qla3xxx.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/dmapool.h>
  18. #include <linux/mempool.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/kthread.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/ip.h>
  25. #include <linux/in.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/if_ether.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/rtnetlink.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include <linux/prefetch.h>
  37. #include "qla3xxx.h"
  38. #define DRV_NAME "qla3xxx"
  39. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  40. #define DRV_VERSION "v2.03.00-k5"
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. #define TIMED_OUT_MSG \
  44. "Timed out waiting for management port to get free before issuing command\n"
  45. MODULE_AUTHOR("QLogic Corporation");
  46. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg
  50. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  51. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  52. static int debug = -1; /* defaults above */
  53. module_param(debug, int, 0);
  54. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  55. static int msi;
  56. module_param(msi, int, 0);
  57. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  58. static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
  59. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  60. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  61. /* required last entry */
  62. {0,}
  63. };
  64. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  65. /*
  66. * These are the known PHY's which are used
  67. */
  68. enum PHY_DEVICE_TYPE {
  69. PHY_TYPE_UNKNOWN = 0,
  70. PHY_VITESSE_VSC8211,
  71. PHY_AGERE_ET1011C,
  72. MAX_PHY_DEV_TYPES
  73. };
  74. struct PHY_DEVICE_INFO {
  75. const enum PHY_DEVICE_TYPE phyDevice;
  76. const u32 phyIdOUI;
  77. const u16 phyIdModel;
  78. const char *name;
  79. };
  80. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  81. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  82. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  83. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  84. };
  85. /*
  86. * Caller must take hw_lock.
  87. */
  88. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  89. u32 sem_mask, u32 sem_bits)
  90. {
  91. struct ql3xxx_port_registers __iomem *port_regs =
  92. qdev->mem_map_registers;
  93. u32 value;
  94. unsigned int seconds = 3;
  95. do {
  96. writel((sem_mask | sem_bits),
  97. &port_regs->CommonRegs.semaphoreReg);
  98. value = readl(&port_regs->CommonRegs.semaphoreReg);
  99. if ((value & (sem_mask >> 16)) == sem_bits)
  100. return 0;
  101. ssleep(1);
  102. } while (--seconds);
  103. return -1;
  104. }
  105. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  106. {
  107. struct ql3xxx_port_registers __iomem *port_regs =
  108. qdev->mem_map_registers;
  109. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  110. readl(&port_regs->CommonRegs.semaphoreReg);
  111. }
  112. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  113. {
  114. struct ql3xxx_port_registers __iomem *port_regs =
  115. qdev->mem_map_registers;
  116. u32 value;
  117. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  118. value = readl(&port_regs->CommonRegs.semaphoreReg);
  119. return ((value & (sem_mask >> 16)) == sem_bits);
  120. }
  121. /*
  122. * Caller holds hw_lock.
  123. */
  124. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  125. {
  126. int i = 0;
  127. while (i < 10) {
  128. if (i)
  129. ssleep(1);
  130. if (ql_sem_lock(qdev,
  131. QL_DRVR_SEM_MASK,
  132. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  133. * 2) << 1)) {
  134. netdev_printk(KERN_DEBUG, qdev->ndev,
  135. "driver lock acquired\n");
  136. return 1;
  137. }
  138. }
  139. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  140. return 0;
  141. }
  142. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  143. {
  144. struct ql3xxx_port_registers __iomem *port_regs =
  145. qdev->mem_map_registers;
  146. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  147. &port_regs->CommonRegs.ispControlStatus);
  148. readl(&port_regs->CommonRegs.ispControlStatus);
  149. qdev->current_page = page;
  150. }
  151. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  152. {
  153. u32 value;
  154. unsigned long hw_flags;
  155. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  156. value = readl(reg);
  157. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  158. return value;
  159. }
  160. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  161. {
  162. return readl(reg);
  163. }
  164. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  165. {
  166. u32 value;
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. if (qdev->current_page != 0)
  170. ql_set_register_page(qdev, 0);
  171. value = readl(reg);
  172. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  173. return value;
  174. }
  175. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  176. {
  177. if (qdev->current_page != 0)
  178. ql_set_register_page(qdev, 0);
  179. return readl(reg);
  180. }
  181. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. unsigned long hw_flags;
  185. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  186. writel(value, reg);
  187. readl(reg);
  188. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  189. }
  190. static void ql_write_common_reg(struct ql3_adapter *qdev,
  191. u32 __iomem *reg, u32 value)
  192. {
  193. writel(value, reg);
  194. readl(reg);
  195. }
  196. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  197. u32 __iomem *reg, u32 value)
  198. {
  199. writel(value, reg);
  200. readl(reg);
  201. udelay(1);
  202. }
  203. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  204. u32 __iomem *reg, u32 value)
  205. {
  206. if (qdev->current_page != 0)
  207. ql_set_register_page(qdev, 0);
  208. writel(value, reg);
  209. readl(reg);
  210. }
  211. /*
  212. * Caller holds hw_lock. Only called during init.
  213. */
  214. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  215. u32 __iomem *reg, u32 value)
  216. {
  217. if (qdev->current_page != 1)
  218. ql_set_register_page(qdev, 1);
  219. writel(value, reg);
  220. readl(reg);
  221. }
  222. /*
  223. * Caller holds hw_lock. Only called during init.
  224. */
  225. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  226. u32 __iomem *reg, u32 value)
  227. {
  228. if (qdev->current_page != 2)
  229. ql_set_register_page(qdev, 2);
  230. writel(value, reg);
  231. readl(reg);
  232. }
  233. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  234. {
  235. struct ql3xxx_port_registers __iomem *port_regs =
  236. qdev->mem_map_registers;
  237. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  238. (ISP_IMR_ENABLE_INT << 16));
  239. }
  240. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  241. {
  242. struct ql3xxx_port_registers __iomem *port_regs =
  243. qdev->mem_map_registers;
  244. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  245. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  246. }
  247. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  248. struct ql_rcv_buf_cb *lrg_buf_cb)
  249. {
  250. dma_addr_t map;
  251. int err;
  252. lrg_buf_cb->next = NULL;
  253. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  254. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  255. } else {
  256. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  257. qdev->lrg_buf_free_tail = lrg_buf_cb;
  258. }
  259. if (!lrg_buf_cb->skb) {
  260. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  261. qdev->lrg_buffer_len);
  262. if (unlikely(!lrg_buf_cb->skb)) {
  263. qdev->lrg_buf_skb_check++;
  264. } else {
  265. /*
  266. * We save some space to copy the ethhdr from first
  267. * buffer
  268. */
  269. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  270. map = pci_map_single(qdev->pdev,
  271. lrg_buf_cb->skb->data,
  272. qdev->lrg_buffer_len -
  273. QL_HEADER_SPACE,
  274. PCI_DMA_FROMDEVICE);
  275. err = pci_dma_mapping_error(qdev->pdev, map);
  276. if (err) {
  277. netdev_err(qdev->ndev,
  278. "PCI mapping failed with error: %d\n",
  279. err);
  280. dev_kfree_skb(lrg_buf_cb->skb);
  281. lrg_buf_cb->skb = NULL;
  282. qdev->lrg_buf_skb_check++;
  283. return;
  284. }
  285. lrg_buf_cb->buf_phy_addr_low =
  286. cpu_to_le32(LS_64BITS(map));
  287. lrg_buf_cb->buf_phy_addr_high =
  288. cpu_to_le32(MS_64BITS(map));
  289. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  290. dma_unmap_len_set(lrg_buf_cb, maplen,
  291. qdev->lrg_buffer_len -
  292. QL_HEADER_SPACE);
  293. }
  294. }
  295. qdev->lrg_buf_free_count++;
  296. }
  297. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  298. *qdev)
  299. {
  300. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  301. if (lrg_buf_cb != NULL) {
  302. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  303. if (qdev->lrg_buf_free_head == NULL)
  304. qdev->lrg_buf_free_tail = NULL;
  305. qdev->lrg_buf_free_count--;
  306. }
  307. return lrg_buf_cb;
  308. }
  309. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  310. static u32 dataBits = EEPROM_NO_DATA_BITS;
  311. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  312. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  313. unsigned short *value);
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_select(struct ql3_adapter *qdev)
  318. {
  319. struct ql3xxx_port_registers __iomem *port_regs =
  320. qdev->mem_map_registers;
  321. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  322. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  323. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  324. ql_write_nvram_reg(qdev, spir,
  325. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  326. }
  327. /*
  328. * Caller holds hw_lock.
  329. */
  330. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  331. {
  332. int i;
  333. u32 mask;
  334. u32 dataBit;
  335. u32 previousBit;
  336. struct ql3xxx_port_registers __iomem *port_regs =
  337. qdev->mem_map_registers;
  338. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  339. /* Clock in a zero, then do the start bit */
  340. ql_write_nvram_reg(qdev, spir,
  341. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  342. AUBURN_EEPROM_DO_1));
  343. ql_write_nvram_reg(qdev, spir,
  344. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  345. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  346. ql_write_nvram_reg(qdev, spir,
  347. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  348. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  349. mask = 1 << (FM93C56A_CMD_BITS - 1);
  350. /* Force the previous data bit to be different */
  351. previousBit = 0xffff;
  352. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  353. dataBit = (cmd & mask)
  354. ? AUBURN_EEPROM_DO_1
  355. : AUBURN_EEPROM_DO_0;
  356. if (previousBit != dataBit) {
  357. /* If the bit changed, change the DO state to match */
  358. ql_write_nvram_reg(qdev, spir,
  359. (ISP_NVRAM_MASK |
  360. qdev->eeprom_cmd_data | dataBit));
  361. previousBit = dataBit;
  362. }
  363. ql_write_nvram_reg(qdev, spir,
  364. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  365. dataBit | AUBURN_EEPROM_CLK_RISE));
  366. ql_write_nvram_reg(qdev, spir,
  367. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  368. dataBit | AUBURN_EEPROM_CLK_FALL));
  369. cmd = cmd << 1;
  370. }
  371. mask = 1 << (addrBits - 1);
  372. /* Force the previous data bit to be different */
  373. previousBit = 0xffff;
  374. for (i = 0; i < addrBits; i++) {
  375. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  376. : AUBURN_EEPROM_DO_0;
  377. if (previousBit != dataBit) {
  378. /*
  379. * If the bit changed, then change the DO state to
  380. * match
  381. */
  382. ql_write_nvram_reg(qdev, spir,
  383. (ISP_NVRAM_MASK |
  384. qdev->eeprom_cmd_data | dataBit));
  385. previousBit = dataBit;
  386. }
  387. ql_write_nvram_reg(qdev, spir,
  388. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  389. dataBit | AUBURN_EEPROM_CLK_RISE));
  390. ql_write_nvram_reg(qdev, spir,
  391. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  392. dataBit | AUBURN_EEPROM_CLK_FALL));
  393. eepromAddr = eepromAddr << 1;
  394. }
  395. }
  396. /*
  397. * Caller holds hw_lock.
  398. */
  399. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  400. {
  401. struct ql3xxx_port_registers __iomem *port_regs =
  402. qdev->mem_map_registers;
  403. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  404. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  405. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  406. }
  407. /*
  408. * Caller holds hw_lock.
  409. */
  410. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  411. {
  412. int i;
  413. u32 data = 0;
  414. u32 dataBit;
  415. struct ql3xxx_port_registers __iomem *port_regs =
  416. qdev->mem_map_registers;
  417. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  418. /* Read the data bits */
  419. /* The first bit is a dummy. Clock right over it. */
  420. for (i = 0; i < dataBits; i++) {
  421. ql_write_nvram_reg(qdev, spir,
  422. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  423. AUBURN_EEPROM_CLK_RISE);
  424. ql_write_nvram_reg(qdev, spir,
  425. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  426. AUBURN_EEPROM_CLK_FALL);
  427. dataBit = (ql_read_common_reg(qdev, spir) &
  428. AUBURN_EEPROM_DI_1) ? 1 : 0;
  429. data = (data << 1) | dataBit;
  430. }
  431. *value = (u16)data;
  432. }
  433. /*
  434. * Caller holds hw_lock.
  435. */
  436. static void eeprom_readword(struct ql3_adapter *qdev,
  437. u32 eepromAddr, unsigned short *value)
  438. {
  439. fm93c56a_select(qdev);
  440. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  441. fm93c56a_datain(qdev, value);
  442. fm93c56a_deselect(qdev);
  443. }
  444. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  445. {
  446. __le16 *p = (__le16 *)ndev->dev_addr;
  447. p[0] = cpu_to_le16(addr[0]);
  448. p[1] = cpu_to_le16(addr[1]);
  449. p[2] = cpu_to_le16(addr[2]);
  450. }
  451. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  452. {
  453. u16 *pEEPROMData;
  454. u16 checksum = 0;
  455. u32 index;
  456. unsigned long hw_flags;
  457. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  458. pEEPROMData = (u16 *)&qdev->nvram_data;
  459. qdev->eeprom_cmd_data = 0;
  460. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  461. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  462. 2) << 10)) {
  463. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  464. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  465. return -1;
  466. }
  467. for (index = 0; index < EEPROM_SIZE; index++) {
  468. eeprom_readword(qdev, index, pEEPROMData);
  469. checksum += *pEEPROMData;
  470. pEEPROMData++;
  471. }
  472. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  473. if (checksum != 0) {
  474. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  475. checksum);
  476. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  477. return -1;
  478. }
  479. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  480. return checksum;
  481. }
  482. static const u32 PHYAddr[2] = {
  483. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  484. };
  485. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  486. {
  487. struct ql3xxx_port_registers __iomem *port_regs =
  488. qdev->mem_map_registers;
  489. u32 temp;
  490. int count = 1000;
  491. while (count) {
  492. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  493. if (!(temp & MAC_MII_STATUS_BSY))
  494. return 0;
  495. udelay(10);
  496. count--;
  497. }
  498. return -1;
  499. }
  500. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  501. {
  502. struct ql3xxx_port_registers __iomem *port_regs =
  503. qdev->mem_map_registers;
  504. u32 scanControl;
  505. if (qdev->numPorts > 1) {
  506. /* Auto scan will cycle through multiple ports */
  507. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  508. } else {
  509. scanControl = MAC_MII_CONTROL_SC;
  510. }
  511. /*
  512. * Scan register 1 of PHY/PETBI,
  513. * Set up to scan both devices
  514. * The autoscan starts from the first register, completes
  515. * the last one before rolling over to the first
  516. */
  517. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  518. PHYAddr[0] | MII_SCAN_REGISTER);
  519. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  520. (scanControl) |
  521. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  522. }
  523. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  524. {
  525. u8 ret;
  526. struct ql3xxx_port_registers __iomem *port_regs =
  527. qdev->mem_map_registers;
  528. /* See if scan mode is enabled before we turn it off */
  529. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  530. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  531. /* Scan is enabled */
  532. ret = 1;
  533. } else {
  534. /* Scan is disabled */
  535. ret = 0;
  536. }
  537. /*
  538. * When disabling scan mode you must first change the MII register
  539. * address
  540. */
  541. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  542. PHYAddr[0] | MII_SCAN_REGISTER);
  543. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  544. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  545. MAC_MII_CONTROL_RC) << 16));
  546. return ret;
  547. }
  548. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  549. u16 regAddr, u16 value, u32 phyAddr)
  550. {
  551. struct ql3xxx_port_registers __iomem *port_regs =
  552. qdev->mem_map_registers;
  553. u8 scanWasEnabled;
  554. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  555. if (ql_wait_for_mii_ready(qdev)) {
  556. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  557. return -1;
  558. }
  559. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  560. phyAddr | regAddr);
  561. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  562. /* Wait for write to complete 9/10/04 SJP */
  563. if (ql_wait_for_mii_ready(qdev)) {
  564. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  565. return -1;
  566. }
  567. if (scanWasEnabled)
  568. ql_mii_enable_scan_mode(qdev);
  569. return 0;
  570. }
  571. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  572. u16 *value, u32 phyAddr)
  573. {
  574. struct ql3xxx_port_registers __iomem *port_regs =
  575. qdev->mem_map_registers;
  576. u8 scanWasEnabled;
  577. u32 temp;
  578. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  579. if (ql_wait_for_mii_ready(qdev)) {
  580. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  581. return -1;
  582. }
  583. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  584. phyAddr | regAddr);
  585. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  586. (MAC_MII_CONTROL_RC << 16));
  587. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  588. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  589. /* Wait for the read to complete */
  590. if (ql_wait_for_mii_ready(qdev)) {
  591. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  592. return -1;
  593. }
  594. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  595. *value = (u16) temp;
  596. if (scanWasEnabled)
  597. ql_mii_enable_scan_mode(qdev);
  598. return 0;
  599. }
  600. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  601. {
  602. struct ql3xxx_port_registers __iomem *port_regs =
  603. qdev->mem_map_registers;
  604. ql_mii_disable_scan_mode(qdev);
  605. if (ql_wait_for_mii_ready(qdev)) {
  606. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  607. return -1;
  608. }
  609. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  610. qdev->PHYAddr | regAddr);
  611. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  612. /* Wait for write to complete. */
  613. if (ql_wait_for_mii_ready(qdev)) {
  614. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  615. return -1;
  616. }
  617. ql_mii_enable_scan_mode(qdev);
  618. return 0;
  619. }
  620. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  621. {
  622. u32 temp;
  623. struct ql3xxx_port_registers __iomem *port_regs =
  624. qdev->mem_map_registers;
  625. ql_mii_disable_scan_mode(qdev);
  626. if (ql_wait_for_mii_ready(qdev)) {
  627. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  628. return -1;
  629. }
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  631. qdev->PHYAddr | regAddr);
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16));
  634. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  635. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  636. /* Wait for the read to complete */
  637. if (ql_wait_for_mii_ready(qdev)) {
  638. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  639. return -1;
  640. }
  641. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  642. *value = (u16) temp;
  643. ql_mii_enable_scan_mode(qdev);
  644. return 0;
  645. }
  646. static void ql_petbi_reset(struct ql3_adapter *qdev)
  647. {
  648. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  649. }
  650. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  651. {
  652. u16 reg;
  653. /* Enable Auto-negotiation sense */
  654. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  655. reg |= PETBI_TBI_AUTO_SENSE;
  656. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  657. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  658. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  659. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  660. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  661. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  662. }
  663. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  664. {
  665. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  666. PHYAddr[qdev->mac_index]);
  667. }
  668. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  669. {
  670. u16 reg;
  671. /* Enable Auto-negotiation sense */
  672. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  673. PHYAddr[qdev->mac_index]);
  674. reg |= PETBI_TBI_AUTO_SENSE;
  675. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  676. PHYAddr[qdev->mac_index]);
  677. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  678. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  679. PHYAddr[qdev->mac_index]);
  680. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  681. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  682. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  683. PHYAddr[qdev->mac_index]);
  684. }
  685. static void ql_petbi_init(struct ql3_adapter *qdev)
  686. {
  687. ql_petbi_reset(qdev);
  688. ql_petbi_start_neg(qdev);
  689. }
  690. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  691. {
  692. ql_petbi_reset_ex(qdev);
  693. ql_petbi_start_neg_ex(qdev);
  694. }
  695. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  696. {
  697. u16 reg;
  698. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  699. return 0;
  700. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  701. }
  702. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  703. {
  704. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  705. /* power down device bit 11 = 1 */
  706. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  707. /* enable diagnostic mode bit 2 = 1 */
  708. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  709. /* 1000MB amplitude adjust (see Agere errata) */
  710. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  711. /* 1000MB amplitude adjust (see Agere errata) */
  712. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  713. /* 100MB amplitude adjust (see Agere errata) */
  714. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  715. /* 100MB amplitude adjust (see Agere errata) */
  716. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  717. /* 10MB amplitude adjust (see Agere errata) */
  718. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  719. /* 10MB amplitude adjust (see Agere errata) */
  720. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  721. /* point to hidden reg 0x2806 */
  722. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  723. /* Write new PHYAD w/bit 5 set */
  724. ql_mii_write_reg_ex(qdev, 0x11,
  725. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  726. /*
  727. * Disable diagnostic mode bit 2 = 0
  728. * Power up device bit 11 = 0
  729. * Link up (on) and activity (blink)
  730. */
  731. ql_mii_write_reg(qdev, 0x12, 0x840a);
  732. ql_mii_write_reg(qdev, 0x00, 0x1140);
  733. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  734. }
  735. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  736. u16 phyIdReg0, u16 phyIdReg1)
  737. {
  738. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  739. u32 oui;
  740. u16 model;
  741. int i;
  742. if (phyIdReg0 == 0xffff)
  743. return result;
  744. if (phyIdReg1 == 0xffff)
  745. return result;
  746. /* oui is split between two registers */
  747. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  748. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  749. /* Scan table for this PHY */
  750. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  751. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  752. (model == PHY_DEVICES[i].phyIdModel)) {
  753. netdev_info(qdev->ndev, "Phy: %s\n",
  754. PHY_DEVICES[i].name);
  755. result = PHY_DEVICES[i].phyDevice;
  756. break;
  757. }
  758. }
  759. return result;
  760. }
  761. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  762. {
  763. u16 reg;
  764. switch (qdev->phyType) {
  765. case PHY_AGERE_ET1011C: {
  766. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  767. return 0;
  768. reg = (reg >> 8) & 3;
  769. break;
  770. }
  771. default:
  772. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  773. return 0;
  774. reg = (((reg & 0x18) >> 3) & 3);
  775. }
  776. switch (reg) {
  777. case 2:
  778. return SPEED_1000;
  779. case 1:
  780. return SPEED_100;
  781. case 0:
  782. return SPEED_10;
  783. default:
  784. return -1;
  785. }
  786. }
  787. static int ql_is_full_dup(struct ql3_adapter *qdev)
  788. {
  789. u16 reg;
  790. switch (qdev->phyType) {
  791. case PHY_AGERE_ET1011C: {
  792. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  793. return 0;
  794. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  795. }
  796. case PHY_VITESSE_VSC8211:
  797. default: {
  798. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  799. return 0;
  800. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  801. }
  802. }
  803. }
  804. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  805. {
  806. u16 reg;
  807. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  808. return 0;
  809. return (reg & PHY_NEG_PAUSE) != 0;
  810. }
  811. static int PHY_Setup(struct ql3_adapter *qdev)
  812. {
  813. u16 reg1;
  814. u16 reg2;
  815. bool agereAddrChangeNeeded = false;
  816. u32 miiAddr = 0;
  817. int err;
  818. /* Determine the PHY we are using by reading the ID's */
  819. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  820. if (err != 0) {
  821. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  822. return err;
  823. }
  824. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  825. if (err != 0) {
  826. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  827. return err;
  828. }
  829. /* Check if we have a Agere PHY */
  830. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  831. /* Determine which MII address we should be using
  832. determined by the index of the card */
  833. if (qdev->mac_index == 0)
  834. miiAddr = MII_AGERE_ADDR_1;
  835. else
  836. miiAddr = MII_AGERE_ADDR_2;
  837. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  838. if (err != 0) {
  839. netdev_err(qdev->ndev,
  840. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  841. return err;
  842. }
  843. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  844. if (err != 0) {
  845. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  846. return err;
  847. }
  848. /* We need to remember to initialize the Agere PHY */
  849. agereAddrChangeNeeded = true;
  850. }
  851. /* Determine the particular PHY we have on board to apply
  852. PHY specific initializations */
  853. qdev->phyType = getPhyType(qdev, reg1, reg2);
  854. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  855. /* need this here so address gets changed */
  856. phyAgereSpecificInit(qdev, miiAddr);
  857. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  858. netdev_err(qdev->ndev, "PHY is unknown\n");
  859. return -EIO;
  860. }
  861. return 0;
  862. }
  863. /*
  864. * Caller holds hw_lock.
  865. */
  866. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  867. {
  868. struct ql3xxx_port_registers __iomem *port_regs =
  869. qdev->mem_map_registers;
  870. u32 value;
  871. if (enable)
  872. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  873. else
  874. value = (MAC_CONFIG_REG_PE << 16);
  875. if (qdev->mac_index)
  876. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  877. else
  878. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  879. }
  880. /*
  881. * Caller holds hw_lock.
  882. */
  883. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  884. {
  885. struct ql3xxx_port_registers __iomem *port_regs =
  886. qdev->mem_map_registers;
  887. u32 value;
  888. if (enable)
  889. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  890. else
  891. value = (MAC_CONFIG_REG_SR << 16);
  892. if (qdev->mac_index)
  893. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  894. else
  895. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  896. }
  897. /*
  898. * Caller holds hw_lock.
  899. */
  900. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  901. {
  902. struct ql3xxx_port_registers __iomem *port_regs =
  903. qdev->mem_map_registers;
  904. u32 value;
  905. if (enable)
  906. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  907. else
  908. value = (MAC_CONFIG_REG_GM << 16);
  909. if (qdev->mac_index)
  910. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  911. else
  912. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  913. }
  914. /*
  915. * Caller holds hw_lock.
  916. */
  917. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  918. {
  919. struct ql3xxx_port_registers __iomem *port_regs =
  920. qdev->mem_map_registers;
  921. u32 value;
  922. if (enable)
  923. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  924. else
  925. value = (MAC_CONFIG_REG_FD << 16);
  926. if (qdev->mac_index)
  927. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  928. else
  929. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  930. }
  931. /*
  932. * Caller holds hw_lock.
  933. */
  934. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  935. {
  936. struct ql3xxx_port_registers __iomem *port_regs =
  937. qdev->mem_map_registers;
  938. u32 value;
  939. if (enable)
  940. value =
  941. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  942. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  943. else
  944. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  945. if (qdev->mac_index)
  946. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  947. else
  948. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  949. }
  950. /*
  951. * Caller holds hw_lock.
  952. */
  953. static int ql_is_fiber(struct ql3_adapter *qdev)
  954. {
  955. struct ql3xxx_port_registers __iomem *port_regs =
  956. qdev->mem_map_registers;
  957. u32 bitToCheck = 0;
  958. u32 temp;
  959. switch (qdev->mac_index) {
  960. case 0:
  961. bitToCheck = PORT_STATUS_SM0;
  962. break;
  963. case 1:
  964. bitToCheck = PORT_STATUS_SM1;
  965. break;
  966. }
  967. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  968. return (temp & bitToCheck) != 0;
  969. }
  970. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  971. {
  972. u16 reg;
  973. ql_mii_read_reg(qdev, 0x00, &reg);
  974. return (reg & 0x1000) != 0;
  975. }
  976. /*
  977. * Caller holds hw_lock.
  978. */
  979. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  980. {
  981. struct ql3xxx_port_registers __iomem *port_regs =
  982. qdev->mem_map_registers;
  983. u32 bitToCheck = 0;
  984. u32 temp;
  985. switch (qdev->mac_index) {
  986. case 0:
  987. bitToCheck = PORT_STATUS_AC0;
  988. break;
  989. case 1:
  990. bitToCheck = PORT_STATUS_AC1;
  991. break;
  992. }
  993. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  994. if (temp & bitToCheck) {
  995. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  996. return 1;
  997. }
  998. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  999. return 0;
  1000. }
  1001. /*
  1002. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1003. */
  1004. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1005. {
  1006. if (ql_is_fiber(qdev))
  1007. return ql_is_petbi_neg_pause(qdev);
  1008. else
  1009. return ql_is_phy_neg_pause(qdev);
  1010. }
  1011. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1012. {
  1013. struct ql3xxx_port_registers __iomem *port_regs =
  1014. qdev->mem_map_registers;
  1015. u32 bitToCheck = 0;
  1016. u32 temp;
  1017. switch (qdev->mac_index) {
  1018. case 0:
  1019. bitToCheck = PORT_STATUS_AE0;
  1020. break;
  1021. case 1:
  1022. bitToCheck = PORT_STATUS_AE1;
  1023. break;
  1024. }
  1025. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1026. return (temp & bitToCheck) != 0;
  1027. }
  1028. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1029. {
  1030. if (ql_is_fiber(qdev))
  1031. return SPEED_1000;
  1032. else
  1033. return ql_phy_get_speed(qdev);
  1034. }
  1035. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1036. {
  1037. if (ql_is_fiber(qdev))
  1038. return 1;
  1039. else
  1040. return ql_is_full_dup(qdev);
  1041. }
  1042. /*
  1043. * Caller holds hw_lock.
  1044. */
  1045. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1046. {
  1047. struct ql3xxx_port_registers __iomem *port_regs =
  1048. qdev->mem_map_registers;
  1049. u32 bitToCheck = 0;
  1050. u32 temp;
  1051. switch (qdev->mac_index) {
  1052. case 0:
  1053. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1054. break;
  1055. case 1:
  1056. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1057. break;
  1058. }
  1059. temp =
  1060. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1061. return (temp & bitToCheck) != 0;
  1062. }
  1063. /*
  1064. * Caller holds hw_lock.
  1065. */
  1066. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1067. {
  1068. struct ql3xxx_port_registers __iomem *port_regs =
  1069. qdev->mem_map_registers;
  1070. switch (qdev->mac_index) {
  1071. case 0:
  1072. ql_write_common_reg(qdev,
  1073. &port_regs->CommonRegs.ispControlStatus,
  1074. (ISP_CONTROL_LINK_DN_0) |
  1075. (ISP_CONTROL_LINK_DN_0 << 16));
  1076. break;
  1077. case 1:
  1078. ql_write_common_reg(qdev,
  1079. &port_regs->CommonRegs.ispControlStatus,
  1080. (ISP_CONTROL_LINK_DN_1) |
  1081. (ISP_CONTROL_LINK_DN_1 << 16));
  1082. break;
  1083. default:
  1084. return 1;
  1085. }
  1086. return 0;
  1087. }
  1088. /*
  1089. * Caller holds hw_lock.
  1090. */
  1091. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1092. {
  1093. struct ql3xxx_port_registers __iomem *port_regs =
  1094. qdev->mem_map_registers;
  1095. u32 bitToCheck = 0;
  1096. u32 temp;
  1097. switch (qdev->mac_index) {
  1098. case 0:
  1099. bitToCheck = PORT_STATUS_F1_ENABLED;
  1100. break;
  1101. case 1:
  1102. bitToCheck = PORT_STATUS_F3_ENABLED;
  1103. break;
  1104. default:
  1105. break;
  1106. }
  1107. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1108. if (temp & bitToCheck) {
  1109. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1110. "not link master\n");
  1111. return 0;
  1112. }
  1113. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1114. return 1;
  1115. }
  1116. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1117. {
  1118. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1119. PHYAddr[qdev->mac_index]);
  1120. }
  1121. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1122. {
  1123. u16 reg;
  1124. u16 portConfiguration;
  1125. if (qdev->phyType == PHY_AGERE_ET1011C)
  1126. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1127. /* turn off external loopback */
  1128. if (qdev->mac_index == 0)
  1129. portConfiguration =
  1130. qdev->nvram_data.macCfg_port0.portConfiguration;
  1131. else
  1132. portConfiguration =
  1133. qdev->nvram_data.macCfg_port1.portConfiguration;
  1134. /* Some HBA's in the field are set to 0 and they need to
  1135. be reinterpreted with a default value */
  1136. if (portConfiguration == 0)
  1137. portConfiguration = PORT_CONFIG_DEFAULT;
  1138. /* Set the 1000 advertisements */
  1139. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1140. PHYAddr[qdev->mac_index]);
  1141. reg &= ~PHY_GIG_ALL_PARAMS;
  1142. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1143. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1144. reg |= PHY_GIG_ADV_1000F;
  1145. else
  1146. reg |= PHY_GIG_ADV_1000H;
  1147. }
  1148. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1149. PHYAddr[qdev->mac_index]);
  1150. /* Set the 10/100 & pause negotiation advertisements */
  1151. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1152. PHYAddr[qdev->mac_index]);
  1153. reg &= ~PHY_NEG_ALL_PARAMS;
  1154. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1155. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1156. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1157. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1158. reg |= PHY_NEG_ADV_100F;
  1159. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1160. reg |= PHY_NEG_ADV_10F;
  1161. }
  1162. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1163. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1164. reg |= PHY_NEG_ADV_100H;
  1165. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1166. reg |= PHY_NEG_ADV_10H;
  1167. }
  1168. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1169. reg |= 1;
  1170. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1171. PHYAddr[qdev->mac_index]);
  1172. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1173. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1174. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1175. PHYAddr[qdev->mac_index]);
  1176. }
  1177. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1178. {
  1179. ql_phy_reset_ex(qdev);
  1180. PHY_Setup(qdev);
  1181. ql_phy_start_neg_ex(qdev);
  1182. }
  1183. /*
  1184. * Caller holds hw_lock.
  1185. */
  1186. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1187. {
  1188. struct ql3xxx_port_registers __iomem *port_regs =
  1189. qdev->mem_map_registers;
  1190. u32 bitToCheck = 0;
  1191. u32 temp, linkState;
  1192. switch (qdev->mac_index) {
  1193. case 0:
  1194. bitToCheck = PORT_STATUS_UP0;
  1195. break;
  1196. case 1:
  1197. bitToCheck = PORT_STATUS_UP1;
  1198. break;
  1199. }
  1200. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1201. if (temp & bitToCheck)
  1202. linkState = LS_UP;
  1203. else
  1204. linkState = LS_DOWN;
  1205. return linkState;
  1206. }
  1207. static int ql_port_start(struct ql3_adapter *qdev)
  1208. {
  1209. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1210. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1211. 2) << 7)) {
  1212. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1213. return -1;
  1214. }
  1215. if (ql_is_fiber(qdev)) {
  1216. ql_petbi_init(qdev);
  1217. } else {
  1218. /* Copper port */
  1219. ql_phy_init_ex(qdev);
  1220. }
  1221. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1222. return 0;
  1223. }
  1224. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1225. {
  1226. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1227. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1228. 2) << 7))
  1229. return -1;
  1230. if (!ql_auto_neg_error(qdev)) {
  1231. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1232. /* configure the MAC */
  1233. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1234. "Configuring link\n");
  1235. ql_mac_cfg_soft_reset(qdev, 1);
  1236. ql_mac_cfg_gig(qdev,
  1237. (ql_get_link_speed
  1238. (qdev) ==
  1239. SPEED_1000));
  1240. ql_mac_cfg_full_dup(qdev,
  1241. ql_is_link_full_dup
  1242. (qdev));
  1243. ql_mac_cfg_pause(qdev,
  1244. ql_is_neg_pause
  1245. (qdev));
  1246. ql_mac_cfg_soft_reset(qdev, 0);
  1247. /* enable the MAC */
  1248. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1249. "Enabling mac\n");
  1250. ql_mac_enable(qdev, 1);
  1251. }
  1252. qdev->port_link_state = LS_UP;
  1253. netif_start_queue(qdev->ndev);
  1254. netif_carrier_on(qdev->ndev);
  1255. netif_info(qdev, link, qdev->ndev,
  1256. "Link is up at %d Mbps, %s duplex\n",
  1257. ql_get_link_speed(qdev),
  1258. ql_is_link_full_dup(qdev) ? "full" : "half");
  1259. } else { /* Remote error detected */
  1260. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1261. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1262. "Remote error detected. Calling ql_port_start()\n");
  1263. /*
  1264. * ql_port_start() is shared code and needs
  1265. * to lock the PHY on it's own.
  1266. */
  1267. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1268. if (ql_port_start(qdev)) /* Restart port */
  1269. return -1;
  1270. return 0;
  1271. }
  1272. }
  1273. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1274. return 0;
  1275. }
  1276. static void ql_link_state_machine_work(struct work_struct *work)
  1277. {
  1278. struct ql3_adapter *qdev =
  1279. container_of(work, struct ql3_adapter, link_state_work.work);
  1280. u32 curr_link_state;
  1281. unsigned long hw_flags;
  1282. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1283. curr_link_state = ql_get_link_state(qdev);
  1284. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1285. netif_info(qdev, link, qdev->ndev,
  1286. "Reset in progress, skip processing link state\n");
  1287. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1288. /* Restart timer on 2 second interval. */
  1289. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1290. return;
  1291. }
  1292. switch (qdev->port_link_state) {
  1293. default:
  1294. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1295. ql_port_start(qdev);
  1296. qdev->port_link_state = LS_DOWN;
  1297. /* Fall Through */
  1298. case LS_DOWN:
  1299. if (curr_link_state == LS_UP) {
  1300. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1301. if (ql_is_auto_neg_complete(qdev))
  1302. ql_finish_auto_neg(qdev);
  1303. if (qdev->port_link_state == LS_UP)
  1304. ql_link_down_detect_clear(qdev);
  1305. qdev->port_link_state = LS_UP;
  1306. }
  1307. break;
  1308. case LS_UP:
  1309. /*
  1310. * See if the link is currently down or went down and came
  1311. * back up
  1312. */
  1313. if (curr_link_state == LS_DOWN) {
  1314. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1315. qdev->port_link_state = LS_DOWN;
  1316. }
  1317. if (ql_link_down_detect(qdev))
  1318. qdev->port_link_state = LS_DOWN;
  1319. break;
  1320. }
  1321. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1322. /* Restart timer on 2 second interval. */
  1323. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1324. }
  1325. /*
  1326. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1327. */
  1328. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1329. {
  1330. if (ql_this_adapter_controls_port(qdev))
  1331. set_bit(QL_LINK_MASTER, &qdev->flags);
  1332. else
  1333. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1334. }
  1335. /*
  1336. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1337. */
  1338. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1339. {
  1340. ql_mii_enable_scan_mode(qdev);
  1341. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1342. if (ql_this_adapter_controls_port(qdev))
  1343. ql_petbi_init_ex(qdev);
  1344. } else {
  1345. if (ql_this_adapter_controls_port(qdev))
  1346. ql_phy_init_ex(qdev);
  1347. }
  1348. }
  1349. /*
  1350. * MII_Setup needs to be called before taking the PHY out of reset
  1351. * so that the management interface clock speed can be set properly.
  1352. * It would be better if we had a way to disable MDC until after the
  1353. * PHY is out of reset, but we don't have that capability.
  1354. */
  1355. static int ql_mii_setup(struct ql3_adapter *qdev)
  1356. {
  1357. u32 reg;
  1358. struct ql3xxx_port_registers __iomem *port_regs =
  1359. qdev->mem_map_registers;
  1360. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1361. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1362. 2) << 7))
  1363. return -1;
  1364. if (qdev->device_id == QL3032_DEVICE_ID)
  1365. ql_write_page0_reg(qdev,
  1366. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1367. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1368. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1369. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1370. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1371. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1372. return 0;
  1373. }
  1374. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1375. SUPPORTED_FIBRE | \
  1376. SUPPORTED_Autoneg)
  1377. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1378. SUPPORTED_10baseT_Full | \
  1379. SUPPORTED_100baseT_Half | \
  1380. SUPPORTED_100baseT_Full | \
  1381. SUPPORTED_1000baseT_Half | \
  1382. SUPPORTED_1000baseT_Full | \
  1383. SUPPORTED_Autoneg | \
  1384. SUPPORTED_TP) \
  1385. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1386. {
  1387. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1388. return SUPPORTED_OPTICAL_MODES;
  1389. return SUPPORTED_TP_MODES;
  1390. }
  1391. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1392. {
  1393. int status;
  1394. unsigned long hw_flags;
  1395. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1396. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1397. (QL_RESOURCE_BITS_BASE_CODE |
  1398. (qdev->mac_index) * 2) << 7)) {
  1399. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1400. return 0;
  1401. }
  1402. status = ql_is_auto_cfg(qdev);
  1403. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1404. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1405. return status;
  1406. }
  1407. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1408. {
  1409. u32 status;
  1410. unsigned long hw_flags;
  1411. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1412. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1413. (QL_RESOURCE_BITS_BASE_CODE |
  1414. (qdev->mac_index) * 2) << 7)) {
  1415. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1416. return 0;
  1417. }
  1418. status = ql_get_link_speed(qdev);
  1419. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1420. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1421. return status;
  1422. }
  1423. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1424. {
  1425. int status;
  1426. unsigned long hw_flags;
  1427. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1428. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1429. (QL_RESOURCE_BITS_BASE_CODE |
  1430. (qdev->mac_index) * 2) << 7)) {
  1431. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1432. return 0;
  1433. }
  1434. status = ql_is_link_full_dup(qdev);
  1435. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1436. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1437. return status;
  1438. }
  1439. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1440. {
  1441. struct ql3_adapter *qdev = netdev_priv(ndev);
  1442. ecmd->transceiver = XCVR_INTERNAL;
  1443. ecmd->supported = ql_supported_modes(qdev);
  1444. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1445. ecmd->port = PORT_FIBRE;
  1446. } else {
  1447. ecmd->port = PORT_TP;
  1448. ecmd->phy_address = qdev->PHYAddr;
  1449. }
  1450. ecmd->advertising = ql_supported_modes(qdev);
  1451. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1452. ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
  1453. ecmd->duplex = ql_get_full_dup(qdev);
  1454. return 0;
  1455. }
  1456. static void ql_get_drvinfo(struct net_device *ndev,
  1457. struct ethtool_drvinfo *drvinfo)
  1458. {
  1459. struct ql3_adapter *qdev = netdev_priv(ndev);
  1460. strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
  1461. strlcpy(drvinfo->version, ql3xxx_driver_version,
  1462. sizeof(drvinfo->version));
  1463. strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
  1464. sizeof(drvinfo->bus_info));
  1465. drvinfo->regdump_len = 0;
  1466. drvinfo->eedump_len = 0;
  1467. }
  1468. static u32 ql_get_msglevel(struct net_device *ndev)
  1469. {
  1470. struct ql3_adapter *qdev = netdev_priv(ndev);
  1471. return qdev->msg_enable;
  1472. }
  1473. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1474. {
  1475. struct ql3_adapter *qdev = netdev_priv(ndev);
  1476. qdev->msg_enable = value;
  1477. }
  1478. static void ql_get_pauseparam(struct net_device *ndev,
  1479. struct ethtool_pauseparam *pause)
  1480. {
  1481. struct ql3_adapter *qdev = netdev_priv(ndev);
  1482. struct ql3xxx_port_registers __iomem *port_regs =
  1483. qdev->mem_map_registers;
  1484. u32 reg;
  1485. if (qdev->mac_index == 0)
  1486. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1487. else
  1488. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1489. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1490. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1491. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1492. }
  1493. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1494. .get_settings = ql_get_settings,
  1495. .get_drvinfo = ql_get_drvinfo,
  1496. .get_link = ethtool_op_get_link,
  1497. .get_msglevel = ql_get_msglevel,
  1498. .set_msglevel = ql_set_msglevel,
  1499. .get_pauseparam = ql_get_pauseparam,
  1500. };
  1501. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1502. {
  1503. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1504. dma_addr_t map;
  1505. int err;
  1506. while (lrg_buf_cb) {
  1507. if (!lrg_buf_cb->skb) {
  1508. lrg_buf_cb->skb =
  1509. netdev_alloc_skb(qdev->ndev,
  1510. qdev->lrg_buffer_len);
  1511. if (unlikely(!lrg_buf_cb->skb)) {
  1512. netdev_printk(KERN_DEBUG, qdev->ndev,
  1513. "Failed netdev_alloc_skb()\n");
  1514. break;
  1515. } else {
  1516. /*
  1517. * We save some space to copy the ethhdr from
  1518. * first buffer
  1519. */
  1520. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1521. map = pci_map_single(qdev->pdev,
  1522. lrg_buf_cb->skb->data,
  1523. qdev->lrg_buffer_len -
  1524. QL_HEADER_SPACE,
  1525. PCI_DMA_FROMDEVICE);
  1526. err = pci_dma_mapping_error(qdev->pdev, map);
  1527. if (err) {
  1528. netdev_err(qdev->ndev,
  1529. "PCI mapping failed with error: %d\n",
  1530. err);
  1531. dev_kfree_skb(lrg_buf_cb->skb);
  1532. lrg_buf_cb->skb = NULL;
  1533. break;
  1534. }
  1535. lrg_buf_cb->buf_phy_addr_low =
  1536. cpu_to_le32(LS_64BITS(map));
  1537. lrg_buf_cb->buf_phy_addr_high =
  1538. cpu_to_le32(MS_64BITS(map));
  1539. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1540. dma_unmap_len_set(lrg_buf_cb, maplen,
  1541. qdev->lrg_buffer_len -
  1542. QL_HEADER_SPACE);
  1543. --qdev->lrg_buf_skb_check;
  1544. if (!qdev->lrg_buf_skb_check)
  1545. return 1;
  1546. }
  1547. }
  1548. lrg_buf_cb = lrg_buf_cb->next;
  1549. }
  1550. return 0;
  1551. }
  1552. /*
  1553. * Caller holds hw_lock.
  1554. */
  1555. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1556. {
  1557. struct ql3xxx_port_registers __iomem *port_regs =
  1558. qdev->mem_map_registers;
  1559. if (qdev->small_buf_release_cnt >= 16) {
  1560. while (qdev->small_buf_release_cnt >= 16) {
  1561. qdev->small_buf_q_producer_index++;
  1562. if (qdev->small_buf_q_producer_index ==
  1563. NUM_SBUFQ_ENTRIES)
  1564. qdev->small_buf_q_producer_index = 0;
  1565. qdev->small_buf_release_cnt -= 8;
  1566. }
  1567. wmb();
  1568. writel(qdev->small_buf_q_producer_index,
  1569. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1570. }
  1571. }
  1572. /*
  1573. * Caller holds hw_lock.
  1574. */
  1575. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1576. {
  1577. struct bufq_addr_element *lrg_buf_q_ele;
  1578. int i;
  1579. struct ql_rcv_buf_cb *lrg_buf_cb;
  1580. struct ql3xxx_port_registers __iomem *port_regs =
  1581. qdev->mem_map_registers;
  1582. if ((qdev->lrg_buf_free_count >= 8) &&
  1583. (qdev->lrg_buf_release_cnt >= 16)) {
  1584. if (qdev->lrg_buf_skb_check)
  1585. if (!ql_populate_free_queue(qdev))
  1586. return;
  1587. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1588. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1589. (qdev->lrg_buf_free_count >= 8)) {
  1590. for (i = 0; i < 8; i++) {
  1591. lrg_buf_cb =
  1592. ql_get_from_lrg_buf_free_list(qdev);
  1593. lrg_buf_q_ele->addr_high =
  1594. lrg_buf_cb->buf_phy_addr_high;
  1595. lrg_buf_q_ele->addr_low =
  1596. lrg_buf_cb->buf_phy_addr_low;
  1597. lrg_buf_q_ele++;
  1598. qdev->lrg_buf_release_cnt--;
  1599. }
  1600. qdev->lrg_buf_q_producer_index++;
  1601. if (qdev->lrg_buf_q_producer_index ==
  1602. qdev->num_lbufq_entries)
  1603. qdev->lrg_buf_q_producer_index = 0;
  1604. if (qdev->lrg_buf_q_producer_index ==
  1605. (qdev->num_lbufq_entries - 1)) {
  1606. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1607. }
  1608. }
  1609. wmb();
  1610. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1611. writel(qdev->lrg_buf_q_producer_index,
  1612. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1613. }
  1614. }
  1615. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1616. struct ob_mac_iocb_rsp *mac_rsp)
  1617. {
  1618. struct ql_tx_buf_cb *tx_cb;
  1619. int i;
  1620. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1621. netdev_warn(qdev->ndev,
  1622. "Frame too short but it was padded and sent\n");
  1623. }
  1624. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1625. /* Check the transmit response flags for any errors */
  1626. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1627. netdev_err(qdev->ndev,
  1628. "Frame too short to be legal, frame not sent\n");
  1629. qdev->ndev->stats.tx_errors++;
  1630. goto frame_not_sent;
  1631. }
  1632. if (tx_cb->seg_count == 0) {
  1633. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1634. mac_rsp->transaction_id);
  1635. qdev->ndev->stats.tx_errors++;
  1636. goto invalid_seg_count;
  1637. }
  1638. pci_unmap_single(qdev->pdev,
  1639. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1640. dma_unmap_len(&tx_cb->map[0], maplen),
  1641. PCI_DMA_TODEVICE);
  1642. tx_cb->seg_count--;
  1643. if (tx_cb->seg_count) {
  1644. for (i = 1; i < tx_cb->seg_count; i++) {
  1645. pci_unmap_page(qdev->pdev,
  1646. dma_unmap_addr(&tx_cb->map[i],
  1647. mapaddr),
  1648. dma_unmap_len(&tx_cb->map[i], maplen),
  1649. PCI_DMA_TODEVICE);
  1650. }
  1651. }
  1652. qdev->ndev->stats.tx_packets++;
  1653. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1654. frame_not_sent:
  1655. dev_kfree_skb_irq(tx_cb->skb);
  1656. tx_cb->skb = NULL;
  1657. invalid_seg_count:
  1658. atomic_inc(&qdev->tx_count);
  1659. }
  1660. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1661. {
  1662. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1663. qdev->small_buf_index = 0;
  1664. qdev->small_buf_release_cnt++;
  1665. }
  1666. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1667. {
  1668. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1669. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1670. qdev->lrg_buf_release_cnt++;
  1671. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1672. qdev->lrg_buf_index = 0;
  1673. return lrg_buf_cb;
  1674. }
  1675. /*
  1676. * The difference between 3022 and 3032 for inbound completions:
  1677. * 3022 uses two buffers per completion. The first buffer contains
  1678. * (some) header info, the second the remainder of the headers plus
  1679. * the data. For this chip we reserve some space at the top of the
  1680. * receive buffer so that the header info in buffer one can be
  1681. * prepended to the buffer two. Buffer two is the sent up while
  1682. * buffer one is returned to the hardware to be reused.
  1683. * 3032 receives all of it's data and headers in one buffer for a
  1684. * simpler process. 3032 also supports checksum verification as
  1685. * can be seen in ql_process_macip_rx_intr().
  1686. */
  1687. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1688. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1689. {
  1690. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1691. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1692. struct sk_buff *skb;
  1693. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1694. /*
  1695. * Get the inbound address list (small buffer).
  1696. */
  1697. ql_get_sbuf(qdev);
  1698. if (qdev->device_id == QL3022_DEVICE_ID)
  1699. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1700. /* start of second buffer */
  1701. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1702. skb = lrg_buf_cb2->skb;
  1703. qdev->ndev->stats.rx_packets++;
  1704. qdev->ndev->stats.rx_bytes += length;
  1705. skb_put(skb, length);
  1706. pci_unmap_single(qdev->pdev,
  1707. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1708. dma_unmap_len(lrg_buf_cb2, maplen),
  1709. PCI_DMA_FROMDEVICE);
  1710. prefetch(skb->data);
  1711. skb_checksum_none_assert(skb);
  1712. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1713. netif_receive_skb(skb);
  1714. lrg_buf_cb2->skb = NULL;
  1715. if (qdev->device_id == QL3022_DEVICE_ID)
  1716. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1717. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1718. }
  1719. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1720. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1721. {
  1722. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1723. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1724. struct sk_buff *skb1 = NULL, *skb2;
  1725. struct net_device *ndev = qdev->ndev;
  1726. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1727. u16 size = 0;
  1728. /*
  1729. * Get the inbound address list (small buffer).
  1730. */
  1731. ql_get_sbuf(qdev);
  1732. if (qdev->device_id == QL3022_DEVICE_ID) {
  1733. /* start of first buffer on 3022 */
  1734. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1735. skb1 = lrg_buf_cb1->skb;
  1736. size = ETH_HLEN;
  1737. if (*((u16 *) skb1->data) != 0xFFFF)
  1738. size += VLAN_ETH_HLEN - ETH_HLEN;
  1739. }
  1740. /* start of second buffer */
  1741. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1742. skb2 = lrg_buf_cb2->skb;
  1743. skb_put(skb2, length); /* Just the second buffer length here. */
  1744. pci_unmap_single(qdev->pdev,
  1745. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1746. dma_unmap_len(lrg_buf_cb2, maplen),
  1747. PCI_DMA_FROMDEVICE);
  1748. prefetch(skb2->data);
  1749. skb_checksum_none_assert(skb2);
  1750. if (qdev->device_id == QL3022_DEVICE_ID) {
  1751. /*
  1752. * Copy the ethhdr from first buffer to second. This
  1753. * is necessary for 3022 IP completions.
  1754. */
  1755. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1756. skb_push(skb2, size), size);
  1757. } else {
  1758. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1759. if (checksum &
  1760. (IB_IP_IOCB_RSP_3032_ICE |
  1761. IB_IP_IOCB_RSP_3032_CE)) {
  1762. netdev_err(ndev,
  1763. "%s: Bad checksum for this %s packet, checksum = %x\n",
  1764. __func__,
  1765. ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
  1766. "TCP" : "UDP"), checksum);
  1767. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1768. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1769. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1770. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1771. }
  1772. }
  1773. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1774. netif_receive_skb(skb2);
  1775. ndev->stats.rx_packets++;
  1776. ndev->stats.rx_bytes += length;
  1777. lrg_buf_cb2->skb = NULL;
  1778. if (qdev->device_id == QL3022_DEVICE_ID)
  1779. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1780. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1781. }
  1782. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1783. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1784. {
  1785. struct net_rsp_iocb *net_rsp;
  1786. struct net_device *ndev = qdev->ndev;
  1787. int work_done = 0;
  1788. /* While there are entries in the completion queue. */
  1789. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1790. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1791. net_rsp = qdev->rsp_current;
  1792. rmb();
  1793. /*
  1794. * Fix 4032 chip's undocumented "feature" where bit-8 is set
  1795. * if the inbound completion is for a VLAN.
  1796. */
  1797. if (qdev->device_id == QL3032_DEVICE_ID)
  1798. net_rsp->opcode &= 0x7f;
  1799. switch (net_rsp->opcode) {
  1800. case OPCODE_OB_MAC_IOCB_FN0:
  1801. case OPCODE_OB_MAC_IOCB_FN2:
  1802. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1803. net_rsp);
  1804. (*tx_cleaned)++;
  1805. break;
  1806. case OPCODE_IB_MAC_IOCB:
  1807. case OPCODE_IB_3032_MAC_IOCB:
  1808. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1809. net_rsp);
  1810. (*rx_cleaned)++;
  1811. break;
  1812. case OPCODE_IB_IP_IOCB:
  1813. case OPCODE_IB_3032_IP_IOCB:
  1814. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1815. net_rsp);
  1816. (*rx_cleaned)++;
  1817. break;
  1818. default: {
  1819. u32 *tmp = (u32 *)net_rsp;
  1820. netdev_err(ndev,
  1821. "Hit default case, not handled!\n"
  1822. " dropping the packet, opcode = %x\n"
  1823. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1824. net_rsp->opcode,
  1825. (unsigned long int)tmp[0],
  1826. (unsigned long int)tmp[1],
  1827. (unsigned long int)tmp[2],
  1828. (unsigned long int)tmp[3]);
  1829. }
  1830. }
  1831. qdev->rsp_consumer_index++;
  1832. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1833. qdev->rsp_consumer_index = 0;
  1834. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1835. } else {
  1836. qdev->rsp_current++;
  1837. }
  1838. work_done = *tx_cleaned + *rx_cleaned;
  1839. }
  1840. return work_done;
  1841. }
  1842. static int ql_poll(struct napi_struct *napi, int budget)
  1843. {
  1844. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1845. int rx_cleaned = 0, tx_cleaned = 0;
  1846. unsigned long hw_flags;
  1847. struct ql3xxx_port_registers __iomem *port_regs =
  1848. qdev->mem_map_registers;
  1849. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1850. if (tx_cleaned + rx_cleaned != budget) {
  1851. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1852. __napi_complete(napi);
  1853. ql_update_small_bufq_prod_index(qdev);
  1854. ql_update_lrg_bufq_prod_index(qdev);
  1855. writel(qdev->rsp_consumer_index,
  1856. &port_regs->CommonRegs.rspQConsumerIndex);
  1857. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1858. ql_enable_interrupts(qdev);
  1859. }
  1860. return tx_cleaned + rx_cleaned;
  1861. }
  1862. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1863. {
  1864. struct net_device *ndev = dev_id;
  1865. struct ql3_adapter *qdev = netdev_priv(ndev);
  1866. struct ql3xxx_port_registers __iomem *port_regs =
  1867. qdev->mem_map_registers;
  1868. u32 value;
  1869. int handled = 1;
  1870. u32 var;
  1871. value = ql_read_common_reg_l(qdev,
  1872. &port_regs->CommonRegs.ispControlStatus);
  1873. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1874. spin_lock(&qdev->adapter_lock);
  1875. netif_stop_queue(qdev->ndev);
  1876. netif_carrier_off(qdev->ndev);
  1877. ql_disable_interrupts(qdev);
  1878. qdev->port_link_state = LS_DOWN;
  1879. set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
  1880. if (value & ISP_CONTROL_FE) {
  1881. /*
  1882. * Chip Fatal Error.
  1883. */
  1884. var =
  1885. ql_read_page0_reg_l(qdev,
  1886. &port_regs->PortFatalErrStatus);
  1887. netdev_warn(ndev,
  1888. "Resetting chip. PortFatalErrStatus register = 0x%x\n",
  1889. var);
  1890. set_bit(QL_RESET_START, &qdev->flags) ;
  1891. } else {
  1892. /*
  1893. * Soft Reset Requested.
  1894. */
  1895. set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
  1896. netdev_err(ndev,
  1897. "Another function issued a reset to the chip. ISR value = %x\n",
  1898. value);
  1899. }
  1900. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1901. spin_unlock(&qdev->adapter_lock);
  1902. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1903. ql_disable_interrupts(qdev);
  1904. if (likely(napi_schedule_prep(&qdev->napi)))
  1905. __napi_schedule(&qdev->napi);
  1906. } else
  1907. return IRQ_NONE;
  1908. return IRQ_RETVAL(handled);
  1909. }
  1910. /*
  1911. * Get the total number of segments needed for the given number of fragments.
  1912. * This is necessary because outbound address lists (OAL) will be used when
  1913. * more than two frags are given. Each address list has 5 addr/len pairs.
  1914. * The 5th pair in each OAL is used to point to the next OAL if more frags
  1915. * are coming. That is why the frags:segment count ratio is not linear.
  1916. */
  1917. static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
  1918. {
  1919. if (qdev->device_id == QL3022_DEVICE_ID)
  1920. return 1;
  1921. if (frags <= 2)
  1922. return frags + 1;
  1923. else if (frags <= 6)
  1924. return frags + 2;
  1925. else if (frags <= 10)
  1926. return frags + 3;
  1927. else if (frags <= 14)
  1928. return frags + 4;
  1929. else if (frags <= 18)
  1930. return frags + 5;
  1931. return -1;
  1932. }
  1933. static void ql_hw_csum_setup(const struct sk_buff *skb,
  1934. struct ob_mac_iocb_req *mac_iocb_ptr)
  1935. {
  1936. const struct iphdr *ip = ip_hdr(skb);
  1937. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  1938. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1939. if (ip->protocol == IPPROTO_TCP) {
  1940. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1941. OB_3032MAC_IOCB_REQ_IC;
  1942. } else {
  1943. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1944. OB_3032MAC_IOCB_REQ_IC;
  1945. }
  1946. }
  1947. /*
  1948. * Map the buffers for this transmit.
  1949. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1950. */
  1951. static int ql_send_map(struct ql3_adapter *qdev,
  1952. struct ob_mac_iocb_req *mac_iocb_ptr,
  1953. struct ql_tx_buf_cb *tx_cb,
  1954. struct sk_buff *skb)
  1955. {
  1956. struct oal *oal;
  1957. struct oal_entry *oal_entry;
  1958. int len = skb_headlen(skb);
  1959. dma_addr_t map;
  1960. int err;
  1961. int completed_segs, i;
  1962. int seg_cnt, seg = 0;
  1963. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1964. seg_cnt = tx_cb->seg_count;
  1965. /*
  1966. * Map the skb buffer first.
  1967. */
  1968. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1969. err = pci_dma_mapping_error(qdev->pdev, map);
  1970. if (err) {
  1971. netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
  1972. err);
  1973. return NETDEV_TX_BUSY;
  1974. }
  1975. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1976. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1977. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1978. oal_entry->len = cpu_to_le32(len);
  1979. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1980. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1981. seg++;
  1982. if (seg_cnt == 1) {
  1983. /* Terminate the last segment. */
  1984. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  1985. return NETDEV_TX_OK;
  1986. }
  1987. oal = tx_cb->oal;
  1988. for (completed_segs = 0;
  1989. completed_segs < frag_cnt;
  1990. completed_segs++, seg++) {
  1991. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1992. oal_entry++;
  1993. /*
  1994. * Check for continuation requirements.
  1995. * It's strange but necessary.
  1996. * Continuation entry points to outbound address list.
  1997. */
  1998. if ((seg == 2 && seg_cnt > 3) ||
  1999. (seg == 7 && seg_cnt > 8) ||
  2000. (seg == 12 && seg_cnt > 13) ||
  2001. (seg == 17 && seg_cnt > 18)) {
  2002. map = pci_map_single(qdev->pdev, oal,
  2003. sizeof(struct oal),
  2004. PCI_DMA_TODEVICE);
  2005. err = pci_dma_mapping_error(qdev->pdev, map);
  2006. if (err) {
  2007. netdev_err(qdev->ndev,
  2008. "PCI mapping outbound address list with error: %d\n",
  2009. err);
  2010. goto map_error;
  2011. }
  2012. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2013. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2014. oal_entry->len = cpu_to_le32(sizeof(struct oal) |
  2015. OAL_CONT_ENTRY);
  2016. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2017. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2018. sizeof(struct oal));
  2019. oal_entry = (struct oal_entry *)oal;
  2020. oal++;
  2021. seg++;
  2022. }
  2023. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  2024. DMA_TO_DEVICE);
  2025. err = dma_mapping_error(&qdev->pdev->dev, map);
  2026. if (err) {
  2027. netdev_err(qdev->ndev,
  2028. "PCI mapping frags failed with error: %d\n",
  2029. err);
  2030. goto map_error;
  2031. }
  2032. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2033. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2034. oal_entry->len = cpu_to_le32(skb_frag_size(frag));
  2035. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2036. dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
  2037. }
  2038. /* Terminate the last segment. */
  2039. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2040. return NETDEV_TX_OK;
  2041. map_error:
  2042. /* A PCI mapping failed and now we will need to back out
  2043. * We need to traverse through the oal's and associated pages which
  2044. * have been mapped and now we must unmap them to clean up properly
  2045. */
  2046. seg = 1;
  2047. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2048. oal = tx_cb->oal;
  2049. for (i = 0; i < completed_segs; i++, seg++) {
  2050. oal_entry++;
  2051. /*
  2052. * Check for continuation requirements.
  2053. * It's strange but necessary.
  2054. */
  2055. if ((seg == 2 && seg_cnt > 3) ||
  2056. (seg == 7 && seg_cnt > 8) ||
  2057. (seg == 12 && seg_cnt > 13) ||
  2058. (seg == 17 && seg_cnt > 18)) {
  2059. pci_unmap_single(qdev->pdev,
  2060. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2061. dma_unmap_len(&tx_cb->map[seg], maplen),
  2062. PCI_DMA_TODEVICE);
  2063. oal++;
  2064. seg++;
  2065. }
  2066. pci_unmap_page(qdev->pdev,
  2067. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2068. dma_unmap_len(&tx_cb->map[seg], maplen),
  2069. PCI_DMA_TODEVICE);
  2070. }
  2071. pci_unmap_single(qdev->pdev,
  2072. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2073. dma_unmap_addr(&tx_cb->map[0], maplen),
  2074. PCI_DMA_TODEVICE);
  2075. return NETDEV_TX_BUSY;
  2076. }
  2077. /*
  2078. * The difference between 3022 and 3032 sends:
  2079. * 3022 only supports a simple single segment transmission.
  2080. * 3032 supports checksumming and scatter/gather lists (fragments).
  2081. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2082. * in the IOCB plus a chain of outbound address lists (OAL) that
  2083. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2084. * will be used to point to an OAL when more ALP entries are required.
  2085. * The IOCB is always the top of the chain followed by one or more
  2086. * OALs (when necessary).
  2087. */
  2088. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2089. struct net_device *ndev)
  2090. {
  2091. struct ql3_adapter *qdev = netdev_priv(ndev);
  2092. struct ql3xxx_port_registers __iomem *port_regs =
  2093. qdev->mem_map_registers;
  2094. struct ql_tx_buf_cb *tx_cb;
  2095. u32 tot_len = skb->len;
  2096. struct ob_mac_iocb_req *mac_iocb_ptr;
  2097. if (unlikely(atomic_read(&qdev->tx_count) < 2))
  2098. return NETDEV_TX_BUSY;
  2099. tx_cb = &qdev->tx_buf[qdev->req_producer_index];
  2100. tx_cb->seg_count = ql_get_seg_count(qdev,
  2101. skb_shinfo(skb)->nr_frags);
  2102. if (tx_cb->seg_count == -1) {
  2103. netdev_err(ndev, "%s: invalid segment count!\n", __func__);
  2104. return NETDEV_TX_OK;
  2105. }
  2106. mac_iocb_ptr = tx_cb->queue_entry;
  2107. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2108. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2109. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2110. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2111. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2112. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2113. tx_cb->skb = skb;
  2114. if (qdev->device_id == QL3032_DEVICE_ID &&
  2115. skb->ip_summed == CHECKSUM_PARTIAL)
  2116. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2117. if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
  2118. netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
  2119. return NETDEV_TX_BUSY;
  2120. }
  2121. wmb();
  2122. qdev->req_producer_index++;
  2123. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2124. qdev->req_producer_index = 0;
  2125. wmb();
  2126. ql_write_common_reg_l(qdev,
  2127. &port_regs->CommonRegs.reqQProducerIndex,
  2128. qdev->req_producer_index);
  2129. netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
  2130. "tx queued, slot %d, len %d\n",
  2131. qdev->req_producer_index, skb->len);
  2132. atomic_dec(&qdev->tx_count);
  2133. return NETDEV_TX_OK;
  2134. }
  2135. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2136. {
  2137. qdev->req_q_size =
  2138. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2139. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2140. /* The barrier is required to ensure request and response queue
  2141. * addr writes to the registers.
  2142. */
  2143. wmb();
  2144. qdev->req_q_virt_addr =
  2145. pci_alloc_consistent(qdev->pdev,
  2146. (size_t) qdev->req_q_size,
  2147. &qdev->req_q_phy_addr);
  2148. if ((qdev->req_q_virt_addr == NULL) ||
  2149. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2150. netdev_err(qdev->ndev, "reqQ failed\n");
  2151. return -ENOMEM;
  2152. }
  2153. qdev->rsp_q_virt_addr =
  2154. pci_alloc_consistent(qdev->pdev,
  2155. (size_t) qdev->rsp_q_size,
  2156. &qdev->rsp_q_phy_addr);
  2157. if ((qdev->rsp_q_virt_addr == NULL) ||
  2158. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2159. netdev_err(qdev->ndev, "rspQ allocation failed\n");
  2160. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2161. qdev->req_q_virt_addr,
  2162. qdev->req_q_phy_addr);
  2163. return -ENOMEM;
  2164. }
  2165. set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2166. return 0;
  2167. }
  2168. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2169. {
  2170. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
  2171. netdev_info(qdev->ndev, "Already done\n");
  2172. return;
  2173. }
  2174. pci_free_consistent(qdev->pdev,
  2175. qdev->req_q_size,
  2176. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2177. qdev->req_q_virt_addr = NULL;
  2178. pci_free_consistent(qdev->pdev,
  2179. qdev->rsp_q_size,
  2180. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2181. qdev->rsp_q_virt_addr = NULL;
  2182. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2183. }
  2184. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2185. {
  2186. /* Create Large Buffer Queue */
  2187. qdev->lrg_buf_q_size =
  2188. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2189. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2190. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2191. else
  2192. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2193. qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
  2194. sizeof(struct ql_rcv_buf_cb),
  2195. GFP_KERNEL);
  2196. if (qdev->lrg_buf == NULL)
  2197. return -ENOMEM;
  2198. qdev->lrg_buf_q_alloc_virt_addr =
  2199. pci_alloc_consistent(qdev->pdev,
  2200. qdev->lrg_buf_q_alloc_size,
  2201. &qdev->lrg_buf_q_alloc_phy_addr);
  2202. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2203. netdev_err(qdev->ndev, "lBufQ failed\n");
  2204. return -ENOMEM;
  2205. }
  2206. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2207. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2208. /* Create Small Buffer Queue */
  2209. qdev->small_buf_q_size =
  2210. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2211. if (qdev->small_buf_q_size < PAGE_SIZE)
  2212. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2213. else
  2214. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2215. qdev->small_buf_q_alloc_virt_addr =
  2216. pci_alloc_consistent(qdev->pdev,
  2217. qdev->small_buf_q_alloc_size,
  2218. &qdev->small_buf_q_alloc_phy_addr);
  2219. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2220. netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
  2221. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2222. qdev->lrg_buf_q_alloc_virt_addr,
  2223. qdev->lrg_buf_q_alloc_phy_addr);
  2224. return -ENOMEM;
  2225. }
  2226. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2227. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2228. set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2229. return 0;
  2230. }
  2231. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2232. {
  2233. if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
  2234. netdev_info(qdev->ndev, "Already done\n");
  2235. return;
  2236. }
  2237. kfree(qdev->lrg_buf);
  2238. pci_free_consistent(qdev->pdev,
  2239. qdev->lrg_buf_q_alloc_size,
  2240. qdev->lrg_buf_q_alloc_virt_addr,
  2241. qdev->lrg_buf_q_alloc_phy_addr);
  2242. qdev->lrg_buf_q_virt_addr = NULL;
  2243. pci_free_consistent(qdev->pdev,
  2244. qdev->small_buf_q_alloc_size,
  2245. qdev->small_buf_q_alloc_virt_addr,
  2246. qdev->small_buf_q_alloc_phy_addr);
  2247. qdev->small_buf_q_virt_addr = NULL;
  2248. clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2249. }
  2250. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2251. {
  2252. int i;
  2253. struct bufq_addr_element *small_buf_q_entry;
  2254. /* Currently we allocate on one of memory and use it for smallbuffers */
  2255. qdev->small_buf_total_size =
  2256. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2257. QL_SMALL_BUFFER_SIZE);
  2258. qdev->small_buf_virt_addr =
  2259. pci_alloc_consistent(qdev->pdev,
  2260. qdev->small_buf_total_size,
  2261. &qdev->small_buf_phy_addr);
  2262. if (qdev->small_buf_virt_addr == NULL) {
  2263. netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
  2264. return -ENOMEM;
  2265. }
  2266. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2267. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2268. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2269. /* Initialize the small buffer queue. */
  2270. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2271. small_buf_q_entry->addr_high =
  2272. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2273. small_buf_q_entry->addr_low =
  2274. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2275. (i * QL_SMALL_BUFFER_SIZE));
  2276. small_buf_q_entry++;
  2277. }
  2278. qdev->small_buf_index = 0;
  2279. set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
  2280. return 0;
  2281. }
  2282. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2283. {
  2284. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
  2285. netdev_info(qdev->ndev, "Already done\n");
  2286. return;
  2287. }
  2288. if (qdev->small_buf_virt_addr != NULL) {
  2289. pci_free_consistent(qdev->pdev,
  2290. qdev->small_buf_total_size,
  2291. qdev->small_buf_virt_addr,
  2292. qdev->small_buf_phy_addr);
  2293. qdev->small_buf_virt_addr = NULL;
  2294. }
  2295. }
  2296. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2297. {
  2298. int i = 0;
  2299. struct ql_rcv_buf_cb *lrg_buf_cb;
  2300. for (i = 0; i < qdev->num_large_buffers; i++) {
  2301. lrg_buf_cb = &qdev->lrg_buf[i];
  2302. if (lrg_buf_cb->skb) {
  2303. dev_kfree_skb(lrg_buf_cb->skb);
  2304. pci_unmap_single(qdev->pdev,
  2305. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2306. dma_unmap_len(lrg_buf_cb, maplen),
  2307. PCI_DMA_FROMDEVICE);
  2308. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2309. } else {
  2310. break;
  2311. }
  2312. }
  2313. }
  2314. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2315. {
  2316. int i;
  2317. struct ql_rcv_buf_cb *lrg_buf_cb;
  2318. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2319. for (i = 0; i < qdev->num_large_buffers; i++) {
  2320. lrg_buf_cb = &qdev->lrg_buf[i];
  2321. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2322. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2323. buf_addr_ele++;
  2324. }
  2325. qdev->lrg_buf_index = 0;
  2326. qdev->lrg_buf_skb_check = 0;
  2327. }
  2328. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2329. {
  2330. int i;
  2331. struct ql_rcv_buf_cb *lrg_buf_cb;
  2332. struct sk_buff *skb;
  2333. dma_addr_t map;
  2334. int err;
  2335. for (i = 0; i < qdev->num_large_buffers; i++) {
  2336. skb = netdev_alloc_skb(qdev->ndev,
  2337. qdev->lrg_buffer_len);
  2338. if (unlikely(!skb)) {
  2339. /* Better luck next round */
  2340. netdev_err(qdev->ndev,
  2341. "large buff alloc failed for %d bytes at index %d\n",
  2342. qdev->lrg_buffer_len * 2, i);
  2343. ql_free_large_buffers(qdev);
  2344. return -ENOMEM;
  2345. } else {
  2346. lrg_buf_cb = &qdev->lrg_buf[i];
  2347. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2348. lrg_buf_cb->index = i;
  2349. lrg_buf_cb->skb = skb;
  2350. /*
  2351. * We save some space to copy the ethhdr from first
  2352. * buffer
  2353. */
  2354. skb_reserve(skb, QL_HEADER_SPACE);
  2355. map = pci_map_single(qdev->pdev,
  2356. skb->data,
  2357. qdev->lrg_buffer_len -
  2358. QL_HEADER_SPACE,
  2359. PCI_DMA_FROMDEVICE);
  2360. err = pci_dma_mapping_error(qdev->pdev, map);
  2361. if (err) {
  2362. netdev_err(qdev->ndev,
  2363. "PCI mapping failed with error: %d\n",
  2364. err);
  2365. ql_free_large_buffers(qdev);
  2366. return -ENOMEM;
  2367. }
  2368. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2369. dma_unmap_len_set(lrg_buf_cb, maplen,
  2370. qdev->lrg_buffer_len -
  2371. QL_HEADER_SPACE);
  2372. lrg_buf_cb->buf_phy_addr_low =
  2373. cpu_to_le32(LS_64BITS(map));
  2374. lrg_buf_cb->buf_phy_addr_high =
  2375. cpu_to_le32(MS_64BITS(map));
  2376. }
  2377. }
  2378. return 0;
  2379. }
  2380. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2381. {
  2382. struct ql_tx_buf_cb *tx_cb;
  2383. int i;
  2384. tx_cb = &qdev->tx_buf[0];
  2385. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2386. kfree(tx_cb->oal);
  2387. tx_cb->oal = NULL;
  2388. tx_cb++;
  2389. }
  2390. }
  2391. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2392. {
  2393. struct ql_tx_buf_cb *tx_cb;
  2394. int i;
  2395. struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
  2396. /* Create free list of transmit buffers */
  2397. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2398. tx_cb = &qdev->tx_buf[i];
  2399. tx_cb->skb = NULL;
  2400. tx_cb->queue_entry = req_q_curr;
  2401. req_q_curr++;
  2402. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2403. if (tx_cb->oal == NULL)
  2404. return -ENOMEM;
  2405. }
  2406. return 0;
  2407. }
  2408. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2409. {
  2410. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2411. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2412. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2413. } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2414. /*
  2415. * Bigger buffers, so less of them.
  2416. */
  2417. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2418. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2419. } else {
  2420. netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
  2421. qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
  2422. return -ENOMEM;
  2423. }
  2424. qdev->num_large_buffers =
  2425. qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2426. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2427. qdev->max_frame_size =
  2428. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2429. /*
  2430. * First allocate a page of shared memory and use it for shadow
  2431. * locations of Network Request Queue Consumer Address Register and
  2432. * Network Completion Queue Producer Index Register
  2433. */
  2434. qdev->shadow_reg_virt_addr =
  2435. pci_alloc_consistent(qdev->pdev,
  2436. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2437. if (qdev->shadow_reg_virt_addr != NULL) {
  2438. qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
  2439. qdev->req_consumer_index_phy_addr_high =
  2440. MS_64BITS(qdev->shadow_reg_phy_addr);
  2441. qdev->req_consumer_index_phy_addr_low =
  2442. LS_64BITS(qdev->shadow_reg_phy_addr);
  2443. qdev->prsp_producer_index =
  2444. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2445. qdev->rsp_producer_index_phy_addr_high =
  2446. qdev->req_consumer_index_phy_addr_high;
  2447. qdev->rsp_producer_index_phy_addr_low =
  2448. qdev->req_consumer_index_phy_addr_low + 8;
  2449. } else {
  2450. netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
  2451. return -ENOMEM;
  2452. }
  2453. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2454. netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
  2455. goto err_req_rsp;
  2456. }
  2457. if (ql_alloc_buffer_queues(qdev) != 0) {
  2458. netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
  2459. goto err_buffer_queues;
  2460. }
  2461. if (ql_alloc_small_buffers(qdev) != 0) {
  2462. netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
  2463. goto err_small_buffers;
  2464. }
  2465. if (ql_alloc_large_buffers(qdev) != 0) {
  2466. netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
  2467. goto err_small_buffers;
  2468. }
  2469. /* Initialize the large buffer queue. */
  2470. ql_init_large_buffers(qdev);
  2471. if (ql_create_send_free_list(qdev))
  2472. goto err_free_list;
  2473. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2474. return 0;
  2475. err_free_list:
  2476. ql_free_send_free_list(qdev);
  2477. err_small_buffers:
  2478. ql_free_buffer_queues(qdev);
  2479. err_buffer_queues:
  2480. ql_free_net_req_rsp_queues(qdev);
  2481. err_req_rsp:
  2482. pci_free_consistent(qdev->pdev,
  2483. PAGE_SIZE,
  2484. qdev->shadow_reg_virt_addr,
  2485. qdev->shadow_reg_phy_addr);
  2486. return -ENOMEM;
  2487. }
  2488. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2489. {
  2490. ql_free_send_free_list(qdev);
  2491. ql_free_large_buffers(qdev);
  2492. ql_free_small_buffers(qdev);
  2493. ql_free_buffer_queues(qdev);
  2494. ql_free_net_req_rsp_queues(qdev);
  2495. if (qdev->shadow_reg_virt_addr != NULL) {
  2496. pci_free_consistent(qdev->pdev,
  2497. PAGE_SIZE,
  2498. qdev->shadow_reg_virt_addr,
  2499. qdev->shadow_reg_phy_addr);
  2500. qdev->shadow_reg_virt_addr = NULL;
  2501. }
  2502. }
  2503. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2504. {
  2505. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2506. (void __iomem *)qdev->mem_map_registers;
  2507. if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2508. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2509. 2) << 4))
  2510. return -1;
  2511. ql_write_page2_reg(qdev,
  2512. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2513. ql_write_page2_reg(qdev,
  2514. &local_ram->maxBufletCount,
  2515. qdev->nvram_data.bufletCount);
  2516. ql_write_page2_reg(qdev,
  2517. &local_ram->freeBufletThresholdLow,
  2518. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2519. (qdev->nvram_data.tcpWindowThreshold0));
  2520. ql_write_page2_reg(qdev,
  2521. &local_ram->freeBufletThresholdHigh,
  2522. qdev->nvram_data.tcpWindowThreshold50);
  2523. ql_write_page2_reg(qdev,
  2524. &local_ram->ipHashTableBase,
  2525. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2526. qdev->nvram_data.ipHashTableBaseLo);
  2527. ql_write_page2_reg(qdev,
  2528. &local_ram->ipHashTableCount,
  2529. qdev->nvram_data.ipHashTableSize);
  2530. ql_write_page2_reg(qdev,
  2531. &local_ram->tcpHashTableBase,
  2532. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2533. qdev->nvram_data.tcpHashTableBaseLo);
  2534. ql_write_page2_reg(qdev,
  2535. &local_ram->tcpHashTableCount,
  2536. qdev->nvram_data.tcpHashTableSize);
  2537. ql_write_page2_reg(qdev,
  2538. &local_ram->ncbBase,
  2539. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2540. qdev->nvram_data.ncbTableBaseLo);
  2541. ql_write_page2_reg(qdev,
  2542. &local_ram->maxNcbCount,
  2543. qdev->nvram_data.ncbTableSize);
  2544. ql_write_page2_reg(qdev,
  2545. &local_ram->drbBase,
  2546. (qdev->nvram_data.drbTableBaseHi << 16) |
  2547. qdev->nvram_data.drbTableBaseLo);
  2548. ql_write_page2_reg(qdev,
  2549. &local_ram->maxDrbCount,
  2550. qdev->nvram_data.drbTableSize);
  2551. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2552. return 0;
  2553. }
  2554. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2555. {
  2556. u32 value;
  2557. struct ql3xxx_port_registers __iomem *port_regs =
  2558. qdev->mem_map_registers;
  2559. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  2560. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2561. (void __iomem *)port_regs;
  2562. u32 delay = 10;
  2563. int status = 0;
  2564. if (ql_mii_setup(qdev))
  2565. return -1;
  2566. /* Bring out PHY out of reset */
  2567. ql_write_common_reg(qdev, spir,
  2568. (ISP_SERIAL_PORT_IF_WE |
  2569. (ISP_SERIAL_PORT_IF_WE << 16)));
  2570. /* Give the PHY time to come out of reset. */
  2571. mdelay(100);
  2572. qdev->port_link_state = LS_DOWN;
  2573. netif_carrier_off(qdev->ndev);
  2574. /* V2 chip fix for ARS-39168. */
  2575. ql_write_common_reg(qdev, spir,
  2576. (ISP_SERIAL_PORT_IF_SDE |
  2577. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2578. /* Request Queue Registers */
  2579. *((u32 *)(qdev->preq_consumer_index)) = 0;
  2580. atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
  2581. qdev->req_producer_index = 0;
  2582. ql_write_page1_reg(qdev,
  2583. &hmem_regs->reqConsumerIndexAddrHigh,
  2584. qdev->req_consumer_index_phy_addr_high);
  2585. ql_write_page1_reg(qdev,
  2586. &hmem_regs->reqConsumerIndexAddrLow,
  2587. qdev->req_consumer_index_phy_addr_low);
  2588. ql_write_page1_reg(qdev,
  2589. &hmem_regs->reqBaseAddrHigh,
  2590. MS_64BITS(qdev->req_q_phy_addr));
  2591. ql_write_page1_reg(qdev,
  2592. &hmem_regs->reqBaseAddrLow,
  2593. LS_64BITS(qdev->req_q_phy_addr));
  2594. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2595. /* Response Queue Registers */
  2596. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2597. qdev->rsp_consumer_index = 0;
  2598. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2599. ql_write_page1_reg(qdev,
  2600. &hmem_regs->rspProducerIndexAddrHigh,
  2601. qdev->rsp_producer_index_phy_addr_high);
  2602. ql_write_page1_reg(qdev,
  2603. &hmem_regs->rspProducerIndexAddrLow,
  2604. qdev->rsp_producer_index_phy_addr_low);
  2605. ql_write_page1_reg(qdev,
  2606. &hmem_regs->rspBaseAddrHigh,
  2607. MS_64BITS(qdev->rsp_q_phy_addr));
  2608. ql_write_page1_reg(qdev,
  2609. &hmem_regs->rspBaseAddrLow,
  2610. LS_64BITS(qdev->rsp_q_phy_addr));
  2611. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2612. /* Large Buffer Queue */
  2613. ql_write_page1_reg(qdev,
  2614. &hmem_regs->rxLargeQBaseAddrHigh,
  2615. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2616. ql_write_page1_reg(qdev,
  2617. &hmem_regs->rxLargeQBaseAddrLow,
  2618. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2619. ql_write_page1_reg(qdev,
  2620. &hmem_regs->rxLargeQLength,
  2621. qdev->num_lbufq_entries);
  2622. ql_write_page1_reg(qdev,
  2623. &hmem_regs->rxLargeBufferLength,
  2624. qdev->lrg_buffer_len);
  2625. /* Small Buffer Queue */
  2626. ql_write_page1_reg(qdev,
  2627. &hmem_regs->rxSmallQBaseAddrHigh,
  2628. MS_64BITS(qdev->small_buf_q_phy_addr));
  2629. ql_write_page1_reg(qdev,
  2630. &hmem_regs->rxSmallQBaseAddrLow,
  2631. LS_64BITS(qdev->small_buf_q_phy_addr));
  2632. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2633. ql_write_page1_reg(qdev,
  2634. &hmem_regs->rxSmallBufferLength,
  2635. QL_SMALL_BUFFER_SIZE);
  2636. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2637. qdev->small_buf_release_cnt = 8;
  2638. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2639. qdev->lrg_buf_release_cnt = 8;
  2640. qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
  2641. qdev->small_buf_index = 0;
  2642. qdev->lrg_buf_index = 0;
  2643. qdev->lrg_buf_free_count = 0;
  2644. qdev->lrg_buf_free_head = NULL;
  2645. qdev->lrg_buf_free_tail = NULL;
  2646. ql_write_common_reg(qdev,
  2647. &port_regs->CommonRegs.
  2648. rxSmallQProducerIndex,
  2649. qdev->small_buf_q_producer_index);
  2650. ql_write_common_reg(qdev,
  2651. &port_regs->CommonRegs.
  2652. rxLargeQProducerIndex,
  2653. qdev->lrg_buf_q_producer_index);
  2654. /*
  2655. * Find out if the chip has already been initialized. If it has, then
  2656. * we skip some of the initialization.
  2657. */
  2658. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2659. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2660. if ((value & PORT_STATUS_IC) == 0) {
  2661. /* Chip has not been configured yet, so let it rip. */
  2662. if (ql_init_misc_registers(qdev)) {
  2663. status = -1;
  2664. goto out;
  2665. }
  2666. value = qdev->nvram_data.tcpMaxWindowSize;
  2667. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2668. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2669. if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2670. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2671. * 2) << 13)) {
  2672. status = -1;
  2673. goto out;
  2674. }
  2675. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2676. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2677. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2678. 16) | (INTERNAL_CHIP_SD |
  2679. INTERNAL_CHIP_WE)));
  2680. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2681. }
  2682. if (qdev->mac_index)
  2683. ql_write_page0_reg(qdev,
  2684. &port_regs->mac1MaxFrameLengthReg,
  2685. qdev->max_frame_size);
  2686. else
  2687. ql_write_page0_reg(qdev,
  2688. &port_regs->mac0MaxFrameLengthReg,
  2689. qdev->max_frame_size);
  2690. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2691. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2692. 2) << 7)) {
  2693. status = -1;
  2694. goto out;
  2695. }
  2696. PHY_Setup(qdev);
  2697. ql_init_scan_mode(qdev);
  2698. ql_get_phy_owner(qdev);
  2699. /* Load the MAC Configuration */
  2700. /* Program lower 32 bits of the MAC address */
  2701. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2702. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2703. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2704. ((qdev->ndev->dev_addr[2] << 24)
  2705. | (qdev->ndev->dev_addr[3] << 16)
  2706. | (qdev->ndev->dev_addr[4] << 8)
  2707. | qdev->ndev->dev_addr[5]));
  2708. /* Program top 16 bits of the MAC address */
  2709. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2710. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2711. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2712. ((qdev->ndev->dev_addr[0] << 8)
  2713. | qdev->ndev->dev_addr[1]));
  2714. /* Enable Primary MAC */
  2715. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2716. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2717. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2718. /* Clear Primary and Secondary IP addresses */
  2719. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2720. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2721. (qdev->mac_index << 2)));
  2722. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2723. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2724. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2725. ((qdev->mac_index << 2) + 1)));
  2726. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2727. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2728. /* Indicate Configuration Complete */
  2729. ql_write_page0_reg(qdev,
  2730. &port_regs->portControl,
  2731. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2732. do {
  2733. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2734. if (value & PORT_STATUS_IC)
  2735. break;
  2736. spin_unlock_irq(&qdev->hw_lock);
  2737. msleep(500);
  2738. spin_lock_irq(&qdev->hw_lock);
  2739. } while (--delay);
  2740. if (delay == 0) {
  2741. netdev_err(qdev->ndev, "Hw Initialization timeout\n");
  2742. status = -1;
  2743. goto out;
  2744. }
  2745. /* Enable Ethernet Function */
  2746. if (qdev->device_id == QL3032_DEVICE_ID) {
  2747. value =
  2748. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2749. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2750. QL3032_PORT_CONTROL_ET);
  2751. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2752. ((value << 16) | value));
  2753. } else {
  2754. value =
  2755. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2756. PORT_CONTROL_HH);
  2757. ql_write_page0_reg(qdev, &port_regs->portControl,
  2758. ((value << 16) | value));
  2759. }
  2760. out:
  2761. return status;
  2762. }
  2763. /*
  2764. * Caller holds hw_lock.
  2765. */
  2766. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2767. {
  2768. struct ql3xxx_port_registers __iomem *port_regs =
  2769. qdev->mem_map_registers;
  2770. int status = 0;
  2771. u16 value;
  2772. int max_wait_time;
  2773. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2774. clear_bit(QL_RESET_DONE, &qdev->flags);
  2775. /*
  2776. * Issue soft reset to chip.
  2777. */
  2778. netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
  2779. ql_write_common_reg(qdev,
  2780. &port_regs->CommonRegs.ispControlStatus,
  2781. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2782. /* Wait 3 seconds for reset to complete. */
  2783. netdev_printk(KERN_DEBUG, qdev->ndev,
  2784. "Wait 10 milliseconds for reset to complete\n");
  2785. /* Wait until the firmware tells us the Soft Reset is done */
  2786. max_wait_time = 5;
  2787. do {
  2788. value =
  2789. ql_read_common_reg(qdev,
  2790. &port_regs->CommonRegs.ispControlStatus);
  2791. if ((value & ISP_CONTROL_SR) == 0)
  2792. break;
  2793. ssleep(1);
  2794. } while ((--max_wait_time));
  2795. /*
  2796. * Also, make sure that the Network Reset Interrupt bit has been
  2797. * cleared after the soft reset has taken place.
  2798. */
  2799. value =
  2800. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2801. if (value & ISP_CONTROL_RI) {
  2802. netdev_printk(KERN_DEBUG, qdev->ndev,
  2803. "clearing RI after reset\n");
  2804. ql_write_common_reg(qdev,
  2805. &port_regs->CommonRegs.
  2806. ispControlStatus,
  2807. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2808. }
  2809. if (max_wait_time == 0) {
  2810. /* Issue Force Soft Reset */
  2811. ql_write_common_reg(qdev,
  2812. &port_regs->CommonRegs.
  2813. ispControlStatus,
  2814. ((ISP_CONTROL_FSR << 16) |
  2815. ISP_CONTROL_FSR));
  2816. /*
  2817. * Wait until the firmware tells us the Force Soft Reset is
  2818. * done
  2819. */
  2820. max_wait_time = 5;
  2821. do {
  2822. value = ql_read_common_reg(qdev,
  2823. &port_regs->CommonRegs.
  2824. ispControlStatus);
  2825. if ((value & ISP_CONTROL_FSR) == 0)
  2826. break;
  2827. ssleep(1);
  2828. } while ((--max_wait_time));
  2829. }
  2830. if (max_wait_time == 0)
  2831. status = 1;
  2832. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2833. set_bit(QL_RESET_DONE, &qdev->flags);
  2834. return status;
  2835. }
  2836. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2837. {
  2838. struct ql3xxx_port_registers __iomem *port_regs =
  2839. qdev->mem_map_registers;
  2840. u32 value, port_status;
  2841. u8 func_number;
  2842. /* Get the function number */
  2843. value =
  2844. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2845. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2846. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2847. switch (value & ISP_CONTROL_FN_MASK) {
  2848. case ISP_CONTROL_FN0_NET:
  2849. qdev->mac_index = 0;
  2850. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2851. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2852. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2853. if (port_status & PORT_STATUS_SM0)
  2854. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2855. else
  2856. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2857. break;
  2858. case ISP_CONTROL_FN1_NET:
  2859. qdev->mac_index = 1;
  2860. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2861. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2862. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2863. if (port_status & PORT_STATUS_SM1)
  2864. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2865. else
  2866. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2867. break;
  2868. case ISP_CONTROL_FN0_SCSI:
  2869. case ISP_CONTROL_FN1_SCSI:
  2870. default:
  2871. netdev_printk(KERN_DEBUG, qdev->ndev,
  2872. "Invalid function number, ispControlStatus = 0x%x\n",
  2873. value);
  2874. break;
  2875. }
  2876. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  2877. }
  2878. static void ql_display_dev_info(struct net_device *ndev)
  2879. {
  2880. struct ql3_adapter *qdev = netdev_priv(ndev);
  2881. struct pci_dev *pdev = qdev->pdev;
  2882. netdev_info(ndev,
  2883. "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
  2884. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2885. qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
  2886. qdev->pci_slot);
  2887. netdev_info(ndev, "%s Interface\n",
  2888. test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
  2889. /*
  2890. * Print PCI bus width/type.
  2891. */
  2892. netdev_info(ndev, "Bus interface is %s %s\n",
  2893. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2894. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2895. netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
  2896. qdev->mem_map_registers);
  2897. netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
  2898. netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
  2899. }
  2900. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2901. {
  2902. struct net_device *ndev = qdev->ndev;
  2903. int retval = 0;
  2904. netif_stop_queue(ndev);
  2905. netif_carrier_off(ndev);
  2906. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2907. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2908. ql_disable_interrupts(qdev);
  2909. free_irq(qdev->pdev->irq, ndev);
  2910. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2911. netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
  2912. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2913. pci_disable_msi(qdev->pdev);
  2914. }
  2915. del_timer_sync(&qdev->adapter_timer);
  2916. napi_disable(&qdev->napi);
  2917. if (do_reset) {
  2918. int soft_reset;
  2919. unsigned long hw_flags;
  2920. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2921. if (ql_wait_for_drvr_lock(qdev)) {
  2922. soft_reset = ql_adapter_reset(qdev);
  2923. if (soft_reset) {
  2924. netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
  2925. qdev->index);
  2926. }
  2927. netdev_err(ndev,
  2928. "Releasing driver lock via chip reset\n");
  2929. } else {
  2930. netdev_err(ndev,
  2931. "Could not acquire driver lock to do reset!\n");
  2932. retval = -1;
  2933. }
  2934. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2935. }
  2936. ql_free_mem_resources(qdev);
  2937. return retval;
  2938. }
  2939. static int ql_adapter_up(struct ql3_adapter *qdev)
  2940. {
  2941. struct net_device *ndev = qdev->ndev;
  2942. int err;
  2943. unsigned long irq_flags = IRQF_SHARED;
  2944. unsigned long hw_flags;
  2945. if (ql_alloc_mem_resources(qdev)) {
  2946. netdev_err(ndev, "Unable to allocate buffers\n");
  2947. return -ENOMEM;
  2948. }
  2949. if (qdev->msi) {
  2950. if (pci_enable_msi(qdev->pdev)) {
  2951. netdev_err(ndev,
  2952. "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
  2953. qdev->msi = 0;
  2954. } else {
  2955. netdev_info(ndev, "MSI Enabled...\n");
  2956. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2957. irq_flags &= ~IRQF_SHARED;
  2958. }
  2959. }
  2960. err = request_irq(qdev->pdev->irq, ql3xxx_isr,
  2961. irq_flags, ndev->name, ndev);
  2962. if (err) {
  2963. netdev_err(ndev,
  2964. "Failed to reserve interrupt %d - already in use\n",
  2965. qdev->pdev->irq);
  2966. goto err_irq;
  2967. }
  2968. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2969. err = ql_wait_for_drvr_lock(qdev);
  2970. if (err) {
  2971. err = ql_adapter_initialize(qdev);
  2972. if (err) {
  2973. netdev_err(ndev, "Unable to initialize adapter\n");
  2974. goto err_init;
  2975. }
  2976. netdev_err(ndev, "Releasing driver lock\n");
  2977. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2978. } else {
  2979. netdev_err(ndev, "Could not acquire driver lock\n");
  2980. goto err_lock;
  2981. }
  2982. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2983. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2984. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2985. napi_enable(&qdev->napi);
  2986. ql_enable_interrupts(qdev);
  2987. return 0;
  2988. err_init:
  2989. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2990. err_lock:
  2991. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2992. free_irq(qdev->pdev->irq, ndev);
  2993. err_irq:
  2994. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2995. netdev_info(ndev, "calling pci_disable_msi()\n");
  2996. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2997. pci_disable_msi(qdev->pdev);
  2998. }
  2999. return err;
  3000. }
  3001. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3002. {
  3003. if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
  3004. netdev_err(qdev->ndev,
  3005. "Driver up/down cycle failed, closing device\n");
  3006. rtnl_lock();
  3007. dev_close(qdev->ndev);
  3008. rtnl_unlock();
  3009. return -1;
  3010. }
  3011. return 0;
  3012. }
  3013. static int ql3xxx_close(struct net_device *ndev)
  3014. {
  3015. struct ql3_adapter *qdev = netdev_priv(ndev);
  3016. /*
  3017. * Wait for device to recover from a reset.
  3018. * (Rarely happens, but possible.)
  3019. */
  3020. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3021. msleep(50);
  3022. ql_adapter_down(qdev, QL_DO_RESET);
  3023. return 0;
  3024. }
  3025. static int ql3xxx_open(struct net_device *ndev)
  3026. {
  3027. struct ql3_adapter *qdev = netdev_priv(ndev);
  3028. return ql_adapter_up(qdev);
  3029. }
  3030. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3031. {
  3032. struct ql3_adapter *qdev = netdev_priv(ndev);
  3033. struct ql3xxx_port_registers __iomem *port_regs =
  3034. qdev->mem_map_registers;
  3035. struct sockaddr *addr = p;
  3036. unsigned long hw_flags;
  3037. if (netif_running(ndev))
  3038. return -EBUSY;
  3039. if (!is_valid_ether_addr(addr->sa_data))
  3040. return -EADDRNOTAVAIL;
  3041. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3042. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3043. /* Program lower 32 bits of the MAC address */
  3044. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3045. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3046. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3047. ((ndev->dev_addr[2] << 24) | (ndev->
  3048. dev_addr[3] << 16) |
  3049. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3050. /* Program top 16 bits of the MAC address */
  3051. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3052. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3053. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3054. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3055. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3056. return 0;
  3057. }
  3058. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3059. {
  3060. struct ql3_adapter *qdev = netdev_priv(ndev);
  3061. netdev_err(ndev, "Resetting...\n");
  3062. /*
  3063. * Stop the queues, we've got a problem.
  3064. */
  3065. netif_stop_queue(ndev);
  3066. /*
  3067. * Wake up the worker to process this event.
  3068. */
  3069. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3070. }
  3071. static void ql_reset_work(struct work_struct *work)
  3072. {
  3073. struct ql3_adapter *qdev =
  3074. container_of(work, struct ql3_adapter, reset_work.work);
  3075. struct net_device *ndev = qdev->ndev;
  3076. u32 value;
  3077. struct ql_tx_buf_cb *tx_cb;
  3078. int max_wait_time, i;
  3079. struct ql3xxx_port_registers __iomem *port_regs =
  3080. qdev->mem_map_registers;
  3081. unsigned long hw_flags;
  3082. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
  3083. clear_bit(QL_LINK_MASTER, &qdev->flags);
  3084. /*
  3085. * Loop through the active list and return the skb.
  3086. */
  3087. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3088. int j;
  3089. tx_cb = &qdev->tx_buf[i];
  3090. if (tx_cb->skb) {
  3091. netdev_printk(KERN_DEBUG, ndev,
  3092. "Freeing lost SKB\n");
  3093. pci_unmap_single(qdev->pdev,
  3094. dma_unmap_addr(&tx_cb->map[0],
  3095. mapaddr),
  3096. dma_unmap_len(&tx_cb->map[0], maplen),
  3097. PCI_DMA_TODEVICE);
  3098. for (j = 1; j < tx_cb->seg_count; j++) {
  3099. pci_unmap_page(qdev->pdev,
  3100. dma_unmap_addr(&tx_cb->map[j],
  3101. mapaddr),
  3102. dma_unmap_len(&tx_cb->map[j],
  3103. maplen),
  3104. PCI_DMA_TODEVICE);
  3105. }
  3106. dev_kfree_skb(tx_cb->skb);
  3107. tx_cb->skb = NULL;
  3108. }
  3109. }
  3110. netdev_err(ndev, "Clearing NRI after reset\n");
  3111. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3112. ql_write_common_reg(qdev,
  3113. &port_regs->CommonRegs.
  3114. ispControlStatus,
  3115. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3116. /*
  3117. * Wait the for Soft Reset to Complete.
  3118. */
  3119. max_wait_time = 10;
  3120. do {
  3121. value = ql_read_common_reg(qdev,
  3122. &port_regs->CommonRegs.
  3123. ispControlStatus);
  3124. if ((value & ISP_CONTROL_SR) == 0) {
  3125. netdev_printk(KERN_DEBUG, ndev,
  3126. "reset completed\n");
  3127. break;
  3128. }
  3129. if (value & ISP_CONTROL_RI) {
  3130. netdev_printk(KERN_DEBUG, ndev,
  3131. "clearing NRI after reset\n");
  3132. ql_write_common_reg(qdev,
  3133. &port_regs->
  3134. CommonRegs.
  3135. ispControlStatus,
  3136. ((ISP_CONTROL_RI <<
  3137. 16) | ISP_CONTROL_RI));
  3138. }
  3139. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3140. ssleep(1);
  3141. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3142. } while (--max_wait_time);
  3143. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3144. if (value & ISP_CONTROL_SR) {
  3145. /*
  3146. * Set the reset flags and clear the board again.
  3147. * Nothing else to do...
  3148. */
  3149. netdev_err(ndev,
  3150. "Timed out waiting for reset to complete\n");
  3151. netdev_err(ndev, "Do a reset\n");
  3152. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3153. clear_bit(QL_RESET_START, &qdev->flags);
  3154. ql_cycle_adapter(qdev, QL_DO_RESET);
  3155. return;
  3156. }
  3157. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3158. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3159. clear_bit(QL_RESET_START, &qdev->flags);
  3160. ql_cycle_adapter(qdev, QL_NO_RESET);
  3161. }
  3162. }
  3163. static void ql_tx_timeout_work(struct work_struct *work)
  3164. {
  3165. struct ql3_adapter *qdev =
  3166. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3167. ql_cycle_adapter(qdev, QL_DO_RESET);
  3168. }
  3169. static void ql_get_board_info(struct ql3_adapter *qdev)
  3170. {
  3171. struct ql3xxx_port_registers __iomem *port_regs =
  3172. qdev->mem_map_registers;
  3173. u32 value;
  3174. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3175. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3176. if (value & PORT_STATUS_64)
  3177. qdev->pci_width = 64;
  3178. else
  3179. qdev->pci_width = 32;
  3180. if (value & PORT_STATUS_X)
  3181. qdev->pci_x = 1;
  3182. else
  3183. qdev->pci_x = 0;
  3184. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3185. }
  3186. static void ql3xxx_timer(unsigned long ptr)
  3187. {
  3188. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3189. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3190. }
  3191. static const struct net_device_ops ql3xxx_netdev_ops = {
  3192. .ndo_open = ql3xxx_open,
  3193. .ndo_start_xmit = ql3xxx_send,
  3194. .ndo_stop = ql3xxx_close,
  3195. .ndo_change_mtu = eth_change_mtu,
  3196. .ndo_validate_addr = eth_validate_addr,
  3197. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3198. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3199. };
  3200. static int ql3xxx_probe(struct pci_dev *pdev,
  3201. const struct pci_device_id *pci_entry)
  3202. {
  3203. struct net_device *ndev = NULL;
  3204. struct ql3_adapter *qdev = NULL;
  3205. static int cards_found;
  3206. int uninitialized_var(pci_using_dac), err;
  3207. err = pci_enable_device(pdev);
  3208. if (err) {
  3209. pr_err("%s cannot enable PCI device\n", pci_name(pdev));
  3210. goto err_out;
  3211. }
  3212. err = pci_request_regions(pdev, DRV_NAME);
  3213. if (err) {
  3214. pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
  3215. goto err_out_disable_pdev;
  3216. }
  3217. pci_set_master(pdev);
  3218. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3219. pci_using_dac = 1;
  3220. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3221. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3222. pci_using_dac = 0;
  3223. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3224. }
  3225. if (err) {
  3226. pr_err("%s no usable DMA configuration\n", pci_name(pdev));
  3227. goto err_out_free_regions;
  3228. }
  3229. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3230. if (!ndev) {
  3231. err = -ENOMEM;
  3232. goto err_out_free_regions;
  3233. }
  3234. SET_NETDEV_DEV(ndev, &pdev->dev);
  3235. pci_set_drvdata(pdev, ndev);
  3236. qdev = netdev_priv(ndev);
  3237. qdev->index = cards_found;
  3238. qdev->ndev = ndev;
  3239. qdev->pdev = pdev;
  3240. qdev->device_id = pci_entry->device;
  3241. qdev->port_link_state = LS_DOWN;
  3242. if (msi)
  3243. qdev->msi = 1;
  3244. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3245. if (pci_using_dac)
  3246. ndev->features |= NETIF_F_HIGHDMA;
  3247. if (qdev->device_id == QL3032_DEVICE_ID)
  3248. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3249. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3250. if (!qdev->mem_map_registers) {
  3251. pr_err("%s: cannot map device registers\n", pci_name(pdev));
  3252. err = -EIO;
  3253. goto err_out_free_ndev;
  3254. }
  3255. spin_lock_init(&qdev->adapter_lock);
  3256. spin_lock_init(&qdev->hw_lock);
  3257. /* Set driver entry points */
  3258. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3259. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3260. ndev->watchdog_timeo = 5 * HZ;
  3261. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3262. ndev->irq = pdev->irq;
  3263. /* make sure the EEPROM is good */
  3264. if (ql_get_nvram_params(qdev)) {
  3265. pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
  3266. __func__, qdev->index);
  3267. err = -EIO;
  3268. goto err_out_iounmap;
  3269. }
  3270. ql_set_mac_info(qdev);
  3271. /* Validate and set parameters */
  3272. if (qdev->mac_index) {
  3273. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3274. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3275. } else {
  3276. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3277. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3278. }
  3279. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3280. /* Record PCI bus information. */
  3281. ql_get_board_info(qdev);
  3282. /*
  3283. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3284. * jumbo frames.
  3285. */
  3286. if (qdev->pci_x)
  3287. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3288. err = register_netdev(ndev);
  3289. if (err) {
  3290. pr_err("%s: cannot register net device\n", pci_name(pdev));
  3291. goto err_out_iounmap;
  3292. }
  3293. /* we're going to reset, so assume we have no link for now */
  3294. netif_carrier_off(ndev);
  3295. netif_stop_queue(ndev);
  3296. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3297. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3298. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3299. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3300. init_timer(&qdev->adapter_timer);
  3301. qdev->adapter_timer.function = ql3xxx_timer;
  3302. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3303. qdev->adapter_timer.data = (unsigned long)qdev;
  3304. if (!cards_found) {
  3305. pr_alert("%s\n", DRV_STRING);
  3306. pr_alert("Driver name: %s, Version: %s\n",
  3307. DRV_NAME, DRV_VERSION);
  3308. }
  3309. ql_display_dev_info(ndev);
  3310. cards_found++;
  3311. return 0;
  3312. err_out_iounmap:
  3313. iounmap(qdev->mem_map_registers);
  3314. err_out_free_ndev:
  3315. free_netdev(ndev);
  3316. err_out_free_regions:
  3317. pci_release_regions(pdev);
  3318. err_out_disable_pdev:
  3319. pci_disable_device(pdev);
  3320. pci_set_drvdata(pdev, NULL);
  3321. err_out:
  3322. return err;
  3323. }
  3324. static void ql3xxx_remove(struct pci_dev *pdev)
  3325. {
  3326. struct net_device *ndev = pci_get_drvdata(pdev);
  3327. struct ql3_adapter *qdev = netdev_priv(ndev);
  3328. unregister_netdev(ndev);
  3329. ql_disable_interrupts(qdev);
  3330. if (qdev->workqueue) {
  3331. cancel_delayed_work(&qdev->reset_work);
  3332. cancel_delayed_work(&qdev->tx_timeout_work);
  3333. destroy_workqueue(qdev->workqueue);
  3334. qdev->workqueue = NULL;
  3335. }
  3336. iounmap(qdev->mem_map_registers);
  3337. pci_release_regions(pdev);
  3338. pci_set_drvdata(pdev, NULL);
  3339. free_netdev(ndev);
  3340. }
  3341. static struct pci_driver ql3xxx_driver = {
  3342. .name = DRV_NAME,
  3343. .id_table = ql3xxx_pci_tbl,
  3344. .probe = ql3xxx_probe,
  3345. .remove = ql3xxx_remove,
  3346. };
  3347. module_pci_driver(ql3xxx_driver);