dev: Reference to the driver structure
  1148. *
  1149. * Return value:
  1150. * 1: VBUS is high
  1151. * 0: VBUS is low
  1152. * -1: It is not enable to detect VBUS using GPIO
  1153. */
  1154. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1155. {
  1156. int vbus = 0;
  1157. if (dev->vbus_gpio.port)
  1158. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1159. else
  1160. vbus = -1;
  1161. return vbus;
  1162. }
  1163. /**
  1164. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1165. * If VBUS is Low, disconnect is processed
  1166. * @irq_work: Structure for WorkQueue
  1167. *
  1168. */
  1169. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1170. {
  1171. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1172. struct pch_vbus_gpio_data, irq_work_fall);
  1173. struct pch_udc_dev *dev =
  1174. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1175. int vbus_saved = -1;
  1176. int vbus;
  1177. int count;
  1178. if (!dev->vbus_gpio.port)
  1179. return;
  1180. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1181. count++) {
  1182. vbus = pch_vbus_gpio_get_value(dev);
  1183. if ((vbus_saved == vbus) && (vbus == 0)) {
  1184. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1185. if (dev->driver
  1186. && dev->driver->disconnect) {
  1187. dev->driver->disconnect(
  1188. &dev->gadget);
  1189. }
  1190. if (dev->vbus_gpio.intr)
  1191. pch_udc_init(dev);
  1192. else
  1193. pch_udc_reconnect(dev);
  1194. return;
  1195. }
  1196. vbus_saved = vbus;
  1197. mdelay(PCH_VBUS_INTERVAL);
  1198. }
  1199. }
  1200. /**
  1201. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1202. * If VBUS is High, connect is processed
  1203. * @irq_work: Structure for WorkQueue
  1204. *
  1205. */
  1206. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1207. {
  1208. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1209. struct pch_vbus_gpio_data, irq_work_rise);
  1210. struct pch_udc_dev *dev =
  1211. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1212. int vbus;
  1213. if (!dev->vbus_gpio.port)
  1214. return;
  1215. mdelay(PCH_VBUS_INTERVAL);
  1216. vbus = pch_vbus_gpio_get_value(dev);
  1217. if (vbus == 1) {
  1218. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1219. pch_udc_reconnect(dev);
  1220. return;
  1221. }
  1222. }
  1223. /**
  1224. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1225. * @irq: Interrupt request number
  1226. * @dev: Reference to the device structure
  1227. *
  1228. * Return codes:
  1229. * 0: Success
  1230. * -EINVAL: GPIO port is invalid or can't be initialized.
  1231. */
  1232. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1233. {
  1234. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1235. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1236. return IRQ_NONE;
  1237. if (pch_vbus_gpio_get_value(dev))
  1238. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1239. else
  1240. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1241. return IRQ_HANDLED;
  1242. }
  1243. /**
  1244. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1245. * @dev: Reference to the driver structure
  1246. * @vbus_gpio Number of GPIO port to detect gpio
  1247. *
  1248. * Return codes:
  1249. * 0: Success
  1250. * -EINVAL: GPIO port is invalid or can't be initialized.
  1251. */
  1252. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1253. {
  1254. int err;
  1255. int irq_num = 0;
  1256. dev->vbus_gpio.port = 0;
  1257. dev->vbus_gpio.intr = 0;
  1258. if (vbus_gpio_port <= -1)
  1259. return -EINVAL;
  1260. err = gpio_is_valid(vbus_gpio_port);
  1261. if (!err) {
  1262. pr_err("%s: gpio port %d is invalid\n",
  1263. __func__, vbus_gpio_port);
  1264. return -EINVAL;
  1265. }
  1266. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1267. if (err) {
  1268. pr_err("%s: can't request gpio port %d, err: %d\n",
  1269. __func__, vbus_gpio_port, err);
  1270. return -EINVAL;
  1271. }
  1272. dev->vbus_gpio.port = vbus_gpio_port;
  1273. gpio_direction_input(vbus_gpio_port);
  1274. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1275. irq_num = gpio_to_irq(vbus_gpio_port);
  1276. if (irq_num > 0) {
  1277. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1278. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1279. "vbus_detect", dev);
  1280. if (!err) {
  1281. dev->vbus_gpio.intr = irq_num;
  1282. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1283. pch_vbus_gpio_work_rise);
  1284. } else {
  1285. pr_err("%s: can't request irq %d, err: %d\n",
  1286. __func__, irq_num, err);
  1287. }
  1288. }
  1289. return 0;
  1290. }
  1291. /**
  1292. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1293. * @dev: Reference to the driver structure
  1294. */
  1295. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1296. {
  1297. if (dev->vbus_gpio.intr)
  1298. free_irq(dev->vbus_gpio.intr, dev);
  1299. if (dev->vbus_gpio.port)
  1300. gpio_free(dev->vbus_gpio.port);
  1301. }
  1302. /**
  1303. * complete_req() - This API is invoked from the driver when processing
  1304. * of a request is complete
  1305. * @ep: Reference to the endpoint structure
  1306. * @req: Reference to the request structure
  1307. * @status: Indicates the success/failure of completion
  1308. */
  1309. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1310. int status)
  1311. __releases(&dev->lock)
  1312. __acquires(&dev->lock)
  1313. {
  1314. struct pch_udc_dev *dev;
  1315. unsigned halted = ep->halted;
  1316. list_del_init(&req->queue);
  1317. /* set new status if pending */
  1318. if (req->req.status == -EINPROGRESS)
  1319. req->req.status = status;
  1320. else
  1321. status = req->req.status;
  1322. dev = ep->dev;
  1323. if (req->dma_mapped) {
  1324. if (req->dma == DMA_ADDR_INVALID) {
  1325. if (ep->in)
  1326. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1327. req->req.length,
  1328. DMA_TO_DEVICE);
  1329. else
  1330. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1331. req->req.length,
  1332. DMA_FROM_DEVICE);
  1333. req->req.dma = DMA_ADDR_INVALID;
  1334. } else {
  1335. if (ep->in)
  1336. dma_unmap_single(&dev->pdev->dev, req->dma,
  1337. req->req.length,
  1338. DMA_TO_DEVICE);
  1339. else {
  1340. dma_unmap_single(&dev->pdev->dev, req->dma,
  1341. req->req.length,
  1342. DMA_FROM_DEVICE);
  1343. memcpy(req->req.buf, req->buf, req->req.length);
  1344. }
  1345. kfree(req->buf);
  1346. req->dma = DMA_ADDR_INVALID;
  1347. }
  1348. req->dma_mapped = 0;
  1349. }
  1350. ep->halted = 1;
  1351. spin_unlock(&dev->lock);
  1352. if (!ep->in)
  1353. pch_udc_ep_clear_rrdy(ep);
  1354. req->req.complete(&ep->ep, &req->req);
  1355. spin_lock(&dev->lock);
  1356. ep->halted = halted;
  1357. }
  1358. /**
  1359. * empty_req_queue() - This API empties the request queue of an endpoint
  1360. * @ep: Reference to the endpoint structure
  1361. */
  1362. static void empty_req_queue(struct pch_udc_ep *ep)
  1363. {
  1364. struct pch_udc_request *req;
  1365. ep->halted = 1;
  1366. while (!list_empty(&ep->queue)) {
  1367. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1368. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1369. }
  1370. }
  1371. /**
  1372. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1373. * for the request
  1374. * @dev Reference to the driver structure
  1375. * @req Reference to the request to be freed
  1376. *
  1377. * Return codes:
  1378. * 0: Success
  1379. */
  1380. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1381. struct pch_udc_request *req)
  1382. {
  1383. struct pch_udc_data_dma_desc *td = req->td_data;
  1384. unsigned i = req->chain_len;
  1385. dma_addr_t addr2;
  1386. dma_addr_t addr = (dma_addr_t)td->next;
  1387. td->next = 0x00;
  1388. for (; i > 1; --i) {
  1389. /* do not free first desc., will be done by free for request */
  1390. td = phys_to_virt(addr);
  1391. addr2 = (dma_addr_t)td->next;
  1392. pci_pool_free(dev->data_requests, td, addr);
  1393. td->next = 0x00;
  1394. addr = addr2;
  1395. }
  1396. req->chain_len = 1;
  1397. }
  1398. /**
  1399. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1400. * a DMA chain
  1401. * @ep: Reference to the endpoint structure
  1402. * @req: Reference to the request
  1403. * @buf_len: The buffer length
  1404. * @gfp_flags: Flags to be used while mapping the data buffer
  1405. *
  1406. * Return codes:
  1407. * 0: success,
  1408. * -ENOMEM: pci_pool_alloc invocation fails
  1409. */
  1410. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1411. struct pch_udc_request *req,
  1412. unsigned long buf_len,
  1413. gfp_t gfp_flags)
  1414. {
  1415. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1416. unsigned long bytes = req->req.length, i = 0;
  1417. dma_addr_t dma_addr;
  1418. unsigned len = 1;
  1419. if (req->chain_len > 1)
  1420. pch_udc_free_dma_chain(ep->dev, req);
  1421. if (req->dma == DMA_ADDR_INVALID)
  1422. td->dataptr = req->req.dma;
  1423. else
  1424. td->dataptr = req->dma;
  1425. td->status = PCH_UDC_BS_HST_BSY;
  1426. for (; ; bytes -= buf_len, ++len) {
  1427. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1428. if (bytes <= buf_len)
  1429. break;
  1430. last = td;
  1431. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1432. &dma_addr);
  1433. if (!td)
  1434. goto nomem;
  1435. i += buf_len;
  1436. td->dataptr = req->td_data->dataptr + i;
  1437. last->next = dma_addr;
  1438. }
  1439. req->td_data_last = td;
  1440. td->status |= PCH_UDC_DMA_LAST;
  1441. td->next = req->td_data_phys;
  1442. req->chain_len = len;
  1443. return 0;
  1444. nomem:
  1445. if (len > 1) {
  1446. req->chain_len = len;
  1447. pch_udc_free_dma_chain(ep->dev, req);
  1448. }
  1449. req->chain_len = 1;
  1450. return -ENOMEM;
  1451. }
  1452. /**
  1453. * prepare_dma() - This function creates and initializes the DMA chain
  1454. * for the request
  1455. * @ep: Reference to the endpoint structure
  1456. * @req: Reference to the request
  1457. * @gfp: Flag to be used while mapping the data buffer
  1458. *
  1459. * Return codes:
  1460. * 0: Success
  1461. * Other 0: linux error number on failure
  1462. */
  1463. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1464. gfp_t gfp)
  1465. {
  1466. int retval;
  1467. /* Allocate and create a DMA chain */
  1468. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1469. if (retval) {
  1470. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1471. return retval;
  1472. }
  1473. if (ep->in)
  1474. req->td_data->status = (req->td_data->status &
  1475. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1476. return 0;
  1477. }
  1478. /**
  1479. * process_zlp() - This function process zero length packets
  1480. * from the gadget driver
  1481. * @ep: Reference to the endpoint structure
  1482. * @req: Reference to the request
  1483. */
  1484. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1485. {
  1486. struct pch_udc_dev *dev = ep->dev;
  1487. /* IN zlp's are handled by hardware */
  1488. complete_req(ep, req, 0);
  1489. /* if set_config or set_intf is waiting for ack by zlp
  1490. * then set CSR_DONE
  1491. */
  1492. if (dev->set_cfg_not_acked) {
  1493. pch_udc_set_csr_done(dev);
  1494. dev->set_cfg_not_acked = 0;
  1495. }
  1496. /* setup command is ACK'ed now by zlp */
  1497. if (!dev->stall && dev->waiting_zlp_ack) {
  1498. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1499. dev->waiting_zlp_ack = 0;
  1500. }
  1501. }
  1502. /**
  1503. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1504. * @ep: Reference to the endpoint structure
  1505. * @req: Reference to the request structure
  1506. */
  1507. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1508. struct pch_udc_request *req)
  1509. {
  1510. struct pch_udc_data_dma_desc *td_data;
  1511. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1512. td_data = req->td_data;
  1513. /* Set the status bits for all descriptors */
  1514. while (1) {
  1515. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1516. PCH_UDC_BS_HST_RDY;
  1517. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1518. break;
  1519. td_data = phys_to_virt(td_data->next);
  1520. }
  1521. /* Write the descriptor pointer */
  1522. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1523. req->dma_going = 1;
  1524. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1525. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1526. pch_udc_ep_clear_nak(ep);
  1527. pch_udc_ep_set_rrdy(ep);
  1528. }
  1529. /**
  1530. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1531. * from gadget driver
  1532. * @usbep: Reference to the USB endpoint structure
  1533. * @desc: Reference to the USB endpoint descriptor structure
  1534. *
  1535. * Return codes:
  1536. * 0: Success
  1537. * -EINVAL:
  1538. * -ESHUTDOWN:
  1539. */
  1540. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1541. const struct usb_endpoint_descriptor *desc)
  1542. {
  1543. struct pch_udc_ep *ep;
  1544. struct pch_udc_dev *dev;
  1545. unsigned long iflags;
  1546. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1547. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1548. return -EINVAL;
  1549. ep = container_of(usbep, struct pch_udc_ep, ep);
  1550. dev = ep->dev;
  1551. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1552. return -ESHUTDOWN;
  1553. spin_lock_irqsave(&dev->lock, iflags);
  1554. ep->ep.desc = desc;
  1555. ep->halted = 0;
  1556. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1557. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1558. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1559. spin_unlock_irqrestore(&dev->lock, iflags);
  1560. return 0;
  1561. }
  1562. /**
  1563. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1564. * from gadget driver
  1565. * @usbep Reference to the USB endpoint structure
  1566. *
  1567. * Return codes:
  1568. * 0: Success
  1569. * -EINVAL:
  1570. */
  1571. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1572. {
  1573. struct pch_udc_ep *ep;
  1574. struct pch_udc_dev *dev;
  1575. unsigned long iflags;
  1576. if (!usbep)
  1577. return -EINVAL;
  1578. ep = container_of(usbep, struct pch_udc_ep, ep);
  1579. dev = ep->dev;
  1580. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1581. return -EINVAL;
  1582. spin_lock_irqsave(&ep->dev->lock, iflags);
  1583. empty_req_queue(ep);
  1584. ep->halted = 1;
  1585. pch_udc_ep_disable(ep);
  1586. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1587. ep->ep.desc = NULL;
  1588. INIT_LIST_HEAD(&ep->queue);
  1589. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1590. return 0;
  1591. }
  1592. /**
  1593. * pch_udc_alloc_request() - This function allocates request structure.
  1594. * It is called by gadget driver
  1595. * @usbep: Reference to the USB endpoint structure
  1596. * @gfp: Flag to be used while allocating memory
  1597. *
  1598. * Return codes:
  1599. * NULL: Failure
  1600. * Allocated address: Success
  1601. */
  1602. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1603. gfp_t gfp)
  1604. {
  1605. struct pch_udc_request *req;
  1606. struct pch_udc_ep *ep;
  1607. struct pch_udc_data_dma_desc *dma_desc;
  1608. struct pch_udc_dev *dev;
  1609. if (!usbep)
  1610. return NULL;
  1611. ep = container_of(usbep, struct pch_udc_ep, ep);
  1612. dev = ep->dev;
  1613. req = kzalloc(sizeof *req, gfp);
  1614. if (!req)
  1615. return NULL;
  1616. req->req.dma = DMA_ADDR_INVALID;
  1617. req->dma = DMA_ADDR_INVALID;
  1618. INIT_LIST_HEAD(&req->queue);
  1619. if (!ep->dev->dma_addr)
  1620. return &req->req;
  1621. /* ep0 in requests are allocated from data pool here */
  1622. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1623. &req->td_data_phys);
  1624. if (NULL == dma_desc) {
  1625. kfree(req);
  1626. return NULL;
  1627. }
  1628. /* prevent from using desc. - set HOST BUSY */
  1629. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1630. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1631. req->td_data = dma_desc;
  1632. req->td_data_last = dma_desc;
  1633. req->chain_len = 1;
  1634. return &req->req;
  1635. }
  1636. /**
  1637. * pch_udc_free_request() - This function frees request structure.
  1638. * It is called by gadget driver
  1639. * @usbep: Reference to the USB endpoint structure
  1640. * @usbreq: Reference to the USB request
  1641. */
  1642. static void pch_udc_free_request(struct usb_ep *usbep,
  1643. struct usb_request *usbreq)
  1644. {
  1645. struct pch_udc_ep *ep;
  1646. struct pch_udc_request *req;
  1647. struct pch_udc_dev *dev;
  1648. if (!usbep || !usbreq)
  1649. return;
  1650. ep = container_of(usbep, struct pch_udc_ep, ep);
  1651. req = container_of(usbreq, struct pch_udc_request, req);
  1652. dev = ep->dev;
  1653. if (!list_empty(&req->queue))
  1654. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1655. __func__, usbep->name, req);
  1656. if (req->td_data != NULL) {
  1657. if (req->chain_len > 1)
  1658. pch_udc_free_dma_chain(ep->dev, req);
  1659. pci_pool_free(ep->dev->data_requests, req->td_data,
  1660. req->td_data_phys);
  1661. }
  1662. kfree(req);
  1663. }
  1664. /**
  1665. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1666. * by gadget driver
  1667. * @usbep: Reference to the USB endpoint structure
  1668. * @usbreq: Reference to the USB request
  1669. * @gfp: Flag to be used while mapping the data buffer
  1670. *
  1671. * Return codes:
  1672. * 0: Success
  1673. * linux error number: Failure
  1674. */
  1675. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1676. gfp_t gfp)
  1677. {
  1678. int retval = 0;
  1679. struct pch_udc_ep *ep;
  1680. struct pch_udc_dev *dev;
  1681. struct pch_udc_request *req;
  1682. unsigned long iflags;
  1683. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1684. return -EINVAL;
  1685. ep = container_of(usbep, struct pch_udc_ep, ep);
  1686. dev = ep->dev;
  1687. if (!ep->ep.desc && ep->num)
  1688. return -EINVAL;
  1689. req = container_of(usbreq, struct pch_udc_request, req);
  1690. if (!list_empty(&req->queue))
  1691. return -EINVAL;
  1692. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1693. return -ESHUTDOWN;
  1694. spin_lock_irqsave(&dev->lock, iflags);
  1695. /* map the buffer for dma */
  1696. if (usbreq->length &&
  1697. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1698. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1699. if (ep->in)
  1700. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1701. usbreq->buf,
  1702. usbreq->length,
  1703. DMA_TO_DEVICE);
  1704. else
  1705. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1706. usbreq->buf,
  1707. usbreq->length,
  1708. DMA_FROM_DEVICE);
  1709. } else {
  1710. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1711. if (!req->buf) {
  1712. retval = -ENOMEM;
  1713. goto probe_end;
  1714. }
  1715. if (ep->in) {
  1716. memcpy(req->buf, usbreq->buf, usbreq->length);
  1717. req->dma = dma_map_single(&dev->pdev->dev,
  1718. req->buf,
  1719. usbreq->length,
  1720. DMA_TO_DEVICE);
  1721. } else
  1722. req->dma = dma_map_single(&dev->pdev->dev,
  1723. req->buf,
  1724. usbreq->length,
  1725. DMA_FROM_DEVICE);
  1726. }
  1727. req->dma_mapped = 1;
  1728. }
  1729. if (usbreq->length > 0) {
  1730. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1731. if (retval)
  1732. goto probe_end;
  1733. }
  1734. usbreq->actual = 0;
  1735. usbreq->status = -EINPROGRESS;
  1736. req->dma_done = 0;
  1737. if (list_empty(&ep->queue) && !ep->halted) {
  1738. /* no pending transfer, so start this req */
  1739. if (!usbreq->length) {
  1740. process_zlp(ep, req);
  1741. retval = 0;
  1742. goto probe_end;
  1743. }
  1744. if (!ep->in) {
  1745. pch_udc_start_rxrequest(ep, req);
  1746. } else {
  1747. /*
  1748. * For IN trfr the descriptors will be programmed and
  1749. * P bit will be set when
  1750. * we get an IN token
  1751. */
  1752. pch_udc_wait_ep_stall(ep);
  1753. pch_udc_ep_clear_nak(ep);
  1754. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1755. }
  1756. }
  1757. /* Now add this request to the ep's pending requests */
  1758. if (req != NULL)
  1759. list_add_tail(&req->queue, &ep->queue);
  1760. probe_end:
  1761. spin_unlock_irqrestore(&dev->lock, iflags);
  1762. return retval;
  1763. }
  1764. /**
  1765. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1766. * It is called by gadget driver
  1767. * @usbep: Reference to the USB endpoint structure
  1768. * @usbreq: Reference to the USB request
  1769. *
  1770. * Return codes:
  1771. * 0: Success
  1772. * linux error number: Failure
  1773. */
  1774. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1775. struct usb_request *usbreq)
  1776. {
  1777. struct pch_udc_ep *ep;
  1778. struct pch_udc_request *req;
  1779. struct pch_udc_dev *dev;
  1780. unsigned long flags;
  1781. int ret = -EINVAL;
  1782. ep = container_of(usbep, struct pch_udc_ep, ep);
  1783. dev = ep->dev;
  1784. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1785. return ret;
  1786. req = container_of(usbreq, struct pch_udc_request, req);
  1787. spin_lock_irqsave(&ep->dev->lock, flags);
  1788. /* make sure it's still queued on this endpoint */
  1789. list_for_each_entry(req, &ep->queue, queue) {
  1790. if (&req->req == usbreq) {
  1791. pch_udc_ep_set_nak(ep);
  1792. if (!list_empty(&req->queue))
  1793. complete_req(ep, req, -ECONNRESET);
  1794. ret = 0;
  1795. break;
  1796. }
  1797. }
  1798. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1799. return ret;
  1800. }
  1801. /**
  1802. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1803. * feature
  1804. * @usbep: Reference to the USB endpoint structure
  1805. * @halt: Specifies whether to set or clear the feature
  1806. *
  1807. * Return codes:
  1808. * 0: Success
  1809. * linux error number: Failure
  1810. */
  1811. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1812. {
  1813. struct pch_udc_ep *ep;
  1814. struct pch_udc_dev *dev;
  1815. unsigned long iflags;
  1816. int ret;
  1817. if (!usbep)
  1818. return -EINVAL;
  1819. ep = container_of(usbep, struct pch_udc_ep, ep);
  1820. dev = ep->dev;
  1821. if (!ep->ep.desc && !ep->num)
  1822. return -EINVAL;
  1823. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1824. return -ESHUTDOWN;
  1825. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1826. if (list_empty(&ep->queue)) {
  1827. if (halt) {
  1828. if (ep->num == PCH_UDC_EP0)
  1829. ep->dev->stall = 1;
  1830. pch_udc_ep_set_stall(ep);
  1831. pch_udc_enable_ep_interrupts(ep->dev,
  1832. PCH_UDC_EPINT(ep->in,
  1833. ep->num));
  1834. } else {
  1835. pch_udc_ep_clear_stall(ep);
  1836. }
  1837. ret = 0;
  1838. } else {
  1839. ret = -EAGAIN;
  1840. }
  1841. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1842. return ret;
  1843. }
  1844. /**
  1845. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1846. * halt feature
  1847. * @usbep: Reference to the USB endpoint structure
  1848. * @halt: Specifies whether to set or clear the feature
  1849. *
  1850. * Return codes:
  1851. * 0: Success
  1852. * linux error number: Failure
  1853. */
  1854. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1855. {
  1856. struct pch_udc_ep *ep;
  1857. struct pch_udc_dev *dev;
  1858. unsigned long iflags;
  1859. int ret;
  1860. if (!usbep)
  1861. return -EINVAL;
  1862. ep = container_of(usbep, struct pch_udc_ep, ep);
  1863. dev = ep->dev;
  1864. if (!ep->ep.desc && !ep->num)
  1865. return -EINVAL;
  1866. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1867. return -ESHUTDOWN;
  1868. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1869. if (!list_empty(&ep->queue)) {
  1870. ret = -EAGAIN;
  1871. } else {
  1872. if (ep->num == PCH_UDC_EP0)
  1873. ep->dev->stall = 1;
  1874. pch_udc_ep_set_stall(ep);
  1875. pch_udc_enable_ep_interrupts(ep->dev,
  1876. PCH_UDC_EPINT(ep->in, ep->num));
  1877. ep->dev->prot_stall = 1;
  1878. ret = 0;
  1879. }
  1880. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1881. return ret;
  1882. }
  1883. /**
  1884. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1885. * @usbep: Reference to the USB endpoint structure
  1886. */
  1887. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1888. {
  1889. struct pch_udc_ep *ep;
  1890. if (!usbep)
  1891. return;
  1892. ep = container_of(usbep, struct pch_udc_ep, ep);
  1893. if (ep->ep.desc || !ep->num)
  1894. pch_udc_ep_fifo_flush(ep, ep->in);
  1895. }
  1896. static const struct usb_ep_ops pch_udc_ep_ops = {
  1897. .enable = pch_udc_pcd_ep_enable,
  1898. .disable = pch_udc_pcd_ep_disable,
  1899. .alloc_request = pch_udc_alloc_request,
  1900. .free_request = pch_udc_free_request,
  1901. .queue = pch_udc_pcd_queue,
  1902. .dequeue = pch_udc_pcd_dequeue,
  1903. .set_halt = pch_udc_pcd_set_halt,
  1904. .set_wedge = pch_udc_pcd_set_wedge,
  1905. .fifo_status = NULL,
  1906. .fifo_flush = pch_udc_pcd_fifo_flush,
  1907. };
  1908. /**
  1909. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1910. * @td_stp: Reference to the SETP buffer structure
  1911. */
  1912. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1913. {
  1914. static u32 pky_marker;
  1915. if (!td_stp)
  1916. return;
  1917. td_stp->reserved = ++pky_marker;
  1918. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1919. td_stp->status = PCH_UDC_BS_HST_RDY;
  1920. }
  1921. /**
  1922. * pch_udc_start_next_txrequest() - This function starts
  1923. * the next transmission requirement
  1924. * @ep: Reference to the endpoint structure
  1925. */
  1926. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1927. {
  1928. struct pch_udc_request *req;
  1929. struct pch_udc_data_dma_desc *td_data;
  1930. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1931. return;
  1932. if (list_empty(&ep->queue))
  1933. return;
  1934. /* next request */
  1935. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1936. if (req->dma_going)
  1937. return;
  1938. if (!req->td_data)
  1939. return;
  1940. pch_udc_wait_ep_stall(ep);
  1941. req->dma_going = 1;
  1942. pch_udc_ep_set_ddptr(ep, 0);
  1943. td_data = req->td_data;
  1944. while (1) {
  1945. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1946. PCH_UDC_BS_HST_RDY;
  1947. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1948. break;
  1949. td_data = phys_to_virt(td_data->next);
  1950. }
  1951. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1952. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1953. pch_udc_ep_set_pd(ep);
  1954. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1955. pch_udc_ep_clear_nak(ep);
  1956. }
  1957. /**
  1958. * pch_udc_complete_transfer() - This function completes a transfer
  1959. * @ep: Reference to the endpoint structure
  1960. */
  1961. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1962. {
  1963. struct pch_udc_request *req;
  1964. struct pch_udc_dev *dev = ep->dev;
  1965. if (list_empty(&ep->queue))
  1966. return;
  1967. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1968. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1969. PCH_UDC_BS_DMA_DONE)
  1970. return;
  1971. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1972. PCH_UDC_RTS_SUCC) {
  1973. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1974. "epstatus=0x%08x\n",
  1975. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1976. (int)(ep->epsts));
  1977. return;
  1978. }
  1979. req->req.actual = req->req.length;
  1980. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1981. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1982. complete_req(ep, req, 0);
  1983. req->dma_going = 0;
  1984. if (!list_empty(&ep->queue)) {
  1985. pch_udc_wait_ep_stall(ep);
  1986. pch_udc_ep_clear_nak(ep);
  1987. pch_udc_enable_ep_interrupts(ep->dev,
  1988. PCH_UDC_EPINT(ep->in, ep->num));
  1989. } else {
  1990. pch_udc_disable_ep_interrupts(ep->dev,
  1991. PCH_UDC_EPINT(ep->in, ep->num));
  1992. }
  1993. }
  1994. /**
  1995. * pch_udc_complete_receiver() - This function completes a receiver
  1996. * @ep: Reference to the endpoint structure
  1997. */
  1998. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1999. {
  2000. struct pch_udc_request *req;
  2001. struct pch_udc_dev *dev = ep->dev;
  2002. unsigned int count;
  2003. struct pch_udc_data_dma_desc *td;
  2004. dma_addr_t addr;
  2005. if (list_empty(&ep->queue))
  2006. return;
  2007. /* next request */
  2008. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2009. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  2010. pch_udc_ep_set_ddptr(ep, 0);
  2011. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  2012. PCH_UDC_BS_DMA_DONE)
  2013. td = req->td_data_last;
  2014. else
  2015. td = req->td_data;
  2016. while (1) {
  2017. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  2018. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  2019. "epstatus=0x%08x\n",
  2020. (req->td_data->status & PCH_UDC_RXTX_STS),
  2021. (int)(ep->epsts));
  2022. return;
  2023. }
  2024. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2025. if (td->status & PCH_UDC_DMA_LAST) {
  2026. count = td->status & PCH_UDC_RXTX_BYTES;
  2027. break;
  2028. }
  2029. if (td == req->td_data_last) {
  2030. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2031. return;
  2032. }
  2033. addr = (dma_addr_t)td->next;
  2034. td = phys_to_virt(addr);
  2035. }
  2036. /* on 64k packets the RXBYTES field is zero */
  2037. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2038. count = UDC_DMA_MAXPACKET;
  2039. req->td_data->status |= PCH_UDC_DMA_LAST;
  2040. td->status |= PCH_UDC_BS_HST_BSY;
  2041. req->dma_going = 0;
  2042. req->req.actual = count;
  2043. complete_req(ep, req, 0);
  2044. /* If there is a new/failed requests try that now */
  2045. if (!list_empty(&ep->queue)) {
  2046. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2047. pch_udc_start_rxrequest(ep, req);
  2048. }
  2049. }
  2050. /**
  2051. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2052. * for IN endpoints
  2053. * @dev: Reference to the device structure
  2054. * @ep_num: Endpoint that generated the interrupt
  2055. */
  2056. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2057. {
  2058. u32 epsts;
  2059. struct pch_udc_ep *ep;
  2060. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2061. epsts = ep->epsts;
  2062. ep->epsts = 0;
  2063. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2064. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2065. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2066. return;
  2067. if ((epsts & UDC_EPSTS_BNA))
  2068. return;
  2069. if (epsts & UDC_EPSTS_HE)
  2070. return;
  2071. if (epsts & UDC_EPSTS_RSS) {
  2072. pch_udc_ep_set_stall(ep);
  2073. pch_udc_enable_ep_interrupts(ep->dev,
  2074. PCH_UDC_EPINT(ep->in, ep->num));
  2075. }
  2076. if (epsts & UDC_EPSTS_RCS) {
  2077. if (!dev->prot_stall) {
  2078. pch_udc_ep_clear_stall(ep);
  2079. } else {
  2080. pch_udc_ep_set_stall(ep);
  2081. pch_udc_enable_ep_interrupts(ep->dev,
  2082. PCH_UDC_EPINT(ep->in, ep->num));
  2083. }
  2084. }
  2085. if (epsts & UDC_EPSTS_TDC)
  2086. pch_udc_complete_transfer(ep);
  2087. /* On IN interrupt, provide data if we have any */
  2088. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2089. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2090. pch_udc_start_next_txrequest(ep);
  2091. }
  2092. /**
  2093. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2094. * @dev: Reference to the device structure
  2095. * @ep_num: Endpoint that generated the interrupt
  2096. */
  2097. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2098. {
  2099. u32 epsts;
  2100. struct pch_udc_ep *ep;
  2101. struct pch_udc_request *req = NULL;
  2102. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2103. epsts = ep->epsts;
  2104. ep->epsts = 0;
  2105. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2106. /* next request */
  2107. req = list_entry(ep->queue.next, struct pch_udc_request,
  2108. queue);
  2109. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2110. PCH_UDC_BS_DMA_DONE) {
  2111. if (!req->dma_going)
  2112. pch_udc_start_rxrequest(ep, req);
  2113. return;
  2114. }
  2115. }
  2116. if (epsts & UDC_EPSTS_HE)
  2117. return;
  2118. if (epsts & UDC_EPSTS_RSS) {
  2119. pch_udc_ep_set_stall(ep);
  2120. pch_udc_enable_ep_interrupts(ep->dev,
  2121. PCH_UDC_EPINT(ep->in, ep->num));
  2122. }
  2123. if (epsts & UDC_EPSTS_RCS) {
  2124. if (!dev->prot_stall) {
  2125. pch_udc_ep_clear_stall(ep);
  2126. } else {
  2127. pch_udc_ep_set_stall(ep);
  2128. pch_udc_enable_ep_interrupts(ep->dev,
  2129. PCH_UDC_EPINT(ep->in, ep->num));
  2130. }
  2131. }
  2132. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2133. UDC_EPSTS_OUT_DATA) {
  2134. if (ep->dev->prot_stall == 1) {
  2135. pch_udc_ep_set_stall(ep);
  2136. pch_udc_enable_ep_interrupts(ep->dev,
  2137. PCH_UDC_EPINT(ep->in, ep->num));
  2138. } else {
  2139. pch_udc_complete_receiver(ep);
  2140. }
  2141. }
  2142. if (list_empty(&ep->queue))
  2143. pch_udc_set_dma(dev, DMA_DIR_RX);
  2144. }
  2145. /**
  2146. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2147. * @dev: Reference to the device structure
  2148. */
  2149. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2150. {
  2151. u32 epsts;
  2152. struct pch_udc_ep *ep;
  2153. struct pch_udc_ep *ep_out;
  2154. ep = &dev->ep[UDC_EP0IN_IDX];
  2155. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2156. epsts = ep->epsts;
  2157. ep->epsts = 0;
  2158. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2159. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2160. UDC_EPSTS_XFERDONE)))
  2161. return;
  2162. if ((epsts & UDC_EPSTS_BNA))
  2163. return;
  2164. if (epsts & UDC_EPSTS_HE)
  2165. return;
  2166. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2167. pch_udc_complete_transfer(ep);
  2168. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2169. ep_out->td_data->status = (ep_out->td_data->status &
  2170. ~PCH_UDC_BUFF_STS) |
  2171. PCH_UDC_BS_HST_RDY;
  2172. pch_udc_ep_clear_nak(ep_out);
  2173. pch_udc_set_dma(dev, DMA_DIR_RX);
  2174. pch_udc_ep_set_rrdy(ep_out);
  2175. }
  2176. /* On IN interrupt, provide data if we have any */
  2177. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2178. !(epsts & UDC_EPSTS_TXEMPTY))
  2179. pch_udc_start_next_txrequest(ep);
  2180. }
  2181. /**
  2182. * pch_udc_svc_control_out() - Routine that handle Control
  2183. * OUT endpoint interrupts
  2184. * @dev: Reference to the device structure
  2185. */
  2186. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2187. __releases(&dev->lock)
  2188. __acquires(&dev->lock)
  2189. {
  2190. u32 stat;
  2191. int setup_supported;
  2192. struct pch_udc_ep *ep;
  2193. ep = &dev->ep[UDC_EP0OUT_IDX];
  2194. stat = ep->epsts;
  2195. ep->epsts = 0;
  2196. /* If setup data */
  2197. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2198. UDC_EPSTS_OUT_SETUP) {
  2199. dev->stall = 0;
  2200. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2201. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2202. dev->setup_data = ep->td_stp->request;
  2203. pch_udc_init_setup_buff(ep->td_stp);
  2204. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2205. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2206. dev->ep[UDC_EP0IN_IDX].in);
  2207. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2208. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2209. else /* OUT */
  2210. dev->gadget.ep0 = &ep->ep;
  2211. spin_unlock(&dev->lock);
  2212. /* If Mass storage Reset */
  2213. if ((dev->setup_data.bRequestType == 0x21) &&
  2214. (dev->setup_data.bRequest == 0xFF))
  2215. dev->prot_stall = 0;
  2216. /* call gadget with setup data received */
  2217. setup_supported = dev->driver->setup(&dev->gadget,
  2218. &dev->setup_data);
  2219. spin_lock(&dev->lock);
  2220. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2221. ep->td_data->status = (ep->td_data->status &
  2222. ~PCH_UDC_BUFF_STS) |
  2223. PCH_UDC_BS_HST_RDY;
  2224. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2225. }
  2226. /* ep0 in returns data on IN phase */
  2227. if (setup_supported >= 0 && setup_supported <
  2228. UDC_EP0IN_MAX_PKT_SIZE) {
  2229. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2230. /* Gadget would have queued a request when
  2231. * we called the setup */
  2232. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2233. pch_udc_set_dma(dev, DMA_DIR_RX);
  2234. pch_udc_ep_clear_nak(ep);
  2235. }
  2236. } else if (setup_supported < 0) {
  2237. /* if unsupported request, then stall */
  2238. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2239. pch_udc_enable_ep_interrupts(ep->dev,
  2240. PCH_UDC_EPINT(ep->in, ep->num));
  2241. dev->stall = 0;
  2242. pch_udc_set_dma(dev, DMA_DIR_RX);
  2243. } else {
  2244. dev->waiting_zlp_ack = 1;
  2245. }
  2246. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2247. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2248. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2249. pch_udc_ep_set_ddptr(ep, 0);
  2250. if (!list_empty(&ep->queue)) {
  2251. ep->epsts = stat;
  2252. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2253. }
  2254. pch_udc_set_dma(dev, DMA_DIR_RX);
  2255. }
  2256. pch_udc_ep_set_rrdy(ep);
  2257. }
  2258. /**
  2259. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2260. * and clears NAK status
  2261. * @dev: Reference to the device structure
  2262. * @ep_num: End point number
  2263. */
  2264. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2265. {
  2266. struct pch_udc_ep *ep;
  2267. struct pch_udc_request *req;
  2268. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2269. if (!list_empty(&ep->queue)) {
  2270. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2271. pch_udc_enable_ep_interrupts(ep->dev,
  2272. PCH_UDC_EPINT(ep->in, ep->num));
  2273. pch_udc_ep_clear_nak(ep);
  2274. }
  2275. }
  2276. /**
  2277. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2278. * @dev: Reference to the device structure
  2279. * @ep_intr: Status of endpoint interrupt
  2280. */
  2281. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2282. {
  2283. int i;
  2284. struct pch_udc_ep *ep;
  2285. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2286. /* IN */
  2287. if (ep_intr & (0x1 << i)) {
  2288. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2289. ep->epsts = pch_udc_read_ep_status(ep);
  2290. pch_udc_clear_ep_status(ep, ep->epsts);
  2291. }
  2292. /* OUT */
  2293. if (ep_intr & (0x10000 << i)) {
  2294. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2295. ep->epsts = pch_udc_read_ep_status(ep);
  2296. pch_udc_clear_ep_status(ep, ep->epsts);
  2297. }
  2298. }
  2299. }
  2300. /**
  2301. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2302. * for traffic after a reset
  2303. * @dev: Reference to the device structure
  2304. */
  2305. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2306. {
  2307. struct pch_udc_ep *ep;
  2308. u32 val;
  2309. /* Setup the IN endpoint */
  2310. ep = &dev->ep[UDC_EP0IN_IDX];
  2311. pch_udc_clear_ep_control(ep);
  2312. pch_udc_ep_fifo_flush(ep, ep->in);
  2313. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2314. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2315. /* Initialize the IN EP Descriptor */
  2316. ep->td_data = NULL;
  2317. ep->td_stp = NULL;
  2318. ep->td_data_phys = 0;
  2319. ep->td_stp_phys = 0;
  2320. /* Setup the OUT endpoint */
  2321. ep = &dev->ep[UDC_EP0OUT_IDX];
  2322. pch_udc_clear_ep_control(ep);
  2323. pch_udc_ep_fifo_flush(ep, ep->in);
  2324. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2325. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2326. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2327. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2328. /* Initialize the SETUP buffer */
  2329. pch_udc_init_setup_buff(ep->td_stp);
  2330. /* Write the pointer address of dma descriptor */
  2331. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2332. /* Write the pointer address of Setup descriptor */
  2333. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2334. /* Initialize the dma descriptor */
  2335. ep->td_data->status = PCH_UDC_DMA_LAST;
  2336. ep->td_data->dataptr = dev->dma_addr;
  2337. ep->td_data->next = ep->td_data_phys;
  2338. pch_udc_ep_clear_nak(ep);
  2339. }
  2340. /**
  2341. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2342. * @dev: Reference to driver structure
  2343. */
  2344. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2345. {
  2346. struct pch_udc_ep *ep;
  2347. int i;
  2348. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2349. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2350. /* Mask all endpoint interrupts */
  2351. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2352. /* clear all endpoint interrupts */
  2353. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2354. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2355. ep = &dev->ep[i];
  2356. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2357. pch_udc_clear_ep_control(ep);
  2358. pch_udc_ep_set_ddptr(ep, 0);
  2359. pch_udc_write_csr(ep->dev, 0x00, i);
  2360. }
  2361. dev->stall = 0;
  2362. dev->prot_stall = 0;
  2363. dev->waiting_zlp_ack = 0;
  2364. dev->set_cfg_not_acked = 0;
  2365. /* disable ep to empty req queue. Skip the control EP's */
  2366. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2367. ep = &dev->ep[i];
  2368. pch_udc_ep_set_nak(ep);
  2369. pch_udc_ep_fifo_flush(ep, ep->in);
  2370. /* Complete request queue */
  2371. empty_req_queue(ep);
  2372. }
  2373. if (dev->driver && dev->driver->disconnect) {
  2374. spin_unlock(&dev->lock);
  2375. dev->driver->disconnect(&dev->gadget);
  2376. spin_lock(&dev->lock);
  2377. }
  2378. }
  2379. /**
  2380. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2381. * done interrupt
  2382. * @dev: Reference to driver structure
  2383. */
  2384. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2385. {
  2386. u32 dev_stat, dev_speed;
  2387. u32 speed = USB_SPEED_FULL;
  2388. dev_stat = pch_udc_read_device_status(dev);
  2389. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2390. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2391. switch (dev_speed) {
  2392. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2393. speed = USB_SPEED_HIGH;
  2394. break;
  2395. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2396. speed = USB_SPEED_FULL;
  2397. break;
  2398. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2399. speed = USB_SPEED_LOW;
  2400. break;
  2401. default:
  2402. BUG();
  2403. }
  2404. dev->gadget.speed = speed;
  2405. pch_udc_activate_control_ep(dev);
  2406. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2407. pch_udc_set_dma(dev, DMA_DIR_TX);
  2408. pch_udc_set_dma(dev, DMA_DIR_RX);
  2409. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2410. /* enable device interrupts */
  2411. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2412. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2413. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2414. }
  2415. /**
  2416. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2417. * interrupt
  2418. * @dev: Reference to driver structure
  2419. */
  2420. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2421. {
  2422. u32 reg, dev_stat = 0;
  2423. int i, ret;
  2424. dev_stat = pch_udc_read_device_status(dev);
  2425. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2426. UDC_DEVSTS_INTF_SHIFT;
  2427. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2428. UDC_DEVSTS_ALT_SHIFT;
  2429. dev->set_cfg_not_acked = 1;
  2430. /* Construct the usb request for gadget driver and inform it */
  2431. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2432. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2433. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2434. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2435. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2436. /* programm the Endpoint Cfg registers */
  2437. /* Only one end point cfg register */
  2438. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2439. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2440. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2441. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2442. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2443. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2444. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2445. /* clear stall bits */
  2446. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2447. dev->ep[i].halted = 0;
  2448. }
  2449. dev->stall = 0;
  2450. spin_unlock(&dev->lock);
  2451. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2452. spin_lock(&dev->lock);
  2453. }
  2454. /**
  2455. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2456. * interrupt
  2457. * @dev: Reference to driver structure
  2458. */
  2459. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2460. {
  2461. int i, ret;
  2462. u32 reg, dev_stat = 0;
  2463. dev_stat = pch_udc_read_device_status(dev);
  2464. dev->set_cfg_not_acked = 1;
  2465. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2466. UDC_DEVSTS_CFG_SHIFT;
  2467. /* make usb request for gadget driver */
  2468. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2469. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2470. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2471. /* program the NE registers */
  2472. /* Only one end point cfg register */
  2473. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2474. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2475. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2476. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2477. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2478. /* clear stall bits */
  2479. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2480. dev->ep[i].halted = 0;
  2481. }
  2482. dev->stall = 0;
  2483. /* call gadget zero with setup data received */
  2484. spin_unlock(&dev->lock);
  2485. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2486. spin_lock(&dev->lock);
  2487. }
  2488. /**
  2489. * pch_udc_dev_isr() - This function services device interrupts
  2490. * by invoking appropriate routines.
  2491. * @dev: Reference to the device structure
  2492. * @dev_intr: The Device interrupt status.
  2493. */
  2494. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2495. {
  2496. int vbus;
  2497. /* USB Reset Interrupt */
  2498. if (dev_intr & UDC_DEVINT_UR) {
  2499. pch_udc_svc_ur_interrupt(dev);
  2500. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2501. }
  2502. /* Enumeration Done Interrupt */
  2503. if (dev_intr & UDC_DEVINT_ENUM) {
  2504. pch_udc_svc_enum_interrupt(dev);
  2505. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2506. }
  2507. /* Set Interface Interrupt */
  2508. if (dev_intr & UDC_DEVINT_SI)
  2509. pch_udc_svc_intf_interrupt(dev);
  2510. /* Set Config Interrupt */
  2511. if (dev_intr & UDC_DEVINT_SC)
  2512. pch_udc_svc_cfg_interrupt(dev);
  2513. /* USB Suspend interrupt */
  2514. if (dev_intr & UDC_DEVINT_US) {
  2515. if (dev->driver
  2516. && dev->driver->suspend) {
  2517. spin_unlock(&dev->lock);
  2518. dev->driver->suspend(&dev->gadget);
  2519. spin_lock(&dev->lock);
  2520. }
  2521. vbus = pch_vbus_gpio_get_value(dev);
  2522. if ((dev->vbus_session == 0)
  2523. && (vbus != 1)) {
  2524. if (dev->driver && dev->driver->disconnect) {
  2525. spin_unlock(&dev->lock);
  2526. dev->driver->disconnect(&dev->gadget);
  2527. spin_lock(&dev->lock);
  2528. }
  2529. pch_udc_reconnect(dev);
  2530. } else if ((dev->vbus_session == 0)
  2531. && (vbus == 1)
  2532. && !dev->vbus_gpio.intr)
  2533. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2534. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2535. }
  2536. /* Clear the SOF interrupt, if enabled */
  2537. if (dev_intr & UDC_DEVINT_SOF)
  2538. dev_dbg(&dev->pdev->dev, "SOF\n");
  2539. /* ES interrupt, IDLE > 3ms on the USB */
  2540. if (dev_intr & UDC_DEVINT_ES)
  2541. dev_dbg(&dev->pdev->dev, "ES\n");
  2542. /* RWKP interrupt */
  2543. if (dev_intr & UDC_DEVINT_RWKP)
  2544. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2545. }
  2546. /**
  2547. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2548. * @irq: Interrupt request number
  2549. * @dev: Reference to the device structure
  2550. */
  2551. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2552. {
  2553. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2554. u32 dev_intr, ep_intr;
  2555. int i;
  2556. dev_intr = pch_udc_read_device_interrupts(dev);
  2557. ep_intr = pch_udc_read_ep_interrupts(dev);
  2558. /* For a hot plug, this find that the controller is hung up. */
  2559. if (dev_intr == ep_intr)
  2560. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2561. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2562. /* The controller is reset */
  2563. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2564. return IRQ_HANDLED;
  2565. }
  2566. if (dev_intr)
  2567. /* Clear device interrupts */
  2568. pch_udc_write_device_interrupts(dev, dev_intr);
  2569. if (ep_intr)
  2570. /* Clear ep interrupts */
  2571. pch_udc_write_ep_interrupts(dev, ep_intr);
  2572. if (!dev_intr && !ep_intr)
  2573. return IRQ_NONE;
  2574. spin_lock(&dev->lock);
  2575. if (dev_intr)
  2576. pch_udc_dev_isr(dev, dev_intr);
  2577. if (ep_intr) {
  2578. pch_udc_read_all_epstatus(dev, ep_intr);
  2579. /* Process Control In interrupts, if present */
  2580. if (ep_intr & UDC_EPINT_IN_EP0) {
  2581. pch_udc_svc_control_in(dev);
  2582. pch_udc_postsvc_epinters(dev, 0);
  2583. }
  2584. /* Process Control Out interrupts, if present */
  2585. if (ep_intr & UDC_EPINT_OUT_EP0)
  2586. pch_udc_svc_control_out(dev);
  2587. /* Process data in end point interrupts */
  2588. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2589. if (ep_intr & (1 << i)) {
  2590. pch_udc_svc_data_in(dev, i);
  2591. pch_udc_postsvc_epinters(dev, i);
  2592. }
  2593. }
  2594. /* Process data out end point interrupts */
  2595. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2596. PCH_UDC_USED_EP_NUM); i++)
  2597. if (ep_intr & (1 << i))
  2598. pch_udc_svc_data_out(dev, i -
  2599. UDC_EPINT_OUT_SHIFT);
  2600. }
  2601. spin_unlock(&dev->lock);
  2602. return IRQ_HANDLED;
  2603. }
  2604. /**
  2605. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2606. * @dev: Reference to the device structure
  2607. */
  2608. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2609. {
  2610. /* enable ep0 interrupts */
  2611. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2612. UDC_EPINT_OUT_EP0);
  2613. /* enable device interrupts */
  2614. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2615. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2616. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2617. }
  2618. /**
  2619. * gadget_release() - Free the gadget driver private data
  2620. * @pdev reference to struct pci_dev
  2621. */
  2622. static void gadget_release(struct device *pdev)
  2623. {
  2624. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2625. kfree(dev);
  2626. }
  2627. /**
  2628. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2629. * @dev: Reference to the driver structure
  2630. */
  2631. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2632. {
  2633. const char *const ep_string[] = {
  2634. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2635. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2636. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2637. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2638. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2639. "ep15in", "ep15out",
  2640. };
  2641. int i;
  2642. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2643. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2644. /* Initialize the endpoints structures */
  2645. memset(dev->ep, 0, sizeof dev->ep);
  2646. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2647. struct pch_udc_ep *ep = &dev->ep[i];
  2648. ep->dev = dev;
  2649. ep->halted = 1;
  2650. ep->num = i / 2;
  2651. ep->in = ~i & 1;
  2652. ep->ep.name = ep_string[i];
  2653. ep->ep.ops = &pch_udc_ep_ops;
  2654. if (ep->in)
  2655. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2656. else
  2657. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2658. UDC_EP_REG_SHIFT;
  2659. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2660. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2661. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2662. INIT_LIST_HEAD(&ep->queue);
  2663. }
  2664. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2665. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2666. /* remove ep0 in and out from the list. They have own pointer */
  2667. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2668. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2669. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2670. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2671. }
  2672. /**
  2673. * pch_udc_pcd_init() - This API initializes the driver structure
  2674. * @dev: Reference to the driver structure
  2675. *
  2676. * Return codes:
  2677. * 0: Success
  2678. */
  2679. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2680. {
  2681. pch_udc_init(dev);
  2682. pch_udc_pcd_reinit(dev);
  2683. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2684. return 0;
  2685. }
  2686. /**
  2687. * init_dma_pools() - create dma pools during initialization
  2688. * @pdev: reference to struct pci_dev
  2689. */
  2690. static int init_dma_pools(struct pch_udc_dev *dev)
  2691. {
  2692. struct pch_udc_stp_dma_desc *td_stp;
  2693. struct pch_udc_data_dma_desc *td_data;
  2694. /* DMA setup */
  2695. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2696. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2697. if (!dev->data_requests) {
  2698. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2699. __func__);
  2700. return -ENOMEM;
  2701. }
  2702. /* dma desc for setup data */
  2703. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2704. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2705. if (!dev->stp_requests) {
  2706. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2707. __func__);
  2708. return -ENOMEM;
  2709. }
  2710. /* setup */
  2711. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2712. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2713. if (!td_stp) {
  2714. dev_err(&dev->pdev->dev,
  2715. "%s: can't allocate setup dma descriptor\n", __func__);
  2716. return -ENOMEM;
  2717. }
  2718. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2719. /* data: 0 packets !? */
  2720. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2721. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2722. if (!td_data) {
  2723. dev_err(&dev->pdev->dev,
  2724. "%s: can't allocate data dma descriptor\n", __func__);
  2725. return -ENOMEM;
  2726. }
  2727. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2728. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2729. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2730. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2731. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2732. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2733. if (!dev->ep0out_buf)
  2734. return -ENOMEM;
  2735. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2736. UDC_EP0OUT_BUFF_SIZE * 4,
  2737. DMA_FROM_DEVICE);
  2738. return 0;
  2739. }
  2740. static int pch_udc_start(struct usb_gadget *g,
  2741. struct usb_gadget_driver *driver)
  2742. {
  2743. struct pch_udc_dev *dev = to_pch_udc(g);
  2744. driver->driver.bus = NULL;
  2745. dev->driver = driver;
  2746. /* get ready for ep0 traffic */
  2747. pch_udc_setup_ep0(dev);
  2748. /* clear SD */
  2749. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2750. pch_udc_clear_disconnect(dev);
  2751. dev->connected = 1;
  2752. return 0;
  2753. }
  2754. static int pch_udc_stop(struct usb_gadget *g,
  2755. struct usb_gadget_driver *driver)
  2756. {
  2757. struct pch_udc_dev *dev = to_pch_udc(g);
  2758. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2759. /* Assures that there are no pending requests with this driver */
  2760. dev->driver = NULL;
  2761. dev->connected = 0;
  2762. /* set SD */
  2763. pch_udc_set_disconnect(dev);
  2764. return 0;
  2765. }
  2766. static void pch_udc_shutdown(struct pci_dev *pdev)
  2767. {
  2768. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2769. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2770. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2771. /* disable the pullup so the host will think we're gone */
  2772. pch_udc_set_disconnect(dev);
  2773. }
  2774. static void pch_udc_remove(struct pci_dev *pdev)
  2775. {
  2776. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2777. usb_del_gadget_udc(&dev->gadget);
  2778. /* gadget driver must not be registered */
  2779. if (dev->driver)
  2780. dev_err(&pdev->dev,
  2781. "%s: gadget driver still bound!!!\n", __func__);
  2782. /* dma pool cleanup */
  2783. if (dev->data_requests)
  2784. pci_pool_destroy(dev->data_requests);
  2785. if (dev->stp_requests) {
  2786. /* cleanup DMA desc's for ep0in */
  2787. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2788. pci_pool_free(dev->stp_requests,
  2789. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2790. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2791. }
  2792. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2793. pci_pool_free(dev->stp_requests,
  2794. dev->ep[UDC_EP0OUT_IDX].td_data,
  2795. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2796. }
  2797. pci_pool_destroy(dev->stp_requests);
  2798. }
  2799. if (dev->dma_addr)
  2800. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2801. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2802. kfree(dev->ep0out_buf);
  2803. pch_vbus_gpio_free(dev);
  2804. pch_udc_exit(dev);
  2805. if (dev->irq_registered)
  2806. free_irq(pdev->irq, dev);
  2807. if (dev->base_addr)
  2808. iounmap(dev->base_addr);
  2809. if (dev->mem_region)
  2810. release_mem_region(dev->phys_addr,
  2811. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2812. if (dev->active)
  2813. pci_disable_device(pdev);
  2814. kfree(dev);
  2815. pci_set_drvdata(pdev, NULL);
  2816. }
  2817. #ifdef CONFIG_PM
  2818. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2819. {
  2820. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2821. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2822. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2823. pci_disable_device(pdev);
  2824. pci_enable_wake(pdev, PCI_D3hot, 0);
  2825. if (pci_save_state(pdev)) {
  2826. dev_err(&pdev->dev,
  2827. "%s: could not save PCI config state\n", __func__);
  2828. return -ENOMEM;
  2829. }
  2830. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2831. return 0;
  2832. }
  2833. static int pch_udc_resume(struct pci_dev *pdev)
  2834. {
  2835. int ret;
  2836. pci_set_power_state(pdev, PCI_D0);
  2837. pci_restore_state(pdev);
  2838. ret = pci_enable_device(pdev);
  2839. if (ret) {
  2840. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2841. return ret;
  2842. }
  2843. pci_enable_wake(pdev, PCI_D3hot, 0);
  2844. return 0;
  2845. }
  2846. #else
  2847. #define pch_udc_suspend NULL
  2848. #define pch_udc_resume NULL
  2849. #endif /* CONFIG_PM */
  2850. static int pch_udc_probe(struct pci_dev *pdev,
  2851. const struct pci_device_id *id)
  2852. {
  2853. unsigned long resource;
  2854. unsigned long len;
  2855. int retval;
  2856. struct pch_udc_dev *dev;
  2857. /* init */
  2858. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2859. if (!dev) {
  2860. pr_err("%s: no memory for device structure\n", __func__);
  2861. return -ENOMEM;
  2862. }
  2863. /* pci setup */
  2864. if (pci_enable_device(pdev) < 0) {
  2865. kfree(dev);
  2866. pr_err("%s: pci_enable_device failed\n", __func__);
  2867. return -ENODEV;
  2868. }
  2869. dev->active = 1;
  2870. pci_set_drvdata(pdev, dev);
  2871. /* PCI resource allocation */
  2872. resource = pci_resource_start(pdev, 1);
  2873. len = pci_resource_len(pdev, 1);
  2874. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2875. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2876. retval = -EBUSY;
  2877. goto finished;
  2878. }
  2879. dev->phys_addr = resource;
  2880. dev->mem_region = 1;
  2881. dev->base_addr = ioremap_nocache(resource, len);
  2882. if (!dev->base_addr) {
  2883. pr_err("%s: device memory cannot be mapped\n", __func__);
  2884. retval = -ENOMEM;
  2885. goto finished;
  2886. }
  2887. if (!pdev->irq) {
  2888. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2889. retval = -ENODEV;
  2890. goto finished;
  2891. }
  2892. /* initialize the hardware */
  2893. if (pch_udc_pcd_init(dev)) {
  2894. retval = -ENODEV;
  2895. goto finished;
  2896. }
  2897. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2898. dev)) {
  2899. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2900. pdev->irq);
  2901. retval = -ENODEV;
  2902. goto finished;
  2903. }
  2904. dev->irq = pdev->irq;
  2905. dev->irq_registered = 1;
  2906. pci_set_master(pdev);
  2907. pci_try_set_mwi(pdev);
  2908. /* device struct setup */
  2909. spin_lock_init(&dev->lock);
  2910. dev->pdev = pdev;
  2911. dev->gadget.ops = &pch_udc_ops;
  2912. retval = init_dma_pools(dev);
  2913. if (retval)
  2914. goto finished;
  2915. dev->gadget.name = KBUILD_MODNAME;
  2916. dev->gadget.max_speed = USB_SPEED_HIGH;
  2917. /* Put the device in disconnected state till a driver is bound */
  2918. pch_udc_set_disconnect(dev);
  2919. retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget,
  2920. gadget_release);
  2921. if (retval)
  2922. goto finished;
  2923. return 0;
  2924. finished:
  2925. pch_udc_remove(pdev);
  2926. return retval;
  2927. }
  2928. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2929. {
  2930. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2931. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2932. .class_mask = 0xffffffff,
  2933. },
  2934. {
  2935. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2936. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2937. .class_mask = 0xffffffff,
  2938. },
  2939. {
  2940. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2941. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2942. .class_mask = 0xffffffff,
  2943. },
  2944. { 0 },
  2945. };
  2946. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2947. static struct pci_driver pch_udc_driver = {
  2948. .name = KBUILD_MODNAME,
  2949. .id_table = pch_udc_pcidev_id,
  2950. .probe = pch_udc_probe,
  2951. .remove = pch_udc_remove,
  2952. .suspend = pch_udc_suspend,
  2953. .resume = pch_udc_resume,
  2954. .shutdown = pch_udc_shutdown,
  2955. };
  2956. module_pci_driver(pch_udc_driver);
  2957. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2958. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2959. MODULE_LICENSE("GPL");