spi-fsl-espi.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. /*
  2. * Freescale eSPI controller driver.
  3. *
  4. * Copyright 2010 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/irq.h>
  14. #include <linux/spi/spi.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/fsl_devices.h>
  17. #include <linux/mm.h>
  18. #include <linux/of.h>
  19. #include <linux/of_platform.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/err.h>
  22. #include <sysdev/fsl_soc.h>
  23. #include "spi-fsl-lib.h"
  24. /* eSPI Controller registers */
  25. struct fsl_espi_reg {
  26. __be32 mode; /* 0x000 - eSPI mode register */
  27. __be32 event; /* 0x004 - eSPI event register */
  28. __be32 mask; /* 0x008 - eSPI mask register */
  29. __be32 command; /* 0x00c - eSPI command register */
  30. __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
  31. __be32 receive; /* 0x014 - eSPI receive FIFO access register*/
  32. u8 res[8]; /* 0x018 - 0x01c reserved */
  33. __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
  34. };
  35. struct fsl_espi_transfer {
  36. const void *tx_buf;
  37. void *rx_buf;
  38. unsigned len;
  39. unsigned n_tx;
  40. unsigned n_rx;
  41. unsigned actual_length;
  42. int status;
  43. };
  44. /* eSPI Controller mode register definitions */
  45. #define SPMODE_ENABLE (1 << 31)
  46. #define SPMODE_LOOP (1 << 30)
  47. #define SPMODE_TXTHR(x) ((x) << 8)
  48. #define SPMODE_RXTHR(x) ((x) << 0)
  49. /* eSPI Controller CS mode register definitions */
  50. #define CSMODE_CI_INACTIVEHIGH (1 << 31)
  51. #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
  52. #define CSMODE_REV (1 << 29)
  53. #define CSMODE_DIV16 (1 << 28)
  54. #define CSMODE_PM(x) ((x) << 24)
  55. #define CSMODE_POL_1 (1 << 20)
  56. #define CSMODE_LEN(x) ((x) << 16)
  57. #define CSMODE_BEF(x) ((x) << 12)
  58. #define CSMODE_AFT(x) ((x) << 8)
  59. #define CSMODE_CG(x) ((x) << 3)
  60. /* Default mode/csmode for eSPI controller */
  61. #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
  62. #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  63. | CSMODE_AFT(0) | CSMODE_CG(1))
  64. /* SPIE register values */
  65. #define SPIE_NE 0x00000200 /* Not empty */
  66. #define SPIE_NF 0x00000100 /* Not full */
  67. /* SPIM register values */
  68. #define SPIM_NE 0x00000200 /* Not empty */
  69. #define SPIM_NF 0x00000100 /* Not full */
  70. #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
  71. #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
  72. /* SPCOM register values */
  73. #define SPCOM_CS(x) ((x) << 30)
  74. #define SPCOM_TRANLEN(x) ((x) << 0)
  75. #define SPCOM_TRANLEN_MAX 0xFFFF /* Max transaction length */
  76. static void fsl_espi_change_mode(struct spi_device *spi)
  77. {
  78. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  79. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  80. struct fsl_espi_reg *reg_base = mspi->reg_base;
  81. __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
  82. __be32 __iomem *espi_mode = &reg_base->mode;
  83. u32 tmp;
  84. unsigned long flags;
  85. /* Turn off IRQs locally to minimize time that SPI is disabled. */
  86. local_irq_save(flags);
  87. /* Turn off SPI unit prior changing mode */
  88. tmp = mpc8xxx_spi_read_reg(espi_mode);
  89. mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
  90. mpc8xxx_spi_write_reg(mode, cs->hw_mode);
  91. mpc8xxx_spi_write_reg(espi_mode, tmp);
  92. local_irq_restore(flags);
  93. }
  94. static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
  95. {
  96. u32 data;
  97. u16 data_h;
  98. u16 data_l;
  99. const u32 *tx = mpc8xxx_spi->tx;
  100. if (!tx)
  101. return 0;
  102. data = *tx++ << mpc8xxx_spi->tx_shift;
  103. data_l = data & 0xffff;
  104. data_h = (data >> 16) & 0xffff;
  105. swab16s(&data_l);
  106. swab16s(&data_h);
  107. data = data_h | data_l;
  108. mpc8xxx_spi->tx = tx;
  109. return data;
  110. }
  111. static int fsl_espi_setup_transfer(struct spi_device *spi,
  112. struct spi_transfer *t)
  113. {
  114. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  115. int bits_per_word = 0;
  116. u8 pm;
  117. u32 hz = 0;
  118. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  119. if (t) {
  120. bits_per_word = t->bits_per_word;
  121. hz = t->speed_hz;
  122. }
  123. /* spi_transfer level calls that work per-word */
  124. if (!bits_per_word)
  125. bits_per_word = spi->bits_per_word;
  126. if (!hz)
  127. hz = spi->max_speed_hz;
  128. cs->rx_shift = 0;
  129. cs->tx_shift = 0;
  130. cs->get_rx = mpc8xxx_spi_rx_buf_u32;
  131. cs->get_tx = mpc8xxx_spi_tx_buf_u32;
  132. if (bits_per_word <= 8) {
  133. cs->rx_shift = 8 - bits_per_word;
  134. } else {
  135. cs->rx_shift = 16 - bits_per_word;
  136. if (spi->mode & SPI_LSB_FIRST)
  137. cs->get_tx = fsl_espi_tx_buf_lsb;
  138. }
  139. mpc8xxx_spi->rx_shift = cs->rx_shift;
  140. mpc8xxx_spi->tx_shift = cs->tx_shift;
  141. mpc8xxx_spi->get_rx = cs->get_rx;
  142. mpc8xxx_spi->get_tx = cs->get_tx;
  143. bits_per_word = bits_per_word - 1;
  144. /* mask out bits we are going to set */
  145. cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
  146. cs->hw_mode |= CSMODE_LEN(bits_per_word);
  147. if ((mpc8xxx_spi->spibrg / hz) > 64) {
  148. cs->hw_mode |= CSMODE_DIV16;
  149. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
  150. WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
  151. "Will use %d Hz instead.\n", dev_name(&spi->dev),
  152. hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
  153. if (pm > 33)
  154. pm = 33;
  155. } else {
  156. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
  157. }
  158. if (pm)
  159. pm--;
  160. if (pm < 2)
  161. pm = 2;
  162. cs->hw_mode |= CSMODE_PM(pm);
  163. fsl_espi_change_mode(spi);
  164. return 0;
  165. }
  166. static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
  167. unsigned int len)
  168. {
  169. u32 word;
  170. struct fsl_espi_reg *reg_base = mspi->reg_base;
  171. mspi->count = len;
  172. /* enable rx ints */
  173. mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
  174. /* transmit word */
  175. word = mspi->get_tx(mspi);
  176. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  177. return 0;
  178. }
  179. static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
  180. {
  181. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  182. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  183. unsigned int len = t->len;
  184. u8 bits_per_word;
  185. int ret;
  186. bits_per_word = spi->bits_per_word;
  187. if (t->bits_per_word)
  188. bits_per_word = t->bits_per_word;
  189. mpc8xxx_spi->len = t->len;
  190. len = roundup(len, 4) / 4;
  191. mpc8xxx_spi->tx = t->tx_buf;
  192. mpc8xxx_spi->rx = t->rx_buf;
  193. INIT_COMPLETION(mpc8xxx_spi->done);
  194. /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
  195. if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
  196. dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
  197. " beyond the SPCOM[TRANLEN] field\n", t->len);
  198. return -EINVAL;
  199. }
  200. mpc8xxx_spi_write_reg(&reg_base->command,
  201. (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
  202. ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
  203. if (ret)
  204. return ret;
  205. wait_for_completion(&mpc8xxx_spi->done);
  206. /* disable rx ints */
  207. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  208. return mpc8xxx_spi->count;
  209. }
  210. static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
  211. {
  212. if (cmd) {
  213. cmd[1] = (u8)(addr >> 16);
  214. cmd[2] = (u8)(addr >> 8);
  215. cmd[3] = (u8)(addr >> 0);
  216. }
  217. }
  218. static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
  219. {
  220. if (cmd)
  221. return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
  222. return 0;
  223. }
  224. static void fsl_espi_do_trans(struct spi_message *m,
  225. struct fsl_espi_transfer *tr)
  226. {
  227. struct spi_device *spi = m->spi;
  228. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  229. struct fsl_espi_transfer *espi_trans = tr;
  230. struct spi_message message;
  231. struct spi_transfer *t, *first, trans;
  232. int status = 0;
  233. spi_message_init(&message);
  234. memset(&trans, 0, sizeof(trans));
  235. first = list_first_entry(&m->transfers, struct spi_transfer,
  236. transfer_list);
  237. list_for_each_entry(t, &m->transfers, transfer_list) {
  238. if ((first->bits_per_word != t->bits_per_word) ||
  239. (first->speed_hz != t->speed_hz)) {
  240. espi_trans->status = -EINVAL;
  241. dev_err(mspi->dev, "bits_per_word/speed_hz should be"
  242. " same for the same SPI transfer\n");
  243. return;
  244. }
  245. trans.speed_hz = t->speed_hz;
  246. trans.bits_per_word = t->bits_per_word;
  247. trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
  248. }
  249. trans.len = espi_trans->len;
  250. trans.tx_buf = espi_trans->tx_buf;
  251. trans.rx_buf = espi_trans->rx_buf;
  252. spi_message_add_tail(&trans, &message);
  253. list_for_each_entry(t, &message.transfers, transfer_list) {
  254. if (t->bits_per_word || t->speed_hz) {
  255. status = -EINVAL;
  256. status = fsl_espi_setup_transfer(spi, t);
  257. if (status < 0)
  258. break;
  259. }
  260. if (t->len)
  261. status = fsl_espi_bufs(spi, t);
  262. if (status) {
  263. status = -EMSGSIZE;
  264. break;
  265. }
  266. if (t->delay_usecs)
  267. udelay(t->delay_usecs);
  268. }
  269. espi_trans->status = status;
  270. fsl_espi_setup_transfer(spi, NULL);
  271. }
  272. static void fsl_espi_cmd_trans(struct spi_message *m,
  273. struct fsl_espi_transfer *trans, u8 *rx_buff)
  274. {
  275. struct spi_transfer *t;
  276. u8 *local_buf;
  277. int i = 0;
  278. struct fsl_espi_transfer *espi_trans = trans;
  279. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  280. if (!local_buf) {
  281. espi_trans->status = -ENOMEM;
  282. return;
  283. }
  284. list_for_each_entry(t, &m->transfers, transfer_list) {
  285. if (t->tx_buf) {
  286. memcpy(local_buf + i, t->tx_buf, t->len);
  287. i += t->len;
  288. }
  289. }
  290. espi_trans->tx_buf = local_buf;
  291. espi_trans->rx_buf = local_buf + espi_trans->n_tx;
  292. fsl_espi_do_trans(m, espi_trans);
  293. espi_trans->actual_length = espi_trans->len;
  294. kfree(local_buf);
  295. }
  296. static void fsl_espi_rw_trans(struct spi_message *m,
  297. struct fsl_espi_transfer *trans, u8 *rx_buff)
  298. {
  299. struct fsl_espi_transfer *espi_trans = trans;
  300. unsigned int n_tx = espi_trans->n_tx;
  301. unsigned int n_rx = espi_trans->n_rx;
  302. struct spi_transfer *t;
  303. u8 *local_buf;
  304. u8 *rx_buf = rx_buff;
  305. unsigned int trans_len;
  306. unsigned int addr;
  307. int i, pos, loop;
  308. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  309. if (!local_buf) {
  310. espi_trans->status = -ENOMEM;
  311. return;
  312. }
  313. for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
  314. trans_len = n_rx - pos;
  315. if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
  316. trans_len = SPCOM_TRANLEN_MAX - n_tx;
  317. i = 0;
  318. list_for_each_entry(t, &m->transfers, transfer_list) {
  319. if (t->tx_buf) {
  320. memcpy(local_buf + i, t->tx_buf, t->len);
  321. i += t->len;
  322. }
  323. }
  324. if (pos > 0) {
  325. addr = fsl_espi_cmd2addr(local_buf);
  326. addr += pos;
  327. fsl_espi_addr2cmd(addr, local_buf);
  328. }
  329. espi_trans->n_tx = n_tx;
  330. espi_trans->n_rx = trans_len;
  331. espi_trans->len = trans_len + n_tx;
  332. espi_trans->tx_buf = local_buf;
  333. espi_trans->rx_buf = local_buf + n_tx;
  334. fsl_espi_do_trans(m, espi_trans);
  335. memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
  336. if (loop > 0)
  337. espi_trans->actual_length += espi_trans->len - n_tx;
  338. else
  339. espi_trans->actual_length += espi_trans->len;
  340. }
  341. kfree(local_buf);
  342. }
  343. static void fsl_espi_do_one_msg(struct spi_message *m)
  344. {
  345. struct spi_transfer *t;
  346. u8 *rx_buf = NULL;
  347. unsigned int n_tx = 0;
  348. unsigned int n_rx = 0;
  349. struct fsl_espi_transfer espi_trans;
  350. list_for_each_entry(t, &m->transfers, transfer_list) {
  351. if (t->tx_buf)
  352. n_tx += t->len;
  353. if (t->rx_buf) {
  354. n_rx += t->len;
  355. rx_buf = t->rx_buf;
  356. }
  357. }
  358. espi_trans.n_tx = n_tx;
  359. espi_trans.n_rx = n_rx;
  360. espi_trans.len = n_tx + n_rx;
  361. espi_trans.actual_length = 0;
  362. espi_trans.status = 0;
  363. if (!rx_buf)
  364. fsl_espi_cmd_trans(m, &espi_trans, NULL);
  365. else
  366. fsl_espi_rw_trans(m, &espi_trans, rx_buf);
  367. m->actual_length = espi_trans.actual_length;
  368. m->status = espi_trans.status;
  369. m->complete(m->context);
  370. }
  371. static int fsl_espi_setup(struct spi_device *spi)
  372. {
  373. struct mpc8xxx_spi *mpc8xxx_spi;
  374. struct fsl_espi_reg *reg_base;
  375. int retval;
  376. u32 hw_mode;
  377. u32 loop_mode;
  378. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  379. if (!spi->max_speed_hz)
  380. return -EINVAL;
  381. if (!cs) {
  382. cs = kzalloc(sizeof *cs, GFP_KERNEL);
  383. if (!cs)
  384. return -ENOMEM;
  385. spi->controller_state = cs;
  386. }
  387. mpc8xxx_spi = spi_master_get_devdata(spi->master);
  388. reg_base = mpc8xxx_spi->reg_base;
  389. hw_mode = cs->hw_mode; /* Save original settings */
  390. cs->hw_mode = mpc8xxx_spi_read_reg(
  391. &reg_base->csmode[spi->chip_select]);
  392. /* mask out bits we are going to set */
  393. cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
  394. | CSMODE_REV);
  395. if (spi->mode & SPI_CPHA)
  396. cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
  397. if (spi->mode & SPI_CPOL)
  398. cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
  399. if (!(spi->mode & SPI_LSB_FIRST))
  400. cs->hw_mode |= CSMODE_REV;
  401. /* Handle the loop mode */
  402. loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
  403. loop_mode &= ~SPMODE_LOOP;
  404. if (spi->mode & SPI_LOOP)
  405. loop_mode |= SPMODE_LOOP;
  406. mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
  407. retval = fsl_espi_setup_transfer(spi, NULL);
  408. if (retval < 0) {
  409. cs->hw_mode = hw_mode; /* Restore settings */
  410. return retval;
  411. }
  412. return 0;
  413. }
  414. void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
  415. {
  416. struct fsl_espi_reg *reg_base = mspi->reg_base;
  417. /* We need handle RX first */
  418. if (events & SPIE_NE) {
  419. u32 rx_data, tmp;
  420. u8 rx_data_8;
  421. /* Spin until RX is done */
  422. while (SPIE_RXCNT(events) < min(4, mspi->len)) {
  423. cpu_relax();
  424. events = mpc8xxx_spi_read_reg(&reg_base->event);
  425. }
  426. if (mspi->len >= 4) {
  427. rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
  428. } else {
  429. tmp = mspi->len;
  430. rx_data = 0;
  431. while (tmp--) {
  432. rx_data_8 = in_8((u8 *)&reg_base->receive);
  433. rx_data |= (rx_data_8 << (tmp * 8));
  434. }
  435. rx_data <<= (4 - mspi->len) * 8;
  436. }
  437. mspi->len -= 4;
  438. if (mspi->rx)
  439. mspi->get_rx(rx_data, mspi);
  440. }
  441. if (!(events & SPIE_NF)) {
  442. int ret;
  443. /* spin until TX is done */
  444. ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
  445. &reg_base->event)) & SPIE_NF) == 0, 1000, 0);
  446. if (!ret) {
  447. dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
  448. return;
  449. }
  450. }
  451. /* Clear the events */
  452. mpc8xxx_spi_write_reg(&reg_base->event, events);
  453. mspi->count -= 1;
  454. if (mspi->count) {
  455. u32 word = mspi->get_tx(mspi);
  456. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  457. } else {
  458. complete(&mspi->done);
  459. }
  460. }
  461. static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
  462. {
  463. struct mpc8xxx_spi *mspi = context_data;
  464. struct fsl_espi_reg *reg_base = mspi->reg_base;
  465. irqreturn_t ret = IRQ_NONE;
  466. u32 events;
  467. /* Get interrupt events(tx/rx) */
  468. events = mpc8xxx_spi_read_reg(&reg_base->event);
  469. if (events)
  470. ret = IRQ_HANDLED;
  471. dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
  472. fsl_espi_cpu_irq(mspi, events);
  473. return ret;
  474. }
  475. static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
  476. {
  477. iounmap(mspi->reg_base);
  478. }
  479. static struct spi_master * fsl_espi_probe(struct device *dev,
  480. struct resource *mem, unsigned int irq)
  481. {
  482. struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
  483. struct spi_master *master;
  484. struct mpc8xxx_spi *mpc8xxx_spi;
  485. struct fsl_espi_reg *reg_base;
  486. u32 regval;
  487. int i, ret = 0;
  488. master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
  489. if (!master) {
  490. ret = -ENOMEM;
  491. goto err;
  492. }
  493. dev_set_drvdata(dev, master);
  494. ret = mpc8xxx_spi_probe(dev, mem, irq);
  495. if (ret)
  496. goto err_probe;
  497. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  498. master->setup = fsl_espi_setup;
  499. mpc8xxx_spi = spi_master_get_devdata(master);
  500. mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
  501. mpc8xxx_spi->spi_remove = fsl_espi_remove;
  502. mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
  503. if (!mpc8xxx_spi->reg_base) {
  504. ret = -ENOMEM;
  505. goto err_probe;
  506. }
  507. reg_base = mpc8xxx_spi->reg_base;
  508. /* Register for SPI Interrupt */
  509. ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
  510. 0, "fsl_espi", mpc8xxx_spi);
  511. if (ret)
  512. goto free_irq;
  513. if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
  514. mpc8xxx_spi->rx_shift = 16;
  515. mpc8xxx_spi->tx_shift = 24;
  516. }
  517. /* SPI controller initializations */
  518. mpc8xxx_spi_write_reg(&reg_base->mode, 0);
  519. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  520. mpc8xxx_spi_write_reg(&reg_base->command, 0);
  521. mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
  522. /* Init eSPI CS mode register */
  523. for (i = 0; i < pdata->max_chipselect; i++)
  524. mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
  525. /* Enable SPI interface */
  526. regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
  527. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  528. ret = spi_register_master(master);
  529. if (ret < 0)
  530. goto unreg_master;
  531. dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
  532. return master;
  533. unreg_master:
  534. free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
  535. free_irq:
  536. iounmap(mpc8xxx_spi->reg_base);
  537. err_probe:
  538. spi_master_put(master);
  539. err:
  540. return ERR_PTR(ret);
  541. }
  542. static int of_fsl_espi_get_chipselects(struct device *dev)
  543. {
  544. struct device_node *np = dev->of_node;
  545. struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
  546. const u32 *prop;
  547. int len;
  548. prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
  549. if (!prop || len < sizeof(*prop)) {
  550. dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
  551. return -EINVAL;
  552. }
  553. pdata->max_chipselect = *prop;
  554. pdata->cs_control = NULL;
  555. return 0;
  556. }
  557. static int of_fsl_espi_probe(struct platform_device *ofdev)
  558. {
  559. struct device *dev = &ofdev->dev;
  560. struct device_node *np = ofdev->dev.of_node;
  561. struct spi_master *master;
  562. struct resource mem;
  563. struct resource irq;
  564. int ret = -ENOMEM;
  565. ret = of_mpc8xxx_spi_probe(ofdev);
  566. if (ret)
  567. return ret;
  568. ret = of_fsl_espi_get_chipselects(dev);
  569. if (ret)
  570. goto err;
  571. ret = of_address_to_resource(np, 0, &mem);
  572. if (ret)
  573. goto err;
  574. ret = of_irq_to_resource(np, 0, &irq);
  575. if (!ret) {
  576. ret = -EINVAL;
  577. goto err;
  578. }
  579. master = fsl_espi_probe(dev, &mem, irq.start);
  580. if (IS_ERR(master)) {
  581. ret = PTR_ERR(master);
  582. goto err;
  583. }
  584. return 0;
  585. err:
  586. return ret;
  587. }
  588. static int of_fsl_espi_remove(struct platform_device *dev)
  589. {
  590. return mpc8xxx_spi_remove(&dev->dev);
  591. }
  592. static const struct of_device_id of_fsl_espi_match[] = {
  593. { .compatible = "fsl,mpc8536-espi" },
  594. {}
  595. };
  596. MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
  597. static struct platform_driver fsl_espi_driver = {
  598. .driver = {
  599. .name = "fsl_espi",
  600. .owner = THIS_MODULE,
  601. .of_match_table = of_fsl_espi_match,
  602. },
  603. .probe = of_fsl_espi_probe,
  604. .remove = of_fsl_espi_remove,
  605. };
  606. module_platform_driver(fsl_espi_driver);
  607. MODULE_AUTHOR("Mingkai Hu");
  608. MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
  609. MODULE_LICENSE("GPL");