super.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053
  1. /*
  2. * bcache setup/teardown code, and some metadata io - read a superblock and
  3. * figure out what to do with it.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/blkdev.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/debugfs.h>
  16. #include <linux/genhd.h>
  17. #include <linux/kthread.h>
  18. #include <linux/module.h>
  19. #include <linux/random.h>
  20. #include <linux/reboot.h>
  21. #include <linux/sysfs.h>
  22. MODULE_LICENSE("GPL");
  23. MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  24. static const char bcache_magic[] = {
  25. 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  26. 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  27. };
  28. static const char invalid_uuid[] = {
  29. 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  30. 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  31. };
  32. /* Default is -1; we skip past it for struct cached_dev's cache mode */
  33. const char * const bch_cache_modes[] = {
  34. "default",
  35. "writethrough",
  36. "writeback",
  37. "writearound",
  38. "none",
  39. NULL
  40. };
  41. struct uuid_entry_v0 {
  42. uint8_t uuid[16];
  43. uint8_t label[32];
  44. uint32_t first_reg;
  45. uint32_t last_reg;
  46. uint32_t invalidated;
  47. uint32_t pad;
  48. };
  49. static struct kobject *bcache_kobj;
  50. struct mutex bch_register_lock;
  51. LIST_HEAD(bch_cache_sets);
  52. static LIST_HEAD(uncached_devices);
  53. static int bcache_major, bcache_minor;
  54. static wait_queue_head_t unregister_wait;
  55. struct workqueue_struct *bcache_wq;
  56. #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
  57. static void bio_split_pool_free(struct bio_split_pool *p)
  58. {
  59. if (p->bio_split_hook)
  60. mempool_destroy(p->bio_split_hook);
  61. if (p->bio_split)
  62. bioset_free(p->bio_split);
  63. }
  64. static int bio_split_pool_init(struct bio_split_pool *p)
  65. {
  66. p->bio_split = bioset_create(4, 0);
  67. if (!p->bio_split)
  68. return -ENOMEM;
  69. p->bio_split_hook = mempool_create_kmalloc_pool(4,
  70. sizeof(struct bio_split_hook));
  71. if (!p->bio_split_hook)
  72. return -ENOMEM;
  73. return 0;
  74. }
  75. /* Superblock */
  76. static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  77. struct page **res)
  78. {
  79. const char *err;
  80. struct cache_sb *s;
  81. struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  82. unsigned i;
  83. if (!bh)
  84. return "IO error";
  85. s = (struct cache_sb *) bh->b_data;
  86. sb->offset = le64_to_cpu(s->offset);
  87. sb->version = le64_to_cpu(s->version);
  88. memcpy(sb->magic, s->magic, 16);
  89. memcpy(sb->uuid, s->uuid, 16);
  90. memcpy(sb->set_uuid, s->set_uuid, 16);
  91. memcpy(sb->label, s->label, SB_LABEL_SIZE);
  92. sb->flags = le64_to_cpu(s->flags);
  93. sb->seq = le64_to_cpu(s->seq);
  94. sb->last_mount = le32_to_cpu(s->last_mount);
  95. sb->first_bucket = le16_to_cpu(s->first_bucket);
  96. sb->keys = le16_to_cpu(s->keys);
  97. for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  98. sb->d[i] = le64_to_cpu(s->d[i]);
  99. pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  100. sb->version, sb->flags, sb->seq, sb->keys);
  101. err = "Not a bcache superblock";
  102. if (sb->offset != SB_SECTOR)
  103. goto err;
  104. if (memcmp(sb->magic, bcache_magic, 16))
  105. goto err;
  106. err = "Too many journal buckets";
  107. if (sb->keys > SB_JOURNAL_BUCKETS)
  108. goto err;
  109. err = "Bad checksum";
  110. if (s->csum != csum_set(s))
  111. goto err;
  112. err = "Bad UUID";
  113. if (bch_is_zero(sb->uuid, 16))
  114. goto err;
  115. sb->block_size = le16_to_cpu(s->block_size);
  116. err = "Superblock block size smaller than device block size";
  117. if (sb->block_size << 9 < bdev_logical_block_size(bdev))
  118. goto err;
  119. switch (sb->version) {
  120. case BCACHE_SB_VERSION_BDEV:
  121. sb->data_offset = BDEV_DATA_START_DEFAULT;
  122. break;
  123. case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
  124. sb->data_offset = le64_to_cpu(s->data_offset);
  125. err = "Bad data offset";
  126. if (sb->data_offset < BDEV_DATA_START_DEFAULT)
  127. goto err;
  128. break;
  129. case BCACHE_SB_VERSION_CDEV:
  130. case BCACHE_SB_VERSION_CDEV_WITH_UUID:
  131. sb->nbuckets = le64_to_cpu(s->nbuckets);
  132. sb->block_size = le16_to_cpu(s->block_size);
  133. sb->bucket_size = le16_to_cpu(s->bucket_size);
  134. sb->nr_in_set = le16_to_cpu(s->nr_in_set);
  135. sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
  136. err = "Too many buckets";
  137. if (sb->nbuckets > LONG_MAX)
  138. goto err;
  139. err = "Not enough buckets";
  140. if (sb->nbuckets < 1 << 7)
  141. goto err;
  142. err = "Bad block/bucket size";
  143. if (!is_power_of_2(sb->block_size) ||
  144. sb->block_size > PAGE_SECTORS ||
  145. !is_power_of_2(sb->bucket_size) ||
  146. sb->bucket_size < PAGE_SECTORS)
  147. goto err;
  148. err = "Invalid superblock: device too small";
  149. if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
  150. goto err;
  151. err = "Bad UUID";
  152. if (bch_is_zero(sb->set_uuid, 16))
  153. goto err;
  154. err = "Bad cache device number in set";
  155. if (!sb->nr_in_set ||
  156. sb->nr_in_set <= sb->nr_this_dev ||
  157. sb->nr_in_set > MAX_CACHES_PER_SET)
  158. goto err;
  159. err = "Journal buckets not sequential";
  160. for (i = 0; i < sb->keys; i++)
  161. if (sb->d[i] != sb->first_bucket + i)
  162. goto err;
  163. err = "Too many journal buckets";
  164. if (sb->first_bucket + sb->keys > sb->nbuckets)
  165. goto err;
  166. err = "Invalid superblock: first bucket comes before end of super";
  167. if (sb->first_bucket * sb->bucket_size < 16)
  168. goto err;
  169. break;
  170. default:
  171. err = "Unsupported superblock version";
  172. goto err;
  173. }
  174. sb->last_mount = get_seconds();
  175. err = NULL;
  176. get_page(bh->b_page);
  177. *res = bh->b_page;
  178. err:
  179. put_bh(bh);
  180. return err;
  181. }
  182. static void write_bdev_super_endio(struct bio *bio, int error)
  183. {
  184. struct cached_dev *dc = bio->bi_private;
  185. /* XXX: error checking */
  186. closure_put(&dc->sb_write.cl);
  187. }
  188. static void __write_super(struct cache_sb *sb, struct bio *bio)
  189. {
  190. struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
  191. unsigned i;
  192. bio->bi_sector = SB_SECTOR;
  193. bio->bi_rw = REQ_SYNC|REQ_META;
  194. bio->bi_size = SB_SIZE;
  195. bch_bio_map(bio, NULL);
  196. out->offset = cpu_to_le64(sb->offset);
  197. out->version = cpu_to_le64(sb->version);
  198. memcpy(out->uuid, sb->uuid, 16);
  199. memcpy(out->set_uuid, sb->set_uuid, 16);
  200. memcpy(out->label, sb->label, SB_LABEL_SIZE);
  201. out->flags = cpu_to_le64(sb->flags);
  202. out->seq = cpu_to_le64(sb->seq);
  203. out->last_mount = cpu_to_le32(sb->last_mount);
  204. out->first_bucket = cpu_to_le16(sb->first_bucket);
  205. out->keys = cpu_to_le16(sb->keys);
  206. for (i = 0; i < sb->keys; i++)
  207. out->d[i] = cpu_to_le64(sb->d[i]);
  208. out->csum = csum_set(out);
  209. pr_debug("ver %llu, flags %llu, seq %llu",
  210. sb->version, sb->flags, sb->seq);
  211. submit_bio(REQ_WRITE, bio);
  212. }
  213. void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
  214. {
  215. struct closure *cl = &dc->sb_write.cl;
  216. struct bio *bio = &dc->sb_bio;
  217. closure_lock(&dc->sb_write, parent);
  218. bio_reset(bio);
  219. bio->bi_bdev = dc->bdev;
  220. bio->bi_end_io = write_bdev_super_endio;
  221. bio->bi_private = dc;
  222. closure_get(cl);
  223. __write_super(&dc->sb, bio);
  224. closure_return(cl);
  225. }
  226. static void write_super_endio(struct bio *bio, int error)
  227. {
  228. struct cache *ca = bio->bi_private;
  229. bch_count_io_errors(ca, error, "writing superblock");
  230. closure_put(&ca->set->sb_write.cl);
  231. }
  232. void bcache_write_super(struct cache_set *c)
  233. {
  234. struct closure *cl = &c->sb_write.cl;
  235. struct cache *ca;
  236. unsigned i;
  237. closure_lock(&c->sb_write, &c->cl);
  238. c->sb.seq++;
  239. for_each_cache(ca, c, i) {
  240. struct bio *bio = &ca->sb_bio;
  241. ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
  242. ca->sb.seq = c->sb.seq;
  243. ca->sb.last_mount = c->sb.last_mount;
  244. SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
  245. bio_reset(bio);
  246. bio->bi_bdev = ca->bdev;
  247. bio->bi_end_io = write_super_endio;
  248. bio->bi_private = ca;
  249. closure_get(cl);
  250. __write_super(&ca->sb, bio);
  251. }
  252. closure_return(cl);
  253. }
  254. /* UUID io */
  255. static void uuid_endio(struct bio *bio, int error)
  256. {
  257. struct closure *cl = bio->bi_private;
  258. struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
  259. cache_set_err_on(error, c, "accessing uuids");
  260. bch_bbio_free(bio, c);
  261. closure_put(cl);
  262. }
  263. static void uuid_io(struct cache_set *c, unsigned long rw,
  264. struct bkey *k, struct closure *parent)
  265. {
  266. struct closure *cl = &c->uuid_write.cl;
  267. struct uuid_entry *u;
  268. unsigned i;
  269. char buf[80];
  270. BUG_ON(!parent);
  271. closure_lock(&c->uuid_write, parent);
  272. for (i = 0; i < KEY_PTRS(k); i++) {
  273. struct bio *bio = bch_bbio_alloc(c);
  274. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  275. bio->bi_size = KEY_SIZE(k) << 9;
  276. bio->bi_end_io = uuid_endio;
  277. bio->bi_private = cl;
  278. bch_bio_map(bio, c->uuids);
  279. bch_submit_bbio(bio, c, k, i);
  280. if (!(rw & WRITE))
  281. break;
  282. }
  283. bch_bkey_to_text(buf, sizeof(buf), k);
  284. pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
  285. for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
  286. if (!bch_is_zero(u->uuid, 16))
  287. pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
  288. u - c->uuids, u->uuid, u->label,
  289. u->first_reg, u->last_reg, u->invalidated);
  290. closure_return(cl);
  291. }
  292. static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
  293. {
  294. struct bkey *k = &j->uuid_bucket;
  295. if (__bch_ptr_invalid(c, 1, k))
  296. return "bad uuid pointer";
  297. bkey_copy(&c->uuid_bucket, k);
  298. uuid_io(c, READ_SYNC, k, cl);
  299. if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
  300. struct uuid_entry_v0 *u0 = (void *) c->uuids;
  301. struct uuid_entry *u1 = (void *) c->uuids;
  302. int i;
  303. closure_sync(cl);
  304. /*
  305. * Since the new uuid entry is bigger than the old, we have to
  306. * convert starting at the highest memory address and work down
  307. * in order to do it in place
  308. */
  309. for (i = c->nr_uuids - 1;
  310. i >= 0;
  311. --i) {
  312. memcpy(u1[i].uuid, u0[i].uuid, 16);
  313. memcpy(u1[i].label, u0[i].label, 32);
  314. u1[i].first_reg = u0[i].first_reg;
  315. u1[i].last_reg = u0[i].last_reg;
  316. u1[i].invalidated = u0[i].invalidated;
  317. u1[i].flags = 0;
  318. u1[i].sectors = 0;
  319. }
  320. }
  321. return NULL;
  322. }
  323. static int __uuid_write(struct cache_set *c)
  324. {
  325. BKEY_PADDED(key) k;
  326. struct closure cl;
  327. closure_init_stack(&cl);
  328. lockdep_assert_held(&bch_register_lock);
  329. if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
  330. return 1;
  331. SET_KEY_SIZE(&k.key, c->sb.bucket_size);
  332. uuid_io(c, REQ_WRITE, &k.key, &cl);
  333. closure_sync(&cl);
  334. bkey_copy(&c->uuid_bucket, &k.key);
  335. __bkey_put(c, &k.key);
  336. return 0;
  337. }
  338. int bch_uuid_write(struct cache_set *c)
  339. {
  340. int ret = __uuid_write(c);
  341. if (!ret)
  342. bch_journal_meta(c, NULL);
  343. return ret;
  344. }
  345. static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
  346. {
  347. struct uuid_entry *u;
  348. for (u = c->uuids;
  349. u < c->uuids + c->nr_uuids; u++)
  350. if (!memcmp(u->uuid, uuid, 16))
  351. return u;
  352. return NULL;
  353. }
  354. static struct uuid_entry *uuid_find_empty(struct cache_set *c)
  355. {
  356. static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  357. return uuid_find(c, zero_uuid);
  358. }
  359. /*
  360. * Bucket priorities/gens:
  361. *
  362. * For each bucket, we store on disk its
  363. * 8 bit gen
  364. * 16 bit priority
  365. *
  366. * See alloc.c for an explanation of the gen. The priority is used to implement
  367. * lru (and in the future other) cache replacement policies; for most purposes
  368. * it's just an opaque integer.
  369. *
  370. * The gens and the priorities don't have a whole lot to do with each other, and
  371. * it's actually the gens that must be written out at specific times - it's no
  372. * big deal if the priorities don't get written, if we lose them we just reuse
  373. * buckets in suboptimal order.
  374. *
  375. * On disk they're stored in a packed array, and in as many buckets are required
  376. * to fit them all. The buckets we use to store them form a list; the journal
  377. * header points to the first bucket, the first bucket points to the second
  378. * bucket, et cetera.
  379. *
  380. * This code is used by the allocation code; periodically (whenever it runs out
  381. * of buckets to allocate from) the allocation code will invalidate some
  382. * buckets, but it can't use those buckets until their new gens are safely on
  383. * disk.
  384. */
  385. static void prio_endio(struct bio *bio, int error)
  386. {
  387. struct cache *ca = bio->bi_private;
  388. cache_set_err_on(error, ca->set, "accessing priorities");
  389. bch_bbio_free(bio, ca->set);
  390. closure_put(&ca->prio);
  391. }
  392. static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
  393. {
  394. struct closure *cl = &ca->prio;
  395. struct bio *bio = bch_bbio_alloc(ca->set);
  396. closure_init_stack(cl);
  397. bio->bi_sector = bucket * ca->sb.bucket_size;
  398. bio->bi_bdev = ca->bdev;
  399. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  400. bio->bi_size = bucket_bytes(ca);
  401. bio->bi_end_io = prio_endio;
  402. bio->bi_private = ca;
  403. bch_bio_map(bio, ca->disk_buckets);
  404. closure_bio_submit(bio, &ca->prio, ca);
  405. closure_sync(cl);
  406. }
  407. #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
  408. fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
  409. void bch_prio_write(struct cache *ca)
  410. {
  411. int i;
  412. struct bucket *b;
  413. struct closure cl;
  414. closure_init_stack(&cl);
  415. lockdep_assert_held(&ca->set->bucket_lock);
  416. for (b = ca->buckets;
  417. b < ca->buckets + ca->sb.nbuckets; b++)
  418. b->disk_gen = b->gen;
  419. ca->disk_buckets->seq++;
  420. atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
  421. &ca->meta_sectors_written);
  422. pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
  423. fifo_used(&ca->free_inc), fifo_used(&ca->unused));
  424. for (i = prio_buckets(ca) - 1; i >= 0; --i) {
  425. long bucket;
  426. struct prio_set *p = ca->disk_buckets;
  427. struct bucket_disk *d = p->data;
  428. struct bucket_disk *end = d + prios_per_bucket(ca);
  429. for (b = ca->buckets + i * prios_per_bucket(ca);
  430. b < ca->buckets + ca->sb.nbuckets && d < end;
  431. b++, d++) {
  432. d->prio = cpu_to_le16(b->prio);
  433. d->gen = b->gen;
  434. }
  435. p->next_bucket = ca->prio_buckets[i + 1];
  436. p->magic = pset_magic(ca);
  437. p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
  438. bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
  439. BUG_ON(bucket == -1);
  440. mutex_unlock(&ca->set->bucket_lock);
  441. prio_io(ca, bucket, REQ_WRITE);
  442. mutex_lock(&ca->set->bucket_lock);
  443. ca->prio_buckets[i] = bucket;
  444. atomic_dec_bug(&ca->buckets[bucket].pin);
  445. }
  446. mutex_unlock(&ca->set->bucket_lock);
  447. bch_journal_meta(ca->set, &cl);
  448. closure_sync(&cl);
  449. mutex_lock(&ca->set->bucket_lock);
  450. ca->need_save_prio = 0;
  451. /*
  452. * Don't want the old priorities to get garbage collected until after we
  453. * finish writing the new ones, and they're journalled
  454. */
  455. for (i = 0; i < prio_buckets(ca); i++)
  456. ca->prio_last_buckets[i] = ca->prio_buckets[i];
  457. }
  458. static void prio_read(struct cache *ca, uint64_t bucket)
  459. {
  460. struct prio_set *p = ca->disk_buckets;
  461. struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
  462. struct bucket *b;
  463. unsigned bucket_nr = 0;
  464. for (b = ca->buckets;
  465. b < ca->buckets + ca->sb.nbuckets;
  466. b++, d++) {
  467. if (d == end) {
  468. ca->prio_buckets[bucket_nr] = bucket;
  469. ca->prio_last_buckets[bucket_nr] = bucket;
  470. bucket_nr++;
  471. prio_io(ca, bucket, READ_SYNC);
  472. if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
  473. pr_warn("bad csum reading priorities");
  474. if (p->magic != pset_magic(ca))
  475. pr_warn("bad magic reading priorities");
  476. bucket = p->next_bucket;
  477. d = p->data;
  478. }
  479. b->prio = le16_to_cpu(d->prio);
  480. b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
  481. }
  482. }
  483. /* Bcache device */
  484. static int open_dev(struct block_device *b, fmode_t mode)
  485. {
  486. struct bcache_device *d = b->bd_disk->private_data;
  487. if (atomic_read(&d->closing))
  488. return -ENXIO;
  489. closure_get(&d->cl);
  490. return 0;
  491. }
  492. static void release_dev(struct gendisk *b, fmode_t mode)
  493. {
  494. struct bcache_device *d = b->private_data;
  495. closure_put(&d->cl);
  496. }
  497. static int ioctl_dev(struct block_device *b, fmode_t mode,
  498. unsigned int cmd, unsigned long arg)
  499. {
  500. struct bcache_device *d = b->bd_disk->private_data;
  501. return d->ioctl(d, mode, cmd, arg);
  502. }
  503. static const struct block_device_operations bcache_ops = {
  504. .open = open_dev,
  505. .release = release_dev,
  506. .ioctl = ioctl_dev,
  507. .owner = THIS_MODULE,
  508. };
  509. void bcache_device_stop(struct bcache_device *d)
  510. {
  511. if (!atomic_xchg(&d->closing, 1))
  512. closure_queue(&d->cl);
  513. }
  514. static void bcache_device_unlink(struct bcache_device *d)
  515. {
  516. unsigned i;
  517. struct cache *ca;
  518. sysfs_remove_link(&d->c->kobj, d->name);
  519. sysfs_remove_link(&d->kobj, "cache");
  520. for_each_cache(ca, d->c, i)
  521. bd_unlink_disk_holder(ca->bdev, d->disk);
  522. }
  523. static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
  524. const char *name)
  525. {
  526. unsigned i;
  527. struct cache *ca;
  528. for_each_cache(ca, d->c, i)
  529. bd_link_disk_holder(ca->bdev, d->disk);
  530. snprintf(d->name, BCACHEDEVNAME_SIZE,
  531. "%s%u", name, d->id);
  532. WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
  533. sysfs_create_link(&c->kobj, &d->kobj, d->name),
  534. "Couldn't create device <-> cache set symlinks");
  535. }
  536. static void bcache_device_detach(struct bcache_device *d)
  537. {
  538. lockdep_assert_held(&bch_register_lock);
  539. if (atomic_read(&d->detaching)) {
  540. struct uuid_entry *u = d->c->uuids + d->id;
  541. SET_UUID_FLASH_ONLY(u, 0);
  542. memcpy(u->uuid, invalid_uuid, 16);
  543. u->invalidated = cpu_to_le32(get_seconds());
  544. bch_uuid_write(d->c);
  545. atomic_set(&d->detaching, 0);
  546. }
  547. if (!d->flush_done)
  548. bcache_device_unlink(d);
  549. d->c->devices[d->id] = NULL;
  550. closure_put(&d->c->caching);
  551. d->c = NULL;
  552. }
  553. static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
  554. unsigned id)
  555. {
  556. BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
  557. d->id = id;
  558. d->c = c;
  559. c->devices[id] = d;
  560. closure_get(&c->caching);
  561. }
  562. static void bcache_device_free(struct bcache_device *d)
  563. {
  564. lockdep_assert_held(&bch_register_lock);
  565. pr_info("%s stopped", d->disk->disk_name);
  566. if (d->c)
  567. bcache_device_detach(d);
  568. if (d->disk && d->disk->flags & GENHD_FL_UP)
  569. del_gendisk(d->disk);
  570. if (d->disk && d->disk->queue)
  571. blk_cleanup_queue(d->disk->queue);
  572. if (d->disk)
  573. put_disk(d->disk);
  574. bio_split_pool_free(&d->bio_split_hook);
  575. if (d->unaligned_bvec)
  576. mempool_destroy(d->unaligned_bvec);
  577. if (d->bio_split)
  578. bioset_free(d->bio_split);
  579. if (is_vmalloc_addr(d->stripe_sectors_dirty))
  580. vfree(d->stripe_sectors_dirty);
  581. else
  582. kfree(d->stripe_sectors_dirty);
  583. closure_debug_destroy(&d->cl);
  584. }
  585. static int bcache_device_init(struct bcache_device *d, unsigned block_size,
  586. sector_t sectors)
  587. {
  588. struct request_queue *q;
  589. size_t n;
  590. if (!d->stripe_size_bits)
  591. d->stripe_size_bits = 31;
  592. d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
  593. d->stripe_size_bits;
  594. if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
  595. return -ENOMEM;
  596. n = d->nr_stripes * sizeof(atomic_t);
  597. d->stripe_sectors_dirty = n < PAGE_SIZE << 6
  598. ? kzalloc(n, GFP_KERNEL)
  599. : vzalloc(n);
  600. if (!d->stripe_sectors_dirty)
  601. return -ENOMEM;
  602. if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  603. !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
  604. sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
  605. bio_split_pool_init(&d->bio_split_hook) ||
  606. !(d->disk = alloc_disk(1)) ||
  607. !(q = blk_alloc_queue(GFP_KERNEL)))
  608. return -ENOMEM;
  609. set_capacity(d->disk, sectors);
  610. snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
  611. d->disk->major = bcache_major;
  612. d->disk->first_minor = bcache_minor++;
  613. d->disk->fops = &bcache_ops;
  614. d->disk->private_data = d;
  615. blk_queue_make_request(q, NULL);
  616. d->disk->queue = q;
  617. q->queuedata = d;
  618. q->backing_dev_info.congested_data = d;
  619. q->limits.max_hw_sectors = UINT_MAX;
  620. q->limits.max_sectors = UINT_MAX;
  621. q->limits.max_segment_size = UINT_MAX;
  622. q->limits.max_segments = BIO_MAX_PAGES;
  623. q->limits.max_discard_sectors = UINT_MAX;
  624. q->limits.io_min = block_size;
  625. q->limits.logical_block_size = block_size;
  626. q->limits.physical_block_size = block_size;
  627. set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
  628. set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
  629. blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
  630. return 0;
  631. }
  632. /* Cached device */
  633. static void calc_cached_dev_sectors(struct cache_set *c)
  634. {
  635. uint64_t sectors = 0;
  636. struct cached_dev *dc;
  637. list_for_each_entry(dc, &c->cached_devs, list)
  638. sectors += bdev_sectors(dc->bdev);
  639. c->cached_dev_sectors = sectors;
  640. }
  641. void bch_cached_dev_run(struct cached_dev *dc)
  642. {
  643. struct bcache_device *d = &dc->disk;
  644. char buf[SB_LABEL_SIZE + 1];
  645. char *env[] = {
  646. "DRIVER=bcache",
  647. kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
  648. NULL,
  649. NULL,
  650. };
  651. memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
  652. buf[SB_LABEL_SIZE] = '\0';
  653. env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
  654. if (atomic_xchg(&dc->running, 1))
  655. return;
  656. if (!d->c &&
  657. BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
  658. struct closure cl;
  659. closure_init_stack(&cl);
  660. SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
  661. bch_write_bdev_super(dc, &cl);
  662. closure_sync(&cl);
  663. }
  664. add_disk(d->disk);
  665. bd_link_disk_holder(dc->bdev, dc->disk.disk);
  666. /* won't show up in the uevent file, use udevadm monitor -e instead
  667. * only class / kset properties are persistent */
  668. kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
  669. kfree(env[1]);
  670. kfree(env[2]);
  671. if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
  672. sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
  673. pr_debug("error creating sysfs link");
  674. }
  675. static void cached_dev_detach_finish(struct work_struct *w)
  676. {
  677. struct cached_dev *dc = container_of(w, struct cached_dev, detach);
  678. char buf[BDEVNAME_SIZE];
  679. struct closure cl;
  680. closure_init_stack(&cl);
  681. BUG_ON(!atomic_read(&dc->disk.detaching));
  682. BUG_ON(atomic_read(&dc->count));
  683. mutex_lock(&bch_register_lock);
  684. memset(&dc->sb.set_uuid, 0, 16);
  685. SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
  686. bch_write_bdev_super(dc, &cl);
  687. closure_sync(&cl);
  688. bcache_device_detach(&dc->disk);
  689. list_move(&dc->list, &uncached_devices);
  690. mutex_unlock(&bch_register_lock);
  691. pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
  692. /* Drop ref we took in cached_dev_detach() */
  693. closure_put(&dc->disk.cl);
  694. }
  695. void bch_cached_dev_detach(struct cached_dev *dc)
  696. {
  697. lockdep_assert_held(&bch_register_lock);
  698. if (atomic_read(&dc->disk.closing))
  699. return;
  700. if (atomic_xchg(&dc->disk.detaching, 1))
  701. return;
  702. /*
  703. * Block the device from being closed and freed until we're finished
  704. * detaching
  705. */
  706. closure_get(&dc->disk.cl);
  707. bch_writeback_queue(dc);
  708. cached_dev_put(dc);
  709. }
  710. int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
  711. {
  712. uint32_t rtime = cpu_to_le32(get_seconds());
  713. struct uuid_entry *u;
  714. char buf[BDEVNAME_SIZE];
  715. bdevname(dc->bdev, buf);
  716. if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
  717. return -ENOENT;
  718. if (dc->disk.c) {
  719. pr_err("Can't attach %s: already attached", buf);
  720. return -EINVAL;
  721. }
  722. if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
  723. pr_err("Can't attach %s: shutting down", buf);
  724. return -EINVAL;
  725. }
  726. if (dc->sb.block_size < c->sb.block_size) {
  727. /* Will die */
  728. pr_err("Couldn't attach %s: block size less than set's block size",
  729. buf);
  730. return -EINVAL;
  731. }
  732. u = uuid_find(c, dc->sb.uuid);
  733. if (u &&
  734. (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
  735. BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
  736. memcpy(u->uuid, invalid_uuid, 16);
  737. u->invalidated = cpu_to_le32(get_seconds());
  738. u = NULL;
  739. }
  740. if (!u) {
  741. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  742. pr_err("Couldn't find uuid for %s in set", buf);
  743. return -ENOENT;
  744. }
  745. u = uuid_find_empty(c);
  746. if (!u) {
  747. pr_err("Not caching %s, no room for UUID", buf);
  748. return -EINVAL;
  749. }
  750. }
  751. /* Deadlocks since we're called via sysfs...
  752. sysfs_remove_file(&dc->kobj, &sysfs_attach);
  753. */
  754. if (bch_is_zero(u->uuid, 16)) {
  755. struct closure cl;
  756. closure_init_stack(&cl);
  757. memcpy(u->uuid, dc->sb.uuid, 16);
  758. memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
  759. u->first_reg = u->last_reg = rtime;
  760. bch_uuid_write(c);
  761. memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
  762. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  763. bch_write_bdev_super(dc, &cl);
  764. closure_sync(&cl);
  765. } else {
  766. u->last_reg = rtime;
  767. bch_uuid_write(c);
  768. }
  769. bcache_device_attach(&dc->disk, c, u - c->uuids);
  770. list_move(&dc->list, &c->cached_devs);
  771. calc_cached_dev_sectors(c);
  772. smp_wmb();
  773. /*
  774. * dc->c must be set before dc->count != 0 - paired with the mb in
  775. * cached_dev_get()
  776. */
  777. atomic_set(&dc->count, 1);
  778. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  779. bch_sectors_dirty_init(dc);
  780. atomic_set(&dc->has_dirty, 1);
  781. atomic_inc(&dc->count);
  782. bch_writeback_queue(dc);
  783. }
  784. bch_cached_dev_run(dc);
  785. bcache_device_link(&dc->disk, c, "bdev");
  786. pr_info("Caching %s as %s on set %pU",
  787. bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
  788. dc->disk.c->sb.set_uuid);
  789. return 0;
  790. }
  791. void bch_cached_dev_release(struct kobject *kobj)
  792. {
  793. struct cached_dev *dc = container_of(kobj, struct cached_dev,
  794. disk.kobj);
  795. kfree(dc);
  796. module_put(THIS_MODULE);
  797. }
  798. static void cached_dev_free(struct closure *cl)
  799. {
  800. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  801. cancel_delayed_work_sync(&dc->writeback_rate_update);
  802. mutex_lock(&bch_register_lock);
  803. if (atomic_read(&dc->running))
  804. bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
  805. bcache_device_free(&dc->disk);
  806. list_del(&dc->list);
  807. mutex_unlock(&bch_register_lock);
  808. if (!IS_ERR_OR_NULL(dc->bdev)) {
  809. if (dc->bdev->bd_disk)
  810. blk_sync_queue(bdev_get_queue(dc->bdev));
  811. blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  812. }
  813. wake_up(&unregister_wait);
  814. kobject_put(&dc->disk.kobj);
  815. }
  816. static void cached_dev_flush(struct closure *cl)
  817. {
  818. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  819. struct bcache_device *d = &dc->disk;
  820. mutex_lock(&bch_register_lock);
  821. d->flush_done = 1;
  822. if (d->c)
  823. bcache_device_unlink(d);
  824. mutex_unlock(&bch_register_lock);
  825. bch_cache_accounting_destroy(&dc->accounting);
  826. kobject_del(&d->kobj);
  827. continue_at(cl, cached_dev_free, system_wq);
  828. }
  829. static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
  830. {
  831. int ret;
  832. struct io *io;
  833. struct request_queue *q = bdev_get_queue(dc->bdev);
  834. __module_get(THIS_MODULE);
  835. INIT_LIST_HEAD(&dc->list);
  836. closure_init(&dc->disk.cl, NULL);
  837. set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
  838. kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
  839. INIT_WORK(&dc->detach, cached_dev_detach_finish);
  840. closure_init_unlocked(&dc->sb_write);
  841. INIT_LIST_HEAD(&dc->io_lru);
  842. spin_lock_init(&dc->io_lock);
  843. bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
  844. dc->sequential_merge = true;
  845. dc->sequential_cutoff = 4 << 20;
  846. for (io = dc->io; io < dc->io + RECENT_IO; io++) {
  847. list_add(&io->lru, &dc->io_lru);
  848. hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
  849. }
  850. ret = bcache_device_init(&dc->disk, block_size,
  851. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  852. if (ret)
  853. return ret;
  854. set_capacity(dc->disk.disk,
  855. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  856. dc->disk.disk->queue->backing_dev_info.ra_pages =
  857. max(dc->disk.disk->queue->backing_dev_info.ra_pages,
  858. q->backing_dev_info.ra_pages);
  859. bch_cached_dev_request_init(dc);
  860. bch_cached_dev_writeback_init(dc);
  861. return 0;
  862. }
  863. /* Cached device - bcache superblock */
  864. static void register_bdev(struct cache_sb *sb, struct page *sb_page,
  865. struct block_device *bdev,
  866. struct cached_dev *dc)
  867. {
  868. char name[BDEVNAME_SIZE];
  869. const char *err = "cannot allocate memory";
  870. struct cache_set *c;
  871. memcpy(&dc->sb, sb, sizeof(struct cache_sb));
  872. dc->bdev = bdev;
  873. dc->bdev->bd_holder = dc;
  874. bio_init(&dc->sb_bio);
  875. dc->sb_bio.bi_max_vecs = 1;
  876. dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
  877. dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
  878. get_page(sb_page);
  879. if (cached_dev_init(dc, sb->block_size << 9))
  880. goto err;
  881. err = "error creating kobject";
  882. if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
  883. "bcache"))
  884. goto err;
  885. if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
  886. goto err;
  887. pr_info("registered backing device %s", bdevname(bdev, name));
  888. list_add(&dc->list, &uncached_devices);
  889. list_for_each_entry(c, &bch_cache_sets, list)
  890. bch_cached_dev_attach(dc, c);
  891. if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
  892. BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
  893. bch_cached_dev_run(dc);
  894. return;
  895. err:
  896. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  897. bcache_device_stop(&dc->disk);
  898. }
  899. /* Flash only volumes */
  900. void bch_flash_dev_release(struct kobject *kobj)
  901. {
  902. struct bcache_device *d = container_of(kobj, struct bcache_device,
  903. kobj);
  904. kfree(d);
  905. }
  906. static void flash_dev_free(struct closure *cl)
  907. {
  908. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  909. bcache_device_free(d);
  910. kobject_put(&d->kobj);
  911. }
  912. static void flash_dev_flush(struct closure *cl)
  913. {
  914. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  915. bcache_device_unlink(d);
  916. kobject_del(&d->kobj);
  917. continue_at(cl, flash_dev_free, system_wq);
  918. }
  919. static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
  920. {
  921. struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
  922. GFP_KERNEL);
  923. if (!d)
  924. return -ENOMEM;
  925. closure_init(&d->cl, NULL);
  926. set_closure_fn(&d->cl, flash_dev_flush, system_wq);
  927. kobject_init(&d->kobj, &bch_flash_dev_ktype);
  928. if (bcache_device_init(d, block_bytes(c), u->sectors))
  929. goto err;
  930. bcache_device_attach(d, c, u - c->uuids);
  931. bch_flash_dev_request_init(d);
  932. add_disk(d->disk);
  933. if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
  934. goto err;
  935. bcache_device_link(d, c, "volume");
  936. return 0;
  937. err:
  938. kobject_put(&d->kobj);
  939. return -ENOMEM;
  940. }
  941. static int flash_devs_run(struct cache_set *c)
  942. {
  943. int ret = 0;
  944. struct uuid_entry *u;
  945. for (u = c->uuids;
  946. u < c->uuids + c->nr_uuids && !ret;
  947. u++)
  948. if (UUID_FLASH_ONLY(u))
  949. ret = flash_dev_run(c, u);
  950. return ret;
  951. }
  952. int bch_flash_dev_create(struct cache_set *c, uint64_t size)
  953. {
  954. struct uuid_entry *u;
  955. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  956. return -EINTR;
  957. u = uuid_find_empty(c);
  958. if (!u) {
  959. pr_err("Can't create volume, no room for UUID");
  960. return -EINVAL;
  961. }
  962. get_random_bytes(u->uuid, 16);
  963. memset(u->label, 0, 32);
  964. u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
  965. SET_UUID_FLASH_ONLY(u, 1);
  966. u->sectors = size >> 9;
  967. bch_uuid_write(c);
  968. return flash_dev_run(c, u);
  969. }
  970. /* Cache set */
  971. __printf(2, 3)
  972. bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
  973. {
  974. va_list args;
  975. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  976. return false;
  977. /* XXX: we can be called from atomic context
  978. acquire_console_sem();
  979. */
  980. printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
  981. va_start(args, fmt);
  982. vprintk(fmt, args);
  983. va_end(args);
  984. printk(", disabling caching\n");
  985. bch_cache_set_unregister(c);
  986. return true;
  987. }
  988. void bch_cache_set_release(struct kobject *kobj)
  989. {
  990. struct cache_set *c = container_of(kobj, struct cache_set, kobj);
  991. kfree(c);
  992. module_put(THIS_MODULE);
  993. }
  994. static void cache_set_free(struct closure *cl)
  995. {
  996. struct cache_set *c = container_of(cl, struct cache_set, cl);
  997. struct cache *ca;
  998. unsigned i;
  999. if (!IS_ERR_OR_NULL(c->debug))
  1000. debugfs_remove(c->debug);
  1001. bch_open_buckets_free(c);
  1002. bch_btree_cache_free(c);
  1003. bch_journal_free(c);
  1004. for_each_cache(ca, c, i)
  1005. if (ca)
  1006. kobject_put(&ca->kobj);
  1007. free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
  1008. free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
  1009. if (c->bio_split)
  1010. bioset_free(c->bio_split);
  1011. if (c->fill_iter)
  1012. mempool_destroy(c->fill_iter);
  1013. if (c->bio_meta)
  1014. mempool_destroy(c->bio_meta);
  1015. if (c->search)
  1016. mempool_destroy(c->search);
  1017. kfree(c->devices);
  1018. mutex_lock(&bch_register_lock);
  1019. list_del(&c->list);
  1020. mutex_unlock(&bch_register_lock);
  1021. pr_info("Cache set %pU unregistered", c->sb.set_uuid);
  1022. wake_up(&unregister_wait);
  1023. closure_debug_destroy(&c->cl);
  1024. kobject_put(&c->kobj);
  1025. }
  1026. static void cache_set_flush(struct closure *cl)
  1027. {
  1028. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1029. struct cache *ca;
  1030. struct btree *b;
  1031. unsigned i;
  1032. bch_cache_accounting_destroy(&c->accounting);
  1033. kobject_put(&c->internal);
  1034. kobject_del(&c->kobj);
  1035. if (!IS_ERR_OR_NULL(c->root))
  1036. list_add(&c->root->list, &c->btree_cache);
  1037. /* Should skip this if we're unregistering because of an error */
  1038. list_for_each_entry(b, &c->btree_cache, list)
  1039. if (btree_node_dirty(b))
  1040. bch_btree_node_write(b, NULL);
  1041. for_each_cache(ca, c, i)
  1042. if (ca->alloc_thread)
  1043. kthread_stop(ca->alloc_thread);
  1044. closure_return(cl);
  1045. }
  1046. static void __cache_set_unregister(struct closure *cl)
  1047. {
  1048. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1049. struct cached_dev *dc;
  1050. size_t i;
  1051. mutex_lock(&bch_register_lock);
  1052. for (i = 0; i < c->nr_uuids; i++)
  1053. if (c->devices[i]) {
  1054. if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
  1055. test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
  1056. dc = container_of(c->devices[i],
  1057. struct cached_dev, disk);
  1058. bch_cached_dev_detach(dc);
  1059. } else {
  1060. bcache_device_stop(c->devices[i]);
  1061. }
  1062. }
  1063. mutex_unlock(&bch_register_lock);
  1064. continue_at(cl, cache_set_flush, system_wq);
  1065. }
  1066. void bch_cache_set_stop(struct cache_set *c)
  1067. {
  1068. if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
  1069. closure_queue(&c->caching);
  1070. }
  1071. void bch_cache_set_unregister(struct cache_set *c)
  1072. {
  1073. set_bit(CACHE_SET_UNREGISTERING, &c->flags);
  1074. bch_cache_set_stop(c);
  1075. }
  1076. #define alloc_bucket_pages(gfp, c) \
  1077. ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
  1078. struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
  1079. {
  1080. int iter_size;
  1081. struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
  1082. if (!c)
  1083. return NULL;
  1084. __module_get(THIS_MODULE);
  1085. closure_init(&c->cl, NULL);
  1086. set_closure_fn(&c->cl, cache_set_free, system_wq);
  1087. closure_init(&c->caching, &c->cl);
  1088. set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
  1089. /* Maybe create continue_at_noreturn() and use it here? */
  1090. closure_set_stopped(&c->cl);
  1091. closure_put(&c->cl);
  1092. kobject_init(&c->kobj, &bch_cache_set_ktype);
  1093. kobject_init(&c->internal, &bch_cache_set_internal_ktype);
  1094. bch_cache_accounting_init(&c->accounting, &c->cl);
  1095. memcpy(c->sb.set_uuid, sb->set_uuid, 16);
  1096. c->sb.block_size = sb->block_size;
  1097. c->sb.bucket_size = sb->bucket_size;
  1098. c->sb.nr_in_set = sb->nr_in_set;
  1099. c->sb.last_mount = sb->last_mount;
  1100. c->bucket_bits = ilog2(sb->bucket_size);
  1101. c->block_bits = ilog2(sb->block_size);
  1102. c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
  1103. c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
  1104. if (c->btree_pages > BTREE_MAX_PAGES)
  1105. c->btree_pages = max_t(int, c->btree_pages / 4,
  1106. BTREE_MAX_PAGES);
  1107. c->sort_crit_factor = int_sqrt(c->btree_pages);
  1108. mutex_init(&c->bucket_lock);
  1109. mutex_init(&c->sort_lock);
  1110. spin_lock_init(&c->sort_time_lock);
  1111. closure_init_unlocked(&c->sb_write);
  1112. closure_init_unlocked(&c->uuid_write);
  1113. spin_lock_init(&c->btree_read_time_lock);
  1114. bch_moving_init_cache_set(c);
  1115. INIT_LIST_HEAD(&c->list);
  1116. INIT_LIST_HEAD(&c->cached_devs);
  1117. INIT_LIST_HEAD(&c->btree_cache);
  1118. INIT_LIST_HEAD(&c->btree_cache_freeable);
  1119. INIT_LIST_HEAD(&c->btree_cache_freed);
  1120. INIT_LIST_HEAD(&c->data_buckets);
  1121. c->search = mempool_create_slab_pool(32, bch_search_cache);
  1122. if (!c->search)
  1123. goto err;
  1124. iter_size = (sb->bucket_size / sb->block_size + 1) *
  1125. sizeof(struct btree_iter_set);
  1126. if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
  1127. !(c->bio_meta = mempool_create_kmalloc_pool(2,
  1128. sizeof(struct bbio) + sizeof(struct bio_vec) *
  1129. bucket_pages(c))) ||
  1130. !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
  1131. !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  1132. !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1133. !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1134. bch_journal_alloc(c) ||
  1135. bch_btree_cache_alloc(c) ||
  1136. bch_open_buckets_alloc(c))
  1137. goto err;
  1138. c->congested_read_threshold_us = 2000;
  1139. c->congested_write_threshold_us = 20000;
  1140. c->error_limit = 8 << IO_ERROR_SHIFT;
  1141. return c;
  1142. err:
  1143. bch_cache_set_unregister(c);
  1144. return NULL;
  1145. }
  1146. static void run_cache_set(struct cache_set *c)
  1147. {
  1148. const char *err = "cannot allocate memory";
  1149. struct cached_dev *dc, *t;
  1150. struct cache *ca;
  1151. unsigned i;
  1152. struct btree_op op;
  1153. bch_btree_op_init_stack(&op);
  1154. op.lock = SHRT_MAX;
  1155. for_each_cache(ca, c, i)
  1156. c->nbuckets += ca->sb.nbuckets;
  1157. if (CACHE_SYNC(&c->sb)) {
  1158. LIST_HEAD(journal);
  1159. struct bkey *k;
  1160. struct jset *j;
  1161. err = "cannot allocate memory for journal";
  1162. if (bch_journal_read(c, &journal, &op))
  1163. goto err;
  1164. pr_debug("btree_journal_read() done");
  1165. err = "no journal entries found";
  1166. if (list_empty(&journal))
  1167. goto err;
  1168. j = &list_entry(journal.prev, struct journal_replay, list)->j;
  1169. err = "IO error reading priorities";
  1170. for_each_cache(ca, c, i)
  1171. prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
  1172. /*
  1173. * If prio_read() fails it'll call cache_set_error and we'll
  1174. * tear everything down right away, but if we perhaps checked
  1175. * sooner we could avoid journal replay.
  1176. */
  1177. k = &j->btree_root;
  1178. err = "bad btree root";
  1179. if (__bch_ptr_invalid(c, j->btree_level + 1, k))
  1180. goto err;
  1181. err = "error reading btree root";
  1182. c->root = bch_btree_node_get(c, k, j->btree_level, &op);
  1183. if (IS_ERR_OR_NULL(c->root))
  1184. goto err;
  1185. list_del_init(&c->root->list);
  1186. rw_unlock(true, c->root);
  1187. err = uuid_read(c, j, &op.cl);
  1188. if (err)
  1189. goto err;
  1190. err = "error in recovery";
  1191. if (bch_btree_check(c, &op))
  1192. goto err;
  1193. bch_journal_mark(c, &journal);
  1194. bch_btree_gc_finish(c);
  1195. pr_debug("btree_check() done");
  1196. /*
  1197. * bcache_journal_next() can't happen sooner, or
  1198. * btree_gc_finish() will give spurious errors about last_gc >
  1199. * gc_gen - this is a hack but oh well.
  1200. */
  1201. bch_journal_next(&c->journal);
  1202. err = "error starting allocator thread";
  1203. for_each_cache(ca, c, i)
  1204. if (bch_cache_allocator_start(ca))
  1205. goto err;
  1206. /*
  1207. * First place it's safe to allocate: btree_check() and
  1208. * btree_gc_finish() have to run before we have buckets to
  1209. * allocate, and bch_bucket_alloc_set() might cause a journal
  1210. * entry to be written so bcache_journal_next() has to be called
  1211. * first.
  1212. *
  1213. * If the uuids were in the old format we have to rewrite them
  1214. * before the next journal entry is written:
  1215. */
  1216. if (j->version < BCACHE_JSET_VERSION_UUID)
  1217. __uuid_write(c);
  1218. bch_journal_replay(c, &journal, &op);
  1219. } else {
  1220. pr_notice("invalidating existing data");
  1221. /* Don't want invalidate_buckets() to queue a gc yet */
  1222. closure_lock(&c->gc, NULL);
  1223. for_each_cache(ca, c, i) {
  1224. unsigned j;
  1225. ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
  1226. 2, SB_JOURNAL_BUCKETS);
  1227. for (j = 0; j < ca->sb.keys; j++)
  1228. ca->sb.d[j] = ca->sb.first_bucket + j;
  1229. }
  1230. bch_btree_gc_finish(c);
  1231. err = "error starting allocator thread";
  1232. for_each_cache(ca, c, i)
  1233. if (bch_cache_allocator_start(ca))
  1234. goto err;
  1235. mutex_lock(&c->bucket_lock);
  1236. for_each_cache(ca, c, i)
  1237. bch_prio_write(ca);
  1238. mutex_unlock(&c->bucket_lock);
  1239. err = "cannot allocate new UUID bucket";
  1240. if (__uuid_write(c))
  1241. goto err_unlock_gc;
  1242. err = "cannot allocate new btree root";
  1243. c->root = bch_btree_node_alloc(c, 0, &op.cl);
  1244. if (IS_ERR_OR_NULL(c->root))
  1245. goto err_unlock_gc;
  1246. bkey_copy_key(&c->root->key, &MAX_KEY);
  1247. bch_btree_node_write(c->root, &op.cl);
  1248. bch_btree_set_root(c->root);
  1249. rw_unlock(true, c->root);
  1250. /*
  1251. * We don't want to write the first journal entry until
  1252. * everything is set up - fortunately journal entries won't be
  1253. * written until the SET_CACHE_SYNC() here:
  1254. */
  1255. SET_CACHE_SYNC(&c->sb, true);
  1256. bch_journal_next(&c->journal);
  1257. bch_journal_meta(c, &op.cl);
  1258. /* Unlock */
  1259. closure_set_stopped(&c->gc.cl);
  1260. closure_put(&c->gc.cl);
  1261. }
  1262. closure_sync(&op.cl);
  1263. c->sb.last_mount = get_seconds();
  1264. bcache_write_super(c);
  1265. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1266. bch_cached_dev_attach(dc, c);
  1267. flash_devs_run(c);
  1268. return;
  1269. err_unlock_gc:
  1270. closure_set_stopped(&c->gc.cl);
  1271. closure_put(&c->gc.cl);
  1272. err:
  1273. closure_sync(&op.cl);
  1274. /* XXX: test this, it's broken */
  1275. bch_cache_set_error(c, err);
  1276. }
  1277. static bool can_attach_cache(struct cache *ca, struct cache_set *c)
  1278. {
  1279. return ca->sb.block_size == c->sb.block_size &&
  1280. ca->sb.bucket_size == c->sb.block_size &&
  1281. ca->sb.nr_in_set == c->sb.nr_in_set;
  1282. }
  1283. static const char *register_cache_set(struct cache *ca)
  1284. {
  1285. char buf[12];
  1286. const char *err = "cannot allocate memory";
  1287. struct cache_set *c;
  1288. list_for_each_entry(c, &bch_cache_sets, list)
  1289. if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
  1290. if (c->cache[ca->sb.nr_this_dev])
  1291. return "duplicate cache set member";
  1292. if (!can_attach_cache(ca, c))
  1293. return "cache sb does not match set";
  1294. if (!CACHE_SYNC(&ca->sb))
  1295. SET_CACHE_SYNC(&c->sb, false);
  1296. goto found;
  1297. }
  1298. c = bch_cache_set_alloc(&ca->sb);
  1299. if (!c)
  1300. return err;
  1301. err = "error creating kobject";
  1302. if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
  1303. kobject_add(&c->internal, &c->kobj, "internal"))
  1304. goto err;
  1305. if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
  1306. goto err;
  1307. bch_debug_init_cache_set(c);
  1308. list_add(&c->list, &bch_cache_sets);
  1309. found:
  1310. sprintf(buf, "cache%i", ca->sb.nr_this_dev);
  1311. if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
  1312. sysfs_create_link(&c->kobj, &ca->kobj, buf))
  1313. goto err;
  1314. if (ca->sb.seq > c->sb.seq) {
  1315. c->sb.version = ca->sb.version;
  1316. memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
  1317. c->sb.flags = ca->sb.flags;
  1318. c->sb.seq = ca->sb.seq;
  1319. pr_debug("set version = %llu", c->sb.version);
  1320. }
  1321. ca->set = c;
  1322. ca->set->cache[ca->sb.nr_this_dev] = ca;
  1323. c->cache_by_alloc[c->caches_loaded++] = ca;
  1324. if (c->caches_loaded == c->sb.nr_in_set)
  1325. run_cache_set(c);
  1326. return NULL;
  1327. err:
  1328. bch_cache_set_unregister(c);
  1329. return err;
  1330. }
  1331. /* Cache device */
  1332. void bch_cache_release(struct kobject *kobj)
  1333. {
  1334. struct cache *ca = container_of(kobj, struct cache, kobj);
  1335. if (ca->set)
  1336. ca->set->cache[ca->sb.nr_this_dev] = NULL;
  1337. bch_cache_allocator_exit(ca);
  1338. bio_split_pool_free(&ca->bio_split_hook);
  1339. free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
  1340. kfree(ca->prio_buckets);
  1341. vfree(ca->buckets);
  1342. free_heap(&ca->heap);
  1343. free_fifo(&ca->unused);
  1344. free_fifo(&ca->free_inc);
  1345. free_fifo(&ca->free);
  1346. if (ca->sb_bio.bi_inline_vecs[0].bv_page)
  1347. put_page(ca->sb_bio.bi_io_vec[0].bv_page);
  1348. if (!IS_ERR_OR_NULL(ca->bdev)) {
  1349. blk_sync_queue(bdev_get_queue(ca->bdev));
  1350. blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1351. }
  1352. kfree(ca);
  1353. module_put(THIS_MODULE);
  1354. }
  1355. static int cache_alloc(struct cache_sb *sb, struct cache *ca)
  1356. {
  1357. size_t free;
  1358. struct bucket *b;
  1359. __module_get(THIS_MODULE);
  1360. kobject_init(&ca->kobj, &bch_cache_ktype);
  1361. INIT_LIST_HEAD(&ca->discards);
  1362. bio_init(&ca->journal.bio);
  1363. ca->journal.bio.bi_max_vecs = 8;
  1364. ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
  1365. free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
  1366. free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
  1367. if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
  1368. !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
  1369. !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
  1370. !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
  1371. !(ca->buckets = vzalloc(sizeof(struct bucket) *
  1372. ca->sb.nbuckets)) ||
  1373. !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
  1374. 2, GFP_KERNEL)) ||
  1375. !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
  1376. bio_split_pool_init(&ca->bio_split_hook))
  1377. return -ENOMEM;
  1378. ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
  1379. for_each_bucket(b, ca)
  1380. atomic_set(&b->pin, 0);
  1381. if (bch_cache_allocator_init(ca))
  1382. goto err;
  1383. return 0;
  1384. err:
  1385. kobject_put(&ca->kobj);
  1386. return -ENOMEM;
  1387. }
  1388. static void register_cache(struct cache_sb *sb, struct page *sb_page,
  1389. struct block_device *bdev, struct cache *ca)
  1390. {
  1391. char name[BDEVNAME_SIZE];
  1392. const char *err = "cannot allocate memory";
  1393. memcpy(&ca->sb, sb, sizeof(struct cache_sb));
  1394. ca->bdev = bdev;
  1395. ca->bdev->bd_holder = ca;
  1396. bio_init(&ca->sb_bio);
  1397. ca->sb_bio.bi_max_vecs = 1;
  1398. ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
  1399. ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
  1400. get_page(sb_page);
  1401. if (blk_queue_discard(bdev_get_queue(ca->bdev)))
  1402. ca->discard = CACHE_DISCARD(&ca->sb);
  1403. if (cache_alloc(sb, ca) != 0)
  1404. goto err;
  1405. err = "error creating kobject";
  1406. if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
  1407. goto err;
  1408. err = register_cache_set(ca);
  1409. if (err)
  1410. goto err;
  1411. pr_info("registered cache device %s", bdevname(bdev, name));
  1412. return;
  1413. err:
  1414. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  1415. kobject_put(&ca->kobj);
  1416. }
  1417. /* Global interfaces/init */
  1418. static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
  1419. const char *, size_t);
  1420. kobj_attribute_write(register, register_bcache);
  1421. kobj_attribute_write(register_quiet, register_bcache);
  1422. static bool bch_is_open_backing(struct block_device *bdev) {
  1423. struct cache_set *c, *tc;
  1424. struct cached_dev *dc, *t;
  1425. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1426. list_for_each_entry_safe(dc, t, &c->cached_devs, list)
  1427. if (dc->bdev == bdev)
  1428. return true;
  1429. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1430. if (dc->bdev == bdev)
  1431. return true;
  1432. return false;
  1433. }
  1434. static bool bch_is_open_cache(struct block_device *bdev) {
  1435. struct cache_set *c, *tc;
  1436. struct cache *ca;
  1437. unsigned i;
  1438. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1439. for_each_cache(ca, c, i)
  1440. if (ca->bdev == bdev)
  1441. return true;
  1442. return false;
  1443. }
  1444. static bool bch_is_open(struct block_device *bdev) {
  1445. return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
  1446. }
  1447. static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
  1448. const char *buffer, size_t size)
  1449. {
  1450. ssize_t ret = size;
  1451. const char *err = "cannot allocate memory";
  1452. char *path = NULL;
  1453. struct cache_sb *sb = NULL;
  1454. struct block_device *bdev = NULL;
  1455. struct page *sb_page = NULL;
  1456. if (!try_module_get(THIS_MODULE))
  1457. return -EBUSY;
  1458. mutex_lock(&bch_register_lock);
  1459. if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
  1460. !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
  1461. goto err;
  1462. err = "failed to open device";
  1463. bdev = blkdev_get_by_path(strim(path),
  1464. FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1465. sb);
  1466. if (IS_ERR(bdev)) {
  1467. if (bdev == ERR_PTR(-EBUSY)) {
  1468. bdev = lookup_bdev(strim(path));
  1469. if (!IS_ERR(bdev) && bch_is_open(bdev))
  1470. err = "device already registered";
  1471. else
  1472. err = "device busy";
  1473. }
  1474. goto err;
  1475. }
  1476. err = "failed to set blocksize";
  1477. if (set_blocksize(bdev, 4096))
  1478. goto err_close;
  1479. err = read_super(sb, bdev, &sb_page);
  1480. if (err)
  1481. goto err_close;
  1482. if (SB_IS_BDEV(sb)) {
  1483. struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
  1484. if (!dc)
  1485. goto err_close;
  1486. register_bdev(sb, sb_page, bdev, dc);
  1487. } else {
  1488. struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  1489. if (!ca)
  1490. goto err_close;
  1491. register_cache(sb, sb_page, bdev, ca);
  1492. }
  1493. out:
  1494. if (sb_page)
  1495. put_page(sb_page);
  1496. kfree(sb);
  1497. kfree(path);
  1498. mutex_unlock(&bch_register_lock);
  1499. module_put(THIS_MODULE);
  1500. return ret;
  1501. err_close:
  1502. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1503. err:
  1504. if (attr != &ksysfs_register_quiet)
  1505. pr_info("error opening %s: %s", path, err);
  1506. ret = -EINVAL;
  1507. goto out;
  1508. }
  1509. static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
  1510. {
  1511. if (code == SYS_DOWN ||
  1512. code == SYS_HALT ||
  1513. code == SYS_POWER_OFF) {
  1514. DEFINE_WAIT(wait);
  1515. unsigned long start = jiffies;
  1516. bool stopped = false;
  1517. struct cache_set *c, *tc;
  1518. struct cached_dev *dc, *tdc;
  1519. mutex_lock(&bch_register_lock);
  1520. if (list_empty(&bch_cache_sets) &&
  1521. list_empty(&uncached_devices))
  1522. goto out;
  1523. pr_info("Stopping all devices:");
  1524. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1525. bch_cache_set_stop(c);
  1526. list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
  1527. bcache_device_stop(&dc->disk);
  1528. /* What's a condition variable? */
  1529. while (1) {
  1530. long timeout = start + 2 * HZ - jiffies;
  1531. stopped = list_empty(&bch_cache_sets) &&
  1532. list_empty(&uncached_devices);
  1533. if (timeout < 0 || stopped)
  1534. break;
  1535. prepare_to_wait(&unregister_wait, &wait,
  1536. TASK_UNINTERRUPTIBLE);
  1537. mutex_unlock(&bch_register_lock);
  1538. schedule_timeout(timeout);
  1539. mutex_lock(&bch_register_lock);
  1540. }
  1541. finish_wait(&unregister_wait, &wait);
  1542. if (stopped)
  1543. pr_info("All devices stopped");
  1544. else
  1545. pr_notice("Timeout waiting for devices to be closed");
  1546. out:
  1547. mutex_unlock(&bch_register_lock);
  1548. }
  1549. return NOTIFY_DONE;
  1550. }
  1551. static struct notifier_block reboot = {
  1552. .notifier_call = bcache_reboot,
  1553. .priority = INT_MAX, /* before any real devices */
  1554. };
  1555. static void bcache_exit(void)
  1556. {
  1557. bch_debug_exit();
  1558. bch_writeback_exit();
  1559. bch_request_exit();
  1560. bch_btree_exit();
  1561. if (bcache_kobj)
  1562. kobject_put(bcache_kobj);
  1563. if (bcache_wq)
  1564. destroy_workqueue(bcache_wq);
  1565. unregister_blkdev(bcache_major, "bcache");
  1566. unregister_reboot_notifier(&reboot);
  1567. }
  1568. static int __init bcache_init(void)
  1569. {
  1570. static const struct attribute *files[] = {
  1571. &ksysfs_register.attr,
  1572. &ksysfs_register_quiet.attr,
  1573. NULL
  1574. };
  1575. mutex_init(&bch_register_lock);
  1576. init_waitqueue_head(&unregister_wait);
  1577. register_reboot_notifier(&reboot);
  1578. closure_debug_init();
  1579. bcache_major = register_blkdev(0, "bcache");
  1580. if (bcache_major < 0)
  1581. return bcache_major;
  1582. if (!(bcache_wq = create_workqueue("bcache")) ||
  1583. !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
  1584. sysfs_create_files(bcache_kobj, files) ||
  1585. bch_btree_init() ||
  1586. bch_request_init() ||
  1587. bch_writeback_init() ||
  1588. bch_debug_init(bcache_kobj))
  1589. goto err;
  1590. return 0;
  1591. err:
  1592. bcache_exit();
  1593. return -ENOMEM;
  1594. }
  1595. module_exit(bcache_exit);
  1596. module_init(bcache_init);