spi-topcliff-pch.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. int save_total_len;
  180. };
  181. /**
  182. * struct pch_spi_board_data - Holds the SPI device specific details
  183. * @pdev: Pointer to the PCI device
  184. * @suspend_sts: Status of suspend
  185. * @num: The number of SPI device instance
  186. */
  187. struct pch_spi_board_data {
  188. struct pci_dev *pdev;
  189. u8 suspend_sts;
  190. int num;
  191. };
  192. struct pch_pd_dev_save {
  193. int num;
  194. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  195. struct pch_spi_board_data *board_dat;
  196. };
  197. static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
  198. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  201. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  202. { }
  203. };
  204. /**
  205. * pch_spi_writereg() - Performs register writes
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. * @val: Value to be written to register.
  209. */
  210. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  211. {
  212. struct pch_spi_data *data = spi_master_get_devdata(master);
  213. iowrite32(val, (data->io_remap_addr + idx));
  214. }
  215. /**
  216. * pch_spi_readreg() - Performs register reads
  217. * @master: Pointer to struct spi_master.
  218. * @idx: Register offset.
  219. */
  220. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  221. {
  222. struct pch_spi_data *data = spi_master_get_devdata(master);
  223. return ioread32(data->io_remap_addr + idx);
  224. }
  225. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  226. u32 set, u32 clr)
  227. {
  228. u32 tmp = pch_spi_readreg(master, idx);
  229. tmp = (tmp & ~clr) | set;
  230. pch_spi_writereg(master, idx, tmp);
  231. }
  232. static void pch_spi_set_master_mode(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  235. }
  236. /**
  237. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  238. * @master: Pointer to struct spi_master.
  239. */
  240. static void pch_spi_clear_fifo(struct spi_master *master)
  241. {
  242. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  243. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  244. }
  245. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  246. void __iomem *io_remap_addr)
  247. {
  248. u32 n_read, tx_index, rx_index, bpw_len;
  249. u16 *pkt_rx_buffer, *pkt_tx_buff;
  250. int read_cnt;
  251. u32 reg_spcr_val;
  252. void __iomem *spsr;
  253. void __iomem *spdrr;
  254. void __iomem *spdwr;
  255. spsr = io_remap_addr + PCH_SPSR;
  256. iowrite32(reg_spsr_val, spsr);
  257. if (data->transfer_active) {
  258. rx_index = data->rx_index;
  259. tx_index = data->tx_index;
  260. bpw_len = data->bpw_len;
  261. pkt_rx_buffer = data->pkt_rx_buff;
  262. pkt_tx_buff = data->pkt_tx_buff;
  263. spdrr = io_remap_addr + PCH_SPDRR;
  264. spdwr = io_remap_addr + PCH_SPDWR;
  265. n_read = PCH_READABLE(reg_spsr_val);
  266. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  267. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  268. if (tx_index < bpw_len)
  269. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  270. }
  271. /* disable RFI if not needed */
  272. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  273. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  274. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  275. /* reset rx threshold */
  276. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  277. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  278. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  279. }
  280. /* update counts */
  281. data->tx_index = tx_index;
  282. data->rx_index = rx_index;
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  288. PCH_ALL);
  289. /* transfer is completed;
  290. inform pch_spi_process_messages */
  291. data->transfer_complete = true;
  292. data->transfer_active = false;
  293. wake_up(&data->wait);
  294. } else {
  295. dev_err(&data->master->dev,
  296. "%s : Transfer is not completed",
  297. __func__);
  298. }
  299. }
  300. }
  301. }
  302. /**
  303. * pch_spi_handler() - Interrupt handler
  304. * @irq: The interrupt number.
  305. * @dev_id: Pointer to struct pch_spi_board_data.
  306. */
  307. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  308. {
  309. u32 reg_spsr_val;
  310. void __iomem *spsr;
  311. void __iomem *io_remap_addr;
  312. irqreturn_t ret = IRQ_NONE;
  313. struct pch_spi_data *data = dev_id;
  314. struct pch_spi_board_data *board_dat = data->board_dat;
  315. if (board_dat->suspend_sts) {
  316. dev_dbg(&board_dat->pdev->dev,
  317. "%s returning due to suspend\n", __func__);
  318. return IRQ_NONE;
  319. }
  320. io_remap_addr = data->io_remap_addr;
  321. spsr = io_remap_addr + PCH_SPSR;
  322. reg_spsr_val = ioread32(spsr);
  323. if (reg_spsr_val & SPSR_ORF_BIT) {
  324. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  325. if (data->current_msg->complete) {
  326. data->transfer_complete = true;
  327. data->current_msg->status = -EIO;
  328. data->current_msg->complete(data->current_msg->context);
  329. data->bcurrent_msg_processing = false;
  330. data->current_msg = NULL;
  331. data->cur_trans = NULL;
  332. }
  333. }
  334. if (data->use_dma)
  335. return IRQ_NONE;
  336. /* Check if the interrupt is for SPI device */
  337. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  338. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  339. ret = IRQ_HANDLED;
  340. }
  341. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  342. __func__, ret);
  343. return ret;
  344. }
  345. /**
  346. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  347. * @master: Pointer to struct spi_master.
  348. * @speed_hz: Baud rate.
  349. */
  350. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  351. {
  352. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  353. /* if baud rate is less than we can support limit it */
  354. if (n_spbr > PCH_MAX_SPBR)
  355. n_spbr = PCH_MAX_SPBR;
  356. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  357. }
  358. /**
  359. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  360. * @master: Pointer to struct spi_master.
  361. * @bits_per_word: Bits per word for SPI transfer.
  362. */
  363. static void pch_spi_set_bits_per_word(struct spi_master *master,
  364. u8 bits_per_word)
  365. {
  366. if (bits_per_word == 8)
  367. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  368. else
  369. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  370. }
  371. /**
  372. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  373. * @spi: Pointer to struct spi_device.
  374. */
  375. static void pch_spi_setup_transfer(struct spi_device *spi)
  376. {
  377. u32 flags = 0;
  378. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  379. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  380. spi->max_speed_hz);
  381. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  382. /* set bits per word */
  383. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  384. if (!(spi->mode & SPI_LSB_FIRST))
  385. flags |= SPCR_LSBF_BIT;
  386. if (spi->mode & SPI_CPOL)
  387. flags |= SPCR_CPOL_BIT;
  388. if (spi->mode & SPI_CPHA)
  389. flags |= SPCR_CPHA_BIT;
  390. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  391. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  392. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  393. pch_spi_clear_fifo(spi->master);
  394. }
  395. /**
  396. * pch_spi_reset() - Clears SPI registers
  397. * @master: Pointer to struct spi_master.
  398. */
  399. static void pch_spi_reset(struct spi_master *master)
  400. {
  401. /* write 1 to reset SPI */
  402. pch_spi_writereg(master, PCH_SRST, 0x1);
  403. /* clear reset */
  404. pch_spi_writereg(master, PCH_SRST, 0x0);
  405. }
  406. static int pch_spi_setup(struct spi_device *pspi)
  407. {
  408. /* check bits per word */
  409. if (pspi->bits_per_word == 0) {
  410. pspi->bits_per_word = 8;
  411. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  412. }
  413. /* Check baud rate setting */
  414. /* if baud rate of chip is greater than
  415. max we can support,return error */
  416. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  417. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  418. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  419. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  420. return 0;
  421. }
  422. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  423. {
  424. struct spi_transfer *transfer;
  425. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  426. int retval;
  427. unsigned long flags;
  428. /* validate spi message and baud rate */
  429. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  430. dev_err(&pspi->dev, "%s list empty\n", __func__);
  431. retval = -EINVAL;
  432. goto err_out;
  433. }
  434. if (unlikely(pspi->max_speed_hz == 0)) {
  435. dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
  436. __func__, pspi->max_speed_hz);
  437. retval = -EINVAL;
  438. goto err_out;
  439. }
  440. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  441. "Transfer Speed is set.\n", __func__);
  442. spin_lock_irqsave(&data->lock, flags);
  443. /* validate Tx/Rx buffers and Transfer length */
  444. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  445. if (!transfer->tx_buf && !transfer->rx_buf) {
  446. dev_err(&pspi->dev,
  447. "%s Tx and Rx buffer NULL\n", __func__);
  448. retval = -EINVAL;
  449. goto err_return_spinlock;
  450. }
  451. if (!transfer->len) {
  452. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  453. __func__);
  454. retval = -EINVAL;
  455. goto err_return_spinlock;
  456. }
  457. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  458. " valid\n", __func__);
  459. /* if baud rate has been specified validate the same */
  460. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  461. transfer->speed_hz = PCH_MAX_BAUDRATE;
  462. }
  463. spin_unlock_irqrestore(&data->lock, flags);
  464. /* We won't process any messages if we have been asked to terminate */
  465. if (data->status == STATUS_EXITING) {
  466. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  467. retval = -ESHUTDOWN;
  468. goto err_out;
  469. }
  470. /* If suspended ,return -EINVAL */
  471. if (data->board_dat->suspend_sts) {
  472. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  473. retval = -EINVAL;
  474. goto err_out;
  475. }
  476. /* set status of message */
  477. pmsg->actual_length = 0;
  478. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  479. pmsg->status = -EINPROGRESS;
  480. spin_lock_irqsave(&data->lock, flags);
  481. /* add message to queue */
  482. list_add_tail(&pmsg->queue, &data->queue);
  483. spin_unlock_irqrestore(&data->lock, flags);
  484. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  485. /* schedule work queue to run */
  486. queue_work(data->wk, &data->work);
  487. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  488. retval = 0;
  489. err_out:
  490. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  491. return retval;
  492. err_return_spinlock:
  493. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  494. spin_unlock_irqrestore(&data->lock, flags);
  495. return retval;
  496. }
  497. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  498. struct spi_device *pspi)
  499. {
  500. if (data->current_chip != NULL) {
  501. if (pspi->chip_select != data->n_curnt_chip) {
  502. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  503. data->current_chip = NULL;
  504. }
  505. }
  506. data->current_chip = pspi;
  507. data->n_curnt_chip = data->current_chip->chip_select;
  508. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  509. pch_spi_setup_transfer(pspi);
  510. }
  511. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  512. {
  513. int size;
  514. u32 n_writes;
  515. int j;
  516. struct spi_message *pmsg, *tmp;
  517. const u8 *tx_buf;
  518. const u16 *tx_sbuf;
  519. /* set baud rate if needed */
  520. if (data->cur_trans->speed_hz) {
  521. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  522. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  523. }
  524. /* set bits per word if needed */
  525. if (data->cur_trans->bits_per_word &&
  526. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  527. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  528. pch_spi_set_bits_per_word(data->master,
  529. data->cur_trans->bits_per_word);
  530. *bpw = data->cur_trans->bits_per_word;
  531. } else {
  532. *bpw = data->current_msg->spi->bits_per_word;
  533. }
  534. /* reset Tx/Rx index */
  535. data->tx_index = 0;
  536. data->rx_index = 0;
  537. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  538. /* find alloc size */
  539. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  540. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  541. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  542. if (data->pkt_tx_buff != NULL) {
  543. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  544. if (!data->pkt_rx_buff)
  545. kfree(data->pkt_tx_buff);
  546. }
  547. if (!data->pkt_rx_buff) {
  548. /* flush queue and set status of all transfers to -ENOMEM */
  549. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  550. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  551. pmsg->status = -ENOMEM;
  552. if (pmsg->complete)
  553. pmsg->complete(pmsg->context);
  554. /* delete from queue */
  555. list_del_init(&pmsg->queue);
  556. }
  557. return;
  558. }
  559. /* copy Tx Data */
  560. if (data->cur_trans->tx_buf != NULL) {
  561. if (*bpw == 8) {
  562. tx_buf = data->cur_trans->tx_buf;
  563. for (j = 0; j < data->bpw_len; j++)
  564. data->pkt_tx_buff[j] = *tx_buf++;
  565. } else {
  566. tx_sbuf = data->cur_trans->tx_buf;
  567. for (j = 0; j < data->bpw_len; j++)
  568. data->pkt_tx_buff[j] = *tx_sbuf++;
  569. }
  570. }
  571. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  572. n_writes = data->bpw_len;
  573. if (n_writes > PCH_MAX_FIFO_DEPTH)
  574. n_writes = PCH_MAX_FIFO_DEPTH;
  575. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  576. "0x2 to SSNXCR\n", __func__);
  577. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  578. for (j = 0; j < n_writes; j++)
  579. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  580. /* update tx_index */
  581. data->tx_index = j;
  582. /* reset transfer complete flag */
  583. data->transfer_complete = false;
  584. data->transfer_active = true;
  585. }
  586. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  587. {
  588. struct spi_message *pmsg, *tmp;
  589. dev_dbg(&data->master->dev, "%s called\n", __func__);
  590. /* Invoke complete callback
  591. * [To the spi core..indicating end of transfer] */
  592. data->current_msg->status = 0;
  593. if (data->current_msg->complete) {
  594. dev_dbg(&data->master->dev,
  595. "%s:Invoking callback of SPI core\n", __func__);
  596. data->current_msg->complete(data->current_msg->context);
  597. }
  598. /* update status in global variable */
  599. data->bcurrent_msg_processing = false;
  600. dev_dbg(&data->master->dev,
  601. "%s:data->bcurrent_msg_processing = false\n", __func__);
  602. data->current_msg = NULL;
  603. data->cur_trans = NULL;
  604. /* check if we have items in list and not suspending
  605. * return 1 if list empty */
  606. if ((list_empty(&data->queue) == 0) &&
  607. (!data->board_dat->suspend_sts) &&
  608. (data->status != STATUS_EXITING)) {
  609. /* We have some more work to do (either there is more tranint
  610. * bpw;sfer requests in the current message or there are
  611. *more messages)
  612. */
  613. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  614. queue_work(data->wk, &data->work);
  615. } else if (data->board_dat->suspend_sts ||
  616. data->status == STATUS_EXITING) {
  617. dev_dbg(&data->master->dev,
  618. "%s suspend/remove initiated, flushing queue\n",
  619. __func__);
  620. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  621. pmsg->status = -EIO;
  622. if (pmsg->complete)
  623. pmsg->complete(pmsg->context);
  624. /* delete from queue */
  625. list_del_init(&pmsg->queue);
  626. }
  627. }
  628. }
  629. static void pch_spi_set_ir(struct pch_spi_data *data)
  630. {
  631. /* enable interrupts, set threshold, enable SPI */
  632. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  633. /* set receive threshold to PCH_RX_THOLD */
  634. pch_spi_setclr_reg(data->master, PCH_SPCR,
  635. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  636. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  637. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  638. MASK_RFIC_SPCR_BITS | PCH_ALL);
  639. else
  640. /* set receive threshold to maximum */
  641. pch_spi_setclr_reg(data->master, PCH_SPCR,
  642. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  643. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  644. SPCR_SPE_BIT,
  645. MASK_RFIC_SPCR_BITS | PCH_ALL);
  646. /* Wait until the transfer completes; go to sleep after
  647. initiating the transfer. */
  648. dev_dbg(&data->master->dev,
  649. "%s:waiting for transfer to get over\n", __func__);
  650. wait_event_interruptible(data->wait, data->transfer_complete);
  651. /* clear all interrupts */
  652. pch_spi_writereg(data->master, PCH_SPSR,
  653. pch_spi_readreg(data->master, PCH_SPSR));
  654. /* Disable interrupts and SPI transfer */
  655. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  656. /* clear FIFO */
  657. pch_spi_clear_fifo(data->master);
  658. }
  659. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  660. {
  661. int j;
  662. u8 *rx_buf;
  663. u16 *rx_sbuf;
  664. /* copy Rx Data */
  665. if (!data->cur_trans->rx_buf)
  666. return;
  667. if (bpw == 8) {
  668. rx_buf = data->cur_trans->rx_buf;
  669. for (j = 0; j < data->bpw_len; j++)
  670. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  671. } else {
  672. rx_sbuf = data->cur_trans->rx_buf;
  673. for (j = 0; j < data->bpw_len; j++)
  674. *rx_sbuf++ = data->pkt_rx_buff[j];
  675. }
  676. }
  677. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  678. {
  679. int j;
  680. u8 *rx_buf;
  681. u16 *rx_sbuf;
  682. const u8 *rx_dma_buf;
  683. const u16 *rx_dma_sbuf;
  684. /* copy Rx Data */
  685. if (!data->cur_trans->rx_buf)
  686. return;
  687. if (bpw == 8) {
  688. rx_buf = data->cur_trans->rx_buf;
  689. rx_dma_buf = data->dma.rx_buf_virt;
  690. for (j = 0; j < data->bpw_len; j++)
  691. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  692. data->cur_trans->rx_buf = rx_buf;
  693. } else {
  694. rx_sbuf = data->cur_trans->rx_buf;
  695. rx_dma_sbuf = data->dma.rx_buf_virt;
  696. for (j = 0; j < data->bpw_len; j++)
  697. *rx_sbuf++ = *rx_dma_sbuf++;
  698. data->cur_trans->rx_buf = rx_sbuf;
  699. }
  700. }
  701. static int pch_spi_start_transfer(struct pch_spi_data *data)
  702. {
  703. struct pch_spi_dma_ctrl *dma;
  704. unsigned long flags;
  705. int rtn;
  706. dma = &data->dma;
  707. spin_lock_irqsave(&data->lock, flags);
  708. /* disable interrupts, SPI set enable */
  709. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  710. spin_unlock_irqrestore(&data->lock, flags);
  711. /* Wait until the transfer completes; go to sleep after
  712. initiating the transfer. */
  713. dev_dbg(&data->master->dev,
  714. "%s:waiting for transfer to get over\n", __func__);
  715. rtn = wait_event_interruptible_timeout(data->wait,
  716. data->transfer_complete,
  717. msecs_to_jiffies(2 * HZ));
  718. if (!rtn)
  719. dev_err(&data->master->dev,
  720. "%s wait-event timeout\n", __func__);
  721. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  722. DMA_FROM_DEVICE);
  723. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  724. DMA_FROM_DEVICE);
  725. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  726. async_tx_ack(dma->desc_rx);
  727. async_tx_ack(dma->desc_tx);
  728. kfree(dma->sg_tx_p);
  729. kfree(dma->sg_rx_p);
  730. spin_lock_irqsave(&data->lock, flags);
  731. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  732. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  733. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  734. SPCR_SPE_BIT);
  735. /* clear all interrupts */
  736. pch_spi_writereg(data->master, PCH_SPSR,
  737. pch_spi_readreg(data->master, PCH_SPSR));
  738. /* clear FIFO */
  739. pch_spi_clear_fifo(data->master);
  740. spin_unlock_irqrestore(&data->lock, flags);
  741. return rtn;
  742. }
  743. static void pch_dma_rx_complete(void *arg)
  744. {
  745. struct pch_spi_data *data = arg;
  746. /* transfer is completed;inform pch_spi_process_messages_dma */
  747. data->transfer_complete = true;
  748. wake_up_interruptible(&data->wait);
  749. }
  750. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  751. {
  752. struct pch_dma_slave *param = slave;
  753. if ((chan->chan_id == param->chan_id) &&
  754. (param->dma_dev == chan->device->dev)) {
  755. chan->private = param;
  756. return true;
  757. } else {
  758. return false;
  759. }
  760. }
  761. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  762. {
  763. dma_cap_mask_t mask;
  764. struct dma_chan *chan;
  765. struct pci_dev *dma_dev;
  766. struct pch_dma_slave *param;
  767. struct pch_spi_dma_ctrl *dma;
  768. unsigned int width;
  769. if (bpw == 8)
  770. width = PCH_DMA_WIDTH_1_BYTE;
  771. else
  772. width = PCH_DMA_WIDTH_2_BYTES;
  773. dma = &data->dma;
  774. dma_cap_zero(mask);
  775. dma_cap_set(DMA_SLAVE, mask);
  776. /* Get DMA's dev information */
  777. dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
  778. PCI_DEVFN(12, 0));
  779. /* Set Tx DMA */
  780. param = &dma->param_tx;
  781. param->dma_dev = &dma_dev->dev;
  782. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  783. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  784. param->width = width;
  785. chan = dma_request_channel(mask, pch_spi_filter, param);
  786. if (!chan) {
  787. dev_err(&data->master->dev,
  788. "ERROR: dma_request_channel FAILS(Tx)\n");
  789. data->use_dma = 0;
  790. return;
  791. }
  792. dma->chan_tx = chan;
  793. /* Set Rx DMA */
  794. param = &dma->param_rx;
  795. param->dma_dev = &dma_dev->dev;
  796. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  797. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  798. param->width = width;
  799. chan = dma_request_channel(mask, pch_spi_filter, param);
  800. if (!chan) {
  801. dev_err(&data->master->dev,
  802. "ERROR: dma_request_channel FAILS(Rx)\n");
  803. dma_release_channel(dma->chan_tx);
  804. dma->chan_tx = NULL;
  805. data->use_dma = 0;
  806. return;
  807. }
  808. dma->chan_rx = chan;
  809. }
  810. static void pch_spi_release_dma(struct pch_spi_data *data)
  811. {
  812. struct pch_spi_dma_ctrl *dma;
  813. dma = &data->dma;
  814. if (dma->chan_tx) {
  815. dma_release_channel(dma->chan_tx);
  816. dma->chan_tx = NULL;
  817. }
  818. if (dma->chan_rx) {
  819. dma_release_channel(dma->chan_rx);
  820. dma->chan_rx = NULL;
  821. }
  822. return;
  823. }
  824. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  825. {
  826. const u8 *tx_buf;
  827. const u16 *tx_sbuf;
  828. u8 *tx_dma_buf;
  829. u16 *tx_dma_sbuf;
  830. struct scatterlist *sg;
  831. struct dma_async_tx_descriptor *desc_tx;
  832. struct dma_async_tx_descriptor *desc_rx;
  833. int num;
  834. int i;
  835. int size;
  836. int rem;
  837. int head;
  838. unsigned long flags;
  839. struct pch_spi_dma_ctrl *dma;
  840. dma = &data->dma;
  841. /* set baud rate if needed */
  842. if (data->cur_trans->speed_hz) {
  843. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  844. spin_lock_irqsave(&data->lock, flags);
  845. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  846. spin_unlock_irqrestore(&data->lock, flags);
  847. }
  848. /* set bits per word if needed */
  849. if (data->cur_trans->bits_per_word &&
  850. (data->current_msg->spi->bits_per_word !=
  851. data->cur_trans->bits_per_word)) {
  852. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  853. spin_lock_irqsave(&data->lock, flags);
  854. pch_spi_set_bits_per_word(data->master,
  855. data->cur_trans->bits_per_word);
  856. spin_unlock_irqrestore(&data->lock, flags);
  857. *bpw = data->cur_trans->bits_per_word;
  858. } else {
  859. *bpw = data->current_msg->spi->bits_per_word;
  860. }
  861. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  862. if (data->bpw_len > PCH_BUF_SIZE) {
  863. data->bpw_len = PCH_BUF_SIZE;
  864. data->cur_trans->len -= PCH_BUF_SIZE;
  865. }
  866. /* copy Tx Data */
  867. if (data->cur_trans->tx_buf != NULL) {
  868. if (*bpw == 8) {
  869. tx_buf = data->cur_trans->tx_buf;
  870. tx_dma_buf = dma->tx_buf_virt;
  871. for (i = 0; i < data->bpw_len; i++)
  872. *tx_dma_buf++ = *tx_buf++;
  873. } else {
  874. tx_sbuf = data->cur_trans->tx_buf;
  875. tx_dma_sbuf = dma->tx_buf_virt;
  876. for (i = 0; i < data->bpw_len; i++)
  877. *tx_dma_sbuf++ = *tx_sbuf++;
  878. }
  879. }
  880. /* Calculate Rx parameter for DMA transmitting */
  881. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  882. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  883. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  884. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  885. } else {
  886. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  887. rem = PCH_DMA_TRANS_SIZE;
  888. }
  889. size = PCH_DMA_TRANS_SIZE;
  890. } else {
  891. num = 1;
  892. size = data->bpw_len;
  893. rem = data->bpw_len;
  894. }
  895. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  896. __func__, num, size, rem);
  897. spin_lock_irqsave(&data->lock, flags);
  898. /* set receive fifo threshold and transmit fifo threshold */
  899. pch_spi_setclr_reg(data->master, PCH_SPCR,
  900. ((size - 1) << SPCR_RFIC_FIELD) |
  901. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  902. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  903. spin_unlock_irqrestore(&data->lock, flags);
  904. /* RX */
  905. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  906. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  907. /* offset, length setting */
  908. sg = dma->sg_rx_p;
  909. for (i = 0; i < num; i++, sg++) {
  910. if (i == (num - 2)) {
  911. sg->offset = size * i;
  912. sg->offset = sg->offset * (*bpw / 8);
  913. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  914. sg->offset);
  915. sg_dma_len(sg) = rem;
  916. } else if (i == (num - 1)) {
  917. sg->offset = size * (i - 1) + rem;
  918. sg->offset = sg->offset * (*bpw / 8);
  919. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  920. sg->offset);
  921. sg_dma_len(sg) = size;
  922. } else {
  923. sg->offset = size * i;
  924. sg->offset = sg->offset * (*bpw / 8);
  925. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  926. sg->offset);
  927. sg_dma_len(sg) = size;
  928. }
  929. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  930. }
  931. sg = dma->sg_rx_p;
  932. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  933. num, DMA_DEV_TO_MEM,
  934. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  935. if (!desc_rx) {
  936. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  937. __func__);
  938. return;
  939. }
  940. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  941. desc_rx->callback = pch_dma_rx_complete;
  942. desc_rx->callback_param = data;
  943. dma->nent = num;
  944. dma->desc_rx = desc_rx;
  945. /* Calculate Tx parameter for DMA transmitting */
  946. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  947. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  948. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  949. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  950. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  951. } else {
  952. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  953. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  954. PCH_DMA_TRANS_SIZE - head;
  955. }
  956. size = PCH_DMA_TRANS_SIZE;
  957. } else {
  958. num = 1;
  959. size = data->bpw_len;
  960. rem = data->bpw_len;
  961. head = 0;
  962. }
  963. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  964. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  965. /* offset, length setting */
  966. sg = dma->sg_tx_p;
  967. for (i = 0; i < num; i++, sg++) {
  968. if (i == 0) {
  969. sg->offset = 0;
  970. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  971. sg->offset);
  972. sg_dma_len(sg) = size + head;
  973. } else if (i == (num - 1)) {
  974. sg->offset = head + size * i;
  975. sg->offset = sg->offset * (*bpw / 8);
  976. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  977. sg->offset);
  978. sg_dma_len(sg) = rem;
  979. } else {
  980. sg->offset = head + size * i;
  981. sg->offset = sg->offset * (*bpw / 8);
  982. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  983. sg->offset);
  984. sg_dma_len(sg) = size;
  985. }
  986. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  987. }
  988. sg = dma->sg_tx_p;
  989. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  990. sg, num, DMA_MEM_TO_DEV,
  991. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  992. if (!desc_tx) {
  993. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  994. __func__);
  995. return;
  996. }
  997. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  998. desc_tx->callback = NULL;
  999. desc_tx->callback_param = data;
  1000. dma->nent = num;
  1001. dma->desc_tx = desc_tx;
  1002. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  1003. "0x2 to SSNXCR\n", __func__);
  1004. spin_lock_irqsave(&data->lock, flags);
  1005. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  1006. desc_rx->tx_submit(desc_rx);
  1007. desc_tx->tx_submit(desc_tx);
  1008. spin_unlock_irqrestore(&data->lock, flags);
  1009. /* reset transfer complete flag */
  1010. data->transfer_complete = false;
  1011. }
  1012. static void pch_spi_process_messages(struct work_struct *pwork)
  1013. {
  1014. struct spi_message *pmsg, *tmp;
  1015. struct pch_spi_data *data;
  1016. int bpw;
  1017. data = container_of(pwork, struct pch_spi_data, work);
  1018. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  1019. spin_lock(&data->lock);
  1020. /* check if suspend has been initiated;if yes flush queue */
  1021. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1022. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  1023. "flushing queue\n", __func__);
  1024. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  1025. pmsg->status = -EIO;
  1026. if (pmsg->complete) {
  1027. spin_unlock(&data->lock);
  1028. pmsg->complete(pmsg->context);
  1029. spin_lock(&data->lock);
  1030. }
  1031. /* delete from queue */
  1032. list_del_init(&pmsg->queue);
  1033. }
  1034. spin_unlock(&data->lock);
  1035. return;
  1036. }
  1037. data->bcurrent_msg_processing = true;
  1038. dev_dbg(&data->master->dev,
  1039. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1040. /* Get the message from the queue and delete it from there. */
  1041. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1042. queue);
  1043. list_del_init(&data->current_msg->queue);
  1044. data->current_msg->status = 0;
  1045. pch_spi_select_chip(data, data->current_msg->spi);
  1046. spin_unlock(&data->lock);
  1047. if (data->use_dma)
  1048. pch_spi_request_dma(data,
  1049. data->current_msg->spi->bits_per_word);
  1050. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1051. do {
  1052. int cnt;
  1053. /* If we are already processing a message get the next
  1054. transfer structure from the message otherwise retrieve
  1055. the 1st transfer request from the message. */
  1056. spin_lock(&data->lock);
  1057. if (data->cur_trans == NULL) {
  1058. data->cur_trans =
  1059. list_entry(data->current_msg->transfers.next,
  1060. struct spi_transfer, transfer_list);
  1061. dev_dbg(&data->master->dev, "%s "
  1062. ":Getting 1st transfer message\n", __func__);
  1063. } else {
  1064. data->cur_trans =
  1065. list_entry(data->cur_trans->transfer_list.next,
  1066. struct spi_transfer, transfer_list);
  1067. dev_dbg(&data->master->dev, "%s "
  1068. ":Getting next transfer message\n", __func__);
  1069. }
  1070. spin_unlock(&data->lock);
  1071. if (!data->cur_trans->len)
  1072. goto out;
  1073. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1074. data->save_total_len = data->cur_trans->len;
  1075. if (data->use_dma) {
  1076. int i;
  1077. char *save_rx_buf = data->cur_trans->rx_buf;
  1078. for (i = 0; i < cnt; i ++) {
  1079. pch_spi_handle_dma(data, &bpw);
  1080. if (!pch_spi_start_transfer(data)) {
  1081. data->transfer_complete = true;
  1082. data->current_msg->status = -EIO;
  1083. data->current_msg->complete
  1084. (data->current_msg->context);
  1085. data->bcurrent_msg_processing = false;
  1086. data->current_msg = NULL;
  1087. data->cur_trans = NULL;
  1088. goto out;
  1089. }
  1090. pch_spi_copy_rx_data_for_dma(data, bpw);
  1091. }
  1092. data->cur_trans->rx_buf = save_rx_buf;
  1093. } else {
  1094. pch_spi_set_tx(data, &bpw);
  1095. pch_spi_set_ir(data);
  1096. pch_spi_copy_rx_data(data, bpw);
  1097. kfree(data->pkt_rx_buff);
  1098. data->pkt_rx_buff = NULL;
  1099. kfree(data->pkt_tx_buff);
  1100. data->pkt_tx_buff = NULL;
  1101. }
  1102. /* increment message count */
  1103. data->cur_trans->len = data->save_total_len;
  1104. data->current_msg->actual_length += data->cur_trans->len;
  1105. dev_dbg(&data->master->dev,
  1106. "%s:data->current_msg->actual_length=%d\n",
  1107. __func__, data->current_msg->actual_length);
  1108. /* check for delay */
  1109. if (data->cur_trans->delay_usecs) {
  1110. dev_dbg(&data->master->dev, "%s:"
  1111. "delay in usec=%d\n", __func__,
  1112. data->cur_trans->delay_usecs);
  1113. udelay(data->cur_trans->delay_usecs);
  1114. }
  1115. spin_lock(&data->lock);
  1116. /* No more transfer in this message. */
  1117. if ((data->cur_trans->transfer_list.next) ==
  1118. &(data->current_msg->transfers)) {
  1119. pch_spi_nomore_transfer(data);
  1120. }
  1121. spin_unlock(&data->lock);
  1122. } while (data->cur_trans != NULL);
  1123. out:
  1124. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1125. if (data->use_dma)
  1126. pch_spi_release_dma(data);
  1127. }
  1128. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1129. struct pch_spi_data *data)
  1130. {
  1131. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1132. /* free workqueue */
  1133. if (data->wk != NULL) {
  1134. destroy_workqueue(data->wk);
  1135. data->wk = NULL;
  1136. dev_dbg(&board_dat->pdev->dev,
  1137. "%s destroy_workqueue invoked successfully\n",
  1138. __func__);
  1139. }
  1140. }
  1141. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1142. struct pch_spi_data *data)
  1143. {
  1144. int retval = 0;
  1145. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1146. /* create workqueue */
  1147. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1148. if (!data->wk) {
  1149. dev_err(&board_dat->pdev->dev,
  1150. "%s create_singlet hread_workqueue failed\n", __func__);
  1151. retval = -EBUSY;
  1152. goto err_return;
  1153. }
  1154. /* reset PCH SPI h/w */
  1155. pch_spi_reset(data->master);
  1156. dev_dbg(&board_dat->pdev->dev,
  1157. "%s pch_spi_reset invoked successfully\n", __func__);
  1158. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1159. err_return:
  1160. if (retval != 0) {
  1161. dev_err(&board_dat->pdev->dev,
  1162. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1163. pch_spi_free_resources(board_dat, data);
  1164. }
  1165. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1166. return retval;
  1167. }
  1168. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1169. struct pch_spi_data *data)
  1170. {
  1171. struct pch_spi_dma_ctrl *dma;
  1172. dma = &data->dma;
  1173. if (dma->tx_buf_dma)
  1174. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1175. dma->tx_buf_virt, dma->tx_buf_dma);
  1176. if (dma->rx_buf_dma)
  1177. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1178. dma->rx_buf_virt, dma->rx_buf_dma);
  1179. return;
  1180. }
  1181. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1182. struct pch_spi_data *data)
  1183. {
  1184. struct pch_spi_dma_ctrl *dma;
  1185. dma = &data->dma;
  1186. /* Get Consistent memory for Tx DMA */
  1187. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1188. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1189. /* Get Consistent memory for Rx DMA */
  1190. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1191. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1192. }
  1193. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1194. {
  1195. int ret;
  1196. struct spi_master *master;
  1197. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1198. struct pch_spi_data *data;
  1199. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1200. master = spi_alloc_master(&board_dat->pdev->dev,
  1201. sizeof(struct pch_spi_data));
  1202. if (!master) {
  1203. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1204. plat_dev->id);
  1205. return -ENOMEM;
  1206. }
  1207. data = spi_master_get_devdata(master);
  1208. data->master = master;
  1209. platform_set_drvdata(plat_dev, data);
  1210. /* baseaddress + address offset) */
  1211. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1212. PCH_ADDRESS_SIZE * plat_dev->id;
  1213. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1214. PCH_ADDRESS_SIZE * plat_dev->id;
  1215. if (!data->io_remap_addr) {
  1216. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1217. ret = -ENOMEM;
  1218. goto err_pci_iomap;
  1219. }
  1220. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1221. plat_dev->id, data->io_remap_addr);
  1222. /* initialize members of SPI master */
  1223. master->num_chipselect = PCH_MAX_CS;
  1224. master->setup = pch_spi_setup;
  1225. master->transfer = pch_spi_transfer;
  1226. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1227. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1228. data->board_dat = board_dat;
  1229. data->plat_dev = plat_dev;
  1230. data->n_curnt_chip = 255;
  1231. data->status = STATUS_RUNNING;
  1232. data->ch = plat_dev->id;
  1233. data->use_dma = use_dma;
  1234. INIT_LIST_HEAD(&data->queue);
  1235. spin_lock_init(&data->lock);
  1236. INIT_WORK(&data->work, pch_spi_process_messages);
  1237. init_waitqueue_head(&data->wait);
  1238. ret = pch_spi_get_resources(board_dat, data);
  1239. if (ret) {
  1240. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1241. goto err_spi_get_resources;
  1242. }
  1243. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1244. IRQF_SHARED, KBUILD_MODNAME, data);
  1245. if (ret) {
  1246. dev_err(&plat_dev->dev,
  1247. "%s request_irq failed\n", __func__);
  1248. goto err_request_irq;
  1249. }
  1250. data->irq_reg_sts = true;
  1251. pch_spi_set_master_mode(master);
  1252. ret = spi_register_master(master);
  1253. if (ret != 0) {
  1254. dev_err(&plat_dev->dev,
  1255. "%s spi_register_master FAILED\n", __func__);
  1256. goto err_spi_register_master;
  1257. }
  1258. if (use_dma) {
  1259. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1260. pch_alloc_dma_buf(board_dat, data);
  1261. }
  1262. return 0;
  1263. err_spi_register_master:
  1264. free_irq(board_dat->pdev->irq, data);
  1265. err_request_irq:
  1266. pch_spi_free_resources(board_dat, data);
  1267. err_spi_get_resources:
  1268. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1269. err_pci_iomap:
  1270. spi_master_put(master);
  1271. return ret;
  1272. }
  1273. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1274. {
  1275. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1276. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1277. int count;
  1278. unsigned long flags;
  1279. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1280. __func__, plat_dev->id, board_dat->pdev->irq);
  1281. if (use_dma)
  1282. pch_free_dma_buf(board_dat, data);
  1283. /* check for any pending messages; no action is taken if the queue
  1284. * is still full; but at least we tried. Unload anyway */
  1285. count = 500;
  1286. spin_lock_irqsave(&data->lock, flags);
  1287. data->status = STATUS_EXITING;
  1288. while ((list_empty(&data->queue) == 0) && --count) {
  1289. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1290. __func__);
  1291. spin_unlock_irqrestore(&data->lock, flags);
  1292. msleep(PCH_SLEEP_TIME);
  1293. spin_lock_irqsave(&data->lock, flags);
  1294. }
  1295. spin_unlock_irqrestore(&data->lock, flags);
  1296. pch_spi_free_resources(board_dat, data);
  1297. /* disable interrupts & free IRQ */
  1298. if (data->irq_reg_sts) {
  1299. /* disable interrupts */
  1300. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1301. data->irq_reg_sts = false;
  1302. free_irq(board_dat->pdev->irq, data);
  1303. }
  1304. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1305. spi_unregister_master(data->master);
  1306. return 0;
  1307. }
  1308. #ifdef CONFIG_PM
  1309. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1310. pm_message_t state)
  1311. {
  1312. u8 count;
  1313. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1314. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1315. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1316. if (!board_dat) {
  1317. dev_err(&pd_dev->dev,
  1318. "%s pci_get_drvdata returned NULL\n", __func__);
  1319. return -EFAULT;
  1320. }
  1321. /* check if the current message is processed:
  1322. Only after thats done the transfer will be suspended */
  1323. count = 255;
  1324. while ((--count) > 0) {
  1325. if (!(data->bcurrent_msg_processing))
  1326. break;
  1327. msleep(PCH_SLEEP_TIME);
  1328. }
  1329. /* Free IRQ */
  1330. if (data->irq_reg_sts) {
  1331. /* disable all interrupts */
  1332. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1333. pch_spi_reset(data->master);
  1334. free_irq(board_dat->pdev->irq, data);
  1335. data->irq_reg_sts = false;
  1336. dev_dbg(&pd_dev->dev,
  1337. "%s free_irq invoked successfully.\n", __func__);
  1338. }
  1339. return 0;
  1340. }
  1341. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1342. {
  1343. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1344. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1345. int retval;
  1346. if (!board_dat) {
  1347. dev_err(&pd_dev->dev,
  1348. "%s pci_get_drvdata returned NULL\n", __func__);
  1349. return -EFAULT;
  1350. }
  1351. if (!data->irq_reg_sts) {
  1352. /* register IRQ */
  1353. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1354. IRQF_SHARED, KBUILD_MODNAME, data);
  1355. if (retval < 0) {
  1356. dev_err(&pd_dev->dev,
  1357. "%s request_irq failed\n", __func__);
  1358. return retval;
  1359. }
  1360. /* reset PCH SPI h/w */
  1361. pch_spi_reset(data->master);
  1362. pch_spi_set_master_mode(data->master);
  1363. data->irq_reg_sts = true;
  1364. }
  1365. return 0;
  1366. }
  1367. #else
  1368. #define pch_spi_pd_suspend NULL
  1369. #define pch_spi_pd_resume NULL
  1370. #endif
  1371. static struct platform_driver pch_spi_pd_driver = {
  1372. .driver = {
  1373. .name = "pch-spi",
  1374. .owner = THIS_MODULE,
  1375. },
  1376. .probe = pch_spi_pd_probe,
  1377. .remove = pch_spi_pd_remove,
  1378. .suspend = pch_spi_pd_suspend,
  1379. .resume = pch_spi_pd_resume
  1380. };
  1381. static int pch_spi_probe(struct pci_dev *pdev,
  1382. const struct pci_device_id *id)
  1383. {
  1384. struct pch_spi_board_data *board_dat;
  1385. struct platform_device *pd_dev = NULL;
  1386. int retval;
  1387. int i;
  1388. struct pch_pd_dev_save *pd_dev_save;
  1389. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1390. if (!pd_dev_save) {
  1391. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1392. return -ENOMEM;
  1393. }
  1394. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1395. if (!board_dat) {
  1396. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1397. retval = -ENOMEM;
  1398. goto err_no_mem;
  1399. }
  1400. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1401. if (retval) {
  1402. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1403. goto pci_request_regions;
  1404. }
  1405. board_dat->pdev = pdev;
  1406. board_dat->num = id->driver_data;
  1407. pd_dev_save->num = id->driver_data;
  1408. pd_dev_save->board_dat = board_dat;
  1409. retval = pci_enable_device(pdev);
  1410. if (retval) {
  1411. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1412. goto pci_enable_device;
  1413. }
  1414. for (i = 0; i < board_dat->num; i++) {
  1415. pd_dev = platform_device_alloc("pch-spi", i);
  1416. if (!pd_dev) {
  1417. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1418. retval = -ENOMEM;
  1419. goto err_platform_device;
  1420. }
  1421. pd_dev_save->pd_save[i] = pd_dev;
  1422. pd_dev->dev.parent = &pdev->dev;
  1423. retval = platform_device_add_data(pd_dev, board_dat,
  1424. sizeof(*board_dat));
  1425. if (retval) {
  1426. dev_err(&pdev->dev,
  1427. "platform_device_add_data failed\n");
  1428. platform_device_put(pd_dev);
  1429. goto err_platform_device;
  1430. }
  1431. retval = platform_device_add(pd_dev);
  1432. if (retval) {
  1433. dev_err(&pdev->dev, "platform_device_add failed\n");
  1434. platform_device_put(pd_dev);
  1435. goto err_platform_device;
  1436. }
  1437. }
  1438. pci_set_drvdata(pdev, pd_dev_save);
  1439. return 0;
  1440. err_platform_device:
  1441. pci_disable_device(pdev);
  1442. pci_enable_device:
  1443. pci_release_regions(pdev);
  1444. pci_request_regions:
  1445. kfree(board_dat);
  1446. err_no_mem:
  1447. kfree(pd_dev_save);
  1448. return retval;
  1449. }
  1450. static void pch_spi_remove(struct pci_dev *pdev)
  1451. {
  1452. int i;
  1453. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1454. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1455. for (i = 0; i < pd_dev_save->num; i++)
  1456. platform_device_unregister(pd_dev_save->pd_save[i]);
  1457. pci_disable_device(pdev);
  1458. pci_release_regions(pdev);
  1459. kfree(pd_dev_save->board_dat);
  1460. kfree(pd_dev_save);
  1461. }
  1462. #ifdef CONFIG_PM
  1463. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1464. {
  1465. int retval;
  1466. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1467. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1468. pd_dev_save->board_dat->suspend_sts = true;
  1469. /* save config space */
  1470. retval = pci_save_state(pdev);
  1471. if (retval == 0) {
  1472. pci_enable_wake(pdev, PCI_D3hot, 0);
  1473. pci_disable_device(pdev);
  1474. pci_set_power_state(pdev, PCI_D3hot);
  1475. } else {
  1476. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1477. }
  1478. return retval;
  1479. }
  1480. static int pch_spi_resume(struct pci_dev *pdev)
  1481. {
  1482. int retval;
  1483. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1484. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1485. pci_set_power_state(pdev, PCI_D0);
  1486. pci_restore_state(pdev);
  1487. retval = pci_enable_device(pdev);
  1488. if (retval < 0) {
  1489. dev_err(&pdev->dev,
  1490. "%s pci_enable_device failed\n", __func__);
  1491. } else {
  1492. pci_enable_wake(pdev, PCI_D3hot, 0);
  1493. /* set suspend status to false */
  1494. pd_dev_save->board_dat->suspend_sts = false;
  1495. }
  1496. return retval;
  1497. }
  1498. #else
  1499. #define pch_spi_suspend NULL
  1500. #define pch_spi_resume NULL
  1501. #endif
  1502. static struct pci_driver pch_spi_pcidev_driver = {
  1503. .name = "pch_spi",
  1504. .id_table = pch_spi_pcidev_id,
  1505. .probe = pch_spi_probe,
  1506. .remove = pch_spi_remove,
  1507. .suspend = pch_spi_suspend,
  1508. .resume = pch_spi_resume,
  1509. };
  1510. static int __init pch_spi_init(void)
  1511. {
  1512. int ret;
  1513. ret = platform_driver_register(&pch_spi_pd_driver);
  1514. if (ret)
  1515. return ret;
  1516. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1517. if (ret) {
  1518. platform_driver_unregister(&pch_spi_pd_driver);
  1519. return ret;
  1520. }
  1521. return 0;
  1522. }
  1523. module_init(pch_spi_init);
  1524. static void __exit pch_spi_exit(void)
  1525. {
  1526. pci_unregister_driver(&pch_spi_pcidev_driver);
  1527. platform_driver_unregister(&pch_spi_pd_driver);
  1528. }
  1529. module_exit(pch_spi_exit);
  1530. module_param(use_dma, int, 0644);
  1531. MODULE_PARM_DESC(use_dma,
  1532. "to use DMA for data transfers pass 1 else 0; default 1");
  1533. MODULE_LICENSE("GPL");
  1534. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1535. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);