en_rx.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067
  1. /*
  2. * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <net/busy_poll.h>
  34. #include <linux/mlx4/cq.h>
  35. #include <linux/slab.h>
  36. #include <linux/mlx4/qp.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/rculist.h>
  39. #include <linux/if_ether.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/vmalloc.h>
  42. #include "mlx4_en.h"
  43. static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
  44. struct mlx4_en_rx_alloc *page_alloc,
  45. const struct mlx4_en_frag_info *frag_info,
  46. gfp_t _gfp)
  47. {
  48. int order;
  49. struct page *page;
  50. dma_addr_t dma;
  51. for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
  52. gfp_t gfp = _gfp;
  53. if (order)
  54. gfp |= __GFP_COMP | __GFP_NOWARN;
  55. page = alloc_pages(gfp, order);
  56. if (likely(page))
  57. break;
  58. if (--order < 0 ||
  59. ((PAGE_SIZE << order) < frag_info->frag_size))
  60. return -ENOMEM;
  61. }
  62. dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
  63. PCI_DMA_FROMDEVICE);
  64. if (dma_mapping_error(priv->ddev, dma)) {
  65. put_page(page);
  66. return -ENOMEM;
  67. }
  68. page_alloc->size = PAGE_SIZE << order;
  69. page_alloc->page = page;
  70. page_alloc->dma = dma;
  71. page_alloc->offset = frag_info->frag_align;
  72. /* Not doing get_page() for each frag is a big win
  73. * on asymetric workloads.
  74. */
  75. atomic_set(&page->_count, page_alloc->size / frag_info->frag_stride);
  76. return 0;
  77. }
  78. static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
  79. struct mlx4_en_rx_desc *rx_desc,
  80. struct mlx4_en_rx_alloc *frags,
  81. struct mlx4_en_rx_alloc *ring_alloc,
  82. gfp_t gfp)
  83. {
  84. struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
  85. const struct mlx4_en_frag_info *frag_info;
  86. struct page *page;
  87. dma_addr_t dma;
  88. int i;
  89. for (i = 0; i < priv->num_frags; i++) {
  90. frag_info = &priv->frag_info[i];
  91. page_alloc[i] = ring_alloc[i];
  92. page_alloc[i].offset += frag_info->frag_stride;
  93. if (page_alloc[i].offset + frag_info->frag_stride <= ring_alloc[i].size)
  94. continue;
  95. if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
  96. goto out;
  97. }
  98. for (i = 0; i < priv->num_frags; i++) {
  99. frags[i] = ring_alloc[i];
  100. dma = ring_alloc[i].dma + ring_alloc[i].offset;
  101. ring_alloc[i] = page_alloc[i];
  102. rx_desc->data[i].addr = cpu_to_be64(dma);
  103. }
  104. return 0;
  105. out:
  106. while (i--) {
  107. frag_info = &priv->frag_info[i];
  108. if (page_alloc[i].page != ring_alloc[i].page) {
  109. dma_unmap_page(priv->ddev, page_alloc[i].dma,
  110. page_alloc[i].size, PCI_DMA_FROMDEVICE);
  111. page = page_alloc[i].page;
  112. atomic_set(&page->_count, 1);
  113. put_page(page);
  114. }
  115. }
  116. return -ENOMEM;
  117. }
  118. static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
  119. struct mlx4_en_rx_alloc *frags,
  120. int i)
  121. {
  122. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  123. if (frags[i].offset + frag_info->frag_stride > frags[i].size)
  124. dma_unmap_page(priv->ddev, frags[i].dma, frags[i].size,
  125. PCI_DMA_FROMDEVICE);
  126. if (frags[i].page)
  127. put_page(frags[i].page);
  128. }
  129. static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
  130. struct mlx4_en_rx_ring *ring)
  131. {
  132. int i;
  133. struct mlx4_en_rx_alloc *page_alloc;
  134. for (i = 0; i < priv->num_frags; i++) {
  135. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  136. if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
  137. frag_info, GFP_KERNEL))
  138. goto out;
  139. }
  140. return 0;
  141. out:
  142. while (i--) {
  143. struct page *page;
  144. page_alloc = &ring->page_alloc[i];
  145. dma_unmap_page(priv->ddev, page_alloc->dma,
  146. page_alloc->size, PCI_DMA_FROMDEVICE);
  147. page = page_alloc->page;
  148. atomic_set(&page->_count, 1);
  149. put_page(page);
  150. page_alloc->page = NULL;
  151. }
  152. return -ENOMEM;
  153. }
  154. static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
  155. struct mlx4_en_rx_ring *ring)
  156. {
  157. struct mlx4_en_rx_alloc *page_alloc;
  158. int i;
  159. for (i = 0; i < priv->num_frags; i++) {
  160. const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
  161. page_alloc = &ring->page_alloc[i];
  162. en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
  163. i, page_count(page_alloc->page));
  164. dma_unmap_page(priv->ddev, page_alloc->dma,
  165. page_alloc->size, PCI_DMA_FROMDEVICE);
  166. while (page_alloc->offset + frag_info->frag_stride < page_alloc->size) {
  167. put_page(page_alloc->page);
  168. page_alloc->offset += frag_info->frag_stride;
  169. }
  170. page_alloc->page = NULL;
  171. }
  172. }
  173. static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
  174. struct mlx4_en_rx_ring *ring, int index)
  175. {
  176. struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
  177. int possible_frags;
  178. int i;
  179. /* Set size and memtype fields */
  180. for (i = 0; i < priv->num_frags; i++) {
  181. rx_desc->data[i].byte_count =
  182. cpu_to_be32(priv->frag_info[i].frag_size);
  183. rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
  184. }
  185. /* If the number of used fragments does not fill up the ring stride,
  186. * remaining (unused) fragments must be padded with null address/size
  187. * and a special memory key */
  188. possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
  189. for (i = priv->num_frags; i < possible_frags; i++) {
  190. rx_desc->data[i].byte_count = 0;
  191. rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
  192. rx_desc->data[i].addr = 0;
  193. }
  194. }
  195. static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
  196. struct mlx4_en_rx_ring *ring, int index,
  197. gfp_t gfp)
  198. {
  199. struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
  200. struct mlx4_en_rx_alloc *frags = ring->rx_info +
  201. (index << priv->log_rx_info);
  202. return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
  203. }
  204. static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
  205. {
  206. *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
  207. }
  208. static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
  209. struct mlx4_en_rx_ring *ring,
  210. int index)
  211. {
  212. struct mlx4_en_rx_alloc *frags;
  213. int nr;
  214. frags = ring->rx_info + (index << priv->log_rx_info);
  215. for (nr = 0; nr < priv->num_frags; nr++) {
  216. en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
  217. mlx4_en_free_frag(priv, frags, nr);
  218. }
  219. }
  220. static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
  221. {
  222. struct mlx4_en_rx_ring *ring;
  223. int ring_ind;
  224. int buf_ind;
  225. int new_size;
  226. for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
  227. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  228. ring = &priv->rx_ring[ring_ind];
  229. if (mlx4_en_prepare_rx_desc(priv, ring,
  230. ring->actual_size,
  231. GFP_KERNEL)) {
  232. if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
  233. en_err(priv, "Failed to allocate "
  234. "enough rx buffers\n");
  235. return -ENOMEM;
  236. } else {
  237. new_size = rounddown_pow_of_two(ring->actual_size);
  238. en_warn(priv, "Only %d buffers allocated "
  239. "reducing ring size to %d",
  240. ring->actual_size, new_size);
  241. goto reduce_rings;
  242. }
  243. }
  244. ring->actual_size++;
  245. ring->prod++;
  246. }
  247. }
  248. return 0;
  249. reduce_rings:
  250. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  251. ring = &priv->rx_ring[ring_ind];
  252. while (ring->actual_size > new_size) {
  253. ring->actual_size--;
  254. ring->prod--;
  255. mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
  256. }
  257. }
  258. return 0;
  259. }
  260. static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
  261. struct mlx4_en_rx_ring *ring)
  262. {
  263. int index;
  264. en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
  265. ring->cons, ring->prod);
  266. /* Unmap and free Rx buffers */
  267. BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size);
  268. while (ring->cons != ring->prod) {
  269. index = ring->cons & ring->size_mask;
  270. en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
  271. mlx4_en_free_rx_desc(priv, ring, index);
  272. ++ring->cons;
  273. }
  274. }
  275. int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
  276. struct mlx4_en_rx_ring *ring, u32 size, u16 stride)
  277. {
  278. struct mlx4_en_dev *mdev = priv->mdev;
  279. int err = -ENOMEM;
  280. int tmp;
  281. ring->prod = 0;
  282. ring->cons = 0;
  283. ring->size = size;
  284. ring->size_mask = size - 1;
  285. ring->stride = stride;
  286. ring->log_stride = ffs(ring->stride) - 1;
  287. ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
  288. tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
  289. sizeof(struct mlx4_en_rx_alloc));
  290. ring->rx_info = vmalloc(tmp);
  291. if (!ring->rx_info)
  292. return -ENOMEM;
  293. en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
  294. ring->rx_info, tmp);
  295. err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
  296. ring->buf_size, 2 * PAGE_SIZE);
  297. if (err)
  298. goto err_ring;
  299. err = mlx4_en_map_buffer(&ring->wqres.buf);
  300. if (err) {
  301. en_err(priv, "Failed to map RX buffer\n");
  302. goto err_hwq;
  303. }
  304. ring->buf = ring->wqres.buf.direct.buf;
  305. ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
  306. return 0;
  307. err_hwq:
  308. mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
  309. err_ring:
  310. vfree(ring->rx_info);
  311. ring->rx_info = NULL;
  312. return err;
  313. }
  314. int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
  315. {
  316. struct mlx4_en_rx_ring *ring;
  317. int i;
  318. int ring_ind;
  319. int err;
  320. int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
  321. DS_SIZE * priv->num_frags);
  322. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  323. ring = &priv->rx_ring[ring_ind];
  324. ring->prod = 0;
  325. ring->cons = 0;
  326. ring->actual_size = 0;
  327. ring->cqn = priv->rx_cq[ring_ind].mcq.cqn;
  328. ring->stride = stride;
  329. if (ring->stride <= TXBB_SIZE)
  330. ring->buf += TXBB_SIZE;
  331. ring->log_stride = ffs(ring->stride) - 1;
  332. ring->buf_size = ring->size * ring->stride;
  333. memset(ring->buf, 0, ring->buf_size);
  334. mlx4_en_update_rx_prod_db(ring);
  335. /* Initialize all descriptors */
  336. for (i = 0; i < ring->size; i++)
  337. mlx4_en_init_rx_desc(priv, ring, i);
  338. /* Initialize page allocators */
  339. err = mlx4_en_init_allocator(priv, ring);
  340. if (err) {
  341. en_err(priv, "Failed initializing ring allocator\n");
  342. if (ring->stride <= TXBB_SIZE)
  343. ring->buf -= TXBB_SIZE;
  344. ring_ind--;
  345. goto err_allocator;
  346. }
  347. }
  348. err = mlx4_en_fill_rx_buffers(priv);
  349. if (err)
  350. goto err_buffers;
  351. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
  352. ring = &priv->rx_ring[ring_ind];
  353. ring->size_mask = ring->actual_size - 1;
  354. mlx4_en_update_rx_prod_db(ring);
  355. }
  356. return 0;
  357. err_buffers:
  358. for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
  359. mlx4_en_free_rx_buf(priv, &priv->rx_ring[ring_ind]);
  360. ring_ind = priv->rx_ring_num - 1;
  361. err_allocator:
  362. while (ring_ind >= 0) {
  363. if (priv->rx_ring[ring_ind].stride <= TXBB_SIZE)
  364. priv->rx_ring[ring_ind].buf -= TXBB_SIZE;
  365. mlx4_en_destroy_allocator(priv, &priv->rx_ring[ring_ind]);
  366. ring_ind--;
  367. }
  368. return err;
  369. }
  370. void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
  371. struct mlx4_en_rx_ring *ring, u32 size, u16 stride)
  372. {
  373. struct mlx4_en_dev *mdev = priv->mdev;
  374. mlx4_en_unmap_buffer(&ring->wqres.buf);
  375. mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
  376. vfree(ring->rx_info);
  377. ring->rx_info = NULL;
  378. #ifdef CONFIG_RFS_ACCEL
  379. mlx4_en_cleanup_filters(priv, ring);
  380. #endif
  381. }
  382. void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
  383. struct mlx4_en_rx_ring *ring)
  384. {
  385. mlx4_en_free_rx_buf(priv, ring);
  386. if (ring->stride <= TXBB_SIZE)
  387. ring->buf -= TXBB_SIZE;
  388. mlx4_en_destroy_allocator(priv, ring);
  389. }
  390. static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
  391. struct mlx4_en_rx_desc *rx_desc,
  392. struct mlx4_en_rx_alloc *frags,
  393. struct sk_buff *skb,
  394. int length)
  395. {
  396. struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
  397. struct mlx4_en_frag_info *frag_info;
  398. int nr;
  399. dma_addr_t dma;
  400. /* Collect used fragments while replacing them in the HW descriptors */
  401. for (nr = 0; nr < priv->num_frags; nr++) {
  402. frag_info = &priv->frag_info[nr];
  403. if (length <= frag_info->frag_prefix_size)
  404. break;
  405. if (!frags[nr].page)
  406. goto fail;
  407. dma = be64_to_cpu(rx_desc->data[nr].addr);
  408. dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
  409. DMA_FROM_DEVICE);
  410. /* Save page reference in skb */
  411. __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
  412. skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
  413. skb_frags_rx[nr].page_offset = frags[nr].offset;
  414. skb->truesize += frag_info->frag_stride;
  415. frags[nr].page = NULL;
  416. }
  417. /* Adjust size of last fragment to match actual length */
  418. if (nr > 0)
  419. skb_frag_size_set(&skb_frags_rx[nr - 1],
  420. length - priv->frag_info[nr - 1].frag_prefix_size);
  421. return nr;
  422. fail:
  423. while (nr > 0) {
  424. nr--;
  425. __skb_frag_unref(&skb_frags_rx[nr]);
  426. }
  427. return 0;
  428. }
  429. static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
  430. struct mlx4_en_rx_desc *rx_desc,
  431. struct mlx4_en_rx_alloc *frags,
  432. unsigned int length)
  433. {
  434. struct sk_buff *skb;
  435. void *va;
  436. int used_frags;
  437. dma_addr_t dma;
  438. skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
  439. if (!skb) {
  440. en_dbg(RX_ERR, priv, "Failed allocating skb\n");
  441. return NULL;
  442. }
  443. skb_reserve(skb, NET_IP_ALIGN);
  444. skb->len = length;
  445. /* Get pointer to first fragment so we could copy the headers into the
  446. * (linear part of the) skb */
  447. va = page_address(frags[0].page) + frags[0].offset;
  448. if (length <= SMALL_PACKET_SIZE) {
  449. /* We are copying all relevant data to the skb - temporarily
  450. * sync buffers for the copy */
  451. dma = be64_to_cpu(rx_desc->data[0].addr);
  452. dma_sync_single_for_cpu(priv->ddev, dma, length,
  453. DMA_FROM_DEVICE);
  454. skb_copy_to_linear_data(skb, va, length);
  455. skb->tail += length;
  456. } else {
  457. /* Move relevant fragments to skb */
  458. used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
  459. skb, length);
  460. if (unlikely(!used_frags)) {
  461. kfree_skb(skb);
  462. return NULL;
  463. }
  464. skb_shinfo(skb)->nr_frags = used_frags;
  465. /* Copy headers into the skb linear buffer */
  466. memcpy(skb->data, va, HEADER_COPY_SIZE);
  467. skb->tail += HEADER_COPY_SIZE;
  468. /* Skip headers in first fragment */
  469. skb_shinfo(skb)->frags[0].page_offset += HEADER_COPY_SIZE;
  470. /* Adjust size of first fragment */
  471. skb_frag_size_sub(&skb_shinfo(skb)->frags[0], HEADER_COPY_SIZE);
  472. skb->data_len = length - HEADER_COPY_SIZE;
  473. }
  474. return skb;
  475. }
  476. static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
  477. {
  478. int i;
  479. int offset = ETH_HLEN;
  480. for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
  481. if (*(skb->data + offset) != (unsigned char) (i & 0xff))
  482. goto out_loopback;
  483. }
  484. /* Loopback found */
  485. priv->loopback_ok = 1;
  486. out_loopback:
  487. dev_kfree_skb_any(skb);
  488. }
  489. static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
  490. struct mlx4_en_rx_ring *ring)
  491. {
  492. int index = ring->prod & ring->size_mask;
  493. while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
  494. if (mlx4_en_prepare_rx_desc(priv, ring, index, GFP_ATOMIC))
  495. break;
  496. ring->prod++;
  497. index = ring->prod & ring->size_mask;
  498. }
  499. }
  500. int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
  501. {
  502. struct mlx4_en_priv *priv = netdev_priv(dev);
  503. struct mlx4_en_dev *mdev = priv->mdev;
  504. struct mlx4_cqe *cqe;
  505. struct mlx4_en_rx_ring *ring = &priv->rx_ring[cq->ring];
  506. struct mlx4_en_rx_alloc *frags;
  507. struct mlx4_en_rx_desc *rx_desc;
  508. struct sk_buff *skb;
  509. int index;
  510. int nr;
  511. unsigned int length;
  512. int polled = 0;
  513. int ip_summed;
  514. int factor = priv->cqe_factor;
  515. u64 timestamp;
  516. if (!priv->port_up)
  517. return 0;
  518. /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
  519. * descriptor offset can be deduced from the CQE index instead of
  520. * reading 'cqe->index' */
  521. index = cq->mcq.cons_index & ring->size_mask;
  522. cqe = &cq->buf[(index << factor) + factor];
  523. /* Process all completed CQEs */
  524. while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
  525. cq->mcq.cons_index & cq->size)) {
  526. frags = ring->rx_info + (index << priv->log_rx_info);
  527. rx_desc = ring->buf + (index << ring->log_stride);
  528. /*
  529. * make sure we read the CQE after we read the ownership bit
  530. */
  531. rmb();
  532. /* Drop packet on bad receive or bad checksum */
  533. if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
  534. MLX4_CQE_OPCODE_ERROR)) {
  535. en_err(priv, "CQE completed in error - vendor "
  536. "syndrom:%d syndrom:%d\n",
  537. ((struct mlx4_err_cqe *) cqe)->vendor_err_syndrome,
  538. ((struct mlx4_err_cqe *) cqe)->syndrome);
  539. goto next;
  540. }
  541. if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
  542. en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
  543. goto next;
  544. }
  545. /* Check if we need to drop the packet if SRIOV is not enabled
  546. * and not performing the selftest or flb disabled
  547. */
  548. if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
  549. struct ethhdr *ethh;
  550. dma_addr_t dma;
  551. /* Get pointer to first fragment since we haven't
  552. * skb yet and cast it to ethhdr struct
  553. */
  554. dma = be64_to_cpu(rx_desc->data[0].addr);
  555. dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
  556. DMA_FROM_DEVICE);
  557. ethh = (struct ethhdr *)(page_address(frags[0].page) +
  558. frags[0].offset);
  559. if (is_multicast_ether_addr(ethh->h_dest)) {
  560. struct mlx4_mac_entry *entry;
  561. struct hlist_head *bucket;
  562. unsigned int mac_hash;
  563. /* Drop the packet, since HW loopback-ed it */
  564. mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
  565. bucket = &priv->mac_hash[mac_hash];
  566. rcu_read_lock();
  567. hlist_for_each_entry_rcu(entry, bucket, hlist) {
  568. if (ether_addr_equal_64bits(entry->mac,
  569. ethh->h_source)) {
  570. rcu_read_unlock();
  571. goto next;
  572. }
  573. }
  574. rcu_read_unlock();
  575. }
  576. }
  577. /*
  578. * Packet is OK - process it.
  579. */
  580. length = be32_to_cpu(cqe->byte_cnt);
  581. length -= ring->fcs_del;
  582. ring->bytes += length;
  583. ring->packets++;
  584. if (likely(dev->features & NETIF_F_RXCSUM)) {
  585. if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
  586. (cqe->checksum == cpu_to_be16(0xffff))) {
  587. ring->csum_ok++;
  588. /* This packet is eligible for GRO if it is:
  589. * - DIX Ethernet (type interpretation)
  590. * - TCP/IP (v4)
  591. * - without IP options
  592. * - not an IP fragment
  593. * - no LLS polling in progress
  594. */
  595. if (!mlx4_en_cq_ll_polling(cq) &&
  596. (dev->features & NETIF_F_GRO)) {
  597. struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
  598. if (!gro_skb)
  599. goto next;
  600. nr = mlx4_en_complete_rx_desc(priv,
  601. rx_desc, frags, gro_skb,
  602. length);
  603. if (!nr)
  604. goto next;
  605. skb_shinfo(gro_skb)->nr_frags = nr;
  606. gro_skb->len = length;
  607. gro_skb->data_len = length;
  608. gro_skb->ip_summed = CHECKSUM_UNNECESSARY;
  609. if ((cqe->vlan_my_qpn &
  610. cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) &&
  611. (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  612. u16 vid = be16_to_cpu(cqe->sl_vid);
  613. __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
  614. }
  615. if (dev->features & NETIF_F_RXHASH)
  616. gro_skb->rxhash = be32_to_cpu(cqe->immed_rss_invalid);
  617. skb_record_rx_queue(gro_skb, cq->ring);
  618. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  619. timestamp = mlx4_en_get_cqe_ts(cqe);
  620. mlx4_en_fill_hwtstamps(mdev,
  621. skb_hwtstamps(gro_skb),
  622. timestamp);
  623. }
  624. napi_gro_frags(&cq->napi);
  625. goto next;
  626. }
  627. /* GRO not possible, complete processing here */
  628. ip_summed = CHECKSUM_UNNECESSARY;
  629. } else {
  630. ip_summed = CHECKSUM_NONE;
  631. ring->csum_none++;
  632. }
  633. } else {
  634. ip_summed = CHECKSUM_NONE;
  635. ring->csum_none++;
  636. }
  637. skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
  638. if (!skb) {
  639. priv->stats.rx_dropped++;
  640. goto next;
  641. }
  642. if (unlikely(priv->validate_loopback)) {
  643. validate_loopback(priv, skb);
  644. goto next;
  645. }
  646. skb->ip_summed = ip_summed;
  647. skb->protocol = eth_type_trans(skb, dev);
  648. skb_record_rx_queue(skb, cq->ring);
  649. if (dev->features & NETIF_F_RXHASH)
  650. skb->rxhash = be32_to_cpu(cqe->immed_rss_invalid);
  651. if ((be32_to_cpu(cqe->vlan_my_qpn) &
  652. MLX4_CQE_VLAN_PRESENT_MASK) &&
  653. (dev->features & NETIF_F_HW_VLAN_CTAG_RX))
  654. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
  655. if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
  656. timestamp = mlx4_en_get_cqe_ts(cqe);
  657. mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
  658. timestamp);
  659. }
  660. skb_mark_napi_id(skb, &cq->napi);
  661. /* Push it up the stack */
  662. netif_receive_skb(skb);
  663. next:
  664. for (nr = 0; nr < priv->num_frags; nr++)
  665. mlx4_en_free_frag(priv, frags, nr);
  666. ++cq->mcq.cons_index;
  667. index = (cq->mcq.cons_index) & ring->size_mask;
  668. cqe = &cq->buf[(index << factor) + factor];
  669. if (++polled == budget)
  670. goto out;
  671. }
  672. out:
  673. AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
  674. mlx4_cq_set_ci(&cq->mcq);
  675. wmb(); /* ensure HW sees CQ consumer before we post new buffers */
  676. ring->cons = cq->mcq.cons_index;
  677. mlx4_en_refill_rx_buffers(priv, ring);
  678. mlx4_en_update_rx_prod_db(ring);
  679. return polled;
  680. }
  681. void mlx4_en_rx_irq(struct mlx4_cq *mcq)
  682. {
  683. struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
  684. struct mlx4_en_priv *priv = netdev_priv(cq->dev);
  685. if (priv->port_up)
  686. napi_schedule(&cq->napi);
  687. else
  688. mlx4_en_arm_cq(priv, cq);
  689. }
  690. /* Rx CQ polling - called by NAPI */
  691. int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
  692. {
  693. struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
  694. struct net_device *dev = cq->dev;
  695. struct mlx4_en_priv *priv = netdev_priv(dev);
  696. int done;
  697. if (!mlx4_en_cq_lock_napi(cq))
  698. return budget;
  699. done = mlx4_en_process_rx_cq(dev, cq, budget);
  700. mlx4_en_cq_unlock_napi(cq);
  701. /* If we used up all the quota - we're probably not done yet... */
  702. if (done == budget)
  703. INC_PERF_COUNTER(priv->pstats.napi_quota);
  704. else {
  705. /* Done for now */
  706. napi_complete(napi);
  707. mlx4_en_arm_cq(priv, cq);
  708. }
  709. return done;
  710. }
  711. static const int frag_sizes[] = {
  712. FRAG_SZ0,
  713. FRAG_SZ1,
  714. FRAG_SZ2,
  715. FRAG_SZ3
  716. };
  717. void mlx4_en_calc_rx_buf(struct net_device *dev)
  718. {
  719. struct mlx4_en_priv *priv = netdev_priv(dev);
  720. int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN + ETH_LLC_SNAP_SIZE;
  721. int buf_size = 0;
  722. int i = 0;
  723. while (buf_size < eff_mtu) {
  724. priv->frag_info[i].frag_size =
  725. (eff_mtu > buf_size + frag_sizes[i]) ?
  726. frag_sizes[i] : eff_mtu - buf_size;
  727. priv->frag_info[i].frag_prefix_size = buf_size;
  728. if (!i) {
  729. priv->frag_info[i].frag_align = NET_IP_ALIGN;
  730. priv->frag_info[i].frag_stride =
  731. ALIGN(frag_sizes[i] + NET_IP_ALIGN, SMP_CACHE_BYTES);
  732. } else {
  733. priv->frag_info[i].frag_align = 0;
  734. priv->frag_info[i].frag_stride =
  735. ALIGN(frag_sizes[i], SMP_CACHE_BYTES);
  736. }
  737. buf_size += priv->frag_info[i].frag_size;
  738. i++;
  739. }
  740. priv->num_frags = i;
  741. priv->rx_skb_size = eff_mtu;
  742. priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
  743. en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d "
  744. "num_frags:%d):\n", eff_mtu, priv->num_frags);
  745. for (i = 0; i < priv->num_frags; i++) {
  746. en_err(priv,
  747. " frag:%d - size:%d prefix:%d align:%d stride:%d\n",
  748. i,
  749. priv->frag_info[i].frag_size,
  750. priv->frag_info[i].frag_prefix_size,
  751. priv->frag_info[i].frag_align,
  752. priv->frag_info[i].frag_stride);
  753. }
  754. }
  755. /* RSS related functions */
  756. static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
  757. struct mlx4_en_rx_ring *ring,
  758. enum mlx4_qp_state *state,
  759. struct mlx4_qp *qp)
  760. {
  761. struct mlx4_en_dev *mdev = priv->mdev;
  762. struct mlx4_qp_context *context;
  763. int err = 0;
  764. context = kmalloc(sizeof(*context), GFP_KERNEL);
  765. if (!context)
  766. return -ENOMEM;
  767. err = mlx4_qp_alloc(mdev->dev, qpn, qp);
  768. if (err) {
  769. en_err(priv, "Failed to allocate qp #%x\n", qpn);
  770. goto out;
  771. }
  772. qp->event = mlx4_en_sqp_event;
  773. memset(context, 0, sizeof *context);
  774. mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
  775. qpn, ring->cqn, -1, context);
  776. context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
  777. /* Cancel FCS removal if FW allows */
  778. if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
  779. context->param3 |= cpu_to_be32(1 << 29);
  780. ring->fcs_del = ETH_FCS_LEN;
  781. } else
  782. ring->fcs_del = 0;
  783. err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
  784. if (err) {
  785. mlx4_qp_remove(mdev->dev, qp);
  786. mlx4_qp_free(mdev->dev, qp);
  787. }
  788. mlx4_en_update_rx_prod_db(ring);
  789. out:
  790. kfree(context);
  791. return err;
  792. }
  793. int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
  794. {
  795. int err;
  796. u32 qpn;
  797. err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn);
  798. if (err) {
  799. en_err(priv, "Failed reserving drop qpn\n");
  800. return err;
  801. }
  802. err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp);
  803. if (err) {
  804. en_err(priv, "Failed allocating drop qp\n");
  805. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  806. return err;
  807. }
  808. return 0;
  809. }
  810. void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
  811. {
  812. u32 qpn;
  813. qpn = priv->drop_qp.qpn;
  814. mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
  815. mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
  816. mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
  817. }
  818. /* Allocate rx qp's and configure them according to rss map */
  819. int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
  820. {
  821. struct mlx4_en_dev *mdev = priv->mdev;
  822. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  823. struct mlx4_qp_context context;
  824. struct mlx4_rss_context *rss_context;
  825. int rss_rings;
  826. void *ptr;
  827. u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
  828. MLX4_RSS_TCP_IPV6);
  829. int i, qpn;
  830. int err = 0;
  831. int good_qps = 0;
  832. static const u32 rsskey[10] = { 0xD181C62C, 0xF7F4DB5B, 0x1983A2FC,
  833. 0x943E1ADB, 0xD9389E6B, 0xD1039C2C, 0xA74499AD,
  834. 0x593D56D9, 0xF3253C06, 0x2ADC1FFC};
  835. en_dbg(DRV, priv, "Configuring rss steering\n");
  836. err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
  837. priv->rx_ring_num,
  838. &rss_map->base_qpn);
  839. if (err) {
  840. en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
  841. return err;
  842. }
  843. for (i = 0; i < priv->rx_ring_num; i++) {
  844. qpn = rss_map->base_qpn + i;
  845. err = mlx4_en_config_rss_qp(priv, qpn, &priv->rx_ring[i],
  846. &rss_map->state[i],
  847. &rss_map->qps[i]);
  848. if (err)
  849. goto rss_err;
  850. ++good_qps;
  851. }
  852. /* Configure RSS indirection qp */
  853. err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp);
  854. if (err) {
  855. en_err(priv, "Failed to allocate RSS indirection QP\n");
  856. goto rss_err;
  857. }
  858. rss_map->indir_qp.event = mlx4_en_sqp_event;
  859. mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
  860. priv->rx_ring[0].cqn, -1, &context);
  861. if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
  862. rss_rings = priv->rx_ring_num;
  863. else
  864. rss_rings = priv->prof->rss_rings;
  865. ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
  866. + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
  867. rss_context = ptr;
  868. rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
  869. (rss_map->base_qpn));
  870. rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
  871. if (priv->mdev->profile.udp_rss) {
  872. rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
  873. rss_context->base_qpn_udp = rss_context->default_qpn;
  874. }
  875. rss_context->flags = rss_mask;
  876. rss_context->hash_fn = MLX4_RSS_HASH_TOP;
  877. for (i = 0; i < 10; i++)
  878. rss_context->rss_key[i] = cpu_to_be32(rsskey[i]);
  879. err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
  880. &rss_map->indir_qp, &rss_map->indir_state);
  881. if (err)
  882. goto indir_err;
  883. return 0;
  884. indir_err:
  885. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  886. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  887. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  888. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  889. rss_err:
  890. for (i = 0; i < good_qps; i++) {
  891. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  892. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  893. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  894. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  895. }
  896. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  897. return err;
  898. }
  899. void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
  900. {
  901. struct mlx4_en_dev *mdev = priv->mdev;
  902. struct mlx4_en_rss_map *rss_map = &priv->rss_map;
  903. int i;
  904. mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
  905. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
  906. mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
  907. mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
  908. for (i = 0; i < priv->rx_ring_num; i++) {
  909. mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
  910. MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
  911. mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
  912. mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
  913. }
  914. mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
  915. }