iser_memory.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. /*
  2. * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
  3. * Copyright (c) 2013 Mellanox Technologies. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/slab.h>
  36. #include <linux/mm.h>
  37. #include <linux/highmem.h>
  38. #include <linux/scatterlist.h>
  39. #include "iscsi_iser.h"
  40. #define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
  41. /**
  42. * iser_start_rdma_unaligned_sg
  43. */
  44. static int iser_start_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
  45. enum iser_data_dir cmd_dir)
  46. {
  47. int dma_nents;
  48. struct ib_device *dev;
  49. char *mem = NULL;
  50. struct iser_data_buf *data = &iser_task->data[cmd_dir];
  51. unsigned long cmd_data_len = data->data_len;
  52. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  53. mem = (void *)__get_free_pages(GFP_ATOMIC,
  54. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  55. else
  56. mem = kmalloc(cmd_data_len, GFP_ATOMIC);
  57. if (mem == NULL) {
  58. iser_err("Failed to allocate mem size %d %d for copying sglist\n",
  59. data->size,(int)cmd_data_len);
  60. return -ENOMEM;
  61. }
  62. if (cmd_dir == ISER_DIR_OUT) {
  63. /* copy the unaligned sg the buffer which is used for RDMA */
  64. struct scatterlist *sgl = (struct scatterlist *)data->buf;
  65. struct scatterlist *sg;
  66. int i;
  67. char *p, *from;
  68. p = mem;
  69. for_each_sg(sgl, sg, data->size, i) {
  70. from = kmap_atomic(sg_page(sg));
  71. memcpy(p,
  72. from + sg->offset,
  73. sg->length);
  74. kunmap_atomic(from);
  75. p += sg->length;
  76. }
  77. }
  78. sg_init_one(&iser_task->data_copy[cmd_dir].sg_single, mem, cmd_data_len);
  79. iser_task->data_copy[cmd_dir].buf =
  80. &iser_task->data_copy[cmd_dir].sg_single;
  81. iser_task->data_copy[cmd_dir].size = 1;
  82. iser_task->data_copy[cmd_dir].copy_buf = mem;
  83. dev = iser_task->iser_conn->ib_conn->device->ib_device;
  84. dma_nents = ib_dma_map_sg(dev,
  85. &iser_task->data_copy[cmd_dir].sg_single,
  86. 1,
  87. (cmd_dir == ISER_DIR_OUT) ?
  88. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  89. BUG_ON(dma_nents == 0);
  90. iser_task->data_copy[cmd_dir].dma_nents = dma_nents;
  91. return 0;
  92. }
  93. /**
  94. * iser_finalize_rdma_unaligned_sg
  95. */
  96. void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_task *iser_task,
  97. enum iser_data_dir cmd_dir)
  98. {
  99. struct ib_device *dev;
  100. struct iser_data_buf *mem_copy;
  101. unsigned long cmd_data_len;
  102. dev = iser_task->iser_conn->ib_conn->device->ib_device;
  103. mem_copy = &iser_task->data_copy[cmd_dir];
  104. ib_dma_unmap_sg(dev, &mem_copy->sg_single, 1,
  105. (cmd_dir == ISER_DIR_OUT) ?
  106. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  107. if (cmd_dir == ISER_DIR_IN) {
  108. char *mem;
  109. struct scatterlist *sgl, *sg;
  110. unsigned char *p, *to;
  111. unsigned int sg_size;
  112. int i;
  113. /* copy back read RDMA to unaligned sg */
  114. mem = mem_copy->copy_buf;
  115. sgl = (struct scatterlist *)iser_task->data[ISER_DIR_IN].buf;
  116. sg_size = iser_task->data[ISER_DIR_IN].size;
  117. p = mem;
  118. for_each_sg(sgl, sg, sg_size, i) {
  119. to = kmap_atomic(sg_page(sg));
  120. memcpy(to + sg->offset,
  121. p,
  122. sg->length);
  123. kunmap_atomic(to);
  124. p += sg->length;
  125. }
  126. }
  127. cmd_data_len = iser_task->data[cmd_dir].data_len;
  128. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  129. free_pages((unsigned long)mem_copy->copy_buf,
  130. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  131. else
  132. kfree(mem_copy->copy_buf);
  133. mem_copy->copy_buf = NULL;
  134. }
  135. #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0)
  136. /**
  137. * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
  138. * and returns the length of resulting physical address array (may be less than
  139. * the original due to possible compaction).
  140. *
  141. * we build a "page vec" under the assumption that the SG meets the RDMA
  142. * alignment requirements. Other then the first and last SG elements, all
  143. * the "internal" elements can be compacted into a list whose elements are
  144. * dma addresses of physical pages. The code supports also the weird case
  145. * where --few fragments of the same page-- are present in the SG as
  146. * consecutive elements. Also, it handles one entry SG.
  147. */
  148. static int iser_sg_to_page_vec(struct iser_data_buf *data,
  149. struct ib_device *ibdev, u64 *pages,
  150. int *offset, int *data_size)
  151. {
  152. struct scatterlist *sg, *sgl = (struct scatterlist *)data->buf;
  153. u64 start_addr, end_addr, page, chunk_start = 0;
  154. unsigned long total_sz = 0;
  155. unsigned int dma_len;
  156. int i, new_chunk, cur_page, last_ent = data->dma_nents - 1;
  157. /* compute the offset of first element */
  158. *offset = (u64) sgl[0].offset & ~MASK_4K;
  159. new_chunk = 1;
  160. cur_page = 0;
  161. for_each_sg(sgl, sg, data->dma_nents, i) {
  162. start_addr = ib_sg_dma_address(ibdev, sg);
  163. if (new_chunk)
  164. chunk_start = start_addr;
  165. dma_len = ib_sg_dma_len(ibdev, sg);
  166. end_addr = start_addr + dma_len;
  167. total_sz += dma_len;
  168. /* collect page fragments until aligned or end of SG list */
  169. if (!IS_4K_ALIGNED(end_addr) && i < last_ent) {
  170. new_chunk = 0;
  171. continue;
  172. }
  173. new_chunk = 1;
  174. /* address of the first page in the contiguous chunk;
  175. masking relevant for the very first SG entry,
  176. which might be unaligned */
  177. page = chunk_start & MASK_4K;
  178. do {
  179. pages[cur_page++] = page;
  180. page += SIZE_4K;
  181. } while (page < end_addr);
  182. }
  183. *data_size = total_sz;
  184. iser_dbg("page_vec->data_size:%d cur_page %d\n",
  185. *data_size, cur_page);
  186. return cur_page;
  187. }
  188. /**
  189. * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
  190. * for RDMA sub-list of a scatter-gather list of memory buffers, and returns
  191. * the number of entries which are aligned correctly. Supports the case where
  192. * consecutive SG elements are actually fragments of the same physcial page.
  193. */
  194. static int iser_data_buf_aligned_len(struct iser_data_buf *data,
  195. struct ib_device *ibdev)
  196. {
  197. struct scatterlist *sgl, *sg, *next_sg = NULL;
  198. u64 start_addr, end_addr;
  199. int i, ret_len, start_check = 0;
  200. if (data->dma_nents == 1)
  201. return 1;
  202. sgl = (struct scatterlist *)data->buf;
  203. start_addr = ib_sg_dma_address(ibdev, sgl);
  204. for_each_sg(sgl, sg, data->dma_nents, i) {
  205. if (start_check && !IS_4K_ALIGNED(start_addr))
  206. break;
  207. next_sg = sg_next(sg);
  208. if (!next_sg)
  209. break;
  210. end_addr = start_addr + ib_sg_dma_len(ibdev, sg);
  211. start_addr = ib_sg_dma_address(ibdev, next_sg);
  212. if (end_addr == start_addr) {
  213. start_check = 0;
  214. continue;
  215. } else
  216. start_check = 1;
  217. if (!IS_4K_ALIGNED(end_addr))
  218. break;
  219. }
  220. ret_len = (next_sg) ? i : i+1;
  221. iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
  222. ret_len, data->dma_nents, data);
  223. return ret_len;
  224. }
  225. static void iser_data_buf_dump(struct iser_data_buf *data,
  226. struct ib_device *ibdev)
  227. {
  228. struct scatterlist *sgl = (struct scatterlist *)data->buf;
  229. struct scatterlist *sg;
  230. int i;
  231. for_each_sg(sgl, sg, data->dma_nents, i)
  232. iser_dbg("sg[%d] dma_addr:0x%lX page:0x%p "
  233. "off:0x%x sz:0x%x dma_len:0x%x\n",
  234. i, (unsigned long)ib_sg_dma_address(ibdev, sg),
  235. sg_page(sg), sg->offset,
  236. sg->length, ib_sg_dma_len(ibdev, sg));
  237. }
  238. static void iser_dump_page_vec(struct iser_page_vec *page_vec)
  239. {
  240. int i;
  241. iser_err("page vec length %d data size %d\n",
  242. page_vec->length, page_vec->data_size);
  243. for (i = 0; i < page_vec->length; i++)
  244. iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
  245. }
  246. static void iser_page_vec_build(struct iser_data_buf *data,
  247. struct iser_page_vec *page_vec,
  248. struct ib_device *ibdev)
  249. {
  250. int page_vec_len = 0;
  251. page_vec->length = 0;
  252. page_vec->offset = 0;
  253. iser_dbg("Translating sg sz: %d\n", data->dma_nents);
  254. page_vec_len = iser_sg_to_page_vec(data, ibdev, page_vec->pages,
  255. &page_vec->offset,
  256. &page_vec->data_size);
  257. iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents, page_vec_len);
  258. page_vec->length = page_vec_len;
  259. if (page_vec_len * SIZE_4K < page_vec->data_size) {
  260. iser_err("page_vec too short to hold this SG\n");
  261. iser_data_buf_dump(data, ibdev);
  262. iser_dump_page_vec(page_vec);
  263. BUG();
  264. }
  265. }
  266. int iser_dma_map_task_data(struct iscsi_iser_task *iser_task,
  267. struct iser_data_buf *data,
  268. enum iser_data_dir iser_dir,
  269. enum dma_data_direction dma_dir)
  270. {
  271. struct ib_device *dev;
  272. iser_task->dir[iser_dir] = 1;
  273. dev = iser_task->iser_conn->ib_conn->device->ib_device;
  274. data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir);
  275. if (data->dma_nents == 0) {
  276. iser_err("dma_map_sg failed!!!\n");
  277. return -EINVAL;
  278. }
  279. return 0;
  280. }
  281. void iser_dma_unmap_task_data(struct iscsi_iser_task *iser_task)
  282. {
  283. struct ib_device *dev;
  284. struct iser_data_buf *data;
  285. dev = iser_task->iser_conn->ib_conn->device->ib_device;
  286. if (iser_task->dir[ISER_DIR_IN]) {
  287. data = &iser_task->data[ISER_DIR_IN];
  288. ib_dma_unmap_sg(dev, data->buf, data->size, DMA_FROM_DEVICE);
  289. }
  290. if (iser_task->dir[ISER_DIR_OUT]) {
  291. data = &iser_task->data[ISER_DIR_OUT];
  292. ib_dma_unmap_sg(dev, data->buf, data->size, DMA_TO_DEVICE);
  293. }
  294. }
  295. static int fall_to_bounce_buf(struct iscsi_iser_task *iser_task,
  296. struct ib_device *ibdev,
  297. enum iser_data_dir cmd_dir,
  298. int aligned_len)
  299. {
  300. struct iscsi_conn *iscsi_conn = iser_task->iser_conn->iscsi_conn;
  301. struct iser_data_buf *mem = &iser_task->data[cmd_dir];
  302. iscsi_conn->fmr_unalign_cnt++;
  303. iser_warn("rdma alignment violation (%d/%d aligned) or FMR not supported\n",
  304. aligned_len, mem->size);
  305. if (iser_debug_level > 0)
  306. iser_data_buf_dump(mem, ibdev);
  307. /* unmap the command data before accessing it */
  308. iser_dma_unmap_task_data(iser_task);
  309. /* allocate copy buf, if we are writing, copy the */
  310. /* unaligned scatterlist, dma map the copy */
  311. if (iser_start_rdma_unaligned_sg(iser_task, cmd_dir) != 0)
  312. return -ENOMEM;
  313. return 0;
  314. }
  315. /**
  316. * iser_reg_rdma_mem_fmr - Registers memory intended for RDMA,
  317. * using FMR (if possible) obtaining rkey and va
  318. *
  319. * returns 0 on success, errno code on failure
  320. */
  321. int iser_reg_rdma_mem_fmr(struct iscsi_iser_task *iser_task,
  322. enum iser_data_dir cmd_dir)
  323. {
  324. struct iser_conn *ib_conn = iser_task->iser_conn->ib_conn;
  325. struct iser_device *device = ib_conn->device;
  326. struct ib_device *ibdev = device->ib_device;
  327. struct iser_data_buf *mem = &iser_task->data[cmd_dir];
  328. struct iser_regd_buf *regd_buf;
  329. int aligned_len;
  330. int err;
  331. int i;
  332. struct scatterlist *sg;
  333. regd_buf = &iser_task->rdma_regd[cmd_dir];
  334. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  335. if (aligned_len != mem->dma_nents) {
  336. err = fall_to_bounce_buf(iser_task, ibdev,
  337. cmd_dir, aligned_len);
  338. if (err) {
  339. iser_err("failed to allocate bounce buffer\n");
  340. return err;
  341. }
  342. mem = &iser_task->data_copy[cmd_dir];
  343. }
  344. /* if there a single dma entry, FMR is not needed */
  345. if (mem->dma_nents == 1) {
  346. sg = (struct scatterlist *)mem->buf;
  347. regd_buf->reg.lkey = device->mr->lkey;
  348. regd_buf->reg.rkey = device->mr->rkey;
  349. regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]);
  350. regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]);
  351. regd_buf->reg.is_mr = 0;
  352. iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X "
  353. "va: 0x%08lX sz: %ld]\n",
  354. (unsigned int)regd_buf->reg.lkey,
  355. (unsigned int)regd_buf->reg.rkey,
  356. (unsigned long)regd_buf->reg.va,
  357. (unsigned long)regd_buf->reg.len);
  358. } else { /* use FMR for multiple dma entries */
  359. iser_page_vec_build(mem, ib_conn->fastreg.fmr.page_vec, ibdev);
  360. err = iser_reg_page_vec(ib_conn, ib_conn->fastreg.fmr.page_vec,
  361. &regd_buf->reg);
  362. if (err && err != -EAGAIN) {
  363. iser_data_buf_dump(mem, ibdev);
  364. iser_err("mem->dma_nents = %d (dlength = 0x%x)\n",
  365. mem->dma_nents,
  366. ntoh24(iser_task->desc.iscsi_header.dlength));
  367. iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n",
  368. ib_conn->fastreg.fmr.page_vec->data_size,
  369. ib_conn->fastreg.fmr.page_vec->length,
  370. ib_conn->fastreg.fmr.page_vec->offset);
  371. for (i = 0; i < ib_conn->fastreg.fmr.page_vec->length; i++)
  372. iser_err("page_vec[%d] = 0x%llx\n", i,
  373. (unsigned long long) ib_conn->fastreg.fmr.page_vec->pages[i]);
  374. }
  375. if (err)
  376. return err;
  377. }
  378. return 0;
  379. }
  380. static int iser_fast_reg_mr(struct fast_reg_descriptor *desc,
  381. struct iser_conn *ib_conn,
  382. struct iser_regd_buf *regd_buf,
  383. u32 offset, unsigned int data_size,
  384. unsigned int page_list_len)
  385. {
  386. struct ib_send_wr fastreg_wr, inv_wr;
  387. struct ib_send_wr *bad_wr, *wr = NULL;
  388. u8 key;
  389. int ret;
  390. if (!desc->valid) {
  391. memset(&inv_wr, 0, sizeof(inv_wr));
  392. inv_wr.opcode = IB_WR_LOCAL_INV;
  393. inv_wr.send_flags = IB_SEND_SIGNALED;
  394. inv_wr.ex.invalidate_rkey = desc->data_mr->rkey;
  395. wr = &inv_wr;
  396. /* Bump the key */
  397. key = (u8)(desc->data_mr->rkey & 0x000000FF);
  398. ib_update_fast_reg_key(desc->data_mr, ++key);
  399. }
  400. /* Prepare FASTREG WR */
  401. memset(&fastreg_wr, 0, sizeof(fastreg_wr));
  402. fastreg_wr.opcode = IB_WR_FAST_REG_MR;
  403. fastreg_wr.send_flags = IB_SEND_SIGNALED;
  404. fastreg_wr.wr.fast_reg.iova_start = desc->data_frpl->page_list[0] + offset;
  405. fastreg_wr.wr.fast_reg.page_list = desc->data_frpl;
  406. fastreg_wr.wr.fast_reg.page_list_len = page_list_len;
  407. fastreg_wr.wr.fast_reg.page_shift = SHIFT_4K;
  408. fastreg_wr.wr.fast_reg.length = data_size;
  409. fastreg_wr.wr.fast_reg.rkey = desc->data_mr->rkey;
  410. fastreg_wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
  411. IB_ACCESS_REMOTE_WRITE |
  412. IB_ACCESS_REMOTE_READ);
  413. if (!wr) {
  414. wr = &fastreg_wr;
  415. atomic_inc(&ib_conn->post_send_buf_count);
  416. } else {
  417. wr->next = &fastreg_wr;
  418. atomic_add(2, &ib_conn->post_send_buf_count);
  419. }
  420. ret = ib_post_send(ib_conn->qp, wr, &bad_wr);
  421. if (ret) {
  422. if (bad_wr->next)
  423. atomic_sub(2, &ib_conn->post_send_buf_count);
  424. else
  425. atomic_dec(&ib_conn->post_send_buf_count);
  426. iser_err("fast registration failed, ret:%d\n", ret);
  427. return ret;
  428. }
  429. desc->valid = false;
  430. regd_buf->reg.mem_h = desc;
  431. regd_buf->reg.lkey = desc->data_mr->lkey;
  432. regd_buf->reg.rkey = desc->data_mr->rkey;
  433. regd_buf->reg.va = desc->data_frpl->page_list[0] + offset;
  434. regd_buf->reg.len = data_size;
  435. regd_buf->reg.is_mr = 1;
  436. return ret;
  437. }
  438. /**
  439. * iser_reg_rdma_mem_frwr - Registers memory intended for RDMA,
  440. * using Fast Registration WR (if possible) obtaining rkey and va
  441. *
  442. * returns 0 on success, errno code on failure
  443. */
  444. int iser_reg_rdma_mem_frwr(struct iscsi_iser_task *iser_task,
  445. enum iser_data_dir cmd_dir)
  446. {
  447. struct iser_conn *ib_conn = iser_task->iser_conn->ib_conn;
  448. struct iser_device *device = ib_conn->device;
  449. struct ib_device *ibdev = device->ib_device;
  450. struct iser_data_buf *mem = &iser_task->data[cmd_dir];
  451. struct iser_regd_buf *regd_buf = &iser_task->rdma_regd[cmd_dir];
  452. struct fast_reg_descriptor *desc;
  453. unsigned int data_size, page_list_len;
  454. int err, aligned_len;
  455. unsigned long flags;
  456. u32 offset;
  457. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  458. if (aligned_len != mem->dma_nents) {
  459. err = fall_to_bounce_buf(iser_task, ibdev,
  460. cmd_dir, aligned_len);
  461. if (err) {
  462. iser_err("failed to allocate bounce buffer\n");
  463. return err;
  464. }
  465. mem = &iser_task->data_copy[cmd_dir];
  466. }
  467. /* if there a single dma entry, dma mr suffices */
  468. if (mem->dma_nents == 1) {
  469. struct scatterlist *sg = (struct scatterlist *)mem->buf;
  470. regd_buf->reg.lkey = device->mr->lkey;
  471. regd_buf->reg.rkey = device->mr->rkey;
  472. regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]);
  473. regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]);
  474. regd_buf->reg.is_mr = 0;
  475. } else {
  476. spin_lock_irqsave(&ib_conn->lock, flags);
  477. desc = list_first_entry(&ib_conn->fastreg.frwr.pool,
  478. struct fast_reg_descriptor, list);
  479. list_del(&desc->list);
  480. spin_unlock_irqrestore(&ib_conn->lock, flags);
  481. page_list_len = iser_sg_to_page_vec(mem, device->ib_device,
  482. desc->data_frpl->page_list,
  483. &offset, &data_size);
  484. if (page_list_len * SIZE_4K < data_size) {
  485. iser_err("fast reg page_list too short to hold this SG\n");
  486. err = -EINVAL;
  487. goto err_reg;
  488. }
  489. err = iser_fast_reg_mr(desc, ib_conn, regd_buf,
  490. offset, data_size, page_list_len);
  491. if (err)
  492. goto err_reg;
  493. }
  494. return 0;
  495. err_reg:
  496. spin_lock_irqsave(&ib_conn->lock, flags);
  497. list_add_tail(&desc->list, &ib_conn->fastreg.frwr.pool);
  498. spin_unlock_irqrestore(&ib_conn->lock, flags);
  499. return err;
  500. }