spi-mxs.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/init.h>
  32. #include <linux/ioport.h>
  33. #include <linux/of.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_gpio.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/highmem.h>
  42. #include <linux/clk.h>
  43. #include <linux/err.h>
  44. #include <linux/completion.h>
  45. #include <linux/gpio.h>
  46. #include <linux/regulator/consumer.h>
  47. #include <linux/module.h>
  48. #include <linux/stmp_device.h>
  49. #include <linux/spi/spi.h>
  50. #include <linux/spi/mxs-spi.h>
  51. #define DRIVER_NAME "mxs-spi"
  52. /* Use 10S timeout for very long transfers, it should suffice. */
  53. #define SSP_TIMEOUT 10000
  54. #define SG_MAXLEN 0xff00
  55. struct mxs_spi {
  56. struct mxs_ssp ssp;
  57. struct completion c;
  58. };
  59. static int mxs_spi_setup_transfer(struct spi_device *dev,
  60. struct spi_transfer *t)
  61. {
  62. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  63. struct mxs_ssp *ssp = &spi->ssp;
  64. uint32_t hz = 0;
  65. hz = dev->max_speed_hz;
  66. if (t && t->speed_hz)
  67. hz = min(hz, t->speed_hz);
  68. if (hz == 0) {
  69. dev_err(&dev->dev, "Cannot continue with zero clock\n");
  70. return -EINVAL;
  71. }
  72. mxs_ssp_set_clk_rate(ssp, hz);
  73. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  74. BF_SSP_CTRL1_WORD_LENGTH
  75. (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  76. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  77. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  78. ssp->base + HW_SSP_CTRL1(ssp));
  79. writel(0x0, ssp->base + HW_SSP_CMD0);
  80. writel(0x0, ssp->base + HW_SSP_CMD1);
  81. return 0;
  82. }
  83. static int mxs_spi_setup(struct spi_device *dev)
  84. {
  85. int err = 0;
  86. if (!dev->bits_per_word)
  87. dev->bits_per_word = 8;
  88. if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
  89. return -EINVAL;
  90. err = mxs_spi_setup_transfer(dev, NULL);
  91. if (err) {
  92. dev_err(&dev->dev,
  93. "Failed to setup transfer, error = %d\n", err);
  94. }
  95. return err;
  96. }
  97. static uint32_t mxs_spi_cs_to_reg(unsigned cs)
  98. {
  99. uint32_t select = 0;
  100. /*
  101. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  102. *
  103. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  104. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  105. * the datasheet for further details. In SPI mode, they are used to
  106. * toggle the chip-select lines (nCS pins).
  107. */
  108. if (cs & 1)
  109. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  110. if (cs & 2)
  111. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  112. return select;
  113. }
  114. static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
  115. {
  116. const uint32_t mask =
  117. BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
  118. uint32_t select;
  119. struct mxs_ssp *ssp = &spi->ssp;
  120. writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  121. select = mxs_spi_cs_to_reg(cs);
  122. writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  123. }
  124. static inline void mxs_spi_enable(struct mxs_spi *spi)
  125. {
  126. struct mxs_ssp *ssp = &spi->ssp;
  127. writel(BM_SSP_CTRL0_LOCK_CS,
  128. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  129. writel(BM_SSP_CTRL0_IGNORE_CRC,
  130. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  131. }
  132. static inline void mxs_spi_disable(struct mxs_spi *spi)
  133. {
  134. struct mxs_ssp *ssp = &spi->ssp;
  135. writel(BM_SSP_CTRL0_LOCK_CS,
  136. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  137. writel(BM_SSP_CTRL0_IGNORE_CRC,
  138. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  139. }
  140. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  141. {
  142. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  143. struct mxs_ssp *ssp = &spi->ssp;
  144. uint32_t reg;
  145. do {
  146. reg = readl_relaxed(ssp->base + offset);
  147. if (!set)
  148. reg = ~reg;
  149. reg &= mask;
  150. if (reg == mask)
  151. return 0;
  152. } while (time_before(jiffies, timeout));
  153. return -ETIMEDOUT;
  154. }
  155. static void mxs_ssp_dma_irq_callback(void *param)
  156. {
  157. struct mxs_spi *spi = param;
  158. complete(&spi->c);
  159. }
  160. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  161. {
  162. struct mxs_ssp *ssp = dev_id;
  163. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  164. __func__, __LINE__,
  165. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  166. readl(ssp->base + HW_SSP_STATUS(ssp)));
  167. return IRQ_HANDLED;
  168. }
  169. static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
  170. unsigned char *buf, int len,
  171. int *first, int *last, int write)
  172. {
  173. struct mxs_ssp *ssp = &spi->ssp;
  174. struct dma_async_tx_descriptor *desc = NULL;
  175. const bool vmalloced_buf = is_vmalloc_addr(buf);
  176. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  177. const int sgs = DIV_ROUND_UP(len, desc_len);
  178. int sg_count;
  179. int min, ret;
  180. uint32_t ctrl0;
  181. struct page *vm_page;
  182. void *sg_buf;
  183. struct {
  184. uint32_t pio[4];
  185. struct scatterlist sg;
  186. } *dma_xfer;
  187. if (!len)
  188. return -EINVAL;
  189. dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
  190. if (!dma_xfer)
  191. return -ENOMEM;
  192. INIT_COMPLETION(spi->c);
  193. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  194. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  195. ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
  196. if (*first)
  197. ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
  198. if (!write)
  199. ctrl0 |= BM_SSP_CTRL0_READ;
  200. /* Queue the DMA data transfer. */
  201. for (sg_count = 0; sg_count < sgs; sg_count++) {
  202. min = min(len, desc_len);
  203. /* Prepare the transfer descriptor. */
  204. if ((sg_count + 1 == sgs) && *last)
  205. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  206. if (ssp->devid == IMX23_SSP) {
  207. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  208. ctrl0 |= min;
  209. }
  210. dma_xfer[sg_count].pio[0] = ctrl0;
  211. dma_xfer[sg_count].pio[3] = min;
  212. if (vmalloced_buf) {
  213. vm_page = vmalloc_to_page(buf);
  214. if (!vm_page) {
  215. ret = -ENOMEM;
  216. goto err_vmalloc;
  217. }
  218. sg_buf = page_address(vm_page) +
  219. ((size_t)buf & ~PAGE_MASK);
  220. } else {
  221. sg_buf = buf;
  222. }
  223. sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
  224. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  225. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  226. len -= min;
  227. buf += min;
  228. /* Queue the PIO register write transfer. */
  229. desc = dmaengine_prep_slave_sg(ssp->dmach,
  230. (struct scatterlist *)dma_xfer[sg_count].pio,
  231. (ssp->devid == IMX23_SSP) ? 1 : 4,
  232. DMA_TRANS_NONE,
  233. sg_count ? DMA_PREP_INTERRUPT : 0);
  234. if (!desc) {
  235. dev_err(ssp->dev,
  236. "Failed to get PIO reg. write descriptor.\n");
  237. ret = -EINVAL;
  238. goto err_mapped;
  239. }
  240. desc = dmaengine_prep_slave_sg(ssp->dmach,
  241. &dma_xfer[sg_count].sg, 1,
  242. write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  243. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  244. if (!desc) {
  245. dev_err(ssp->dev,
  246. "Failed to get DMA data write descriptor.\n");
  247. ret = -EINVAL;
  248. goto err_mapped;
  249. }
  250. }
  251. /*
  252. * The last descriptor must have this callback,
  253. * to finish the DMA transaction.
  254. */
  255. desc->callback = mxs_ssp_dma_irq_callback;
  256. desc->callback_param = spi;
  257. /* Start the transfer. */
  258. dmaengine_submit(desc);
  259. dma_async_issue_pending(ssp->dmach);
  260. ret = wait_for_completion_timeout(&spi->c,
  261. msecs_to_jiffies(SSP_TIMEOUT));
  262. if (!ret) {
  263. dev_err(ssp->dev, "DMA transfer timeout\n");
  264. ret = -ETIMEDOUT;
  265. dmaengine_terminate_all(ssp->dmach);
  266. goto err_vmalloc;
  267. }
  268. ret = 0;
  269. err_vmalloc:
  270. while (--sg_count >= 0) {
  271. err_mapped:
  272. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  273. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  274. }
  275. kfree(dma_xfer);
  276. return ret;
  277. }
  278. static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
  279. unsigned char *buf, int len,
  280. int *first, int *last, int write)
  281. {
  282. struct mxs_ssp *ssp = &spi->ssp;
  283. if (*first)
  284. mxs_spi_enable(spi);
  285. mxs_spi_set_cs(spi, cs);
  286. while (len--) {
  287. if (*last && len == 0)
  288. mxs_spi_disable(spi);
  289. if (ssp->devid == IMX23_SSP) {
  290. writel(BM_SSP_CTRL0_XFER_COUNT,
  291. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  292. writel(1,
  293. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  294. } else {
  295. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  296. }
  297. if (write)
  298. writel(BM_SSP_CTRL0_READ,
  299. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  300. else
  301. writel(BM_SSP_CTRL0_READ,
  302. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  303. writel(BM_SSP_CTRL0_RUN,
  304. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  305. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  306. return -ETIMEDOUT;
  307. if (write)
  308. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  309. writel(BM_SSP_CTRL0_DATA_XFER,
  310. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  311. if (!write) {
  312. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  313. BM_SSP_STATUS_FIFO_EMPTY, 0))
  314. return -ETIMEDOUT;
  315. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  316. }
  317. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  318. return -ETIMEDOUT;
  319. buf++;
  320. }
  321. if (len <= 0)
  322. return 0;
  323. return -ETIMEDOUT;
  324. }
  325. static int mxs_spi_transfer_one(struct spi_master *master,
  326. struct spi_message *m)
  327. {
  328. struct mxs_spi *spi = spi_master_get_devdata(master);
  329. struct mxs_ssp *ssp = &spi->ssp;
  330. int first, last;
  331. struct spi_transfer *t, *tmp_t;
  332. int status = 0;
  333. int cs;
  334. first = last = 0;
  335. cs = m->spi->chip_select;
  336. list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
  337. status = mxs_spi_setup_transfer(m->spi, t);
  338. if (status)
  339. break;
  340. if (&t->transfer_list == m->transfers.next)
  341. first = 1;
  342. if (&t->transfer_list == m->transfers.prev)
  343. last = 1;
  344. if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
  345. dev_err(ssp->dev,
  346. "Cannot send and receive simultaneously\n");
  347. status = -EINVAL;
  348. break;
  349. }
  350. /*
  351. * Small blocks can be transfered via PIO.
  352. * Measured by empiric means:
  353. *
  354. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  355. *
  356. * DMA only: 2.164808 seconds, 473.0KB/s
  357. * Combined: 1.676276 seconds, 610.9KB/s
  358. */
  359. if (t->len < 32) {
  360. writel(BM_SSP_CTRL1_DMA_ENABLE,
  361. ssp->base + HW_SSP_CTRL1(ssp) +
  362. STMP_OFFSET_REG_CLR);
  363. if (t->tx_buf)
  364. status = mxs_spi_txrx_pio(spi, cs,
  365. (void *)t->tx_buf,
  366. t->len, &first, &last, 1);
  367. if (t->rx_buf)
  368. status = mxs_spi_txrx_pio(spi, cs,
  369. t->rx_buf, t->len,
  370. &first, &last, 0);
  371. } else {
  372. writel(BM_SSP_CTRL1_DMA_ENABLE,
  373. ssp->base + HW_SSP_CTRL1(ssp) +
  374. STMP_OFFSET_REG_SET);
  375. if (t->tx_buf)
  376. status = mxs_spi_txrx_dma(spi, cs,
  377. (void *)t->tx_buf, t->len,
  378. &first, &last, 1);
  379. if (t->rx_buf)
  380. status = mxs_spi_txrx_dma(spi, cs,
  381. t->rx_buf, t->len,
  382. &first, &last, 0);
  383. }
  384. if (status) {
  385. stmp_reset_block(ssp->base);
  386. break;
  387. }
  388. m->actual_length += t->len;
  389. first = last = 0;
  390. }
  391. m->status = status;
  392. spi_finalize_current_message(master);
  393. return status;
  394. }
  395. static const struct of_device_id mxs_spi_dt_ids[] = {
  396. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  397. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  398. { /* sentinel */ }
  399. };
  400. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  401. static int mxs_spi_probe(struct platform_device *pdev)
  402. {
  403. const struct of_device_id *of_id =
  404. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  405. struct device_node *np = pdev->dev.of_node;
  406. struct spi_master *master;
  407. struct mxs_spi *spi;
  408. struct mxs_ssp *ssp;
  409. struct resource *iores;
  410. struct clk *clk;
  411. void __iomem *base;
  412. int devid, clk_freq;
  413. int ret = 0, irq_err;
  414. /*
  415. * Default clock speed for the SPI core. 160MHz seems to
  416. * work reasonably well with most SPI flashes, so use this
  417. * as a default. Override with "clock-frequency" DT prop.
  418. */
  419. const int clk_freq_default = 160000000;
  420. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  421. irq_err = platform_get_irq(pdev, 0);
  422. if (irq_err < 0)
  423. return -EINVAL;
  424. base = devm_ioremap_resource(&pdev->dev, iores);
  425. if (IS_ERR(base))
  426. return PTR_ERR(base);
  427. clk = devm_clk_get(&pdev->dev, NULL);
  428. if (IS_ERR(clk))
  429. return PTR_ERR(clk);
  430. devid = (enum mxs_ssp_id) of_id->data;
  431. ret = of_property_read_u32(np, "clock-frequency",
  432. &clk_freq);
  433. if (ret)
  434. clk_freq = clk_freq_default;
  435. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  436. if (!master)
  437. return -ENOMEM;
  438. master->transfer_one_message = mxs_spi_transfer_one;
  439. master->setup = mxs_spi_setup;
  440. master->bits_per_word_mask = SPI_BPW_MASK(8);
  441. master->mode_bits = SPI_CPOL | SPI_CPHA;
  442. master->num_chipselect = 3;
  443. master->dev.of_node = np;
  444. master->flags = SPI_MASTER_HALF_DUPLEX;
  445. spi = spi_master_get_devdata(master);
  446. ssp = &spi->ssp;
  447. ssp->dev = &pdev->dev;
  448. ssp->clk = clk;
  449. ssp->base = base;
  450. ssp->devid = devid;
  451. init_completion(&spi->c);
  452. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  453. DRIVER_NAME, ssp);
  454. if (ret)
  455. goto out_master_free;
  456. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  457. if (!ssp->dmach) {
  458. dev_err(ssp->dev, "Failed to request DMA\n");
  459. ret = -ENODEV;
  460. goto out_master_free;
  461. }
  462. ret = clk_prepare_enable(ssp->clk);
  463. if (ret)
  464. goto out_dma_release;
  465. clk_set_rate(ssp->clk, clk_freq);
  466. ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
  467. ret = stmp_reset_block(ssp->base);
  468. if (ret)
  469. goto out_disable_clk;
  470. platform_set_drvdata(pdev, master);
  471. ret = spi_register_master(master);
  472. if (ret) {
  473. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  474. goto out_disable_clk;
  475. }
  476. return 0;
  477. out_disable_clk:
  478. clk_disable_unprepare(ssp->clk);
  479. out_dma_release:
  480. dma_release_channel(ssp->dmach);
  481. out_master_free:
  482. spi_master_put(master);
  483. return ret;
  484. }
  485. static int mxs_spi_remove(struct platform_device *pdev)
  486. {
  487. struct spi_master *master;
  488. struct mxs_spi *spi;
  489. struct mxs_ssp *ssp;
  490. master = spi_master_get(platform_get_drvdata(pdev));
  491. spi = spi_master_get_devdata(master);
  492. ssp = &spi->ssp;
  493. spi_unregister_master(master);
  494. clk_disable_unprepare(ssp->clk);
  495. dma_release_channel(ssp->dmach);
  496. spi_master_put(master);
  497. return 0;
  498. }
  499. static struct platform_driver mxs_spi_driver = {
  500. .probe = mxs_spi_probe,
  501. .remove = mxs_spi_remove,
  502. .driver = {
  503. .name = DRIVER_NAME,
  504. .owner = THIS_MODULE,
  505. .of_match_table = mxs_spi_dt_ids,
  506. },
  507. };
  508. module_platform_driver(mxs_spi_driver);
  509. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  510. MODULE_DESCRIPTION("MXS SPI master driver");
  511. MODULE_LICENSE("GPL");
  512. MODULE_ALIAS("platform:mxs-spi");