mrf24j40.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/spi/spi.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <net/wpan-phy.h>
  25. #include <net/mac802154.h>
  26. #include <net/ieee802154.h>
  27. /* MRF24J40 Short Address Registers */
  28. #define REG_RXMCR 0x00 /* Receive MAC control */
  29. #define REG_PANIDL 0x01 /* PAN ID (low) */
  30. #define REG_PANIDH 0x02 /* PAN ID (high) */
  31. #define REG_SADRL 0x03 /* Short address (low) */
  32. #define REG_SADRH 0x04 /* Short address (high) */
  33. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  34. #define REG_TXMCR 0x11 /* Transmit MAC control */
  35. #define REG_PACON0 0x16 /* Power Amplifier Control */
  36. #define REG_PACON1 0x17 /* Power Amplifier Control */
  37. #define REG_PACON2 0x18 /* Power Amplifier Control */
  38. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  39. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  40. #define REG_SOFTRST 0x2A /* Soft Reset */
  41. #define REG_TXSTBL 0x2E /* TX Stabilization */
  42. #define REG_INTSTAT 0x31 /* Interrupt Status */
  43. #define REG_INTCON 0x32 /* Interrupt Control */
  44. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  45. #define REG_BBREG1 0x39 /* Baseband Registers */
  46. #define REG_BBREG2 0x3A /* */
  47. #define REG_BBREG6 0x3E /* */
  48. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  49. /* MRF24J40 Long Address Registers */
  50. #define REG_RFCON0 0x200 /* RF Control Registers */
  51. #define REG_RFCON1 0x201
  52. #define REG_RFCON2 0x202
  53. #define REG_RFCON3 0x203
  54. #define REG_RFCON5 0x205
  55. #define REG_RFCON6 0x206
  56. #define REG_RFCON7 0x207
  57. #define REG_RFCON8 0x208
  58. #define REG_RSSI 0x210
  59. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  60. #define REG_SLPCON1 0x220
  61. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  62. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  63. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  64. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  65. #define MRF24J40_CHAN_MIN 11
  66. #define MRF24J40_CHAN_MAX 26
  67. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  68. - ((u32)1 << MRF24J40_CHAN_MIN))
  69. #define TX_FIFO_SIZE 128 /* From datasheet */
  70. #define RX_FIFO_SIZE 144 /* From datasheet */
  71. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  72. /* Device Private Data */
  73. struct mrf24j40 {
  74. struct spi_device *spi;
  75. struct ieee802154_dev *dev;
  76. struct mutex buffer_mutex; /* only used to protect buf */
  77. struct completion tx_complete;
  78. struct work_struct irqwork;
  79. u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
  80. };
  81. /* Read/Write SPI Commands for Short and Long Address registers. */
  82. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  83. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  84. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  85. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  86. /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
  87. #define MAX_SPI_SPEED_HZ 10000000
  88. #define printdev(X) (&X->spi->dev)
  89. static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
  90. {
  91. int ret;
  92. struct spi_message msg;
  93. struct spi_transfer xfer = {
  94. .len = 2,
  95. .tx_buf = devrec->buf,
  96. .rx_buf = devrec->buf,
  97. };
  98. spi_message_init(&msg);
  99. spi_message_add_tail(&xfer, &msg);
  100. mutex_lock(&devrec->buffer_mutex);
  101. devrec->buf[0] = MRF24J40_WRITESHORT(reg);
  102. devrec->buf[1] = value;
  103. ret = spi_sync(devrec->spi, &msg);
  104. if (ret)
  105. dev_err(printdev(devrec),
  106. "SPI write Failed for short register 0x%hhx\n", reg);
  107. mutex_unlock(&devrec->buffer_mutex);
  108. return ret;
  109. }
  110. static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
  111. {
  112. int ret = -1;
  113. struct spi_message msg;
  114. struct spi_transfer xfer = {
  115. .len = 2,
  116. .tx_buf = devrec->buf,
  117. .rx_buf = devrec->buf,
  118. };
  119. spi_message_init(&msg);
  120. spi_message_add_tail(&xfer, &msg);
  121. mutex_lock(&devrec->buffer_mutex);
  122. devrec->buf[0] = MRF24J40_READSHORT(reg);
  123. devrec->buf[1] = 0;
  124. ret = spi_sync(devrec->spi, &msg);
  125. if (ret)
  126. dev_err(printdev(devrec),
  127. "SPI read Failed for short register 0x%hhx\n", reg);
  128. else
  129. *val = devrec->buf[1];
  130. mutex_unlock(&devrec->buffer_mutex);
  131. return ret;
  132. }
  133. static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
  134. {
  135. int ret;
  136. u16 cmd;
  137. struct spi_message msg;
  138. struct spi_transfer xfer = {
  139. .len = 3,
  140. .tx_buf = devrec->buf,
  141. .rx_buf = devrec->buf,
  142. };
  143. spi_message_init(&msg);
  144. spi_message_add_tail(&xfer, &msg);
  145. cmd = MRF24J40_READLONG(reg);
  146. mutex_lock(&devrec->buffer_mutex);
  147. devrec->buf[0] = cmd >> 8 & 0xff;
  148. devrec->buf[1] = cmd & 0xff;
  149. devrec->buf[2] = 0;
  150. ret = spi_sync(devrec->spi, &msg);
  151. if (ret)
  152. dev_err(printdev(devrec),
  153. "SPI read Failed for long register 0x%hx\n", reg);
  154. else
  155. *value = devrec->buf[2];
  156. mutex_unlock(&devrec->buffer_mutex);
  157. return ret;
  158. }
  159. static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
  160. {
  161. int ret;
  162. u16 cmd;
  163. struct spi_message msg;
  164. struct spi_transfer xfer = {
  165. .len = 3,
  166. .tx_buf = devrec->buf,
  167. .rx_buf = devrec->buf,
  168. };
  169. spi_message_init(&msg);
  170. spi_message_add_tail(&xfer, &msg);
  171. cmd = MRF24J40_WRITELONG(reg);
  172. mutex_lock(&devrec->buffer_mutex);
  173. devrec->buf[0] = cmd >> 8 & 0xff;
  174. devrec->buf[1] = cmd & 0xff;
  175. devrec->buf[2] = val;
  176. ret = spi_sync(devrec->spi, &msg);
  177. if (ret)
  178. dev_err(printdev(devrec),
  179. "SPI write Failed for long register 0x%hx\n", reg);
  180. mutex_unlock(&devrec->buffer_mutex);
  181. return ret;
  182. }
  183. /* This function relies on an undocumented write method. Once a write command
  184. and address is set, as many bytes of data as desired can be clocked into
  185. the device. The datasheet only shows setting one byte at a time. */
  186. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  187. const u8 *data, size_t length)
  188. {
  189. int ret;
  190. u16 cmd;
  191. u8 lengths[2];
  192. struct spi_message msg;
  193. struct spi_transfer addr_xfer = {
  194. .len = 2,
  195. .tx_buf = devrec->buf,
  196. };
  197. struct spi_transfer lengths_xfer = {
  198. .len = 2,
  199. .tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
  200. };
  201. struct spi_transfer data_xfer = {
  202. .len = length,
  203. .tx_buf = data,
  204. };
  205. /* Range check the length. 2 bytes are used for the length fields.*/
  206. if (length > TX_FIFO_SIZE-2) {
  207. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  208. length = TX_FIFO_SIZE-2;
  209. }
  210. spi_message_init(&msg);
  211. spi_message_add_tail(&addr_xfer, &msg);
  212. spi_message_add_tail(&lengths_xfer, &msg);
  213. spi_message_add_tail(&data_xfer, &msg);
  214. cmd = MRF24J40_WRITELONG(reg);
  215. mutex_lock(&devrec->buffer_mutex);
  216. devrec->buf[0] = cmd >> 8 & 0xff;
  217. devrec->buf[1] = cmd & 0xff;
  218. lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  219. lengths[1] = length; /* Total length */
  220. ret = spi_sync(devrec->spi, &msg);
  221. if (ret)
  222. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  223. mutex_unlock(&devrec->buffer_mutex);
  224. return ret;
  225. }
  226. static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
  227. u8 *data, u8 *len, u8 *lqi)
  228. {
  229. u8 rx_len;
  230. u8 addr[2];
  231. u8 lqi_rssi[2];
  232. u16 cmd;
  233. int ret;
  234. struct spi_message msg;
  235. struct spi_transfer addr_xfer = {
  236. .len = 2,
  237. .tx_buf = &addr,
  238. };
  239. struct spi_transfer data_xfer = {
  240. .len = 0x0, /* set below */
  241. .rx_buf = data,
  242. };
  243. struct spi_transfer status_xfer = {
  244. .len = 2,
  245. .rx_buf = &lqi_rssi,
  246. };
  247. /* Get the length of the data in the RX FIFO. The length in this
  248. * register exclues the 1-byte length field at the beginning. */
  249. ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
  250. if (ret)
  251. goto out;
  252. /* Range check the RX FIFO length, accounting for the one-byte
  253. * length field at the begining. */
  254. if (rx_len > RX_FIFO_SIZE-1) {
  255. dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
  256. rx_len = RX_FIFO_SIZE-1;
  257. }
  258. if (rx_len > *len) {
  259. /* Passed in buffer wasn't big enough. Should never happen. */
  260. dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
  261. rx_len = *len;
  262. }
  263. /* Set up the commands to read the data. */
  264. cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
  265. addr[0] = cmd >> 8 & 0xff;
  266. addr[1] = cmd & 0xff;
  267. data_xfer.len = rx_len;
  268. spi_message_init(&msg);
  269. spi_message_add_tail(&addr_xfer, &msg);
  270. spi_message_add_tail(&data_xfer, &msg);
  271. spi_message_add_tail(&status_xfer, &msg);
  272. ret = spi_sync(devrec->spi, &msg);
  273. if (ret) {
  274. dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
  275. goto out;
  276. }
  277. *lqi = lqi_rssi[0];
  278. *len = rx_len;
  279. #ifdef DEBUG
  280. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
  281. DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
  282. printk(KERN_DEBUG "mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  283. lqi_rssi[0], lqi_rssi[1]);
  284. #endif
  285. out:
  286. return ret;
  287. }
  288. static int mrf24j40_tx(struct ieee802154_dev *dev, struct sk_buff *skb)
  289. {
  290. struct mrf24j40 *devrec = dev->priv;
  291. u8 val;
  292. int ret = 0;
  293. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  294. ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
  295. if (ret)
  296. goto err;
  297. /* Set TXNTRIG bit of TXNCON to send packet */
  298. ret = read_short_reg(devrec, REG_TXNCON, &val);
  299. if (ret)
  300. goto err;
  301. val |= 0x1;
  302. /* Set TXNACKREQ if the ACK bit is set in the packet. */
  303. if (skb->data[0] & IEEE802154_FC_ACK_REQ)
  304. val |= 0x4;
  305. write_short_reg(devrec, REG_TXNCON, val);
  306. INIT_COMPLETION(devrec->tx_complete);
  307. /* Wait for the device to send the TX complete interrupt. */
  308. ret = wait_for_completion_interruptible_timeout(
  309. &devrec->tx_complete,
  310. 5 * HZ);
  311. if (ret == -ERESTARTSYS)
  312. goto err;
  313. if (ret == 0) {
  314. dev_warn(printdev(devrec), "Timeout waiting for TX interrupt\n");
  315. ret = -ETIMEDOUT;
  316. goto err;
  317. }
  318. /* Check for send error from the device. */
  319. ret = read_short_reg(devrec, REG_TXSTAT, &val);
  320. if (ret)
  321. goto err;
  322. if (val & 0x1) {
  323. dev_dbg(printdev(devrec), "Error Sending. Retry count exceeded\n");
  324. ret = -ECOMM; /* TODO: Better error code ? */
  325. } else
  326. dev_dbg(printdev(devrec), "Packet Sent\n");
  327. err:
  328. return ret;
  329. }
  330. static int mrf24j40_ed(struct ieee802154_dev *dev, u8 *level)
  331. {
  332. /* TODO: */
  333. printk(KERN_WARNING "mrf24j40: ed not implemented\n");
  334. *level = 0;
  335. return 0;
  336. }
  337. static int mrf24j40_start(struct ieee802154_dev *dev)
  338. {
  339. struct mrf24j40 *devrec = dev->priv;
  340. u8 val;
  341. int ret;
  342. dev_dbg(printdev(devrec), "start\n");
  343. ret = read_short_reg(devrec, REG_INTCON, &val);
  344. if (ret)
  345. return ret;
  346. val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
  347. write_short_reg(devrec, REG_INTCON, val);
  348. return 0;
  349. }
  350. static void mrf24j40_stop(struct ieee802154_dev *dev)
  351. {
  352. struct mrf24j40 *devrec = dev->priv;
  353. u8 val;
  354. int ret;
  355. dev_dbg(printdev(devrec), "stop\n");
  356. ret = read_short_reg(devrec, REG_INTCON, &val);
  357. if (ret)
  358. return;
  359. val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
  360. write_short_reg(devrec, REG_INTCON, val);
  361. return;
  362. }
  363. static int mrf24j40_set_channel(struct ieee802154_dev *dev,
  364. int page, int channel)
  365. {
  366. struct mrf24j40 *devrec = dev->priv;
  367. u8 val;
  368. int ret;
  369. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  370. WARN_ON(page != 0);
  371. WARN_ON(channel < MRF24J40_CHAN_MIN);
  372. WARN_ON(channel > MRF24J40_CHAN_MAX);
  373. /* Set Channel TODO */
  374. val = (channel-11) << 4 | 0x03;
  375. write_long_reg(devrec, REG_RFCON0, val);
  376. /* RF Reset */
  377. ret = read_short_reg(devrec, REG_RFCTL, &val);
  378. if (ret)
  379. return ret;
  380. val |= 0x04;
  381. write_short_reg(devrec, REG_RFCTL, val);
  382. val &= ~0x04;
  383. write_short_reg(devrec, REG_RFCTL, val);
  384. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  385. return 0;
  386. }
  387. static int mrf24j40_filter(struct ieee802154_dev *dev,
  388. struct ieee802154_hw_addr_filt *filt,
  389. unsigned long changed)
  390. {
  391. struct mrf24j40 *devrec = dev->priv;
  392. dev_dbg(printdev(devrec), "filter\n");
  393. if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
  394. /* Short Addr */
  395. u8 addrh, addrl;
  396. addrh = filt->short_addr >> 8 & 0xff;
  397. addrl = filt->short_addr & 0xff;
  398. write_short_reg(devrec, REG_SADRH, addrh);
  399. write_short_reg(devrec, REG_SADRL, addrl);
  400. dev_dbg(printdev(devrec),
  401. "Set short addr to %04hx\n", filt->short_addr);
  402. }
  403. if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
  404. /* Device Address */
  405. int i;
  406. for (i = 0; i < 8; i++)
  407. write_short_reg(devrec, REG_EADR0+i,
  408. filt->ieee_addr[7-i]);
  409. #ifdef DEBUG
  410. printk(KERN_DEBUG "Set long addr to: ");
  411. for (i = 0; i < 8; i++)
  412. printk("%02hhx ", filt->ieee_addr[i]);
  413. printk(KERN_DEBUG "\n");
  414. #endif
  415. }
  416. if (changed & IEEE802515_AFILT_PANID_CHANGED) {
  417. /* PAN ID */
  418. u8 panidl, panidh;
  419. panidh = filt->pan_id >> 8 & 0xff;
  420. panidl = filt->pan_id & 0xff;
  421. write_short_reg(devrec, REG_PANIDH, panidh);
  422. write_short_reg(devrec, REG_PANIDL, panidl);
  423. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  424. }
  425. if (changed & IEEE802515_AFILT_PANC_CHANGED) {
  426. /* Pan Coordinator */
  427. u8 val;
  428. int ret;
  429. ret = read_short_reg(devrec, REG_RXMCR, &val);
  430. if (ret)
  431. return ret;
  432. if (filt->pan_coord)
  433. val |= 0x8;
  434. else
  435. val &= ~0x8;
  436. write_short_reg(devrec, REG_RXMCR, val);
  437. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  438. * REG_ORDER is maintained as default (no beacon/superframe).
  439. */
  440. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  441. filt->pan_coord ? "on" : "off");
  442. }
  443. return 0;
  444. }
  445. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  446. {
  447. u8 len = RX_FIFO_SIZE;
  448. u8 lqi = 0;
  449. u8 val;
  450. int ret = 0;
  451. struct sk_buff *skb;
  452. /* Turn off reception of packets off the air. This prevents the
  453. * device from overwriting the buffer while we're reading it. */
  454. ret = read_short_reg(devrec, REG_BBREG1, &val);
  455. if (ret)
  456. goto out;
  457. val |= 4; /* SET RXDECINV */
  458. write_short_reg(devrec, REG_BBREG1, val);
  459. skb = alloc_skb(len, GFP_KERNEL);
  460. if (!skb) {
  461. ret = -ENOMEM;
  462. goto out;
  463. }
  464. ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
  465. if (ret < 0) {
  466. dev_err(printdev(devrec), "Failure reading RX FIFO\n");
  467. kfree_skb(skb);
  468. ret = -EINVAL;
  469. goto out;
  470. }
  471. /* Cut off the checksum */
  472. skb_trim(skb, len-2);
  473. /* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
  474. * also from a workqueue). I think irqsafe is not necessary here.
  475. * Can someone confirm? */
  476. ieee802154_rx_irqsafe(devrec->dev, skb, lqi);
  477. dev_dbg(printdev(devrec), "RX Handled\n");
  478. out:
  479. /* Turn back on reception of packets off the air. */
  480. ret = read_short_reg(devrec, REG_BBREG1, &val);
  481. if (ret)
  482. return ret;
  483. val &= ~0x4; /* Clear RXDECINV */
  484. write_short_reg(devrec, REG_BBREG1, val);
  485. return ret;
  486. }
  487. static struct ieee802154_ops mrf24j40_ops = {
  488. .owner = THIS_MODULE,
  489. .xmit = mrf24j40_tx,
  490. .ed = mrf24j40_ed,
  491. .start = mrf24j40_start,
  492. .stop = mrf24j40_stop,
  493. .set_channel = mrf24j40_set_channel,
  494. .set_hw_addr_filt = mrf24j40_filter,
  495. };
  496. static irqreturn_t mrf24j40_isr(int irq, void *data)
  497. {
  498. struct mrf24j40 *devrec = data;
  499. disable_irq_nosync(irq);
  500. schedule_work(&devrec->irqwork);
  501. return IRQ_HANDLED;
  502. }
  503. static void mrf24j40_isrwork(struct work_struct *work)
  504. {
  505. struct mrf24j40 *devrec = container_of(work, struct mrf24j40, irqwork);
  506. u8 intstat;
  507. int ret;
  508. /* Read the interrupt status */
  509. ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
  510. if (ret)
  511. goto out;
  512. /* Check for TX complete */
  513. if (intstat & 0x1)
  514. complete(&devrec->tx_complete);
  515. /* Check for Rx */
  516. if (intstat & 0x8)
  517. mrf24j40_handle_rx(devrec);
  518. out:
  519. enable_irq(devrec->spi->irq);
  520. }
  521. static int mrf24j40_probe(struct spi_device *spi)
  522. {
  523. int ret = -ENOMEM;
  524. u8 val;
  525. struct mrf24j40 *devrec;
  526. printk(KERN_INFO "mrf24j40: probe(). IRQ: %d\n", spi->irq);
  527. devrec = kzalloc(sizeof(struct mrf24j40), GFP_KERNEL);
  528. if (!devrec)
  529. goto err_devrec;
  530. devrec->buf = kzalloc(3, GFP_KERNEL);
  531. if (!devrec->buf)
  532. goto err_buf;
  533. spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
  534. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
  535. spi->max_speed_hz = MAX_SPI_SPEED_HZ;
  536. mutex_init(&devrec->buffer_mutex);
  537. init_completion(&devrec->tx_complete);
  538. INIT_WORK(&devrec->irqwork, mrf24j40_isrwork);
  539. devrec->spi = spi;
  540. spi_set_drvdata(spi, devrec);
  541. /* Register with the 802154 subsystem */
  542. devrec->dev = ieee802154_alloc_device(0, &mrf24j40_ops);
  543. if (!devrec->dev)
  544. goto err_alloc_dev;
  545. devrec->dev->priv = devrec;
  546. devrec->dev->parent = &devrec->spi->dev;
  547. devrec->dev->phy->channels_supported[0] = CHANNEL_MASK;
  548. devrec->dev->flags = IEEE802154_HW_OMIT_CKSUM|IEEE802154_HW_AACK;
  549. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  550. ret = ieee802154_register_device(devrec->dev);
  551. if (ret)
  552. goto err_register_device;
  553. /* Initialize the device.
  554. From datasheet section 3.2: Initialization. */
  555. write_short_reg(devrec, REG_SOFTRST, 0x07);
  556. write_short_reg(devrec, REG_PACON2, 0x98);
  557. write_short_reg(devrec, REG_TXSTBL, 0x95);
  558. write_long_reg(devrec, REG_RFCON0, 0x03);
  559. write_long_reg(devrec, REG_RFCON1, 0x01);
  560. write_long_reg(devrec, REG_RFCON2, 0x80);
  561. write_long_reg(devrec, REG_RFCON6, 0x90);
  562. write_long_reg(devrec, REG_RFCON7, 0x80);
  563. write_long_reg(devrec, REG_RFCON8, 0x10);
  564. write_long_reg(devrec, REG_SLPCON1, 0x21);
  565. write_short_reg(devrec, REG_BBREG2, 0x80);
  566. write_short_reg(devrec, REG_CCAEDTH, 0x60);
  567. write_short_reg(devrec, REG_BBREG6, 0x40);
  568. write_short_reg(devrec, REG_RFCTL, 0x04);
  569. write_short_reg(devrec, REG_RFCTL, 0x0);
  570. udelay(192);
  571. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  572. ret = read_short_reg(devrec, REG_RXMCR, &val);
  573. if (ret)
  574. goto err_read_reg;
  575. val &= ~0x3; /* Clear RX mode (normal) */
  576. write_short_reg(devrec, REG_RXMCR, val);
  577. ret = request_irq(spi->irq,
  578. mrf24j40_isr,
  579. IRQF_TRIGGER_FALLING,
  580. dev_name(&spi->dev),
  581. devrec);
  582. if (ret) {
  583. dev_err(printdev(devrec), "Unable to get IRQ");
  584. goto err_irq;
  585. }
  586. return 0;
  587. err_irq:
  588. err_read_reg:
  589. ieee802154_unregister_device(devrec->dev);
  590. err_register_device:
  591. ieee802154_free_device(devrec->dev);
  592. err_alloc_dev:
  593. kfree(devrec->buf);
  594. err_buf:
  595. kfree(devrec);
  596. err_devrec:
  597. return ret;
  598. }
  599. static int mrf24j40_remove(struct spi_device *spi)
  600. {
  601. struct mrf24j40 *devrec = spi_get_drvdata(spi);
  602. dev_dbg(printdev(devrec), "remove\n");
  603. free_irq(spi->irq, devrec);
  604. flush_work(&devrec->irqwork); /* TODO: Is this the right call? */
  605. ieee802154_unregister_device(devrec->dev);
  606. ieee802154_free_device(devrec->dev);
  607. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  608. * complete? */
  609. /* Clean up the SPI stuff. */
  610. spi_set_drvdata(spi, NULL);
  611. kfree(devrec->buf);
  612. kfree(devrec);
  613. return 0;
  614. }
  615. static const struct spi_device_id mrf24j40_ids[] = {
  616. { "mrf24j40", 0 },
  617. { "mrf24j40ma", 0 },
  618. { },
  619. };
  620. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  621. static struct spi_driver mrf24j40_driver = {
  622. .driver = {
  623. .name = "mrf24j40",
  624. .bus = &spi_bus_type,
  625. .owner = THIS_MODULE,
  626. },
  627. .id_table = mrf24j40_ids,
  628. .probe = mrf24j40_probe,
  629. .remove = mrf24j40_remove,
  630. };
  631. module_spi_driver(mrf24j40_driver);
  632. MODULE_LICENSE("GPL");
  633. MODULE_AUTHOR("Alan Ott");
  634. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");