msm_serial.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /*
  2. * Driver for msm7k serial device and console
  3. *
  4. * Copyright (C) 2007 Google, Inc.
  5. * Author: Robert Love <rlove@google.com>
  6. * Copyright (c) 2011, Code Aurora Forum. All rights reserved.
  7. *
  8. * This software is licensed under the terms of the GNU General Public
  9. * License version 2, as published by the Free Software Foundation, and
  10. * may be copied, distributed, and modified under those terms.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  18. # define SUPPORT_SYSRQ
  19. #endif
  20. #include <linux/atomic.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/module.h>
  23. #include <linux/io.h>
  24. #include <linux/ioport.h>
  25. #include <linux/irq.h>
  26. #include <linux/init.h>
  27. #include <linux/console.h>
  28. #include <linux/tty.h>
  29. #include <linux/tty_flip.h>
  30. #include <linux/serial_core.h>
  31. #include <linux/serial.h>
  32. #include <linux/clk.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/delay.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include "msm_serial.h"
  38. struct msm_port {
  39. struct uart_port uart;
  40. char name[16];
  41. struct clk *clk;
  42. struct clk *pclk;
  43. unsigned int imr;
  44. void __iomem *gsbi_base;
  45. int is_uartdm;
  46. unsigned int old_snap_state;
  47. };
  48. static inline void wait_for_xmitr(struct uart_port *port)
  49. {
  50. while (!(msm_read(port, UART_SR) & UART_SR_TX_EMPTY)) {
  51. if (msm_read(port, UART_ISR) & UART_ISR_TX_READY)
  52. break;
  53. udelay(1);
  54. }
  55. msm_write(port, UART_CR_CMD_RESET_TX_READY, UART_CR);
  56. }
  57. static void msm_stop_tx(struct uart_port *port)
  58. {
  59. struct msm_port *msm_port = UART_TO_MSM(port);
  60. msm_port->imr &= ~UART_IMR_TXLEV;
  61. msm_write(port, msm_port->imr, UART_IMR);
  62. }
  63. static void msm_start_tx(struct uart_port *port)
  64. {
  65. struct msm_port *msm_port = UART_TO_MSM(port);
  66. msm_port->imr |= UART_IMR_TXLEV;
  67. msm_write(port, msm_port->imr, UART_IMR);
  68. }
  69. static void msm_stop_rx(struct uart_port *port)
  70. {
  71. struct msm_port *msm_port = UART_TO_MSM(port);
  72. msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE);
  73. msm_write(port, msm_port->imr, UART_IMR);
  74. }
  75. static void msm_enable_ms(struct uart_port *port)
  76. {
  77. struct msm_port *msm_port = UART_TO_MSM(port);
  78. msm_port->imr |= UART_IMR_DELTA_CTS;
  79. msm_write(port, msm_port->imr, UART_IMR);
  80. }
  81. static void handle_rx_dm(struct uart_port *port, unsigned int misr)
  82. {
  83. struct tty_port *tport = &port->state->port;
  84. unsigned int sr;
  85. int count = 0;
  86. struct msm_port *msm_port = UART_TO_MSM(port);
  87. if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
  88. port->icount.overrun++;
  89. tty_insert_flip_char(tport, 0, TTY_OVERRUN);
  90. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  91. }
  92. if (misr & UART_IMR_RXSTALE) {
  93. count = msm_read(port, UARTDM_RX_TOTAL_SNAP) -
  94. msm_port->old_snap_state;
  95. msm_port->old_snap_state = 0;
  96. } else {
  97. count = 4 * (msm_read(port, UART_RFWR));
  98. msm_port->old_snap_state += count;
  99. }
  100. /* TODO: Precise error reporting */
  101. port->icount.rx += count;
  102. while (count > 0) {
  103. unsigned int c;
  104. sr = msm_read(port, UART_SR);
  105. if ((sr & UART_SR_RX_READY) == 0) {
  106. msm_port->old_snap_state -= count;
  107. break;
  108. }
  109. c = msm_read(port, UARTDM_RF);
  110. if (sr & UART_SR_RX_BREAK) {
  111. port->icount.brk++;
  112. if (uart_handle_break(port))
  113. continue;
  114. } else if (sr & UART_SR_PAR_FRAME_ERR)
  115. port->icount.frame++;
  116. /* TODO: handle sysrq */
  117. tty_insert_flip_string(tport, (char *)&c,
  118. (count > 4) ? 4 : count);
  119. count -= 4;
  120. }
  121. spin_unlock(&port->lock);
  122. tty_flip_buffer_push(tport);
  123. spin_lock(&port->lock);
  124. if (misr & (UART_IMR_RXSTALE))
  125. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  126. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  127. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  128. }
  129. static void handle_rx(struct uart_port *port)
  130. {
  131. struct tty_port *tport = &port->state->port;
  132. unsigned int sr;
  133. /*
  134. * Handle overrun. My understanding of the hardware is that overrun
  135. * is not tied to the RX buffer, so we handle the case out of band.
  136. */
  137. if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
  138. port->icount.overrun++;
  139. tty_insert_flip_char(tport, 0, TTY_OVERRUN);
  140. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  141. }
  142. /* and now the main RX loop */
  143. while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) {
  144. unsigned int c;
  145. char flag = TTY_NORMAL;
  146. c = msm_read(port, UART_RF);
  147. if (sr & UART_SR_RX_BREAK) {
  148. port->icount.brk++;
  149. if (uart_handle_break(port))
  150. continue;
  151. } else if (sr & UART_SR_PAR_FRAME_ERR) {
  152. port->icount.frame++;
  153. } else {
  154. port->icount.rx++;
  155. }
  156. /* Mask conditions we're ignorning. */
  157. sr &= port->read_status_mask;
  158. if (sr & UART_SR_RX_BREAK) {
  159. flag = TTY_BREAK;
  160. } else if (sr & UART_SR_PAR_FRAME_ERR) {
  161. flag = TTY_FRAME;
  162. }
  163. if (!uart_handle_sysrq_char(port, c))
  164. tty_insert_flip_char(tport, c, flag);
  165. }
  166. spin_unlock(&port->lock);
  167. tty_flip_buffer_push(tport);
  168. spin_lock(&port->lock);
  169. }
  170. static void reset_dm_count(struct uart_port *port, int count)
  171. {
  172. wait_for_xmitr(port);
  173. msm_write(port, count, UARTDM_NCF_TX);
  174. msm_read(port, UARTDM_NCF_TX);
  175. }
  176. static void handle_tx(struct uart_port *port)
  177. {
  178. struct circ_buf *xmit = &port->state->xmit;
  179. struct msm_port *msm_port = UART_TO_MSM(port);
  180. unsigned int tx_count, num_chars;
  181. unsigned int tf_pointer = 0;
  182. tx_count = uart_circ_chars_pending(xmit);
  183. tx_count = min3(tx_count, (unsigned int)UART_XMIT_SIZE - xmit->tail,
  184. port->fifosize);
  185. if (port->x_char) {
  186. if (msm_port->is_uartdm)
  187. reset_dm_count(port, tx_count + 1);
  188. msm_write(port, port->x_char,
  189. msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  190. port->icount.tx++;
  191. port->x_char = 0;
  192. } else if (tx_count && msm_port->is_uartdm) {
  193. reset_dm_count(port, tx_count);
  194. }
  195. while (tf_pointer < tx_count) {
  196. int i;
  197. char buf[4] = { 0 };
  198. unsigned int *bf = (unsigned int *)&buf;
  199. if (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  200. break;
  201. if (msm_port->is_uartdm)
  202. num_chars = min(tx_count - tf_pointer,
  203. (unsigned int)sizeof(buf));
  204. else
  205. num_chars = 1;
  206. for (i = 0; i < num_chars; i++) {
  207. buf[i] = xmit->buf[xmit->tail + i];
  208. port->icount.tx++;
  209. }
  210. msm_write(port, *bf, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  211. xmit->tail = (xmit->tail + num_chars) & (UART_XMIT_SIZE - 1);
  212. tf_pointer += num_chars;
  213. }
  214. /* disable tx interrupts if nothing more to send */
  215. if (uart_circ_empty(xmit))
  216. msm_stop_tx(port);
  217. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  218. uart_write_wakeup(port);
  219. }
  220. static void handle_delta_cts(struct uart_port *port)
  221. {
  222. msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
  223. port->icount.cts++;
  224. wake_up_interruptible(&port->state->port.delta_msr_wait);
  225. }
  226. static irqreturn_t msm_irq(int irq, void *dev_id)
  227. {
  228. struct uart_port *port = dev_id;
  229. struct msm_port *msm_port = UART_TO_MSM(port);
  230. unsigned int misr;
  231. spin_lock(&port->lock);
  232. misr = msm_read(port, UART_MISR);
  233. msm_write(port, 0, UART_IMR); /* disable interrupt */
  234. if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE)) {
  235. if (msm_port->is_uartdm)
  236. handle_rx_dm(port, misr);
  237. else
  238. handle_rx(port);
  239. }
  240. if (misr & UART_IMR_TXLEV)
  241. handle_tx(port);
  242. if (misr & UART_IMR_DELTA_CTS)
  243. handle_delta_cts(port);
  244. msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */
  245. spin_unlock(&port->lock);
  246. return IRQ_HANDLED;
  247. }
  248. static unsigned int msm_tx_empty(struct uart_port *port)
  249. {
  250. return (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0;
  251. }
  252. static unsigned int msm_get_mctrl(struct uart_port *port)
  253. {
  254. return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS;
  255. }
  256. static void msm_reset(struct uart_port *port)
  257. {
  258. /* reset everything */
  259. msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
  260. msm_write(port, UART_CR_CMD_RESET_TX, UART_CR);
  261. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  262. msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR);
  263. msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
  264. msm_write(port, UART_CR_CMD_SET_RFR, UART_CR);
  265. }
  266. static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl)
  267. {
  268. unsigned int mr;
  269. mr = msm_read(port, UART_MR1);
  270. if (!(mctrl & TIOCM_RTS)) {
  271. mr &= ~UART_MR1_RX_RDY_CTL;
  272. msm_write(port, mr, UART_MR1);
  273. msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR);
  274. } else {
  275. mr |= UART_MR1_RX_RDY_CTL;
  276. msm_write(port, mr, UART_MR1);
  277. }
  278. }
  279. static void msm_break_ctl(struct uart_port *port, int break_ctl)
  280. {
  281. if (break_ctl)
  282. msm_write(port, UART_CR_CMD_START_BREAK, UART_CR);
  283. else
  284. msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR);
  285. }
  286. struct msm_baud_map {
  287. u16 divisor;
  288. u8 code;
  289. u8 rxstale;
  290. };
  291. static const struct msm_baud_map *
  292. msm_find_best_baud(struct uart_port *port, unsigned int baud)
  293. {
  294. unsigned int i, divisor;
  295. const struct msm_baud_map *entry;
  296. static const struct msm_baud_map table[] = {
  297. { 1536, 0x00, 1 },
  298. { 768, 0x11, 1 },
  299. { 384, 0x22, 1 },
  300. { 192, 0x33, 1 },
  301. { 96, 0x44, 1 },
  302. { 48, 0x55, 1 },
  303. { 32, 0x66, 1 },
  304. { 24, 0x77, 1 },
  305. { 16, 0x88, 1 },
  306. { 12, 0x99, 6 },
  307. { 8, 0xaa, 6 },
  308. { 6, 0xbb, 6 },
  309. { 4, 0xcc, 6 },
  310. { 3, 0xdd, 8 },
  311. { 2, 0xee, 16 },
  312. { 1, 0xff, 31 },
  313. };
  314. divisor = uart_get_divisor(port, baud);
  315. for (i = 0, entry = table; i < ARRAY_SIZE(table); i++, entry++)
  316. if (entry->divisor <= divisor)
  317. break;
  318. return entry; /* Default to smallest divider */
  319. }
  320. static int msm_set_baud_rate(struct uart_port *port, unsigned int baud)
  321. {
  322. unsigned int rxstale, watermark;
  323. struct msm_port *msm_port = UART_TO_MSM(port);
  324. const struct msm_baud_map *entry;
  325. entry = msm_find_best_baud(port, baud);
  326. if (msm_port->is_uartdm)
  327. msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
  328. msm_write(port, entry->code, UART_CSR);
  329. /* RX stale watermark */
  330. rxstale = entry->rxstale;
  331. watermark = UART_IPR_STALE_LSB & rxstale;
  332. watermark |= UART_IPR_RXSTALE_LAST;
  333. watermark |= UART_IPR_STALE_TIMEOUT_MSB & (rxstale << 2);
  334. msm_write(port, watermark, UART_IPR);
  335. /* set RX watermark */
  336. watermark = (port->fifosize * 3) / 4;
  337. msm_write(port, watermark, UART_RFWR);
  338. /* set TX watermark */
  339. msm_write(port, 10, UART_TFWR);
  340. if (msm_port->is_uartdm) {
  341. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  342. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  343. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  344. }
  345. return baud;
  346. }
  347. static void msm_init_clock(struct uart_port *port)
  348. {
  349. struct msm_port *msm_port = UART_TO_MSM(port);
  350. clk_prepare_enable(msm_port->clk);
  351. clk_prepare_enable(msm_port->pclk);
  352. msm_serial_set_mnd_regs(port);
  353. }
  354. static int msm_startup(struct uart_port *port)
  355. {
  356. struct msm_port *msm_port = UART_TO_MSM(port);
  357. unsigned int data, rfr_level;
  358. int ret;
  359. snprintf(msm_port->name, sizeof(msm_port->name),
  360. "msm_serial%d", port->line);
  361. ret = request_irq(port->irq, msm_irq, IRQF_TRIGGER_HIGH,
  362. msm_port->name, port);
  363. if (unlikely(ret))
  364. return ret;
  365. msm_init_clock(port);
  366. if (likely(port->fifosize > 12))
  367. rfr_level = port->fifosize - 12;
  368. else
  369. rfr_level = port->fifosize;
  370. /* set automatic RFR level */
  371. data = msm_read(port, UART_MR1);
  372. data &= ~UART_MR1_AUTO_RFR_LEVEL1;
  373. data &= ~UART_MR1_AUTO_RFR_LEVEL0;
  374. data |= UART_MR1_AUTO_RFR_LEVEL1 & (rfr_level << 2);
  375. data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level;
  376. msm_write(port, data, UART_MR1);
  377. /* make sure that RXSTALE count is non-zero */
  378. data = msm_read(port, UART_IPR);
  379. if (unlikely(!data)) {
  380. data |= UART_IPR_RXSTALE_LAST;
  381. data |= UART_IPR_STALE_LSB;
  382. msm_write(port, data, UART_IPR);
  383. }
  384. data = 0;
  385. if (!port->cons || (port->cons && !(port->cons->flags & CON_ENABLED))) {
  386. msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR);
  387. msm_reset(port);
  388. data = UART_CR_TX_ENABLE;
  389. }
  390. data |= UART_CR_RX_ENABLE;
  391. msm_write(port, data, UART_CR); /* enable TX & RX */
  392. /* Make sure IPR is not 0 to start with*/
  393. if (msm_port->is_uartdm)
  394. msm_write(port, UART_IPR_STALE_LSB, UART_IPR);
  395. /* turn on RX and CTS interrupts */
  396. msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE |
  397. UART_IMR_CURRENT_CTS;
  398. if (msm_port->is_uartdm) {
  399. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  400. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  401. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  402. }
  403. msm_write(port, msm_port->imr, UART_IMR);
  404. return 0;
  405. }
  406. static void msm_shutdown(struct uart_port *port)
  407. {
  408. struct msm_port *msm_port = UART_TO_MSM(port);
  409. msm_port->imr = 0;
  410. msm_write(port, 0, UART_IMR); /* disable interrupts */
  411. clk_disable_unprepare(msm_port->clk);
  412. free_irq(port->irq, port);
  413. }
  414. static void msm_set_termios(struct uart_port *port, struct ktermios *termios,
  415. struct ktermios *old)
  416. {
  417. unsigned long flags;
  418. unsigned int baud, mr;
  419. spin_lock_irqsave(&port->lock, flags);
  420. /* calculate and set baud rate */
  421. baud = uart_get_baud_rate(port, termios, old, 300, 115200);
  422. baud = msm_set_baud_rate(port, baud);
  423. if (tty_termios_baud_rate(termios))
  424. tty_termios_encode_baud_rate(termios, baud, baud);
  425. /* calculate parity */
  426. mr = msm_read(port, UART_MR2);
  427. mr &= ~UART_MR2_PARITY_MODE;
  428. if (termios->c_cflag & PARENB) {
  429. if (termios->c_cflag & PARODD)
  430. mr |= UART_MR2_PARITY_MODE_ODD;
  431. else if (termios->c_cflag & CMSPAR)
  432. mr |= UART_MR2_PARITY_MODE_SPACE;
  433. else
  434. mr |= UART_MR2_PARITY_MODE_EVEN;
  435. }
  436. /* calculate bits per char */
  437. mr &= ~UART_MR2_BITS_PER_CHAR;
  438. switch (termios->c_cflag & CSIZE) {
  439. case CS5:
  440. mr |= UART_MR2_BITS_PER_CHAR_5;
  441. break;
  442. case CS6:
  443. mr |= UART_MR2_BITS_PER_CHAR_6;
  444. break;
  445. case CS7:
  446. mr |= UART_MR2_BITS_PER_CHAR_7;
  447. break;
  448. case CS8:
  449. default:
  450. mr |= UART_MR2_BITS_PER_CHAR_8;
  451. break;
  452. }
  453. /* calculate stop bits */
  454. mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO);
  455. if (termios->c_cflag & CSTOPB)
  456. mr |= UART_MR2_STOP_BIT_LEN_TWO;
  457. else
  458. mr |= UART_MR2_STOP_BIT_LEN_ONE;
  459. /* set parity, bits per char, and stop bit */
  460. msm_write(port, mr, UART_MR2);
  461. /* calculate and set hardware flow control */
  462. mr = msm_read(port, UART_MR1);
  463. mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL);
  464. if (termios->c_cflag & CRTSCTS) {
  465. mr |= UART_MR1_CTS_CTL;
  466. mr |= UART_MR1_RX_RDY_CTL;
  467. }
  468. msm_write(port, mr, UART_MR1);
  469. /* Configure status bits to ignore based on termio flags. */
  470. port->read_status_mask = 0;
  471. if (termios->c_iflag & INPCK)
  472. port->read_status_mask |= UART_SR_PAR_FRAME_ERR;
  473. if (termios->c_iflag & (BRKINT | PARMRK))
  474. port->read_status_mask |= UART_SR_RX_BREAK;
  475. uart_update_timeout(port, termios->c_cflag, baud);
  476. spin_unlock_irqrestore(&port->lock, flags);
  477. }
  478. static const char *msm_type(struct uart_port *port)
  479. {
  480. return "MSM";
  481. }
  482. static void msm_release_port(struct uart_port *port)
  483. {
  484. struct platform_device *pdev = to_platform_device(port->dev);
  485. struct msm_port *msm_port = UART_TO_MSM(port);
  486. struct resource *uart_resource;
  487. struct resource *gsbi_resource;
  488. resource_size_t size;
  489. uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  490. if (unlikely(!uart_resource))
  491. return;
  492. size = resource_size(uart_resource);
  493. release_mem_region(port->mapbase, size);
  494. iounmap(port->membase);
  495. port->membase = NULL;
  496. if (msm_port->gsbi_base) {
  497. writel_relaxed(GSBI_PROTOCOL_IDLE,
  498. msm_port->gsbi_base + GSBI_CONTROL);
  499. gsbi_resource = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  500. if (unlikely(!gsbi_resource))
  501. return;
  502. size = resource_size(gsbi_resource);
  503. release_mem_region(gsbi_resource->start, size);
  504. iounmap(msm_port->gsbi_base);
  505. msm_port->gsbi_base = NULL;
  506. }
  507. }
  508. static int msm_request_port(struct uart_port *port)
  509. {
  510. struct msm_port *msm_port = UART_TO_MSM(port);
  511. struct platform_device *pdev = to_platform_device(port->dev);
  512. struct resource *uart_resource;
  513. struct resource *gsbi_resource;
  514. resource_size_t size;
  515. int ret;
  516. uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  517. if (unlikely(!uart_resource))
  518. return -ENXIO;
  519. size = resource_size(uart_resource);
  520. if (!request_mem_region(port->mapbase, size, "msm_serial"))
  521. return -EBUSY;
  522. port->membase = ioremap(port->mapbase, size);
  523. if (!port->membase) {
  524. ret = -EBUSY;
  525. goto fail_release_port;
  526. }
  527. gsbi_resource = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  528. /* Is this a GSBI-based port? */
  529. if (gsbi_resource) {
  530. size = resource_size(gsbi_resource);
  531. if (!request_mem_region(gsbi_resource->start, size,
  532. "msm_serial")) {
  533. ret = -EBUSY;
  534. goto fail_release_port_membase;
  535. }
  536. msm_port->gsbi_base = ioremap(gsbi_resource->start, size);
  537. if (!msm_port->gsbi_base) {
  538. ret = -EBUSY;
  539. goto fail_release_gsbi;
  540. }
  541. }
  542. return 0;
  543. fail_release_gsbi:
  544. release_mem_region(gsbi_resource->start, size);
  545. fail_release_port_membase:
  546. iounmap(port->membase);
  547. fail_release_port:
  548. release_mem_region(port->mapbase, size);
  549. return ret;
  550. }
  551. static void msm_config_port(struct uart_port *port, int flags)
  552. {
  553. struct msm_port *msm_port = UART_TO_MSM(port);
  554. int ret;
  555. if (flags & UART_CONFIG_TYPE) {
  556. port->type = PORT_MSM;
  557. ret = msm_request_port(port);
  558. if (ret)
  559. return;
  560. }
  561. if (msm_port->gsbi_base)
  562. writel_relaxed(GSBI_PROTOCOL_UART,
  563. msm_port->gsbi_base + GSBI_CONTROL);
  564. }
  565. static int msm_verify_port(struct uart_port *port, struct serial_struct *ser)
  566. {
  567. if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM))
  568. return -EINVAL;
  569. if (unlikely(port->irq != ser->irq))
  570. return -EINVAL;
  571. return 0;
  572. }
  573. static void msm_power(struct uart_port *port, unsigned int state,
  574. unsigned int oldstate)
  575. {
  576. struct msm_port *msm_port = UART_TO_MSM(port);
  577. switch (state) {
  578. case 0:
  579. clk_prepare_enable(msm_port->clk);
  580. clk_prepare_enable(msm_port->pclk);
  581. break;
  582. case 3:
  583. clk_disable_unprepare(msm_port->clk);
  584. clk_disable_unprepare(msm_port->pclk);
  585. break;
  586. default:
  587. printk(KERN_ERR "msm_serial: Unknown PM state %d\n", state);
  588. }
  589. }
  590. static struct uart_ops msm_uart_pops = {
  591. .tx_empty = msm_tx_empty,
  592. .set_mctrl = msm_set_mctrl,
  593. .get_mctrl = msm_get_mctrl,
  594. .stop_tx = msm_stop_tx,
  595. .start_tx = msm_start_tx,
  596. .stop_rx = msm_stop_rx,
  597. .enable_ms = msm_enable_ms,
  598. .break_ctl = msm_break_ctl,
  599. .startup = msm_startup,
  600. .shutdown = msm_shutdown,
  601. .set_termios = msm_set_termios,
  602. .type = msm_type,
  603. .release_port = msm_release_port,
  604. .request_port = msm_request_port,
  605. .config_port = msm_config_port,
  606. .verify_port = msm_verify_port,
  607. .pm = msm_power,
  608. };
  609. static struct msm_port msm_uart_ports[] = {
  610. {
  611. .uart = {
  612. .iotype = UPIO_MEM,
  613. .ops = &msm_uart_pops,
  614. .flags = UPF_BOOT_AUTOCONF,
  615. .fifosize = 64,
  616. .line = 0,
  617. },
  618. },
  619. {
  620. .uart = {
  621. .iotype = UPIO_MEM,
  622. .ops = &msm_uart_pops,
  623. .flags = UPF_BOOT_AUTOCONF,
  624. .fifosize = 64,
  625. .line = 1,
  626. },
  627. },
  628. {
  629. .uart = {
  630. .iotype = UPIO_MEM,
  631. .ops = &msm_uart_pops,
  632. .flags = UPF_BOOT_AUTOCONF,
  633. .fifosize = 64,
  634. .line = 2,
  635. },
  636. },
  637. };
  638. #define UART_NR ARRAY_SIZE(msm_uart_ports)
  639. static inline struct uart_port *get_port_from_line(unsigned int line)
  640. {
  641. return &msm_uart_ports[line].uart;
  642. }
  643. #ifdef CONFIG_SERIAL_MSM_CONSOLE
  644. static void msm_console_write(struct console *co, const char *s,
  645. unsigned int count)
  646. {
  647. int i;
  648. struct uart_port *port;
  649. struct msm_port *msm_port;
  650. int num_newlines = 0;
  651. bool replaced = false;
  652. BUG_ON(co->index < 0 || co->index >= UART_NR);
  653. port = get_port_from_line(co->index);
  654. msm_port = UART_TO_MSM(port);
  655. /* Account for newlines that will get a carriage return added */
  656. for (i = 0; i < count; i++)
  657. if (s[i] == '\n')
  658. num_newlines++;
  659. count += num_newlines;
  660. spin_lock(&port->lock);
  661. if (msm_port->is_uartdm)
  662. reset_dm_count(port, count);
  663. i = 0;
  664. while (i < count) {
  665. int j;
  666. unsigned int num_chars;
  667. char buf[4] = { 0 };
  668. unsigned int *bf = (unsigned int *)&buf;
  669. if (msm_port->is_uartdm)
  670. num_chars = min(count - i, (unsigned int)sizeof(buf));
  671. else
  672. num_chars = 1;
  673. for (j = 0; j < num_chars; j++) {
  674. char c = *s;
  675. if (c == '\n' && !replaced) {
  676. buf[j] = '\r';
  677. j++;
  678. replaced = true;
  679. }
  680. if (j < num_chars) {
  681. buf[j] = c;
  682. s++;
  683. replaced = false;
  684. }
  685. }
  686. while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  687. cpu_relax();
  688. msm_write(port, *bf, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  689. i += num_chars;
  690. }
  691. spin_unlock(&port->lock);
  692. }
  693. static int __init msm_console_setup(struct console *co, char *options)
  694. {
  695. struct uart_port *port;
  696. struct msm_port *msm_port;
  697. int baud, flow, bits, parity;
  698. if (unlikely(co->index >= UART_NR || co->index < 0))
  699. return -ENXIO;
  700. port = get_port_from_line(co->index);
  701. msm_port = UART_TO_MSM(port);
  702. if (unlikely(!port->membase))
  703. return -ENXIO;
  704. msm_init_clock(port);
  705. if (options)
  706. uart_parse_options(options, &baud, &parity, &bits, &flow);
  707. bits = 8;
  708. parity = 'n';
  709. flow = 'n';
  710. msm_write(port, UART_MR2_BITS_PER_CHAR_8 | UART_MR2_STOP_BIT_LEN_ONE,
  711. UART_MR2); /* 8N1 */
  712. if (baud < 300 || baud > 115200)
  713. baud = 115200;
  714. msm_set_baud_rate(port, baud);
  715. msm_reset(port);
  716. if (msm_port->is_uartdm) {
  717. msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR);
  718. msm_write(port, UART_CR_TX_ENABLE, UART_CR);
  719. }
  720. printk(KERN_INFO "msm_serial: console setup on port #%d\n", port->line);
  721. return uart_set_options(port, co, baud, parity, bits, flow);
  722. }
  723. static struct uart_driver msm_uart_driver;
  724. static struct console msm_console = {
  725. .name = "ttyMSM",
  726. .write = msm_console_write,
  727. .device = uart_console_device,
  728. .setup = msm_console_setup,
  729. .flags = CON_PRINTBUFFER,
  730. .index = -1,
  731. .data = &msm_uart_driver,
  732. };
  733. #define MSM_CONSOLE (&msm_console)
  734. #else
  735. #define MSM_CONSOLE NULL
  736. #endif
  737. static struct uart_driver msm_uart_driver = {
  738. .owner = THIS_MODULE,
  739. .driver_name = "msm_serial",
  740. .dev_name = "ttyMSM",
  741. .nr = UART_NR,
  742. .cons = MSM_CONSOLE,
  743. };
  744. static atomic_t msm_uart_next_id = ATOMIC_INIT(0);
  745. static const struct of_device_id msm_uartdm_table[] = {
  746. { .compatible = "qcom,msm-uartdm" },
  747. { }
  748. };
  749. static int __init msm_serial_probe(struct platform_device *pdev)
  750. {
  751. struct msm_port *msm_port;
  752. struct resource *resource;
  753. struct uart_port *port;
  754. int irq;
  755. if (pdev->id == -1)
  756. pdev->id = atomic_inc_return(&msm_uart_next_id) - 1;
  757. if (unlikely(pdev->id < 0 || pdev->id >= UART_NR))
  758. return -ENXIO;
  759. printk(KERN_INFO "msm_serial: detected port #%d\n", pdev->id);
  760. port = get_port_from_line(pdev->id);
  761. port->dev = &pdev->dev;
  762. msm_port = UART_TO_MSM(port);
  763. if (of_match_device(msm_uartdm_table, &pdev->dev))
  764. msm_port->is_uartdm = 1;
  765. else
  766. msm_port->is_uartdm = 0;
  767. msm_port->clk = devm_clk_get(&pdev->dev, "core");
  768. if (IS_ERR(msm_port->clk))
  769. return PTR_ERR(msm_port->clk);
  770. if (msm_port->is_uartdm) {
  771. msm_port->pclk = devm_clk_get(&pdev->dev, "iface");
  772. if (IS_ERR(msm_port->pclk))
  773. return PTR_ERR(msm_port->pclk);
  774. clk_set_rate(msm_port->clk, 1843200);
  775. }
  776. port->uartclk = clk_get_rate(msm_port->clk);
  777. printk(KERN_INFO "uartclk = %d\n", port->uartclk);
  778. resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  779. if (unlikely(!resource))
  780. return -ENXIO;
  781. port->mapbase = resource->start;
  782. irq = platform_get_irq(pdev, 0);
  783. if (unlikely(irq < 0))
  784. return -ENXIO;
  785. port->irq = irq;
  786. platform_set_drvdata(pdev, port);
  787. return uart_add_one_port(&msm_uart_driver, port);
  788. }
  789. static int msm_serial_remove(struct platform_device *pdev)
  790. {
  791. struct uart_port *port = platform_get_drvdata(pdev);
  792. uart_remove_one_port(&msm_uart_driver, port);
  793. return 0;
  794. }
  795. static struct of_device_id msm_match_table[] = {
  796. { .compatible = "qcom,msm-uart" },
  797. { .compatible = "qcom,msm-uartdm" },
  798. {}
  799. };
  800. static struct platform_driver msm_platform_driver = {
  801. .remove = msm_serial_remove,
  802. .driver = {
  803. .name = "msm_serial",
  804. .owner = THIS_MODULE,
  805. .of_match_table = msm_match_table,
  806. },
  807. };
  808. static int __init msm_serial_init(void)
  809. {
  810. int ret;
  811. ret = uart_register_driver(&msm_uart_driver);
  812. if (unlikely(ret))
  813. return ret;
  814. ret = platform_driver_probe(&msm_platform_driver, msm_serial_probe);
  815. if (unlikely(ret))
  816. uart_unregister_driver(&msm_uart_driver);
  817. printk(KERN_INFO "msm_serial: driver initialized\n");
  818. return ret;
  819. }
  820. static void __exit msm_serial_exit(void)
  821. {
  822. #ifdef CONFIG_SERIAL_MSM_CONSOLE
  823. unregister_console(&msm_console);
  824. #endif
  825. platform_driver_unregister(&msm_platform_driver);
  826. uart_unregister_driver(&msm_uart_driver);
  827. }
  828. module_init(msm_serial_init);
  829. module_exit(msm_serial_exit);
  830. MODULE_AUTHOR("Robert Love <rlove@google.com>");
  831. MODULE_DESCRIPTION("Driver for msm7x serial device");
  832. MODULE_LICENSE("GPL");