t4_hw.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  138. */
  139. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  140. u32 mbox_addr)
  141. {
  142. for ( ; nflit; nflit--, mbox_addr += 8)
  143. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  144. }
  145. /*
  146. * Handle a FW assertion reported in a mailbox.
  147. */
  148. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  149. {
  150. struct fw_debug_cmd asrt;
  151. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  152. dev_alert(adap->pdev_dev,
  153. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  154. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  155. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  156. }
  157. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  158. {
  159. dev_err(adap->pdev_dev,
  160. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  161. (unsigned long long)t4_read_reg64(adap, data_reg),
  162. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  169. }
  170. /**
  171. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  172. * @adap: the adapter
  173. * @mbox: index of the mailbox to use
  174. * @cmd: the command to write
  175. * @size: command length in bytes
  176. * @rpl: where to optionally store the reply
  177. * @sleep_ok: if true we may sleep while awaiting command completion
  178. *
  179. * Sends the given command to FW through the selected mailbox and waits
  180. * for the FW to execute the command. If @rpl is not %NULL it is used to
  181. * store the FW's reply to the command. The command and its optional
  182. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  183. * to respond. @sleep_ok determines whether we may sleep while awaiting
  184. * the response. If sleeping is allowed we use progressive backoff
  185. * otherwise we spin.
  186. *
  187. * The return value is 0 on success or a negative errno on failure. A
  188. * failure can happen either because we are not able to execute the
  189. * command or FW executes it but signals an error. In the latter case
  190. * the return value is the error code indicated by FW (negated).
  191. */
  192. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  193. void *rpl, bool sleep_ok)
  194. {
  195. static const int delay[] = {
  196. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  197. };
  198. u32 v;
  199. u64 res;
  200. int i, ms, delay_idx;
  201. const __be64 *p = cmd;
  202. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  203. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  204. if ((size & 15) || size > MBOX_LEN)
  205. return -EINVAL;
  206. /*
  207. * If the device is off-line, as in EEH, commands will time out.
  208. * Fail them early so we don't waste time waiting.
  209. */
  210. if (adap->pdev->error_state != pci_channel_io_normal)
  211. return -EIO;
  212. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  213. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. if (v != MBOX_OWNER_DRV)
  216. return v ? -EBUSY : -ETIMEDOUT;
  217. for (i = 0; i < size; i += 8)
  218. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  219. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  220. t4_read_reg(adap, ctl_reg); /* flush write */
  221. delay_idx = 0;
  222. ms = delay[0];
  223. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  224. if (sleep_ok) {
  225. ms = delay[delay_idx]; /* last element may repeat */
  226. if (delay_idx < ARRAY_SIZE(delay) - 1)
  227. delay_idx++;
  228. msleep(ms);
  229. } else
  230. mdelay(ms);
  231. v = t4_read_reg(adap, ctl_reg);
  232. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  233. if (!(v & MBMSGVALID)) {
  234. t4_write_reg(adap, ctl_reg, 0);
  235. continue;
  236. }
  237. res = t4_read_reg64(adap, data_reg);
  238. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  239. fw_asrt(adap, data_reg);
  240. res = FW_CMD_RETVAL(EIO);
  241. } else if (rpl)
  242. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  243. if (FW_CMD_RETVAL_GET((int)res))
  244. dump_mbox(adap, mbox, data_reg);
  245. t4_write_reg(adap, ctl_reg, 0);
  246. return -FW_CMD_RETVAL_GET((int)res);
  247. }
  248. }
  249. dump_mbox(adap, mbox, data_reg);
  250. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  251. *(const u8 *)cmd, mbox);
  252. return -ETIMEDOUT;
  253. }
  254. /**
  255. * t4_mc_read - read from MC through backdoor accesses
  256. * @adap: the adapter
  257. * @addr: address of first byte requested
  258. * @idx: which MC to access
  259. * @data: 64 bytes of data containing the requested address
  260. * @ecc: where to store the corresponding 64-bit ECC word
  261. *
  262. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  263. * that covers the requested address @addr. If @parity is not %NULL it
  264. * is assigned the 64-bit ECC word for the read data.
  265. */
  266. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  267. {
  268. int i;
  269. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  270. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  271. if (is_t4(adap->chip)) {
  272. mc_bist_cmd = MC_BIST_CMD;
  273. mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
  274. mc_bist_cmd_len = MC_BIST_CMD_LEN;
  275. mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
  276. mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
  277. } else {
  278. mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
  279. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
  280. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
  281. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
  282. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
  283. }
  284. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
  285. return -EBUSY;
  286. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  287. t4_write_reg(adap, mc_bist_cmd_len, 64);
  288. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  289. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
  290. BIST_CMD_GAP(1));
  291. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
  292. if (i)
  293. return i;
  294. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  295. for (i = 15; i >= 0; i--)
  296. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  297. if (ecc)
  298. *ecc = t4_read_reg64(adap, MC_DATA(16));
  299. #undef MC_DATA
  300. return 0;
  301. }
  302. /**
  303. * t4_edc_read - read from EDC through backdoor accesses
  304. * @adap: the adapter
  305. * @idx: which EDC to access
  306. * @addr: address of first byte requested
  307. * @data: 64 bytes of data containing the requested address
  308. * @ecc: where to store the corresponding 64-bit ECC word
  309. *
  310. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  311. * that covers the requested address @addr. If @parity is not %NULL it
  312. * is assigned the 64-bit ECC word for the read data.
  313. */
  314. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  315. {
  316. int i;
  317. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  318. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  319. if (is_t4(adap->chip)) {
  320. edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
  321. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
  322. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
  323. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
  324. idx);
  325. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
  326. idx);
  327. } else {
  328. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
  329. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
  330. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
  331. edc_bist_cmd_data_pattern =
  332. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
  333. edc_bist_status_rdata =
  334. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
  335. }
  336. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
  337. return -EBUSY;
  338. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  339. t4_write_reg(adap, edc_bist_cmd_len, 64);
  340. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  341. t4_write_reg(adap, edc_bist_cmd,
  342. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  343. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
  344. if (i)
  345. return i;
  346. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  347. for (i = 15; i >= 0; i--)
  348. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  349. if (ecc)
  350. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  351. #undef EDC_DATA
  352. return 0;
  353. }
  354. /*
  355. * t4_mem_win_rw - read/write memory through PCIE memory window
  356. * @adap: the adapter
  357. * @addr: address of first byte requested
  358. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  359. * @dir: direction of transfer 1 => read, 0 => write
  360. *
  361. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  362. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  363. * address @addr.
  364. */
  365. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  366. {
  367. int i;
  368. u32 win_pf = is_t4(adap->chip) ? 0 : V_PFNUM(adap->fn);
  369. /*
  370. * Setup offset into PCIE memory window. Address must be a
  371. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  372. * ensure that changes propagate before we attempt to use the new
  373. * values.)
  374. */
  375. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  376. (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
  377. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  378. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  379. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  380. if (dir)
  381. *data++ = (__force __be32) t4_read_reg(adap,
  382. (MEMWIN0_BASE + i));
  383. else
  384. t4_write_reg(adap, (MEMWIN0_BASE + i),
  385. (__force u32) *data++);
  386. }
  387. return 0;
  388. }
  389. /**
  390. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  391. * @adap: the adapter
  392. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  393. * @addr: address within indicated memory type
  394. * @len: amount of memory to transfer
  395. * @buf: host memory buffer
  396. * @dir: direction of transfer 1 => read, 0 => write
  397. *
  398. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  399. * firmware memory address, length and host buffer must be aligned on
  400. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  401. * from/to the firmware's memory. If this memory contains data
  402. * structures which contain multi-byte integers, it's the callers
  403. * responsibility to perform appropriate byte order conversions.
  404. */
  405. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  406. __be32 *buf, int dir)
  407. {
  408. u32 pos, start, end, offset, memoffset;
  409. u32 edc_size, mc_size;
  410. int ret = 0;
  411. __be32 *data;
  412. /*
  413. * Argument sanity checks ...
  414. */
  415. if ((addr & 0x3) || (len & 0x3))
  416. return -EINVAL;
  417. data = vmalloc(MEMWIN0_APERTURE);
  418. if (!data)
  419. return -ENOMEM;
  420. /* Offset into the region of memory which is being accessed
  421. * MEM_EDC0 = 0
  422. * MEM_EDC1 = 1
  423. * MEM_MC = 2 -- T4
  424. * MEM_MC0 = 2 -- For T5
  425. * MEM_MC1 = 3 -- For T5
  426. */
  427. edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
  428. if (mtype != MEM_MC1)
  429. memoffset = (mtype * (edc_size * 1024 * 1024));
  430. else {
  431. mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
  432. MA_EXT_MEMORY_BAR));
  433. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  434. }
  435. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  436. addr = addr + memoffset;
  437. /*
  438. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  439. * at a time so we need to round down the start and round up the end.
  440. * We'll start copying out of the first line at (addr - start) a word
  441. * at a time.
  442. */
  443. start = addr & ~(MEMWIN0_APERTURE-1);
  444. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  445. offset = (addr - start)/sizeof(__be32);
  446. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  447. /*
  448. * If we're writing, copy the data from the caller's memory
  449. * buffer
  450. */
  451. if (!dir) {
  452. /*
  453. * If we're doing a partial write, then we need to do
  454. * a read-modify-write ...
  455. */
  456. if (offset || len < MEMWIN0_APERTURE) {
  457. ret = t4_mem_win_rw(adap, pos, data, 1);
  458. if (ret)
  459. break;
  460. }
  461. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  462. len > 0) {
  463. data[offset++] = *buf++;
  464. len -= sizeof(__be32);
  465. }
  466. }
  467. /*
  468. * Transfer a block of memory and bail if there's an error.
  469. */
  470. ret = t4_mem_win_rw(adap, pos, data, dir);
  471. if (ret)
  472. break;
  473. /*
  474. * If we're reading, copy the data into the caller's memory
  475. * buffer.
  476. */
  477. if (dir)
  478. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  479. len > 0) {
  480. *buf++ = data[offset++];
  481. len -= sizeof(__be32);
  482. }
  483. }
  484. vfree(data);
  485. return ret;
  486. }
  487. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  488. __be32 *buf)
  489. {
  490. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  491. }
  492. #define EEPROM_STAT_ADDR 0x7bfc
  493. #define VPD_BASE 0x400
  494. #define VPD_BASE_OLD 0
  495. #define VPD_LEN 1024
  496. /**
  497. * t4_seeprom_wp - enable/disable EEPROM write protection
  498. * @adapter: the adapter
  499. * @enable: whether to enable or disable write protection
  500. *
  501. * Enables or disables write protection on the serial EEPROM.
  502. */
  503. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  504. {
  505. unsigned int v = enable ? 0xc : 0;
  506. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  507. return ret < 0 ? ret : 0;
  508. }
  509. /**
  510. * get_vpd_params - read VPD parameters from VPD EEPROM
  511. * @adapter: adapter to read
  512. * @p: where to store the parameters
  513. *
  514. * Reads card parameters stored in VPD EEPROM.
  515. */
  516. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  517. {
  518. u32 cclk_param, cclk_val;
  519. int i, ret, addr;
  520. int ec, sn;
  521. u8 *vpd, csum;
  522. unsigned int vpdr_len, kw_offset, id_len;
  523. vpd = vmalloc(VPD_LEN);
  524. if (!vpd)
  525. return -ENOMEM;
  526. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  527. if (ret < 0)
  528. goto out;
  529. addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
  530. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  531. if (ret < 0)
  532. goto out;
  533. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  534. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  535. ret = -EINVAL;
  536. goto out;
  537. }
  538. id_len = pci_vpd_lrdt_size(vpd);
  539. if (id_len > ID_LEN)
  540. id_len = ID_LEN;
  541. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  542. if (i < 0) {
  543. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  544. ret = -EINVAL;
  545. goto out;
  546. }
  547. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  548. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  549. if (vpdr_len + kw_offset > VPD_LEN) {
  550. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  551. ret = -EINVAL;
  552. goto out;
  553. }
  554. #define FIND_VPD_KW(var, name) do { \
  555. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  556. if (var < 0) { \
  557. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  558. ret = -EINVAL; \
  559. goto out; \
  560. } \
  561. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  562. } while (0)
  563. FIND_VPD_KW(i, "RV");
  564. for (csum = 0; i >= 0; i--)
  565. csum += vpd[i];
  566. if (csum) {
  567. dev_err(adapter->pdev_dev,
  568. "corrupted VPD EEPROM, actual csum %u\n", csum);
  569. ret = -EINVAL;
  570. goto out;
  571. }
  572. FIND_VPD_KW(ec, "EC");
  573. FIND_VPD_KW(sn, "SN");
  574. #undef FIND_VPD_KW
  575. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  576. strim(p->id);
  577. memcpy(p->ec, vpd + ec, EC_LEN);
  578. strim(p->ec);
  579. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  580. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  581. strim(p->sn);
  582. /*
  583. * Ask firmware for the Core Clock since it knows how to translate the
  584. * Reference Clock ('V2') VPD field into a Core Clock value ...
  585. */
  586. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  587. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  588. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  589. 1, &cclk_param, &cclk_val);
  590. out:
  591. vfree(vpd);
  592. if (ret)
  593. return ret;
  594. p->cclk = cclk_val;
  595. return 0;
  596. }
  597. /* serial flash and firmware constants */
  598. enum {
  599. SF_ATTEMPTS = 10, /* max retries for SF operations */
  600. /* flash command opcodes */
  601. SF_PROG_PAGE = 2, /* program page */
  602. SF_WR_DISABLE = 4, /* disable writes */
  603. SF_RD_STATUS = 5, /* read status register */
  604. SF_WR_ENABLE = 6, /* enable writes */
  605. SF_RD_DATA_FAST = 0xb, /* read flash */
  606. SF_RD_ID = 0x9f, /* read ID */
  607. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  608. FW_MAX_SIZE = 512 * 1024,
  609. };
  610. /**
  611. * sf1_read - read data from the serial flash
  612. * @adapter: the adapter
  613. * @byte_cnt: number of bytes to read
  614. * @cont: whether another operation will be chained
  615. * @lock: whether to lock SF for PL access only
  616. * @valp: where to store the read data
  617. *
  618. * Reads up to 4 bytes of data from the serial flash. The location of
  619. * the read needs to be specified prior to calling this by issuing the
  620. * appropriate commands to the serial flash.
  621. */
  622. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  623. int lock, u32 *valp)
  624. {
  625. int ret;
  626. if (!byte_cnt || byte_cnt > 4)
  627. return -EINVAL;
  628. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  629. return -EBUSY;
  630. cont = cont ? SF_CONT : 0;
  631. lock = lock ? SF_LOCK : 0;
  632. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  633. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  634. if (!ret)
  635. *valp = t4_read_reg(adapter, SF_DATA);
  636. return ret;
  637. }
  638. /**
  639. * sf1_write - write data to the serial flash
  640. * @adapter: the adapter
  641. * @byte_cnt: number of bytes to write
  642. * @cont: whether another operation will be chained
  643. * @lock: whether to lock SF for PL access only
  644. * @val: value to write
  645. *
  646. * Writes up to 4 bytes of data to the serial flash. The location of
  647. * the write needs to be specified prior to calling this by issuing the
  648. * appropriate commands to the serial flash.
  649. */
  650. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  651. int lock, u32 val)
  652. {
  653. if (!byte_cnt || byte_cnt > 4)
  654. return -EINVAL;
  655. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  656. return -EBUSY;
  657. cont = cont ? SF_CONT : 0;
  658. lock = lock ? SF_LOCK : 0;
  659. t4_write_reg(adapter, SF_DATA, val);
  660. t4_write_reg(adapter, SF_OP, lock |
  661. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  662. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  663. }
  664. /**
  665. * flash_wait_op - wait for a flash operation to complete
  666. * @adapter: the adapter
  667. * @attempts: max number of polls of the status register
  668. * @delay: delay between polls in ms
  669. *
  670. * Wait for a flash operation to complete by polling the status register.
  671. */
  672. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  673. {
  674. int ret;
  675. u32 status;
  676. while (1) {
  677. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  678. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  679. return ret;
  680. if (!(status & 1))
  681. return 0;
  682. if (--attempts == 0)
  683. return -EAGAIN;
  684. if (delay)
  685. msleep(delay);
  686. }
  687. }
  688. /**
  689. * t4_read_flash - read words from serial flash
  690. * @adapter: the adapter
  691. * @addr: the start address for the read
  692. * @nwords: how many 32-bit words to read
  693. * @data: where to store the read data
  694. * @byte_oriented: whether to store data as bytes or as words
  695. *
  696. * Read the specified number of 32-bit words from the serial flash.
  697. * If @byte_oriented is set the read data is stored as a byte array
  698. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  699. * natural endianess.
  700. */
  701. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  702. unsigned int nwords, u32 *data, int byte_oriented)
  703. {
  704. int ret;
  705. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  706. return -EINVAL;
  707. addr = swab32(addr) | SF_RD_DATA_FAST;
  708. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  709. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  710. return ret;
  711. for ( ; nwords; nwords--, data++) {
  712. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  713. if (nwords == 1)
  714. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  715. if (ret)
  716. return ret;
  717. if (byte_oriented)
  718. *data = (__force __u32) (htonl(*data));
  719. }
  720. return 0;
  721. }
  722. /**
  723. * t4_write_flash - write up to a page of data to the serial flash
  724. * @adapter: the adapter
  725. * @addr: the start address to write
  726. * @n: length of data to write in bytes
  727. * @data: the data to write
  728. *
  729. * Writes up to a page of data (256 bytes) to the serial flash starting
  730. * at the given address. All the data must be written to the same page.
  731. */
  732. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  733. unsigned int n, const u8 *data)
  734. {
  735. int ret;
  736. u32 buf[64];
  737. unsigned int i, c, left, val, offset = addr & 0xff;
  738. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  739. return -EINVAL;
  740. val = swab32(addr) | SF_PROG_PAGE;
  741. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  742. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  743. goto unlock;
  744. for (left = n; left; left -= c) {
  745. c = min(left, 4U);
  746. for (val = 0, i = 0; i < c; ++i)
  747. val = (val << 8) + *data++;
  748. ret = sf1_write(adapter, c, c != left, 1, val);
  749. if (ret)
  750. goto unlock;
  751. }
  752. ret = flash_wait_op(adapter, 8, 1);
  753. if (ret)
  754. goto unlock;
  755. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  756. /* Read the page to verify the write succeeded */
  757. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  758. if (ret)
  759. return ret;
  760. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  761. dev_err(adapter->pdev_dev,
  762. "failed to correctly write the flash page at %#x\n",
  763. addr);
  764. return -EIO;
  765. }
  766. return 0;
  767. unlock:
  768. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  769. return ret;
  770. }
  771. /**
  772. * get_fw_version - read the firmware version
  773. * @adapter: the adapter
  774. * @vers: where to place the version
  775. *
  776. * Reads the FW version from flash.
  777. */
  778. static int get_fw_version(struct adapter *adapter, u32 *vers)
  779. {
  780. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  781. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  782. }
  783. /**
  784. * get_tp_version - read the TP microcode version
  785. * @adapter: the adapter
  786. * @vers: where to place the version
  787. *
  788. * Reads the TP microcode version from flash.
  789. */
  790. static int get_tp_version(struct adapter *adapter, u32 *vers)
  791. {
  792. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  793. offsetof(struct fw_hdr, tp_microcode_ver),
  794. 1, vers, 0);
  795. }
  796. /**
  797. * t4_check_fw_version - check if the FW is compatible with this driver
  798. * @adapter: the adapter
  799. *
  800. * Checks if an adapter's FW is compatible with the driver. Returns 0
  801. * if there's exact match, a negative error if the version could not be
  802. * read or there's a major version mismatch, and a positive value if the
  803. * expected major version is found but there's a minor version mismatch.
  804. */
  805. int t4_check_fw_version(struct adapter *adapter)
  806. {
  807. u32 api_vers[2];
  808. int ret, major, minor, micro;
  809. int exp_major, exp_minor, exp_micro;
  810. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  811. if (!ret)
  812. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  813. if (!ret)
  814. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  815. offsetof(struct fw_hdr, intfver_nic),
  816. 2, api_vers, 1);
  817. if (ret)
  818. return ret;
  819. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  820. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  821. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  822. switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
  823. case CHELSIO_T4:
  824. exp_major = FW_VERSION_MAJOR;
  825. exp_minor = FW_VERSION_MINOR;
  826. exp_micro = FW_VERSION_MICRO;
  827. break;
  828. case CHELSIO_T5:
  829. exp_major = FW_VERSION_MAJOR_T5;
  830. exp_minor = FW_VERSION_MINOR_T5;
  831. exp_micro = FW_VERSION_MICRO_T5;
  832. break;
  833. default:
  834. dev_err(adapter->pdev_dev, "Unsupported chip type, %x\n",
  835. adapter->chip);
  836. return -EINVAL;
  837. }
  838. memcpy(adapter->params.api_vers, api_vers,
  839. sizeof(adapter->params.api_vers));
  840. if (major < exp_major || (major == exp_major && minor < exp_minor) ||
  841. (major == exp_major && minor == exp_minor && micro < exp_micro)) {
  842. dev_err(adapter->pdev_dev,
  843. "Card has firmware version %u.%u.%u, minimum "
  844. "supported firmware is %u.%u.%u.\n", major, minor,
  845. micro, exp_major, exp_minor, exp_micro);
  846. return -EFAULT;
  847. }
  848. if (major != exp_major) { /* major mismatch - fail */
  849. dev_err(adapter->pdev_dev,
  850. "card FW has major version %u, driver wants %u\n",
  851. major, exp_major);
  852. return -EINVAL;
  853. }
  854. if (minor == exp_minor && micro == exp_micro)
  855. return 0; /* perfect match */
  856. /* Minor/micro version mismatch. Report it but often it's OK. */
  857. return 1;
  858. }
  859. /**
  860. * t4_flash_erase_sectors - erase a range of flash sectors
  861. * @adapter: the adapter
  862. * @start: the first sector to erase
  863. * @end: the last sector to erase
  864. *
  865. * Erases the sectors in the given inclusive range.
  866. */
  867. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  868. {
  869. int ret = 0;
  870. while (start <= end) {
  871. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  872. (ret = sf1_write(adapter, 4, 0, 1,
  873. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  874. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  875. dev_err(adapter->pdev_dev,
  876. "erase of flash sector %d failed, error %d\n",
  877. start, ret);
  878. break;
  879. }
  880. start++;
  881. }
  882. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  883. return ret;
  884. }
  885. /**
  886. * t4_flash_cfg_addr - return the address of the flash configuration file
  887. * @adapter: the adapter
  888. *
  889. * Return the address within the flash where the Firmware Configuration
  890. * File is stored.
  891. */
  892. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  893. {
  894. if (adapter->params.sf_size == 0x100000)
  895. return FLASH_FPGA_CFG_START;
  896. else
  897. return FLASH_CFG_START;
  898. }
  899. /**
  900. * t4_load_cfg - download config file
  901. * @adap: the adapter
  902. * @cfg_data: the cfg text file to write
  903. * @size: text file size
  904. *
  905. * Write the supplied config text file to the card's serial flash.
  906. */
  907. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  908. {
  909. int ret, i, n;
  910. unsigned int addr;
  911. unsigned int flash_cfg_start_sec;
  912. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  913. addr = t4_flash_cfg_addr(adap);
  914. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  915. if (size > FLASH_CFG_MAX_SIZE) {
  916. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  917. FLASH_CFG_MAX_SIZE);
  918. return -EFBIG;
  919. }
  920. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  921. sf_sec_size);
  922. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  923. flash_cfg_start_sec + i - 1);
  924. /*
  925. * If size == 0 then we're simply erasing the FLASH sectors associated
  926. * with the on-adapter Firmware Configuration File.
  927. */
  928. if (ret || size == 0)
  929. goto out;
  930. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  931. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  932. if ((size - i) < SF_PAGE_SIZE)
  933. n = size - i;
  934. else
  935. n = SF_PAGE_SIZE;
  936. ret = t4_write_flash(adap, addr, n, cfg_data);
  937. if (ret)
  938. goto out;
  939. addr += SF_PAGE_SIZE;
  940. cfg_data += SF_PAGE_SIZE;
  941. }
  942. out:
  943. if (ret)
  944. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  945. (size == 0 ? "clear" : "download"), ret);
  946. return ret;
  947. }
  948. /**
  949. * t4_load_fw - download firmware
  950. * @adap: the adapter
  951. * @fw_data: the firmware image to write
  952. * @size: image size
  953. *
  954. * Write the supplied firmware image to the card's serial flash.
  955. */
  956. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  957. {
  958. u32 csum;
  959. int ret, addr;
  960. unsigned int i;
  961. u8 first_page[SF_PAGE_SIZE];
  962. const __be32 *p = (const __be32 *)fw_data;
  963. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  964. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  965. unsigned int fw_img_start = adap->params.sf_fw_start;
  966. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  967. if (!size) {
  968. dev_err(adap->pdev_dev, "FW image has no data\n");
  969. return -EINVAL;
  970. }
  971. if (size & 511) {
  972. dev_err(adap->pdev_dev,
  973. "FW image size not multiple of 512 bytes\n");
  974. return -EINVAL;
  975. }
  976. if (ntohs(hdr->len512) * 512 != size) {
  977. dev_err(adap->pdev_dev,
  978. "FW image size differs from size in FW header\n");
  979. return -EINVAL;
  980. }
  981. if (size > FW_MAX_SIZE) {
  982. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  983. FW_MAX_SIZE);
  984. return -EFBIG;
  985. }
  986. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  987. csum += ntohl(p[i]);
  988. if (csum != 0xffffffff) {
  989. dev_err(adap->pdev_dev,
  990. "corrupted firmware image, checksum %#x\n", csum);
  991. return -EINVAL;
  992. }
  993. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  994. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  995. if (ret)
  996. goto out;
  997. /*
  998. * We write the correct version at the end so the driver can see a bad
  999. * version if the FW write fails. Start by writing a copy of the
  1000. * first page with a bad version.
  1001. */
  1002. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  1003. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  1004. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  1005. if (ret)
  1006. goto out;
  1007. addr = fw_img_start;
  1008. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1009. addr += SF_PAGE_SIZE;
  1010. fw_data += SF_PAGE_SIZE;
  1011. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1012. if (ret)
  1013. goto out;
  1014. }
  1015. ret = t4_write_flash(adap,
  1016. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1017. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1018. out:
  1019. if (ret)
  1020. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1021. ret);
  1022. return ret;
  1023. }
  1024. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1025. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  1026. /**
  1027. * t4_link_start - apply link configuration to MAC/PHY
  1028. * @phy: the PHY to setup
  1029. * @mac: the MAC to setup
  1030. * @lc: the requested link configuration
  1031. *
  1032. * Set up a port's MAC and PHY according to a desired link configuration.
  1033. * - If the PHY can auto-negotiate first decide what to advertise, then
  1034. * enable/disable auto-negotiation as desired, and reset.
  1035. * - If the PHY does not auto-negotiate just reset it.
  1036. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1037. * otherwise do it later based on the outcome of auto-negotiation.
  1038. */
  1039. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1040. struct link_config *lc)
  1041. {
  1042. struct fw_port_cmd c;
  1043. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  1044. lc->link_ok = 0;
  1045. if (lc->requested_fc & PAUSE_RX)
  1046. fc |= FW_PORT_CAP_FC_RX;
  1047. if (lc->requested_fc & PAUSE_TX)
  1048. fc |= FW_PORT_CAP_FC_TX;
  1049. memset(&c, 0, sizeof(c));
  1050. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1051. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1052. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1053. FW_LEN16(c));
  1054. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1055. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1056. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1057. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1058. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1059. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1060. } else
  1061. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1062. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1063. }
  1064. /**
  1065. * t4_restart_aneg - restart autonegotiation
  1066. * @adap: the adapter
  1067. * @mbox: mbox to use for the FW command
  1068. * @port: the port id
  1069. *
  1070. * Restarts autonegotiation for the selected port.
  1071. */
  1072. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1073. {
  1074. struct fw_port_cmd c;
  1075. memset(&c, 0, sizeof(c));
  1076. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1077. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1078. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1079. FW_LEN16(c));
  1080. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1081. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1082. }
  1083. typedef void (*int_handler_t)(struct adapter *adap);
  1084. struct intr_info {
  1085. unsigned int mask; /* bits to check in interrupt status */
  1086. const char *msg; /* message to print or NULL */
  1087. short stat_idx; /* stat counter to increment or -1 */
  1088. unsigned short fatal; /* whether the condition reported is fatal */
  1089. int_handler_t int_handler; /* platform-specific int handler */
  1090. };
  1091. /**
  1092. * t4_handle_intr_status - table driven interrupt handler
  1093. * @adapter: the adapter that generated the interrupt
  1094. * @reg: the interrupt status register to process
  1095. * @acts: table of interrupt actions
  1096. *
  1097. * A table driven interrupt handler that applies a set of masks to an
  1098. * interrupt status word and performs the corresponding actions if the
  1099. * interrupts described by the mask have occurred. The actions include
  1100. * optionally emitting a warning or alert message. The table is terminated
  1101. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1102. * conditions.
  1103. */
  1104. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1105. const struct intr_info *acts)
  1106. {
  1107. int fatal = 0;
  1108. unsigned int mask = 0;
  1109. unsigned int status = t4_read_reg(adapter, reg);
  1110. for ( ; acts->mask; ++acts) {
  1111. if (!(status & acts->mask))
  1112. continue;
  1113. if (acts->fatal) {
  1114. fatal++;
  1115. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1116. status & acts->mask);
  1117. } else if (acts->msg && printk_ratelimit())
  1118. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1119. status & acts->mask);
  1120. if (acts->int_handler)
  1121. acts->int_handler(adapter);
  1122. mask |= acts->mask;
  1123. }
  1124. status &= mask;
  1125. if (status) /* clear processed interrupts */
  1126. t4_write_reg(adapter, reg, status);
  1127. return fatal;
  1128. }
  1129. /*
  1130. * Interrupt handler for the PCIE module.
  1131. */
  1132. static void pcie_intr_handler(struct adapter *adapter)
  1133. {
  1134. static const struct intr_info sysbus_intr_info[] = {
  1135. { RNPP, "RXNP array parity error", -1, 1 },
  1136. { RPCP, "RXPC array parity error", -1, 1 },
  1137. { RCIP, "RXCIF array parity error", -1, 1 },
  1138. { RCCP, "Rx completions control array parity error", -1, 1 },
  1139. { RFTP, "RXFT array parity error", -1, 1 },
  1140. { 0 }
  1141. };
  1142. static const struct intr_info pcie_port_intr_info[] = {
  1143. { TPCP, "TXPC array parity error", -1, 1 },
  1144. { TNPP, "TXNP array parity error", -1, 1 },
  1145. { TFTP, "TXFT array parity error", -1, 1 },
  1146. { TCAP, "TXCA array parity error", -1, 1 },
  1147. { TCIP, "TXCIF array parity error", -1, 1 },
  1148. { RCAP, "RXCA array parity error", -1, 1 },
  1149. { OTDD, "outbound request TLP discarded", -1, 1 },
  1150. { RDPE, "Rx data parity error", -1, 1 },
  1151. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1152. { 0 }
  1153. };
  1154. static const struct intr_info pcie_intr_info[] = {
  1155. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1156. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1157. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1158. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1159. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1160. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1161. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1162. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1163. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1164. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1165. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1166. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1167. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1168. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1169. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1170. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1171. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1172. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1173. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1174. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1175. { FIDPERR, "PCI FID parity error", -1, 1 },
  1176. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1177. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1178. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1179. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1180. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1181. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1182. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1183. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1184. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1185. { 0 }
  1186. };
  1187. static struct intr_info t5_pcie_intr_info[] = {
  1188. { MSTGRPPERR, "Master Response Read Queue parity error",
  1189. -1, 1 },
  1190. { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
  1191. { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
  1192. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1193. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1194. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1195. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1196. { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
  1197. -1, 1 },
  1198. { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
  1199. -1, 1 },
  1200. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1201. { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
  1202. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1203. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1204. { DREQWRPERR, "PCI DMA channel write request parity error",
  1205. -1, 1 },
  1206. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1207. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1208. { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
  1209. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1210. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1211. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1212. { FIDPERR, "PCI FID parity error", -1, 1 },
  1213. { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
  1214. { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
  1215. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1216. { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
  1217. -1, 1 },
  1218. { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
  1219. { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
  1220. { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
  1221. { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1222. { READRSPERR, "Outbound read error", -1, 0 },
  1223. { 0 }
  1224. };
  1225. int fat;
  1226. fat = t4_handle_intr_status(adapter,
  1227. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1228. sysbus_intr_info) +
  1229. t4_handle_intr_status(adapter,
  1230. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1231. pcie_port_intr_info) +
  1232. t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1233. is_t4(adapter->chip) ?
  1234. pcie_intr_info : t5_pcie_intr_info);
  1235. if (fat)
  1236. t4_fatal_err(adapter);
  1237. }
  1238. /*
  1239. * TP interrupt handler.
  1240. */
  1241. static void tp_intr_handler(struct adapter *adapter)
  1242. {
  1243. static const struct intr_info tp_intr_info[] = {
  1244. { 0x3fffffff, "TP parity error", -1, 1 },
  1245. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1246. { 0 }
  1247. };
  1248. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1249. t4_fatal_err(adapter);
  1250. }
  1251. /*
  1252. * SGE interrupt handler.
  1253. */
  1254. static void sge_intr_handler(struct adapter *adapter)
  1255. {
  1256. u64 v;
  1257. static const struct intr_info sge_intr_info[] = {
  1258. { ERR_CPL_EXCEED_IQE_SIZE,
  1259. "SGE received CPL exceeding IQE size", -1, 1 },
  1260. { ERR_INVALID_CIDX_INC,
  1261. "SGE GTS CIDX increment too large", -1, 0 },
  1262. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1263. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1264. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1265. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1266. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1267. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1268. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1269. 0 },
  1270. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1271. 0 },
  1272. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1273. 0 },
  1274. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1275. 0 },
  1276. { ERR_ING_CTXT_PRIO,
  1277. "SGE too many priority ingress contexts", -1, 0 },
  1278. { ERR_EGR_CTXT_PRIO,
  1279. "SGE too many priority egress contexts", -1, 0 },
  1280. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1281. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1282. { 0 }
  1283. };
  1284. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1285. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1286. if (v) {
  1287. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1288. (unsigned long long)v);
  1289. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1290. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1291. }
  1292. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1293. v != 0)
  1294. t4_fatal_err(adapter);
  1295. }
  1296. /*
  1297. * CIM interrupt handler.
  1298. */
  1299. static void cim_intr_handler(struct adapter *adapter)
  1300. {
  1301. static const struct intr_info cim_intr_info[] = {
  1302. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1303. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1304. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1305. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1306. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1307. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1308. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1309. { 0 }
  1310. };
  1311. static const struct intr_info cim_upintr_info[] = {
  1312. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1313. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1314. { ILLWRINT, "CIM illegal write", -1, 1 },
  1315. { ILLRDINT, "CIM illegal read", -1, 1 },
  1316. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1317. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1318. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1319. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1320. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1321. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1322. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1323. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1324. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1325. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1326. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1327. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1328. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1329. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1330. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1331. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1332. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1333. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1334. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1335. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1336. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1337. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1338. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1339. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1340. { 0 }
  1341. };
  1342. int fat;
  1343. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1344. cim_intr_info) +
  1345. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1346. cim_upintr_info);
  1347. if (fat)
  1348. t4_fatal_err(adapter);
  1349. }
  1350. /*
  1351. * ULP RX interrupt handler.
  1352. */
  1353. static void ulprx_intr_handler(struct adapter *adapter)
  1354. {
  1355. static const struct intr_info ulprx_intr_info[] = {
  1356. { 0x1800000, "ULPRX context error", -1, 1 },
  1357. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1358. { 0 }
  1359. };
  1360. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1361. t4_fatal_err(adapter);
  1362. }
  1363. /*
  1364. * ULP TX interrupt handler.
  1365. */
  1366. static void ulptx_intr_handler(struct adapter *adapter)
  1367. {
  1368. static const struct intr_info ulptx_intr_info[] = {
  1369. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1370. 0 },
  1371. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1372. 0 },
  1373. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1374. 0 },
  1375. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1376. 0 },
  1377. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1378. { 0 }
  1379. };
  1380. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1381. t4_fatal_err(adapter);
  1382. }
  1383. /*
  1384. * PM TX interrupt handler.
  1385. */
  1386. static void pmtx_intr_handler(struct adapter *adapter)
  1387. {
  1388. static const struct intr_info pmtx_intr_info[] = {
  1389. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1390. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1391. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1392. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1393. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1394. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1395. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1396. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1397. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1398. { 0 }
  1399. };
  1400. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1401. t4_fatal_err(adapter);
  1402. }
  1403. /*
  1404. * PM RX interrupt handler.
  1405. */
  1406. static void pmrx_intr_handler(struct adapter *adapter)
  1407. {
  1408. static const struct intr_info pmrx_intr_info[] = {
  1409. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1410. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1411. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1412. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1413. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1414. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1415. { 0 }
  1416. };
  1417. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1418. t4_fatal_err(adapter);
  1419. }
  1420. /*
  1421. * CPL switch interrupt handler.
  1422. */
  1423. static void cplsw_intr_handler(struct adapter *adapter)
  1424. {
  1425. static const struct intr_info cplsw_intr_info[] = {
  1426. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1427. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1428. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1429. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1430. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1431. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1432. { 0 }
  1433. };
  1434. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1435. t4_fatal_err(adapter);
  1436. }
  1437. /*
  1438. * LE interrupt handler.
  1439. */
  1440. static void le_intr_handler(struct adapter *adap)
  1441. {
  1442. static const struct intr_info le_intr_info[] = {
  1443. { LIPMISS, "LE LIP miss", -1, 0 },
  1444. { LIP0, "LE 0 LIP error", -1, 0 },
  1445. { PARITYERR, "LE parity error", -1, 1 },
  1446. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1447. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1448. { 0 }
  1449. };
  1450. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1451. t4_fatal_err(adap);
  1452. }
  1453. /*
  1454. * MPS interrupt handler.
  1455. */
  1456. static void mps_intr_handler(struct adapter *adapter)
  1457. {
  1458. static const struct intr_info mps_rx_intr_info[] = {
  1459. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1460. { 0 }
  1461. };
  1462. static const struct intr_info mps_tx_intr_info[] = {
  1463. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1464. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1465. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1466. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1467. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1468. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1469. { FRMERR, "MPS Tx framing error", -1, 1 },
  1470. { 0 }
  1471. };
  1472. static const struct intr_info mps_trc_intr_info[] = {
  1473. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1474. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1475. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1476. { 0 }
  1477. };
  1478. static const struct intr_info mps_stat_sram_intr_info[] = {
  1479. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1480. { 0 }
  1481. };
  1482. static const struct intr_info mps_stat_tx_intr_info[] = {
  1483. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1484. { 0 }
  1485. };
  1486. static const struct intr_info mps_stat_rx_intr_info[] = {
  1487. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1488. { 0 }
  1489. };
  1490. static const struct intr_info mps_cls_intr_info[] = {
  1491. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1492. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1493. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1494. { 0 }
  1495. };
  1496. int fat;
  1497. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1498. mps_rx_intr_info) +
  1499. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1500. mps_tx_intr_info) +
  1501. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1502. mps_trc_intr_info) +
  1503. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1504. mps_stat_sram_intr_info) +
  1505. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1506. mps_stat_tx_intr_info) +
  1507. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1508. mps_stat_rx_intr_info) +
  1509. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1510. mps_cls_intr_info);
  1511. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1512. RXINT | TXINT | STATINT);
  1513. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1514. if (fat)
  1515. t4_fatal_err(adapter);
  1516. }
  1517. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1518. /*
  1519. * EDC/MC interrupt handler.
  1520. */
  1521. static void mem_intr_handler(struct adapter *adapter, int idx)
  1522. {
  1523. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1524. unsigned int addr, cnt_addr, v;
  1525. if (idx <= MEM_EDC1) {
  1526. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1527. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1528. } else {
  1529. addr = MC_INT_CAUSE;
  1530. cnt_addr = MC_ECC_STATUS;
  1531. }
  1532. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1533. if (v & PERR_INT_CAUSE)
  1534. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1535. name[idx]);
  1536. if (v & ECC_CE_INT_CAUSE) {
  1537. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1538. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1539. if (printk_ratelimit())
  1540. dev_warn(adapter->pdev_dev,
  1541. "%u %s correctable ECC data error%s\n",
  1542. cnt, name[idx], cnt > 1 ? "s" : "");
  1543. }
  1544. if (v & ECC_UE_INT_CAUSE)
  1545. dev_alert(adapter->pdev_dev,
  1546. "%s uncorrectable ECC data error\n", name[idx]);
  1547. t4_write_reg(adapter, addr, v);
  1548. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1549. t4_fatal_err(adapter);
  1550. }
  1551. /*
  1552. * MA interrupt handler.
  1553. */
  1554. static void ma_intr_handler(struct adapter *adap)
  1555. {
  1556. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1557. if (status & MEM_PERR_INT_CAUSE)
  1558. dev_alert(adap->pdev_dev,
  1559. "MA parity error, parity status %#x\n",
  1560. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1561. if (status & MEM_WRAP_INT_CAUSE) {
  1562. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1563. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1564. "client %u to address %#x\n",
  1565. MEM_WRAP_CLIENT_NUM_GET(v),
  1566. MEM_WRAP_ADDRESS_GET(v) << 4);
  1567. }
  1568. t4_write_reg(adap, MA_INT_CAUSE, status);
  1569. t4_fatal_err(adap);
  1570. }
  1571. /*
  1572. * SMB interrupt handler.
  1573. */
  1574. static void smb_intr_handler(struct adapter *adap)
  1575. {
  1576. static const struct intr_info smb_intr_info[] = {
  1577. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1578. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1579. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1580. { 0 }
  1581. };
  1582. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1583. t4_fatal_err(adap);
  1584. }
  1585. /*
  1586. * NC-SI interrupt handler.
  1587. */
  1588. static void ncsi_intr_handler(struct adapter *adap)
  1589. {
  1590. static const struct intr_info ncsi_intr_info[] = {
  1591. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1592. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1593. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1594. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1595. { 0 }
  1596. };
  1597. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1598. t4_fatal_err(adap);
  1599. }
  1600. /*
  1601. * XGMAC interrupt handler.
  1602. */
  1603. static void xgmac_intr_handler(struct adapter *adap, int port)
  1604. {
  1605. u32 v, int_cause_reg;
  1606. if (is_t4(adap->chip))
  1607. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
  1608. else
  1609. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
  1610. v = t4_read_reg(adap, int_cause_reg);
  1611. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1612. if (!v)
  1613. return;
  1614. if (v & TXFIFO_PRTY_ERR)
  1615. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1616. port);
  1617. if (v & RXFIFO_PRTY_ERR)
  1618. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1619. port);
  1620. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1621. t4_fatal_err(adap);
  1622. }
  1623. /*
  1624. * PL interrupt handler.
  1625. */
  1626. static void pl_intr_handler(struct adapter *adap)
  1627. {
  1628. static const struct intr_info pl_intr_info[] = {
  1629. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1630. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1631. { 0 }
  1632. };
  1633. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1634. t4_fatal_err(adap);
  1635. }
  1636. #define PF_INTR_MASK (PFSW)
  1637. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1638. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1639. CPL_SWITCH | SGE | ULP_TX)
  1640. /**
  1641. * t4_slow_intr_handler - control path interrupt handler
  1642. * @adapter: the adapter
  1643. *
  1644. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1645. * The designation 'slow' is because it involves register reads, while
  1646. * data interrupts typically don't involve any MMIOs.
  1647. */
  1648. int t4_slow_intr_handler(struct adapter *adapter)
  1649. {
  1650. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1651. if (!(cause & GLBL_INTR_MASK))
  1652. return 0;
  1653. if (cause & CIM)
  1654. cim_intr_handler(adapter);
  1655. if (cause & MPS)
  1656. mps_intr_handler(adapter);
  1657. if (cause & NCSI)
  1658. ncsi_intr_handler(adapter);
  1659. if (cause & PL)
  1660. pl_intr_handler(adapter);
  1661. if (cause & SMB)
  1662. smb_intr_handler(adapter);
  1663. if (cause & XGMAC0)
  1664. xgmac_intr_handler(adapter, 0);
  1665. if (cause & XGMAC1)
  1666. xgmac_intr_handler(adapter, 1);
  1667. if (cause & XGMAC_KR0)
  1668. xgmac_intr_handler(adapter, 2);
  1669. if (cause & XGMAC_KR1)
  1670. xgmac_intr_handler(adapter, 3);
  1671. if (cause & PCIE)
  1672. pcie_intr_handler(adapter);
  1673. if (cause & MC)
  1674. mem_intr_handler(adapter, MEM_MC);
  1675. if (cause & EDC0)
  1676. mem_intr_handler(adapter, MEM_EDC0);
  1677. if (cause & EDC1)
  1678. mem_intr_handler(adapter, MEM_EDC1);
  1679. if (cause & LE)
  1680. le_intr_handler(adapter);
  1681. if (cause & TP)
  1682. tp_intr_handler(adapter);
  1683. if (cause & MA)
  1684. ma_intr_handler(adapter);
  1685. if (cause & PM_TX)
  1686. pmtx_intr_handler(adapter);
  1687. if (cause & PM_RX)
  1688. pmrx_intr_handler(adapter);
  1689. if (cause & ULP_RX)
  1690. ulprx_intr_handler(adapter);
  1691. if (cause & CPL_SWITCH)
  1692. cplsw_intr_handler(adapter);
  1693. if (cause & SGE)
  1694. sge_intr_handler(adapter);
  1695. if (cause & ULP_TX)
  1696. ulptx_intr_handler(adapter);
  1697. /* Clear the interrupts just processed for which we are the master. */
  1698. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1699. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1700. return 1;
  1701. }
  1702. /**
  1703. * t4_intr_enable - enable interrupts
  1704. * @adapter: the adapter whose interrupts should be enabled
  1705. *
  1706. * Enable PF-specific interrupts for the calling function and the top-level
  1707. * interrupt concentrator for global interrupts. Interrupts are already
  1708. * enabled at each module, here we just enable the roots of the interrupt
  1709. * hierarchies.
  1710. *
  1711. * Note: this function should be called only when the driver manages
  1712. * non PF-specific interrupts from the various HW modules. Only one PCI
  1713. * function at a time should be doing this.
  1714. */
  1715. void t4_intr_enable(struct adapter *adapter)
  1716. {
  1717. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1718. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1719. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1720. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1721. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1722. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1723. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1724. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1725. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1726. EGRESS_SIZE_ERR);
  1727. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1728. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1729. }
  1730. /**
  1731. * t4_intr_disable - disable interrupts
  1732. * @adapter: the adapter whose interrupts should be disabled
  1733. *
  1734. * Disable interrupts. We only disable the top-level interrupt
  1735. * concentrators. The caller must be a PCI function managing global
  1736. * interrupts.
  1737. */
  1738. void t4_intr_disable(struct adapter *adapter)
  1739. {
  1740. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1741. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1742. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1743. }
  1744. /**
  1745. * hash_mac_addr - return the hash value of a MAC address
  1746. * @addr: the 48-bit Ethernet MAC address
  1747. *
  1748. * Hashes a MAC address according to the hash function used by HW inexact
  1749. * (hash) address matching.
  1750. */
  1751. static int hash_mac_addr(const u8 *addr)
  1752. {
  1753. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1754. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1755. a ^= b;
  1756. a ^= (a >> 12);
  1757. a ^= (a >> 6);
  1758. return a & 0x3f;
  1759. }
  1760. /**
  1761. * t4_config_rss_range - configure a portion of the RSS mapping table
  1762. * @adapter: the adapter
  1763. * @mbox: mbox to use for the FW command
  1764. * @viid: virtual interface whose RSS subtable is to be written
  1765. * @start: start entry in the table to write
  1766. * @n: how many table entries to write
  1767. * @rspq: values for the response queue lookup table
  1768. * @nrspq: number of values in @rspq
  1769. *
  1770. * Programs the selected part of the VI's RSS mapping table with the
  1771. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1772. * until the full table range is populated.
  1773. *
  1774. * The caller must ensure the values in @rspq are in the range allowed for
  1775. * @viid.
  1776. */
  1777. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1778. int start, int n, const u16 *rspq, unsigned int nrspq)
  1779. {
  1780. int ret;
  1781. const u16 *rsp = rspq;
  1782. const u16 *rsp_end = rspq + nrspq;
  1783. struct fw_rss_ind_tbl_cmd cmd;
  1784. memset(&cmd, 0, sizeof(cmd));
  1785. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1786. FW_CMD_REQUEST | FW_CMD_WRITE |
  1787. FW_RSS_IND_TBL_CMD_VIID(viid));
  1788. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1789. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1790. while (n > 0) {
  1791. int nq = min(n, 32);
  1792. __be32 *qp = &cmd.iq0_to_iq2;
  1793. cmd.niqid = htons(nq);
  1794. cmd.startidx = htons(start);
  1795. start += nq;
  1796. n -= nq;
  1797. while (nq > 0) {
  1798. unsigned int v;
  1799. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1800. if (++rsp >= rsp_end)
  1801. rsp = rspq;
  1802. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1803. if (++rsp >= rsp_end)
  1804. rsp = rspq;
  1805. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1806. if (++rsp >= rsp_end)
  1807. rsp = rspq;
  1808. *qp++ = htonl(v);
  1809. nq -= 3;
  1810. }
  1811. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1812. if (ret)
  1813. return ret;
  1814. }
  1815. return 0;
  1816. }
  1817. /**
  1818. * t4_config_glbl_rss - configure the global RSS mode
  1819. * @adapter: the adapter
  1820. * @mbox: mbox to use for the FW command
  1821. * @mode: global RSS mode
  1822. * @flags: mode-specific flags
  1823. *
  1824. * Sets the global RSS mode.
  1825. */
  1826. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1827. unsigned int flags)
  1828. {
  1829. struct fw_rss_glb_config_cmd c;
  1830. memset(&c, 0, sizeof(c));
  1831. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1832. FW_CMD_REQUEST | FW_CMD_WRITE);
  1833. c.retval_len16 = htonl(FW_LEN16(c));
  1834. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1835. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1836. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1837. c.u.basicvirtual.mode_pkd =
  1838. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1839. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1840. } else
  1841. return -EINVAL;
  1842. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1843. }
  1844. /**
  1845. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1846. * @adap: the adapter
  1847. * @v4: holds the TCP/IP counter values
  1848. * @v6: holds the TCP/IPv6 counter values
  1849. *
  1850. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1851. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1852. */
  1853. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1854. struct tp_tcp_stats *v6)
  1855. {
  1856. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1857. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1858. #define STAT(x) val[STAT_IDX(x)]
  1859. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1860. if (v4) {
  1861. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1862. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1863. v4->tcpOutRsts = STAT(OUT_RST);
  1864. v4->tcpInSegs = STAT64(IN_SEG);
  1865. v4->tcpOutSegs = STAT64(OUT_SEG);
  1866. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1867. }
  1868. if (v6) {
  1869. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1870. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1871. v6->tcpOutRsts = STAT(OUT_RST);
  1872. v6->tcpInSegs = STAT64(IN_SEG);
  1873. v6->tcpOutSegs = STAT64(OUT_SEG);
  1874. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1875. }
  1876. #undef STAT64
  1877. #undef STAT
  1878. #undef STAT_IDX
  1879. }
  1880. /**
  1881. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1882. * @adap: the adapter
  1883. * @mtus: where to store the MTU values
  1884. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1885. *
  1886. * Reads the HW path MTU table.
  1887. */
  1888. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1889. {
  1890. u32 v;
  1891. int i;
  1892. for (i = 0; i < NMTUS; ++i) {
  1893. t4_write_reg(adap, TP_MTU_TABLE,
  1894. MTUINDEX(0xff) | MTUVALUE(i));
  1895. v = t4_read_reg(adap, TP_MTU_TABLE);
  1896. mtus[i] = MTUVALUE_GET(v);
  1897. if (mtu_log)
  1898. mtu_log[i] = MTUWIDTH_GET(v);
  1899. }
  1900. }
  1901. /**
  1902. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1903. * @adap: the adapter
  1904. * @addr: the indirect TP register address
  1905. * @mask: specifies the field within the register to modify
  1906. * @val: new value for the field
  1907. *
  1908. * Sets a field of an indirect TP register to the given value.
  1909. */
  1910. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1911. unsigned int mask, unsigned int val)
  1912. {
  1913. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1914. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1915. t4_write_reg(adap, TP_PIO_DATA, val);
  1916. }
  1917. /**
  1918. * init_cong_ctrl - initialize congestion control parameters
  1919. * @a: the alpha values for congestion control
  1920. * @b: the beta values for congestion control
  1921. *
  1922. * Initialize the congestion control parameters.
  1923. */
  1924. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  1925. {
  1926. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1927. a[9] = 2;
  1928. a[10] = 3;
  1929. a[11] = 4;
  1930. a[12] = 5;
  1931. a[13] = 6;
  1932. a[14] = 7;
  1933. a[15] = 8;
  1934. a[16] = 9;
  1935. a[17] = 10;
  1936. a[18] = 14;
  1937. a[19] = 17;
  1938. a[20] = 21;
  1939. a[21] = 25;
  1940. a[22] = 30;
  1941. a[23] = 35;
  1942. a[24] = 45;
  1943. a[25] = 60;
  1944. a[26] = 80;
  1945. a[27] = 100;
  1946. a[28] = 200;
  1947. a[29] = 300;
  1948. a[30] = 400;
  1949. a[31] = 500;
  1950. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1951. b[9] = b[10] = 1;
  1952. b[11] = b[12] = 2;
  1953. b[13] = b[14] = b[15] = b[16] = 3;
  1954. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1955. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1956. b[28] = b[29] = 6;
  1957. b[30] = b[31] = 7;
  1958. }
  1959. /* The minimum additive increment value for the congestion control table */
  1960. #define CC_MIN_INCR 2U
  1961. /**
  1962. * t4_load_mtus - write the MTU and congestion control HW tables
  1963. * @adap: the adapter
  1964. * @mtus: the values for the MTU table
  1965. * @alpha: the values for the congestion control alpha parameter
  1966. * @beta: the values for the congestion control beta parameter
  1967. *
  1968. * Write the HW MTU table with the supplied MTUs and the high-speed
  1969. * congestion control table with the supplied alpha, beta, and MTUs.
  1970. * We write the two tables together because the additive increments
  1971. * depend on the MTUs.
  1972. */
  1973. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1974. const unsigned short *alpha, const unsigned short *beta)
  1975. {
  1976. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1977. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1978. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1979. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1980. };
  1981. unsigned int i, w;
  1982. for (i = 0; i < NMTUS; ++i) {
  1983. unsigned int mtu = mtus[i];
  1984. unsigned int log2 = fls(mtu);
  1985. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1986. log2--;
  1987. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1988. MTUWIDTH(log2) | MTUVALUE(mtu));
  1989. for (w = 0; w < NCCTRL_WIN; ++w) {
  1990. unsigned int inc;
  1991. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1992. CC_MIN_INCR);
  1993. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1994. (w << 16) | (beta[w] << 13) | inc);
  1995. }
  1996. }
  1997. }
  1998. /**
  1999. * get_mps_bg_map - return the buffer groups associated with a port
  2000. * @adap: the adapter
  2001. * @idx: the port index
  2002. *
  2003. * Returns a bitmap indicating which MPS buffer groups are associated
  2004. * with the given port. Bit i is set if buffer group i is used by the
  2005. * port.
  2006. */
  2007. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2008. {
  2009. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  2010. if (n == 0)
  2011. return idx == 0 ? 0xf : 0;
  2012. if (n == 1)
  2013. return idx < 2 ? (3 << (2 * idx)) : 0;
  2014. return 1 << idx;
  2015. }
  2016. /**
  2017. * t4_get_port_stats - collect port statistics
  2018. * @adap: the adapter
  2019. * @idx: the port index
  2020. * @p: the stats structure to fill
  2021. *
  2022. * Collect statistics related to the given port from HW.
  2023. */
  2024. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2025. {
  2026. u32 bgmap = get_mps_bg_map(adap, idx);
  2027. #define GET_STAT(name) \
  2028. t4_read_reg64(adap, \
  2029. (is_t4(adap->chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2030. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2031. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2032. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2033. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2034. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2035. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2036. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2037. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2038. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2039. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2040. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2041. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2042. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2043. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2044. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2045. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2046. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2047. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2048. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2049. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2050. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2051. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2052. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2053. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2054. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2055. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2056. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2057. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2058. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2059. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2060. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2061. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2062. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2063. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2064. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2065. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2066. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2067. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2068. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2069. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2070. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2071. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2072. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2073. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2074. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2075. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2076. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2077. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2078. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2079. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2080. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2081. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2082. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2083. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2084. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2085. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2086. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2087. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2088. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2089. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2090. #undef GET_STAT
  2091. #undef GET_STAT_COM
  2092. }
  2093. /**
  2094. * t4_wol_magic_enable - enable/disable magic packet WoL
  2095. * @adap: the adapter
  2096. * @port: the physical port index
  2097. * @addr: MAC address expected in magic packets, %NULL to disable
  2098. *
  2099. * Enables/disables magic packet wake-on-LAN for the selected port.
  2100. */
  2101. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2102. const u8 *addr)
  2103. {
  2104. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2105. if (is_t4(adap->chip)) {
  2106. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2107. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2108. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2109. } else {
  2110. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2111. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2112. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2113. }
  2114. if (addr) {
  2115. t4_write_reg(adap, mag_id_reg_l,
  2116. (addr[2] << 24) | (addr[3] << 16) |
  2117. (addr[4] << 8) | addr[5]);
  2118. t4_write_reg(adap, mag_id_reg_h,
  2119. (addr[0] << 8) | addr[1]);
  2120. }
  2121. t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
  2122. addr ? MAGICEN : 0);
  2123. }
  2124. /**
  2125. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2126. * @adap: the adapter
  2127. * @port: the physical port index
  2128. * @map: bitmap of which HW pattern filters to set
  2129. * @mask0: byte mask for bytes 0-63 of a packet
  2130. * @mask1: byte mask for bytes 64-127 of a packet
  2131. * @crc: Ethernet CRC for selected bytes
  2132. * @enable: enable/disable switch
  2133. *
  2134. * Sets the pattern filters indicated in @map to mask out the bytes
  2135. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2136. * the resulting packet against @crc. If @enable is %true pattern-based
  2137. * WoL is enabled, otherwise disabled.
  2138. */
  2139. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2140. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2141. {
  2142. int i;
  2143. u32 port_cfg_reg;
  2144. if (is_t4(adap->chip))
  2145. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2146. else
  2147. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2148. if (!enable) {
  2149. t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
  2150. return 0;
  2151. }
  2152. if (map > 0xff)
  2153. return -EINVAL;
  2154. #define EPIO_REG(name) \
  2155. (is_t4(adap->chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
  2156. T5_PORT_REG(port, MAC_PORT_EPIO_##name))
  2157. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2158. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2159. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2160. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2161. if (!(map & 1))
  2162. continue;
  2163. /* write byte masks */
  2164. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2165. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2166. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2167. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2168. return -ETIMEDOUT;
  2169. /* write CRC */
  2170. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2171. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2172. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2173. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2174. return -ETIMEDOUT;
  2175. }
  2176. #undef EPIO_REG
  2177. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2178. return 0;
  2179. }
  2180. /* t4_mk_filtdelwr - create a delete filter WR
  2181. * @ftid: the filter ID
  2182. * @wr: the filter work request to populate
  2183. * @qid: ingress queue to receive the delete notification
  2184. *
  2185. * Creates a filter work request to delete the supplied filter. If @qid is
  2186. * negative the delete notification is suppressed.
  2187. */
  2188. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2189. {
  2190. memset(wr, 0, sizeof(*wr));
  2191. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2192. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2193. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2194. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2195. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2196. if (qid >= 0)
  2197. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2198. }
  2199. #define INIT_CMD(var, cmd, rd_wr) do { \
  2200. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2201. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2202. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2203. } while (0)
  2204. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2205. u32 addr, u32 val)
  2206. {
  2207. struct fw_ldst_cmd c;
  2208. memset(&c, 0, sizeof(c));
  2209. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2210. FW_CMD_WRITE |
  2211. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2212. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2213. c.u.addrval.addr = htonl(addr);
  2214. c.u.addrval.val = htonl(val);
  2215. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2216. }
  2217. /**
  2218. * t4_mem_win_read_len - read memory through PCIE memory window
  2219. * @adap: the adapter
  2220. * @addr: address of first byte requested aligned on 32b.
  2221. * @data: len bytes to hold the data read
  2222. * @len: amount of data to read from window. Must be <=
  2223. * MEMWIN0_APERATURE after adjusting for 16B for T4 and
  2224. * 128B for T5 alignment requirements of the the memory window.
  2225. *
  2226. * Read len bytes of data from MC starting at @addr.
  2227. */
  2228. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2229. {
  2230. int i, off;
  2231. u32 win_pf = is_t4(adap->chip) ? 0 : V_PFNUM(adap->fn);
  2232. /* Align on a 2KB boundary.
  2233. */
  2234. off = addr & MEMWIN0_APERTURE;
  2235. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2236. return -EINVAL;
  2237. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  2238. (addr & ~MEMWIN0_APERTURE) | win_pf);
  2239. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2240. for (i = 0; i < len; i += 4)
  2241. *data++ = (__force __be32) t4_read_reg(adap,
  2242. (MEMWIN0_BASE + off + i));
  2243. return 0;
  2244. }
  2245. /**
  2246. * t4_mdio_rd - read a PHY register through MDIO
  2247. * @adap: the adapter
  2248. * @mbox: mailbox to use for the FW command
  2249. * @phy_addr: the PHY address
  2250. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2251. * @reg: the register to read
  2252. * @valp: where to store the value
  2253. *
  2254. * Issues a FW command through the given mailbox to read a PHY register.
  2255. */
  2256. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2257. unsigned int mmd, unsigned int reg, u16 *valp)
  2258. {
  2259. int ret;
  2260. struct fw_ldst_cmd c;
  2261. memset(&c, 0, sizeof(c));
  2262. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2263. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2264. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2265. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2266. FW_LDST_CMD_MMD(mmd));
  2267. c.u.mdio.raddr = htons(reg);
  2268. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2269. if (ret == 0)
  2270. *valp = ntohs(c.u.mdio.rval);
  2271. return ret;
  2272. }
  2273. /**
  2274. * t4_mdio_wr - write a PHY register through MDIO
  2275. * @adap: the adapter
  2276. * @mbox: mailbox to use for the FW command
  2277. * @phy_addr: the PHY address
  2278. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2279. * @reg: the register to write
  2280. * @valp: value to write
  2281. *
  2282. * Issues a FW command through the given mailbox to write a PHY register.
  2283. */
  2284. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2285. unsigned int mmd, unsigned int reg, u16 val)
  2286. {
  2287. struct fw_ldst_cmd c;
  2288. memset(&c, 0, sizeof(c));
  2289. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2290. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2291. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2292. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2293. FW_LDST_CMD_MMD(mmd));
  2294. c.u.mdio.raddr = htons(reg);
  2295. c.u.mdio.rval = htons(val);
  2296. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2297. }
  2298. /**
  2299. * t4_fw_hello - establish communication with FW
  2300. * @adap: the adapter
  2301. * @mbox: mailbox to use for the FW command
  2302. * @evt_mbox: mailbox to receive async FW events
  2303. * @master: specifies the caller's willingness to be the device master
  2304. * @state: returns the current device state (if non-NULL)
  2305. *
  2306. * Issues a command to establish communication with FW. Returns either
  2307. * an error (negative integer) or the mailbox of the Master PF.
  2308. */
  2309. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2310. enum dev_master master, enum dev_state *state)
  2311. {
  2312. int ret;
  2313. struct fw_hello_cmd c;
  2314. u32 v;
  2315. unsigned int master_mbox;
  2316. int retries = FW_CMD_HELLO_RETRIES;
  2317. retry:
  2318. memset(&c, 0, sizeof(c));
  2319. INIT_CMD(c, HELLO, WRITE);
  2320. c.err_to_clearinit = htonl(
  2321. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2322. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2323. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2324. FW_HELLO_CMD_MBMASTER_MASK) |
  2325. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2326. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2327. FW_HELLO_CMD_CLEARINIT);
  2328. /*
  2329. * Issue the HELLO command to the firmware. If it's not successful
  2330. * but indicates that we got a "busy" or "timeout" condition, retry
  2331. * the HELLO until we exhaust our retry limit.
  2332. */
  2333. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2334. if (ret < 0) {
  2335. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2336. goto retry;
  2337. return ret;
  2338. }
  2339. v = ntohl(c.err_to_clearinit);
  2340. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2341. if (state) {
  2342. if (v & FW_HELLO_CMD_ERR)
  2343. *state = DEV_STATE_ERR;
  2344. else if (v & FW_HELLO_CMD_INIT)
  2345. *state = DEV_STATE_INIT;
  2346. else
  2347. *state = DEV_STATE_UNINIT;
  2348. }
  2349. /*
  2350. * If we're not the Master PF then we need to wait around for the
  2351. * Master PF Driver to finish setting up the adapter.
  2352. *
  2353. * Note that we also do this wait if we're a non-Master-capable PF and
  2354. * there is no current Master PF; a Master PF may show up momentarily
  2355. * and we wouldn't want to fail pointlessly. (This can happen when an
  2356. * OS loads lots of different drivers rapidly at the same time). In
  2357. * this case, the Master PF returned by the firmware will be
  2358. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2359. */
  2360. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2361. master_mbox != mbox) {
  2362. int waiting = FW_CMD_HELLO_TIMEOUT;
  2363. /*
  2364. * Wait for the firmware to either indicate an error or
  2365. * initialized state. If we see either of these we bail out
  2366. * and report the issue to the caller. If we exhaust the
  2367. * "hello timeout" and we haven't exhausted our retries, try
  2368. * again. Otherwise bail with a timeout error.
  2369. */
  2370. for (;;) {
  2371. u32 pcie_fw;
  2372. msleep(50);
  2373. waiting -= 50;
  2374. /*
  2375. * If neither Error nor Initialialized are indicated
  2376. * by the firmware keep waiting till we exaust our
  2377. * timeout ... and then retry if we haven't exhausted
  2378. * our retries ...
  2379. */
  2380. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2381. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2382. if (waiting <= 0) {
  2383. if (retries-- > 0)
  2384. goto retry;
  2385. return -ETIMEDOUT;
  2386. }
  2387. continue;
  2388. }
  2389. /*
  2390. * We either have an Error or Initialized condition
  2391. * report errors preferentially.
  2392. */
  2393. if (state) {
  2394. if (pcie_fw & FW_PCIE_FW_ERR)
  2395. *state = DEV_STATE_ERR;
  2396. else if (pcie_fw & FW_PCIE_FW_INIT)
  2397. *state = DEV_STATE_INIT;
  2398. }
  2399. /*
  2400. * If we arrived before a Master PF was selected and
  2401. * there's not a valid Master PF, grab its identity
  2402. * for our caller.
  2403. */
  2404. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2405. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2406. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2407. break;
  2408. }
  2409. }
  2410. return master_mbox;
  2411. }
  2412. /**
  2413. * t4_fw_bye - end communication with FW
  2414. * @adap: the adapter
  2415. * @mbox: mailbox to use for the FW command
  2416. *
  2417. * Issues a command to terminate communication with FW.
  2418. */
  2419. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2420. {
  2421. struct fw_bye_cmd c;
  2422. memset(&c, 0, sizeof(c));
  2423. INIT_CMD(c, BYE, WRITE);
  2424. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2425. }
  2426. /**
  2427. * t4_init_cmd - ask FW to initialize the device
  2428. * @adap: the adapter
  2429. * @mbox: mailbox to use for the FW command
  2430. *
  2431. * Issues a command to FW to partially initialize the device. This
  2432. * performs initialization that generally doesn't depend on user input.
  2433. */
  2434. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2435. {
  2436. struct fw_initialize_cmd c;
  2437. memset(&c, 0, sizeof(c));
  2438. INIT_CMD(c, INITIALIZE, WRITE);
  2439. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2440. }
  2441. /**
  2442. * t4_fw_reset - issue a reset to FW
  2443. * @adap: the adapter
  2444. * @mbox: mailbox to use for the FW command
  2445. * @reset: specifies the type of reset to perform
  2446. *
  2447. * Issues a reset command of the specified type to FW.
  2448. */
  2449. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2450. {
  2451. struct fw_reset_cmd c;
  2452. memset(&c, 0, sizeof(c));
  2453. INIT_CMD(c, RESET, WRITE);
  2454. c.val = htonl(reset);
  2455. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2456. }
  2457. /**
  2458. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2459. * @adap: the adapter
  2460. * @mbox: mailbox to use for the FW RESET command (if desired)
  2461. * @force: force uP into RESET even if FW RESET command fails
  2462. *
  2463. * Issues a RESET command to firmware (if desired) with a HALT indication
  2464. * and then puts the microprocessor into RESET state. The RESET command
  2465. * will only be issued if a legitimate mailbox is provided (mbox <=
  2466. * FW_PCIE_FW_MASTER_MASK).
  2467. *
  2468. * This is generally used in order for the host to safely manipulate the
  2469. * adapter without fear of conflicting with whatever the firmware might
  2470. * be doing. The only way out of this state is to RESTART the firmware
  2471. * ...
  2472. */
  2473. int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2474. {
  2475. int ret = 0;
  2476. /*
  2477. * If a legitimate mailbox is provided, issue a RESET command
  2478. * with a HALT indication.
  2479. */
  2480. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2481. struct fw_reset_cmd c;
  2482. memset(&c, 0, sizeof(c));
  2483. INIT_CMD(c, RESET, WRITE);
  2484. c.val = htonl(PIORST | PIORSTMODE);
  2485. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2486. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2487. }
  2488. /*
  2489. * Normally we won't complete the operation if the firmware RESET
  2490. * command fails but if our caller insists we'll go ahead and put the
  2491. * uP into RESET. This can be useful if the firmware is hung or even
  2492. * missing ... We'll have to take the risk of putting the uP into
  2493. * RESET without the cooperation of firmware in that case.
  2494. *
  2495. * We also force the firmware's HALT flag to be on in case we bypassed
  2496. * the firmware RESET command above or we're dealing with old firmware
  2497. * which doesn't have the HALT capability. This will serve as a flag
  2498. * for the incoming firmware to know that it's coming out of a HALT
  2499. * rather than a RESET ... if it's new enough to understand that ...
  2500. */
  2501. if (ret == 0 || force) {
  2502. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2503. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2504. FW_PCIE_FW_HALT);
  2505. }
  2506. /*
  2507. * And we always return the result of the firmware RESET command
  2508. * even when we force the uP into RESET ...
  2509. */
  2510. return ret;
  2511. }
  2512. /**
  2513. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2514. * @adap: the adapter
  2515. * @reset: if we want to do a RESET to restart things
  2516. *
  2517. * Restart firmware previously halted by t4_fw_halt(). On successful
  2518. * return the previous PF Master remains as the new PF Master and there
  2519. * is no need to issue a new HELLO command, etc.
  2520. *
  2521. * We do this in two ways:
  2522. *
  2523. * 1. If we're dealing with newer firmware we'll simply want to take
  2524. * the chip's microprocessor out of RESET. This will cause the
  2525. * firmware to start up from its start vector. And then we'll loop
  2526. * until the firmware indicates it's started again (PCIE_FW.HALT
  2527. * reset to 0) or we timeout.
  2528. *
  2529. * 2. If we're dealing with older firmware then we'll need to RESET
  2530. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2531. * flag and automatically RESET itself on startup.
  2532. */
  2533. int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2534. {
  2535. if (reset) {
  2536. /*
  2537. * Since we're directing the RESET instead of the firmware
  2538. * doing it automatically, we need to clear the PCIE_FW.HALT
  2539. * bit.
  2540. */
  2541. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2542. /*
  2543. * If we've been given a valid mailbox, first try to get the
  2544. * firmware to do the RESET. If that works, great and we can
  2545. * return success. Otherwise, if we haven't been given a
  2546. * valid mailbox or the RESET command failed, fall back to
  2547. * hitting the chip with a hammer.
  2548. */
  2549. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2550. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2551. msleep(100);
  2552. if (t4_fw_reset(adap, mbox,
  2553. PIORST | PIORSTMODE) == 0)
  2554. return 0;
  2555. }
  2556. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2557. msleep(2000);
  2558. } else {
  2559. int ms;
  2560. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2561. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2562. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2563. return 0;
  2564. msleep(100);
  2565. ms += 100;
  2566. }
  2567. return -ETIMEDOUT;
  2568. }
  2569. return 0;
  2570. }
  2571. /**
  2572. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2573. * @adap: the adapter
  2574. * @mbox: mailbox to use for the FW RESET command (if desired)
  2575. * @fw_data: the firmware image to write
  2576. * @size: image size
  2577. * @force: force upgrade even if firmware doesn't cooperate
  2578. *
  2579. * Perform all of the steps necessary for upgrading an adapter's
  2580. * firmware image. Normally this requires the cooperation of the
  2581. * existing firmware in order to halt all existing activities
  2582. * but if an invalid mailbox token is passed in we skip that step
  2583. * (though we'll still put the adapter microprocessor into RESET in
  2584. * that case).
  2585. *
  2586. * On successful return the new firmware will have been loaded and
  2587. * the adapter will have been fully RESET losing all previous setup
  2588. * state. On unsuccessful return the adapter may be completely hosed ...
  2589. * positive errno indicates that the adapter is ~probably~ intact, a
  2590. * negative errno indicates that things are looking bad ...
  2591. */
  2592. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2593. const u8 *fw_data, unsigned int size, int force)
  2594. {
  2595. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2596. int reset, ret;
  2597. ret = t4_fw_halt(adap, mbox, force);
  2598. if (ret < 0 && !force)
  2599. return ret;
  2600. ret = t4_load_fw(adap, fw_data, size);
  2601. if (ret < 0)
  2602. return ret;
  2603. /*
  2604. * Older versions of the firmware don't understand the new
  2605. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2606. * restart. So for newly loaded older firmware we'll have to do the
  2607. * RESET for it so it starts up on a clean slate. We can tell if
  2608. * the newly loaded firmware will handle this right by checking
  2609. * its header flags to see if it advertises the capability.
  2610. */
  2611. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2612. return t4_fw_restart(adap, mbox, reset);
  2613. }
  2614. /**
  2615. * t4_fw_config_file - setup an adapter via a Configuration File
  2616. * @adap: the adapter
  2617. * @mbox: mailbox to use for the FW command
  2618. * @mtype: the memory type where the Configuration File is located
  2619. * @maddr: the memory address where the Configuration File is located
  2620. * @finiver: return value for CF [fini] version
  2621. * @finicsum: return value for CF [fini] checksum
  2622. * @cfcsum: return value for CF computed checksum
  2623. *
  2624. * Issue a command to get the firmware to process the Configuration
  2625. * File located at the specified mtype/maddress. If the Configuration
  2626. * File is processed successfully and return value pointers are
  2627. * provided, the Configuration File "[fini] section version and
  2628. * checksum values will be returned along with the computed checksum.
  2629. * It's up to the caller to decide how it wants to respond to the
  2630. * checksums not matching but it recommended that a prominant warning
  2631. * be emitted in order to help people rapidly identify changed or
  2632. * corrupted Configuration Files.
  2633. *
  2634. * Also note that it's possible to modify things like "niccaps",
  2635. * "toecaps",etc. between processing the Configuration File and telling
  2636. * the firmware to use the new configuration. Callers which want to
  2637. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2638. * Configuration Files if they want to do this.
  2639. */
  2640. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2641. unsigned int mtype, unsigned int maddr,
  2642. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2643. {
  2644. struct fw_caps_config_cmd caps_cmd;
  2645. int ret;
  2646. /*
  2647. * Tell the firmware to process the indicated Configuration File.
  2648. * If there are no errors and the caller has provided return value
  2649. * pointers for the [fini] section version, checksum and computed
  2650. * checksum, pass those back to the caller.
  2651. */
  2652. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2653. caps_cmd.op_to_write =
  2654. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2655. FW_CMD_REQUEST |
  2656. FW_CMD_READ);
  2657. caps_cmd.cfvalid_to_len16 =
  2658. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2659. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2660. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2661. FW_LEN16(caps_cmd));
  2662. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2663. if (ret < 0)
  2664. return ret;
  2665. if (finiver)
  2666. *finiver = ntohl(caps_cmd.finiver);
  2667. if (finicsum)
  2668. *finicsum = ntohl(caps_cmd.finicsum);
  2669. if (cfcsum)
  2670. *cfcsum = ntohl(caps_cmd.cfcsum);
  2671. /*
  2672. * And now tell the firmware to use the configuration we just loaded.
  2673. */
  2674. caps_cmd.op_to_write =
  2675. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2676. FW_CMD_REQUEST |
  2677. FW_CMD_WRITE);
  2678. caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
  2679. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2680. }
  2681. /**
  2682. * t4_fixup_host_params - fix up host-dependent parameters
  2683. * @adap: the adapter
  2684. * @page_size: the host's Base Page Size
  2685. * @cache_line_size: the host's Cache Line Size
  2686. *
  2687. * Various registers in T4 contain values which are dependent on the
  2688. * host's Base Page and Cache Line Sizes. This function will fix all of
  2689. * those registers with the appropriate values as passed in ...
  2690. */
  2691. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2692. unsigned int cache_line_size)
  2693. {
  2694. unsigned int page_shift = fls(page_size) - 1;
  2695. unsigned int sge_hps = page_shift - 10;
  2696. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2697. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2698. unsigned int fl_align_log = fls(fl_align) - 1;
  2699. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2700. HOSTPAGESIZEPF0(sge_hps) |
  2701. HOSTPAGESIZEPF1(sge_hps) |
  2702. HOSTPAGESIZEPF2(sge_hps) |
  2703. HOSTPAGESIZEPF3(sge_hps) |
  2704. HOSTPAGESIZEPF4(sge_hps) |
  2705. HOSTPAGESIZEPF5(sge_hps) |
  2706. HOSTPAGESIZEPF6(sge_hps) |
  2707. HOSTPAGESIZEPF7(sge_hps));
  2708. t4_set_reg_field(adap, SGE_CONTROL,
  2709. INGPADBOUNDARY_MASK |
  2710. EGRSTATUSPAGESIZE_MASK,
  2711. INGPADBOUNDARY(fl_align_log - 5) |
  2712. EGRSTATUSPAGESIZE(stat_len != 64));
  2713. /*
  2714. * Adjust various SGE Free List Host Buffer Sizes.
  2715. *
  2716. * This is something of a crock since we're using fixed indices into
  2717. * the array which are also known by the sge.c code and the T4
  2718. * Firmware Configuration File. We need to come up with a much better
  2719. * approach to managing this array. For now, the first four entries
  2720. * are:
  2721. *
  2722. * 0: Host Page Size
  2723. * 1: 64KB
  2724. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2725. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2726. *
  2727. * For the single-MTU buffers in unpacked mode we need to include
  2728. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2729. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2730. * Padding boundry. All of these are accommodated in the Factory
  2731. * Default Firmware Configuration File but we need to adjust it for
  2732. * this host's cache line size.
  2733. */
  2734. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2735. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2736. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2737. & ~(fl_align-1));
  2738. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2739. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2740. & ~(fl_align-1));
  2741. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2742. return 0;
  2743. }
  2744. /**
  2745. * t4_fw_initialize - ask FW to initialize the device
  2746. * @adap: the adapter
  2747. * @mbox: mailbox to use for the FW command
  2748. *
  2749. * Issues a command to FW to partially initialize the device. This
  2750. * performs initialization that generally doesn't depend on user input.
  2751. */
  2752. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2753. {
  2754. struct fw_initialize_cmd c;
  2755. memset(&c, 0, sizeof(c));
  2756. INIT_CMD(c, INITIALIZE, WRITE);
  2757. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2758. }
  2759. /**
  2760. * t4_query_params - query FW or device parameters
  2761. * @adap: the adapter
  2762. * @mbox: mailbox to use for the FW command
  2763. * @pf: the PF
  2764. * @vf: the VF
  2765. * @nparams: the number of parameters
  2766. * @params: the parameter names
  2767. * @val: the parameter values
  2768. *
  2769. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2770. * queried at once.
  2771. */
  2772. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2773. unsigned int vf, unsigned int nparams, const u32 *params,
  2774. u32 *val)
  2775. {
  2776. int i, ret;
  2777. struct fw_params_cmd c;
  2778. __be32 *p = &c.param[0].mnem;
  2779. if (nparams > 7)
  2780. return -EINVAL;
  2781. memset(&c, 0, sizeof(c));
  2782. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2783. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2784. FW_PARAMS_CMD_VFN(vf));
  2785. c.retval_len16 = htonl(FW_LEN16(c));
  2786. for (i = 0; i < nparams; i++, p += 2)
  2787. *p = htonl(*params++);
  2788. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2789. if (ret == 0)
  2790. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2791. *val++ = ntohl(*p);
  2792. return ret;
  2793. }
  2794. /**
  2795. * t4_set_params - sets FW or device parameters
  2796. * @adap: the adapter
  2797. * @mbox: mailbox to use for the FW command
  2798. * @pf: the PF
  2799. * @vf: the VF
  2800. * @nparams: the number of parameters
  2801. * @params: the parameter names
  2802. * @val: the parameter values
  2803. *
  2804. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2805. * specified at once.
  2806. */
  2807. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2808. unsigned int vf, unsigned int nparams, const u32 *params,
  2809. const u32 *val)
  2810. {
  2811. struct fw_params_cmd c;
  2812. __be32 *p = &c.param[0].mnem;
  2813. if (nparams > 7)
  2814. return -EINVAL;
  2815. memset(&c, 0, sizeof(c));
  2816. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2817. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2818. FW_PARAMS_CMD_VFN(vf));
  2819. c.retval_len16 = htonl(FW_LEN16(c));
  2820. while (nparams--) {
  2821. *p++ = htonl(*params++);
  2822. *p++ = htonl(*val++);
  2823. }
  2824. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2825. }
  2826. /**
  2827. * t4_cfg_pfvf - configure PF/VF resource limits
  2828. * @adap: the adapter
  2829. * @mbox: mailbox to use for the FW command
  2830. * @pf: the PF being configured
  2831. * @vf: the VF being configured
  2832. * @txq: the max number of egress queues
  2833. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2834. * @rxqi: the max number of interrupt-capable ingress queues
  2835. * @rxq: the max number of interruptless ingress queues
  2836. * @tc: the PCI traffic class
  2837. * @vi: the max number of virtual interfaces
  2838. * @cmask: the channel access rights mask for the PF/VF
  2839. * @pmask: the port access rights mask for the PF/VF
  2840. * @nexact: the maximum number of exact MPS filters
  2841. * @rcaps: read capabilities
  2842. * @wxcaps: write/execute capabilities
  2843. *
  2844. * Configures resource limits and capabilities for a physical or virtual
  2845. * function.
  2846. */
  2847. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2848. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2849. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2850. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2851. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2852. {
  2853. struct fw_pfvf_cmd c;
  2854. memset(&c, 0, sizeof(c));
  2855. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2856. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2857. FW_PFVF_CMD_VFN(vf));
  2858. c.retval_len16 = htonl(FW_LEN16(c));
  2859. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2860. FW_PFVF_CMD_NIQ(rxq));
  2861. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2862. FW_PFVF_CMD_PMASK(pmask) |
  2863. FW_PFVF_CMD_NEQ(txq));
  2864. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2865. FW_PFVF_CMD_NEXACTF(nexact));
  2866. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2867. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2868. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2869. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2870. }
  2871. /**
  2872. * t4_alloc_vi - allocate a virtual interface
  2873. * @adap: the adapter
  2874. * @mbox: mailbox to use for the FW command
  2875. * @port: physical port associated with the VI
  2876. * @pf: the PF owning the VI
  2877. * @vf: the VF owning the VI
  2878. * @nmac: number of MAC addresses needed (1 to 5)
  2879. * @mac: the MAC addresses of the VI
  2880. * @rss_size: size of RSS table slice associated with this VI
  2881. *
  2882. * Allocates a virtual interface for the given physical port. If @mac is
  2883. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2884. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2885. * stored consecutively so the space needed is @nmac * 6 bytes.
  2886. * Returns a negative error number or the non-negative VI id.
  2887. */
  2888. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2889. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2890. unsigned int *rss_size)
  2891. {
  2892. int ret;
  2893. struct fw_vi_cmd c;
  2894. memset(&c, 0, sizeof(c));
  2895. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2896. FW_CMD_WRITE | FW_CMD_EXEC |
  2897. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2898. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2899. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2900. c.nmac = nmac - 1;
  2901. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2902. if (ret)
  2903. return ret;
  2904. if (mac) {
  2905. memcpy(mac, c.mac, sizeof(c.mac));
  2906. switch (nmac) {
  2907. case 5:
  2908. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2909. case 4:
  2910. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2911. case 3:
  2912. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2913. case 2:
  2914. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2915. }
  2916. }
  2917. if (rss_size)
  2918. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2919. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2920. }
  2921. /**
  2922. * t4_set_rxmode - set Rx properties of a virtual interface
  2923. * @adap: the adapter
  2924. * @mbox: mailbox to use for the FW command
  2925. * @viid: the VI id
  2926. * @mtu: the new MTU or -1
  2927. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2928. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2929. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2930. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2931. * @sleep_ok: if true we may sleep while awaiting command completion
  2932. *
  2933. * Sets Rx properties of a virtual interface.
  2934. */
  2935. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2936. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2937. bool sleep_ok)
  2938. {
  2939. struct fw_vi_rxmode_cmd c;
  2940. /* convert to FW values */
  2941. if (mtu < 0)
  2942. mtu = FW_RXMODE_MTU_NO_CHG;
  2943. if (promisc < 0)
  2944. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2945. if (all_multi < 0)
  2946. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2947. if (bcast < 0)
  2948. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2949. if (vlanex < 0)
  2950. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2951. memset(&c, 0, sizeof(c));
  2952. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2953. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2954. c.retval_len16 = htonl(FW_LEN16(c));
  2955. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2956. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2957. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2958. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2959. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2960. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2961. }
  2962. /**
  2963. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2964. * @adap: the adapter
  2965. * @mbox: mailbox to use for the FW command
  2966. * @viid: the VI id
  2967. * @free: if true any existing filters for this VI id are first removed
  2968. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2969. * @addr: the MAC address(es)
  2970. * @idx: where to store the index of each allocated filter
  2971. * @hash: pointer to hash address filter bitmap
  2972. * @sleep_ok: call is allowed to sleep
  2973. *
  2974. * Allocates an exact-match filter for each of the supplied addresses and
  2975. * sets it to the corresponding address. If @idx is not %NULL it should
  2976. * have at least @naddr entries, each of which will be set to the index of
  2977. * the filter allocated for the corresponding MAC address. If a filter
  2978. * could not be allocated for an address its index is set to 0xffff.
  2979. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2980. * are hashed and update the hash filter bitmap pointed at by @hash.
  2981. *
  2982. * Returns a negative error number or the number of filters allocated.
  2983. */
  2984. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2985. unsigned int viid, bool free, unsigned int naddr,
  2986. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2987. {
  2988. int i, ret;
  2989. struct fw_vi_mac_cmd c;
  2990. struct fw_vi_mac_exact *p;
  2991. unsigned int max_naddr = is_t4(adap->chip) ?
  2992. NUM_MPS_CLS_SRAM_L_INSTANCES :
  2993. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  2994. if (naddr > 7)
  2995. return -EINVAL;
  2996. memset(&c, 0, sizeof(c));
  2997. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2998. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2999. FW_VI_MAC_CMD_VIID(viid));
  3000. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  3001. FW_CMD_LEN16((naddr + 2) / 2));
  3002. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3003. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3004. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  3005. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  3006. }
  3007. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  3008. if (ret)
  3009. return ret;
  3010. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  3011. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3012. if (idx)
  3013. idx[i] = index >= max_naddr ? 0xffff : index;
  3014. if (index < max_naddr)
  3015. ret++;
  3016. else if (hash)
  3017. *hash |= (1ULL << hash_mac_addr(addr[i]));
  3018. }
  3019. return ret;
  3020. }
  3021. /**
  3022. * t4_change_mac - modifies the exact-match filter for a MAC address
  3023. * @adap: the adapter
  3024. * @mbox: mailbox to use for the FW command
  3025. * @viid: the VI id
  3026. * @idx: index of existing filter for old value of MAC address, or -1
  3027. * @addr: the new MAC address value
  3028. * @persist: whether a new MAC allocation should be persistent
  3029. * @add_smt: if true also add the address to the HW SMT
  3030. *
  3031. * Modifies an exact-match filter and sets it to the new MAC address.
  3032. * Note that in general it is not possible to modify the value of a given
  3033. * filter so the generic way to modify an address filter is to free the one
  3034. * being used by the old address value and allocate a new filter for the
  3035. * new address value. @idx can be -1 if the address is a new addition.
  3036. *
  3037. * Returns a negative error number or the index of the filter with the new
  3038. * MAC value.
  3039. */
  3040. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3041. int idx, const u8 *addr, bool persist, bool add_smt)
  3042. {
  3043. int ret, mode;
  3044. struct fw_vi_mac_cmd c;
  3045. struct fw_vi_mac_exact *p = c.u.exact;
  3046. unsigned int max_mac_addr = is_t4(adap->chip) ?
  3047. NUM_MPS_CLS_SRAM_L_INSTANCES :
  3048. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  3049. if (idx < 0) /* new allocation */
  3050. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  3051. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  3052. memset(&c, 0, sizeof(c));
  3053. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3054. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  3055. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  3056. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  3057. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  3058. FW_VI_MAC_CMD_IDX(idx));
  3059. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  3060. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3061. if (ret == 0) {
  3062. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3063. if (ret >= max_mac_addr)
  3064. ret = -ENOMEM;
  3065. }
  3066. return ret;
  3067. }
  3068. /**
  3069. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3070. * @adap: the adapter
  3071. * @mbox: mailbox to use for the FW command
  3072. * @viid: the VI id
  3073. * @ucast: whether the hash filter should also match unicast addresses
  3074. * @vec: the value to be written to the hash filter
  3075. * @sleep_ok: call is allowed to sleep
  3076. *
  3077. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3078. */
  3079. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3080. bool ucast, u64 vec, bool sleep_ok)
  3081. {
  3082. struct fw_vi_mac_cmd c;
  3083. memset(&c, 0, sizeof(c));
  3084. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3085. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  3086. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  3087. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  3088. FW_CMD_LEN16(1));
  3089. c.u.hash.hashvec = cpu_to_be64(vec);
  3090. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3091. }
  3092. /**
  3093. * t4_enable_vi - enable/disable a virtual interface
  3094. * @adap: the adapter
  3095. * @mbox: mailbox to use for the FW command
  3096. * @viid: the VI id
  3097. * @rx_en: 1=enable Rx, 0=disable Rx
  3098. * @tx_en: 1=enable Tx, 0=disable Tx
  3099. *
  3100. * Enables/disables a virtual interface.
  3101. */
  3102. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3103. bool rx_en, bool tx_en)
  3104. {
  3105. struct fw_vi_enable_cmd c;
  3106. memset(&c, 0, sizeof(c));
  3107. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3108. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3109. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  3110. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  3111. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3112. }
  3113. /**
  3114. * t4_identify_port - identify a VI's port by blinking its LED
  3115. * @adap: the adapter
  3116. * @mbox: mailbox to use for the FW command
  3117. * @viid: the VI id
  3118. * @nblinks: how many times to blink LED at 2.5 Hz
  3119. *
  3120. * Identifies a VI's port by blinking its LED.
  3121. */
  3122. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3123. unsigned int nblinks)
  3124. {
  3125. struct fw_vi_enable_cmd c;
  3126. memset(&c, 0, sizeof(c));
  3127. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3128. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3129. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  3130. c.blinkdur = htons(nblinks);
  3131. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3132. }
  3133. /**
  3134. * t4_iq_free - free an ingress queue and its FLs
  3135. * @adap: the adapter
  3136. * @mbox: mailbox to use for the FW command
  3137. * @pf: the PF owning the queues
  3138. * @vf: the VF owning the queues
  3139. * @iqtype: the ingress queue type
  3140. * @iqid: ingress queue id
  3141. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3142. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3143. *
  3144. * Frees an ingress queue and its associated FLs, if any.
  3145. */
  3146. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3147. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3148. unsigned int fl0id, unsigned int fl1id)
  3149. {
  3150. struct fw_iq_cmd c;
  3151. memset(&c, 0, sizeof(c));
  3152. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3153. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3154. FW_IQ_CMD_VFN(vf));
  3155. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3156. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3157. c.iqid = htons(iqid);
  3158. c.fl0id = htons(fl0id);
  3159. c.fl1id = htons(fl1id);
  3160. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3161. }
  3162. /**
  3163. * t4_eth_eq_free - free an Ethernet egress queue
  3164. * @adap: the adapter
  3165. * @mbox: mailbox to use for the FW command
  3166. * @pf: the PF owning the queue
  3167. * @vf: the VF owning the queue
  3168. * @eqid: egress queue id
  3169. *
  3170. * Frees an Ethernet egress queue.
  3171. */
  3172. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3173. unsigned int vf, unsigned int eqid)
  3174. {
  3175. struct fw_eq_eth_cmd c;
  3176. memset(&c, 0, sizeof(c));
  3177. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3178. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3179. FW_EQ_ETH_CMD_VFN(vf));
  3180. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3181. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3182. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3183. }
  3184. /**
  3185. * t4_ctrl_eq_free - free a control egress queue
  3186. * @adap: the adapter
  3187. * @mbox: mailbox to use for the FW command
  3188. * @pf: the PF owning the queue
  3189. * @vf: the VF owning the queue
  3190. * @eqid: egress queue id
  3191. *
  3192. * Frees a control egress queue.
  3193. */
  3194. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3195. unsigned int vf, unsigned int eqid)
  3196. {
  3197. struct fw_eq_ctrl_cmd c;
  3198. memset(&c, 0, sizeof(c));
  3199. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3200. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3201. FW_EQ_CTRL_CMD_VFN(vf));
  3202. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3203. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3204. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3205. }
  3206. /**
  3207. * t4_ofld_eq_free - free an offload egress queue
  3208. * @adap: the adapter
  3209. * @mbox: mailbox to use for the FW command
  3210. * @pf: the PF owning the queue
  3211. * @vf: the VF owning the queue
  3212. * @eqid: egress queue id
  3213. *
  3214. * Frees a control egress queue.
  3215. */
  3216. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3217. unsigned int vf, unsigned int eqid)
  3218. {
  3219. struct fw_eq_ofld_cmd c;
  3220. memset(&c, 0, sizeof(c));
  3221. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3222. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3223. FW_EQ_OFLD_CMD_VFN(vf));
  3224. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3225. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3226. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3227. }
  3228. /**
  3229. * t4_handle_fw_rpl - process a FW reply message
  3230. * @adap: the adapter
  3231. * @rpl: start of the FW message
  3232. *
  3233. * Processes a FW message, such as link state change messages.
  3234. */
  3235. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3236. {
  3237. u8 opcode = *(const u8 *)rpl;
  3238. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3239. int speed = 0, fc = 0;
  3240. const struct fw_port_cmd *p = (void *)rpl;
  3241. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3242. int port = adap->chan_map[chan];
  3243. struct port_info *pi = adap2pinfo(adap, port);
  3244. struct link_config *lc = &pi->link_cfg;
  3245. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3246. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3247. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3248. if (stat & FW_PORT_CMD_RXPAUSE)
  3249. fc |= PAUSE_RX;
  3250. if (stat & FW_PORT_CMD_TXPAUSE)
  3251. fc |= PAUSE_TX;
  3252. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3253. speed = SPEED_100;
  3254. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3255. speed = SPEED_1000;
  3256. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3257. speed = SPEED_10000;
  3258. if (link_ok != lc->link_ok || speed != lc->speed ||
  3259. fc != lc->fc) { /* something changed */
  3260. lc->link_ok = link_ok;
  3261. lc->speed = speed;
  3262. lc->fc = fc;
  3263. t4_os_link_changed(adap, port, link_ok);
  3264. }
  3265. if (mod != pi->mod_type) {
  3266. pi->mod_type = mod;
  3267. t4_os_portmod_changed(adap, port);
  3268. }
  3269. }
  3270. return 0;
  3271. }
  3272. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3273. {
  3274. u16 val;
  3275. if (pci_is_pcie(adapter->pdev)) {
  3276. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3277. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3278. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3279. }
  3280. }
  3281. /**
  3282. * init_link_config - initialize a link's SW state
  3283. * @lc: structure holding the link state
  3284. * @caps: link capabilities
  3285. *
  3286. * Initializes the SW state maintained for each link, including the link's
  3287. * capabilities and default speed/flow-control/autonegotiation settings.
  3288. */
  3289. static void init_link_config(struct link_config *lc, unsigned int caps)
  3290. {
  3291. lc->supported = caps;
  3292. lc->requested_speed = 0;
  3293. lc->speed = 0;
  3294. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3295. if (lc->supported & FW_PORT_CAP_ANEG) {
  3296. lc->advertising = lc->supported & ADVERT_MASK;
  3297. lc->autoneg = AUTONEG_ENABLE;
  3298. lc->requested_fc |= PAUSE_AUTONEG;
  3299. } else {
  3300. lc->advertising = 0;
  3301. lc->autoneg = AUTONEG_DISABLE;
  3302. }
  3303. }
  3304. int t4_wait_dev_ready(struct adapter *adap)
  3305. {
  3306. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3307. return 0;
  3308. msleep(500);
  3309. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3310. }
  3311. static int get_flash_params(struct adapter *adap)
  3312. {
  3313. int ret;
  3314. u32 info;
  3315. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3316. if (!ret)
  3317. ret = sf1_read(adap, 3, 0, 1, &info);
  3318. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3319. if (ret)
  3320. return ret;
  3321. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3322. return -EINVAL;
  3323. info >>= 16; /* log2 of size */
  3324. if (info >= 0x14 && info < 0x18)
  3325. adap->params.sf_nsec = 1 << (info - 16);
  3326. else if (info == 0x18)
  3327. adap->params.sf_nsec = 64;
  3328. else
  3329. return -EINVAL;
  3330. adap->params.sf_size = 1 << info;
  3331. adap->params.sf_fw_start =
  3332. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3333. return 0;
  3334. }
  3335. /**
  3336. * t4_prep_adapter - prepare SW and HW for operation
  3337. * @adapter: the adapter
  3338. * @reset: if true perform a HW reset
  3339. *
  3340. * Initialize adapter SW state for the various HW modules, set initial
  3341. * values for some adapter tunables, take PHYs out of reset, and
  3342. * initialize the MDIO interface.
  3343. */
  3344. int t4_prep_adapter(struct adapter *adapter)
  3345. {
  3346. int ret, ver;
  3347. uint16_t device_id;
  3348. ret = t4_wait_dev_ready(adapter);
  3349. if (ret < 0)
  3350. return ret;
  3351. get_pci_mode(adapter, &adapter->params.pci);
  3352. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  3353. ret = get_flash_params(adapter);
  3354. if (ret < 0) {
  3355. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3356. return ret;
  3357. }
  3358. /* Retrieve adapter's device ID
  3359. */
  3360. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3361. ver = device_id >> 12;
  3362. switch (ver) {
  3363. case CHELSIO_T4:
  3364. adapter->chip = CHELSIO_CHIP_CODE(CHELSIO_T4,
  3365. adapter->params.rev);
  3366. break;
  3367. case CHELSIO_T5:
  3368. adapter->chip = CHELSIO_CHIP_CODE(CHELSIO_T5,
  3369. adapter->params.rev);
  3370. break;
  3371. default:
  3372. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3373. device_id);
  3374. return -EINVAL;
  3375. }
  3376. /* Reassign the updated revision field */
  3377. adapter->params.rev = adapter->chip;
  3378. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3379. /*
  3380. * Default port for debugging in case we can't reach FW.
  3381. */
  3382. adapter->params.nports = 1;
  3383. adapter->params.portvec = 1;
  3384. adapter->params.vpd.cclk = 50000;
  3385. return 0;
  3386. }
  3387. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3388. {
  3389. u8 addr[6];
  3390. int ret, i, j = 0;
  3391. struct fw_port_cmd c;
  3392. struct fw_rss_vi_config_cmd rvc;
  3393. memset(&c, 0, sizeof(c));
  3394. memset(&rvc, 0, sizeof(rvc));
  3395. for_each_port(adap, i) {
  3396. unsigned int rss_size;
  3397. struct port_info *p = adap2pinfo(adap, i);
  3398. while ((adap->params.portvec & (1 << j)) == 0)
  3399. j++;
  3400. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3401. FW_CMD_REQUEST | FW_CMD_READ |
  3402. FW_PORT_CMD_PORTID(j));
  3403. c.action_to_len16 = htonl(
  3404. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3405. FW_LEN16(c));
  3406. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3407. if (ret)
  3408. return ret;
  3409. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3410. if (ret < 0)
  3411. return ret;
  3412. p->viid = ret;
  3413. p->tx_chan = j;
  3414. p->lport = j;
  3415. p->rss_size = rss_size;
  3416. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3417. ret = ntohl(c.u.info.lstatus_to_modtype);
  3418. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3419. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3420. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3421. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3422. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3423. FW_CMD_REQUEST | FW_CMD_READ |
  3424. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3425. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3426. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3427. if (ret)
  3428. return ret;
  3429. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3430. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3431. j++;
  3432. }
  3433. return 0;
  3434. }