hw-me.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. *
  3. * Intel Management Engine Interface (Intel MEI) Linux driver
  4. * Copyright (c) 2003-2012, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/pci.h>
  17. #include <linux/kthread.h>
  18. #include <linux/interrupt.h>
  19. #include "mei_dev.h"
  20. #include "hw-me.h"
  21. #include "hbm.h"
  22. /**
  23. * mei_me_reg_read - Reads 32bit data from the mei device
  24. *
  25. * @dev: the device structure
  26. * @offset: offset from which to read the data
  27. *
  28. * returns register value (u32)
  29. */
  30. static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  31. unsigned long offset)
  32. {
  33. return ioread32(hw->mem_addr + offset);
  34. }
  35. /**
  36. * mei_me_reg_write - Writes 32bit data to the mei device
  37. *
  38. * @dev: the device structure
  39. * @offset: offset from which to write the data
  40. * @value: register value to write (u32)
  41. */
  42. static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  43. unsigned long offset, u32 value)
  44. {
  45. iowrite32(value, hw->mem_addr + offset);
  46. }
  47. /**
  48. * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  49. * read window register
  50. *
  51. * @dev: the device structure
  52. *
  53. * returns ME_CB_RW register value (u32)
  54. */
  55. static u32 mei_me_mecbrw_read(const struct mei_device *dev)
  56. {
  57. return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  58. }
  59. /**
  60. * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  61. *
  62. * @dev: the device structure
  63. *
  64. * returns ME_CSR_HA register value (u32)
  65. */
  66. static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
  67. {
  68. return mei_me_reg_read(hw, ME_CSR_HA);
  69. }
  70. /**
  71. * mei_hcsr_read - Reads 32bit data from the host CSR
  72. *
  73. * @dev: the device structure
  74. *
  75. * returns H_CSR register value (u32)
  76. */
  77. static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
  78. {
  79. return mei_me_reg_read(hw, H_CSR);
  80. }
  81. /**
  82. * mei_hcsr_set - writes H_CSR register to the mei device,
  83. * and ignores the H_IS bit for it is write-one-to-zero.
  84. *
  85. * @dev: the device structure
  86. */
  87. static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
  88. {
  89. hcsr &= ~H_IS;
  90. mei_me_reg_write(hw, H_CSR, hcsr);
  91. }
  92. /**
  93. * mei_me_hw_config - configure hw dependent settings
  94. *
  95. * @dev: mei device
  96. */
  97. static void mei_me_hw_config(struct mei_device *dev)
  98. {
  99. u32 hcsr = mei_hcsr_read(to_me_hw(dev));
  100. /* Doesn't change in runtime */
  101. dev->hbuf_depth = (hcsr & H_CBD) >> 24;
  102. }
  103. /**
  104. * mei_clear_interrupts - clear and stop interrupts
  105. *
  106. * @dev: the device structure
  107. */
  108. static void mei_me_intr_clear(struct mei_device *dev)
  109. {
  110. struct mei_me_hw *hw = to_me_hw(dev);
  111. u32 hcsr = mei_hcsr_read(hw);
  112. if ((hcsr & H_IS) == H_IS)
  113. mei_me_reg_write(hw, H_CSR, hcsr);
  114. }
  115. /**
  116. * mei_me_intr_enable - enables mei device interrupts
  117. *
  118. * @dev: the device structure
  119. */
  120. static void mei_me_intr_enable(struct mei_device *dev)
  121. {
  122. struct mei_me_hw *hw = to_me_hw(dev);
  123. u32 hcsr = mei_hcsr_read(hw);
  124. hcsr |= H_IE;
  125. mei_hcsr_set(hw, hcsr);
  126. }
  127. /**
  128. * mei_disable_interrupts - disables mei device interrupts
  129. *
  130. * @dev: the device structure
  131. */
  132. static void mei_me_intr_disable(struct mei_device *dev)
  133. {
  134. struct mei_me_hw *hw = to_me_hw(dev);
  135. u32 hcsr = mei_hcsr_read(hw);
  136. hcsr &= ~H_IE;
  137. mei_hcsr_set(hw, hcsr);
  138. }
  139. /**
  140. * mei_me_hw_reset_release - release device from the reset
  141. *
  142. * @dev: the device structure
  143. */
  144. static void mei_me_hw_reset_release(struct mei_device *dev)
  145. {
  146. struct mei_me_hw *hw = to_me_hw(dev);
  147. u32 hcsr = mei_hcsr_read(hw);
  148. hcsr |= H_IG;
  149. hcsr &= ~H_RST;
  150. mei_hcsr_set(hw, hcsr);
  151. }
  152. /**
  153. * mei_me_hw_reset - resets fw via mei csr register.
  154. *
  155. * @dev: the device structure
  156. * @intr_enable: if interrupt should be enabled after reset.
  157. */
  158. static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
  159. {
  160. struct mei_me_hw *hw = to_me_hw(dev);
  161. u32 hcsr = mei_hcsr_read(hw);
  162. hcsr |= H_RST | H_IG | H_IS;
  163. if (intr_enable)
  164. hcsr |= H_IE;
  165. else
  166. hcsr &= ~H_IE;
  167. mei_me_reg_write(hw, H_CSR, hcsr);
  168. if (dev->dev_state == MEI_DEV_POWER_DOWN)
  169. mei_me_hw_reset_release(dev);
  170. return 0;
  171. }
  172. /**
  173. * mei_me_host_set_ready - enable device
  174. *
  175. * @dev - mei device
  176. * returns bool
  177. */
  178. static void mei_me_host_set_ready(struct mei_device *dev)
  179. {
  180. struct mei_me_hw *hw = to_me_hw(dev);
  181. hw->host_hw_state |= H_IE | H_IG | H_RDY;
  182. mei_hcsr_set(hw, hw->host_hw_state);
  183. }
  184. /**
  185. * mei_me_host_is_ready - check whether the host has turned ready
  186. *
  187. * @dev - mei device
  188. * returns bool
  189. */
  190. static bool mei_me_host_is_ready(struct mei_device *dev)
  191. {
  192. struct mei_me_hw *hw = to_me_hw(dev);
  193. hw->host_hw_state = mei_hcsr_read(hw);
  194. return (hw->host_hw_state & H_RDY) == H_RDY;
  195. }
  196. /**
  197. * mei_me_hw_is_ready - check whether the me(hw) has turned ready
  198. *
  199. * @dev - mei device
  200. * returns bool
  201. */
  202. static bool mei_me_hw_is_ready(struct mei_device *dev)
  203. {
  204. struct mei_me_hw *hw = to_me_hw(dev);
  205. hw->me_hw_state = mei_me_mecsr_read(hw);
  206. return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
  207. }
  208. static int mei_me_hw_ready_wait(struct mei_device *dev)
  209. {
  210. int err;
  211. if (mei_me_hw_is_ready(dev))
  212. return 0;
  213. dev->recvd_hw_ready = false;
  214. mutex_unlock(&dev->device_lock);
  215. err = wait_event_interruptible_timeout(dev->wait_hw_ready,
  216. dev->recvd_hw_ready,
  217. mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
  218. mutex_lock(&dev->device_lock);
  219. if (!err && !dev->recvd_hw_ready) {
  220. if (!err)
  221. err = -ETIMEDOUT;
  222. dev_err(&dev->pdev->dev,
  223. "wait hw ready failed. status = %d\n", err);
  224. return err;
  225. }
  226. dev->recvd_hw_ready = false;
  227. return 0;
  228. }
  229. static int mei_me_hw_start(struct mei_device *dev)
  230. {
  231. int ret = mei_me_hw_ready_wait(dev);
  232. if (ret)
  233. return ret;
  234. dev_dbg(&dev->pdev->dev, "hw is ready\n");
  235. mei_me_host_set_ready(dev);
  236. return ret;
  237. }
  238. /**
  239. * mei_hbuf_filled_slots - gets number of device filled buffer slots
  240. *
  241. * @dev: the device structure
  242. *
  243. * returns number of filled slots
  244. */
  245. static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
  246. {
  247. struct mei_me_hw *hw = to_me_hw(dev);
  248. char read_ptr, write_ptr;
  249. hw->host_hw_state = mei_hcsr_read(hw);
  250. read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
  251. write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
  252. return (unsigned char) (write_ptr - read_ptr);
  253. }
  254. /**
  255. * mei_me_hbuf_is_empty - checks if host buffer is empty.
  256. *
  257. * @dev: the device structure
  258. *
  259. * returns true if empty, false - otherwise.
  260. */
  261. static bool mei_me_hbuf_is_empty(struct mei_device *dev)
  262. {
  263. return mei_hbuf_filled_slots(dev) == 0;
  264. }
  265. /**
  266. * mei_me_hbuf_empty_slots - counts write empty slots.
  267. *
  268. * @dev: the device structure
  269. *
  270. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
  271. */
  272. static int mei_me_hbuf_empty_slots(struct mei_device *dev)
  273. {
  274. unsigned char filled_slots, empty_slots;
  275. filled_slots = mei_hbuf_filled_slots(dev);
  276. empty_slots = dev->hbuf_depth - filled_slots;
  277. /* check for overflow */
  278. if (filled_slots > dev->hbuf_depth)
  279. return -EOVERFLOW;
  280. return empty_slots;
  281. }
  282. static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
  283. {
  284. return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
  285. }
  286. /**
  287. * mei_write_message - writes a message to mei device.
  288. *
  289. * @dev: the device structure
  290. * @header: mei HECI header of message
  291. * @buf: message payload will be written
  292. *
  293. * This function returns -EIO if write has failed
  294. */
  295. static int mei_me_write_message(struct mei_device *dev,
  296. struct mei_msg_hdr *header,
  297. unsigned char *buf)
  298. {
  299. struct mei_me_hw *hw = to_me_hw(dev);
  300. unsigned long rem;
  301. unsigned long length = header->length;
  302. u32 *reg_buf = (u32 *)buf;
  303. u32 hcsr;
  304. u32 dw_cnt;
  305. int i;
  306. int empty_slots;
  307. dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
  308. empty_slots = mei_hbuf_empty_slots(dev);
  309. dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
  310. dw_cnt = mei_data2slots(length);
  311. if (empty_slots < 0 || dw_cnt > empty_slots)
  312. return -EIO;
  313. mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
  314. for (i = 0; i < length / 4; i++)
  315. mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
  316. rem = length & 0x3;
  317. if (rem > 0) {
  318. u32 reg = 0;
  319. memcpy(&reg, &buf[length - rem], rem);
  320. mei_me_reg_write(hw, H_CB_WW, reg);
  321. }
  322. hcsr = mei_hcsr_read(hw) | H_IG;
  323. mei_hcsr_set(hw, hcsr);
  324. if (!mei_me_hw_is_ready(dev))
  325. return -EIO;
  326. return 0;
  327. }
  328. /**
  329. * mei_me_count_full_read_slots - counts read full slots.
  330. *
  331. * @dev: the device structure
  332. *
  333. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
  334. */
  335. static int mei_me_count_full_read_slots(struct mei_device *dev)
  336. {
  337. struct mei_me_hw *hw = to_me_hw(dev);
  338. char read_ptr, write_ptr;
  339. unsigned char buffer_depth, filled_slots;
  340. hw->me_hw_state = mei_me_mecsr_read(hw);
  341. buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
  342. read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
  343. write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
  344. filled_slots = (unsigned char) (write_ptr - read_ptr);
  345. /* check for overflow */
  346. if (filled_slots > buffer_depth)
  347. return -EOVERFLOW;
  348. dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
  349. return (int)filled_slots;
  350. }
  351. /**
  352. * mei_me_read_slots - reads a message from mei device.
  353. *
  354. * @dev: the device structure
  355. * @buffer: message buffer will be written
  356. * @buffer_length: message size will be read
  357. */
  358. static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
  359. unsigned long buffer_length)
  360. {
  361. struct mei_me_hw *hw = to_me_hw(dev);
  362. u32 *reg_buf = (u32 *)buffer;
  363. u32 hcsr;
  364. for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
  365. *reg_buf++ = mei_me_mecbrw_read(dev);
  366. if (buffer_length > 0) {
  367. u32 reg = mei_me_mecbrw_read(dev);
  368. memcpy(reg_buf, &reg, buffer_length);
  369. }
  370. hcsr = mei_hcsr_read(hw) | H_IG;
  371. mei_hcsr_set(hw, hcsr);
  372. return 0;
  373. }
  374. /**
  375. * mei_me_irq_quick_handler - The ISR of the MEI device
  376. *
  377. * @irq: The irq number
  378. * @dev_id: pointer to the device structure
  379. *
  380. * returns irqreturn_t
  381. */
  382. irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
  383. {
  384. struct mei_device *dev = (struct mei_device *) dev_id;
  385. struct mei_me_hw *hw = to_me_hw(dev);
  386. u32 csr_reg = mei_hcsr_read(hw);
  387. if ((csr_reg & H_IS) != H_IS)
  388. return IRQ_NONE;
  389. /* clear H_IS bit in H_CSR */
  390. mei_me_reg_write(hw, H_CSR, csr_reg);
  391. return IRQ_WAKE_THREAD;
  392. }
  393. /**
  394. * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
  395. * processing.
  396. *
  397. * @irq: The irq number
  398. * @dev_id: pointer to the device structure
  399. *
  400. * returns irqreturn_t
  401. *
  402. */
  403. irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
  404. {
  405. struct mei_device *dev = (struct mei_device *) dev_id;
  406. struct mei_cl_cb complete_list;
  407. s32 slots;
  408. int rets;
  409. dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
  410. /* initialize our complete list */
  411. mutex_lock(&dev->device_lock);
  412. mei_io_list_init(&complete_list);
  413. /* Ack the interrupt here
  414. * In case of MSI we don't go through the quick handler */
  415. if (pci_dev_msi_enabled(dev->pdev))
  416. mei_clear_interrupts(dev);
  417. /* check if ME wants a reset */
  418. if (!mei_hw_is_ready(dev) &&
  419. dev->dev_state != MEI_DEV_RESETTING &&
  420. dev->dev_state != MEI_DEV_INITIALIZING &&
  421. dev->dev_state != MEI_DEV_POWER_DOWN &&
  422. dev->dev_state != MEI_DEV_POWER_UP) {
  423. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  424. mei_reset(dev, 1);
  425. mutex_unlock(&dev->device_lock);
  426. return IRQ_HANDLED;
  427. }
  428. /* check if we need to start the dev */
  429. if (!mei_host_is_ready(dev)) {
  430. if (mei_hw_is_ready(dev)) {
  431. dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
  432. dev->recvd_hw_ready = true;
  433. wake_up_interruptible(&dev->wait_hw_ready);
  434. mutex_unlock(&dev->device_lock);
  435. return IRQ_HANDLED;
  436. } else {
  437. dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
  438. mei_me_hw_reset_release(dev);
  439. mutex_unlock(&dev->device_lock);
  440. return IRQ_HANDLED;
  441. }
  442. }
  443. /* check slots available for reading */
  444. slots = mei_count_full_read_slots(dev);
  445. while (slots > 0) {
  446. /* we have urgent data to send so break the read */
  447. if (dev->wr_ext_msg.hdr.length)
  448. break;
  449. dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
  450. dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
  451. rets = mei_irq_read_handler(dev, &complete_list, &slots);
  452. if (rets)
  453. goto end;
  454. }
  455. rets = mei_irq_write_handler(dev, &complete_list);
  456. end:
  457. dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
  458. dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
  459. mutex_unlock(&dev->device_lock);
  460. mei_irq_compl_handler(dev, &complete_list);
  461. return IRQ_HANDLED;
  462. }
  463. static const struct mei_hw_ops mei_me_hw_ops = {
  464. .host_is_ready = mei_me_host_is_ready,
  465. .hw_is_ready = mei_me_hw_is_ready,
  466. .hw_reset = mei_me_hw_reset,
  467. .hw_config = mei_me_hw_config,
  468. .hw_start = mei_me_hw_start,
  469. .intr_clear = mei_me_intr_clear,
  470. .intr_enable = mei_me_intr_enable,
  471. .intr_disable = mei_me_intr_disable,
  472. .hbuf_free_slots = mei_me_hbuf_empty_slots,
  473. .hbuf_is_ready = mei_me_hbuf_is_empty,
  474. .hbuf_max_len = mei_me_hbuf_max_len,
  475. .write = mei_me_write_message,
  476. .rdbuf_full_slots = mei_me_count_full_read_slots,
  477. .read_hdr = mei_me_mecbrw_read,
  478. .read = mei_me_read_slots
  479. };
  480. /**
  481. * mei_me_dev_init - allocates and initializes the mei device structure
  482. *
  483. * @pdev: The pci device structure
  484. *
  485. * returns The mei_device_device pointer on success, NULL on failure.
  486. */
  487. struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
  488. {
  489. struct mei_device *dev;
  490. dev = kzalloc(sizeof(struct mei_device) +
  491. sizeof(struct mei_me_hw), GFP_KERNEL);
  492. if (!dev)
  493. return NULL;
  494. mei_device_init(dev);
  495. dev->ops = &mei_me_hw_ops;
  496. dev->pdev = pdev;
  497. return dev;
  498. }