rcar-hpbdma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Copyright (C) 2011-2013 Renesas Electronics Corporation
  3. * Copyright (C) 2013 Cogent Embedded, Inc.
  4. *
  5. * This file is based on the drivers/dma/sh/shdma.c
  6. *
  7. * Renesas SuperH DMA Engine support
  8. *
  9. * This is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * - DMA of SuperH does not have Hardware DMA chain mode.
  15. * - max DMA size is 16MB.
  16. *
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_data/dma-rcar-hpbdma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/shdma-base.h>
  27. #include <linux/slab.h>
  28. /* DMA channel registers */
  29. #define HPB_DMAE_DSAR0 0x00
  30. #define HPB_DMAE_DDAR0 0x04
  31. #define HPB_DMAE_DTCR0 0x08
  32. #define HPB_DMAE_DSAR1 0x0C
  33. #define HPB_DMAE_DDAR1 0x10
  34. #define HPB_DMAE_DTCR1 0x14
  35. #define HPB_DMAE_DSASR 0x18
  36. #define HPB_DMAE_DDASR 0x1C
  37. #define HPB_DMAE_DTCSR 0x20
  38. #define HPB_DMAE_DPTR 0x24
  39. #define HPB_DMAE_DCR 0x28
  40. #define HPB_DMAE_DCMDR 0x2C
  41. #define HPB_DMAE_DSTPR 0x30
  42. #define HPB_DMAE_DSTSR 0x34
  43. #define HPB_DMAE_DDBGR 0x38
  44. #define HPB_DMAE_DDBGR2 0x3C
  45. #define HPB_DMAE_CHAN(n) (0x40 * (n))
  46. /* DMA command register (DCMDR) bits */
  47. #define HPB_DMAE_DCMDR_BDOUT BIT(7)
  48. #define HPB_DMAE_DCMDR_DQSPD BIT(6)
  49. #define HPB_DMAE_DCMDR_DQSPC BIT(5)
  50. #define HPB_DMAE_DCMDR_DMSPD BIT(4)
  51. #define HPB_DMAE_DCMDR_DMSPC BIT(3)
  52. #define HPB_DMAE_DCMDR_DQEND BIT(2)
  53. #define HPB_DMAE_DCMDR_DNXT BIT(1)
  54. #define HPB_DMAE_DCMDR_DMEN BIT(0)
  55. /* DMA forced stop register (DSTPR) bits */
  56. #define HPB_DMAE_DSTPR_DMSTP BIT(0)
  57. /* DMA status register (DSTSR) bits */
  58. #define HPB_DMAE_DSTSR_DMSTS BIT(0)
  59. /* DMA common registers */
  60. #define HPB_DMAE_DTIMR 0x00
  61. #define HPB_DMAE_DINTSR0 0x0C
  62. #define HPB_DMAE_DINTSR1 0x10
  63. #define HPB_DMAE_DINTCR0 0x14
  64. #define HPB_DMAE_DINTCR1 0x18
  65. #define HPB_DMAE_DINTMR0 0x1C
  66. #define HPB_DMAE_DINTMR1 0x20
  67. #define HPB_DMAE_DACTSR0 0x24
  68. #define HPB_DMAE_DACTSR1 0x28
  69. #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4)
  70. #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4)
  71. #define HPB_DMAE_HPB_DMLVLR0 0x160
  72. #define HPB_DMAE_HPB_DMLVLR1 0x164
  73. #define HPB_DMAE_HPB_DMSHPT0 0x168
  74. #define HPB_DMAE_HPB_DMSHPT1 0x16C
  75. #define HPB_DMA_SLAVE_NUMBER 256
  76. #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */
  77. struct hpb_dmae_chan {
  78. struct shdma_chan shdma_chan;
  79. int xfer_mode; /* DMA transfer mode */
  80. #define XFER_SINGLE 1
  81. #define XFER_DOUBLE 2
  82. unsigned plane_idx; /* current DMA information set */
  83. bool first_desc; /* first/next transfer */
  84. int xmit_shift; /* log_2(bytes_per_xfer) */
  85. void __iomem *base;
  86. const struct hpb_dmae_slave_config *cfg;
  87. char dev_id[16]; /* unique name per DMAC of channel */
  88. };
  89. struct hpb_dmae_device {
  90. struct shdma_dev shdma_dev;
  91. spinlock_t reg_lock; /* comm_reg operation lock */
  92. struct hpb_dmae_pdata *pdata;
  93. void __iomem *chan_reg;
  94. void __iomem *comm_reg;
  95. void __iomem *reset_reg;
  96. void __iomem *mode_reg;
  97. };
  98. struct hpb_dmae_regs {
  99. u32 sar; /* SAR / source address */
  100. u32 dar; /* DAR / destination address */
  101. u32 tcr; /* TCR / transfer count */
  102. };
  103. struct hpb_desc {
  104. struct shdma_desc shdma_desc;
  105. struct hpb_dmae_regs hw;
  106. unsigned plane_idx;
  107. };
  108. #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
  109. #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
  110. #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
  111. struct hpb_dmae_device, shdma_dev.dma_dev)
  112. static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
  113. {
  114. iowrite32(data, hpb_dc->base + reg);
  115. }
  116. static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
  117. {
  118. return ioread32(hpb_dc->base + reg);
  119. }
  120. static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  121. {
  122. iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
  123. }
  124. static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  125. {
  126. iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
  127. }
  128. static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
  129. {
  130. u32 v;
  131. if (ch < 32)
  132. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
  133. else
  134. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
  135. return v & 0x1;
  136. }
  137. static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  138. {
  139. if (ch < 32)
  140. iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
  141. else
  142. iowrite32((0x1 << (ch - 32)),
  143. hpbdev->comm_reg + HPB_DMAE_DINTCR1);
  144. }
  145. static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  146. {
  147. iowrite32(data, hpbdev->mode_reg);
  148. }
  149. static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
  150. {
  151. return ioread32(hpbdev->mode_reg);
  152. }
  153. static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
  154. {
  155. u32 intreg;
  156. spin_lock_irq(&hpbdev->reg_lock);
  157. if (ch < 32) {
  158. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  159. iowrite32(BIT(ch) | intreg,
  160. hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  161. } else {
  162. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  163. iowrite32(BIT(ch - 32) | intreg,
  164. hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  165. }
  166. spin_unlock_irq(&hpbdev->reg_lock);
  167. }
  168. static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
  169. {
  170. u32 rstr;
  171. int timeout = 10000; /* 100 ms */
  172. spin_lock(&hpbdev->reg_lock);
  173. rstr = ioread32(hpbdev->reset_reg);
  174. rstr |= data;
  175. iowrite32(rstr, hpbdev->reset_reg);
  176. do {
  177. rstr = ioread32(hpbdev->reset_reg);
  178. if ((rstr & data) == data)
  179. break;
  180. udelay(10);
  181. } while (timeout--);
  182. if (timeout < 0)
  183. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  184. "%s timeout\n", __func__);
  185. rstr &= ~data;
  186. iowrite32(rstr, hpbdev->reset_reg);
  187. spin_unlock(&hpbdev->reg_lock);
  188. }
  189. static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
  190. u32 mask, u32 data)
  191. {
  192. u32 mode;
  193. spin_lock_irq(&hpbdev->reg_lock);
  194. mode = asyncmdr_read(hpbdev);
  195. mode &= ~mask;
  196. mode |= data;
  197. asyncmdr_write(hpbdev, mode);
  198. spin_unlock_irq(&hpbdev->reg_lock);
  199. }
  200. static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
  201. {
  202. dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
  203. }
  204. static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
  205. {
  206. u32 ch;
  207. for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
  208. hsrstr_write(hpbdev, ch);
  209. }
  210. static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
  211. {
  212. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  213. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  214. int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
  215. int i;
  216. switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
  217. case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
  218. default:
  219. i = XMIT_SZ_8BIT;
  220. break;
  221. case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
  222. i = XMIT_SZ_16BIT;
  223. break;
  224. case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
  225. i = XMIT_SZ_32BIT;
  226. break;
  227. }
  228. return pdata->ts_shift[i];
  229. }
  230. static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
  231. struct hpb_dmae_regs *hw, unsigned plane)
  232. {
  233. ch_reg_write(hpb_chan, hw->sar,
  234. plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
  235. ch_reg_write(hpb_chan, hw->dar,
  236. plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
  237. ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
  238. plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  239. }
  240. static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
  241. {
  242. ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
  243. HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
  244. }
  245. static void hpb_dmae_halt(struct shdma_chan *schan)
  246. {
  247. struct hpb_dmae_chan *chan = to_chan(schan);
  248. ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
  249. ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
  250. }
  251. static const struct hpb_dmae_slave_config *
  252. hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
  253. {
  254. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  255. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  256. int i;
  257. if (slave_id >= HPB_DMA_SLAVE_NUMBER)
  258. return NULL;
  259. for (i = 0; i < pdata->num_slaves; i++)
  260. if (pdata->slaves[i].id == slave_id)
  261. return pdata->slaves + i;
  262. return NULL;
  263. }
  264. static void hpb_dmae_start_xfer(struct shdma_chan *schan,
  265. struct shdma_desc *sdesc)
  266. {
  267. struct hpb_dmae_chan *chan = to_chan(schan);
  268. struct hpb_dmae_device *hpbdev = to_dev(chan);
  269. struct hpb_desc *desc = to_desc(sdesc);
  270. if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
  271. hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
  272. desc->plane_idx = chan->plane_idx;
  273. hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
  274. hpb_dmae_start(chan, !chan->first_desc);
  275. if (chan->xfer_mode == XFER_DOUBLE) {
  276. chan->plane_idx ^= 1;
  277. chan->first_desc = false;
  278. }
  279. }
  280. static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
  281. struct shdma_desc *sdesc)
  282. {
  283. /*
  284. * This is correct since we always have at most single
  285. * outstanding DMA transfer per channel, and by the time
  286. * we get completion interrupt the transfer is completed.
  287. * This will change if we ever use alternating DMA
  288. * information sets and submit two descriptors at once.
  289. */
  290. return true;
  291. }
  292. static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
  293. {
  294. struct hpb_dmae_chan *chan = to_chan(schan);
  295. struct hpb_dmae_device *hpbdev = to_dev(chan);
  296. int ch = chan->cfg->dma_ch;
  297. /* Check Complete DMA Transfer */
  298. if (dintsr_read(hpbdev, ch)) {
  299. /* Clear Interrupt status */
  300. dintcr_write(hpbdev, ch);
  301. return true;
  302. }
  303. return false;
  304. }
  305. static int hpb_dmae_desc_setup(struct shdma_chan *schan,
  306. struct shdma_desc *sdesc,
  307. dma_addr_t src, dma_addr_t dst, size_t *len)
  308. {
  309. struct hpb_desc *desc = to_desc(sdesc);
  310. if (*len > (size_t)HPB_DMA_TCR_MAX)
  311. *len = (size_t)HPB_DMA_TCR_MAX;
  312. desc->hw.sar = src;
  313. desc->hw.dar = dst;
  314. desc->hw.tcr = *len;
  315. return 0;
  316. }
  317. static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
  318. struct shdma_desc *sdesc)
  319. {
  320. struct hpb_desc *desc = to_desc(sdesc);
  321. struct hpb_dmae_chan *chan = to_chan(schan);
  322. u32 tcr = ch_reg_read(chan, desc->plane_idx ?
  323. HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  324. return (desc->hw.tcr - tcr) << chan->xmit_shift;
  325. }
  326. static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
  327. {
  328. struct hpb_dmae_chan *chan = to_chan(schan);
  329. u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
  330. return (dstsr & HPB_DMAE_DSTSR_DMSTS) == HPB_DMAE_DSTSR_DMSTS;
  331. }
  332. static int
  333. hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
  334. const struct hpb_dmae_slave_config *cfg)
  335. {
  336. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  337. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  338. const struct hpb_dmae_channel *channel = pdata->channels;
  339. int slave_id = cfg->id;
  340. int i, err;
  341. for (i = 0; i < pdata->num_channels; i++, channel++) {
  342. if (channel->s_id == slave_id) {
  343. struct device *dev = hpb_chan->shdma_chan.dev;
  344. hpb_chan->base = hpbdev->chan_reg +
  345. HPB_DMAE_CHAN(cfg->dma_ch);
  346. dev_dbg(dev, "Detected Slave device\n");
  347. dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id);
  348. dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch);
  349. dev_dbg(dev, " -- channel->ch_irq: %d\n",
  350. channel->ch_irq);
  351. break;
  352. }
  353. }
  354. err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
  355. IRQF_SHARED, hpb_chan->dev_id);
  356. if (err) {
  357. dev_err(hpb_chan->shdma_chan.dev,
  358. "DMA channel request_irq %d failed with error %d\n",
  359. channel->ch_irq, err);
  360. return err;
  361. }
  362. hpb_chan->plane_idx = 0;
  363. hpb_chan->first_desc = true;
  364. if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
  365. hpb_chan->xfer_mode = XFER_SINGLE;
  366. } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
  367. (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
  368. hpb_chan->xfer_mode = XFER_DOUBLE;
  369. } else {
  370. dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
  371. shdma_free_irq(&hpb_chan->shdma_chan);
  372. return -EINVAL;
  373. }
  374. if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
  375. hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
  376. ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
  377. ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
  378. hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
  379. hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
  380. return 0;
  381. }
  382. static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id, bool try)
  383. {
  384. struct hpb_dmae_chan *chan = to_chan(schan);
  385. const struct hpb_dmae_slave_config *sc =
  386. hpb_dmae_find_slave(chan, slave_id);
  387. if (!sc)
  388. return -ENODEV;
  389. if (try)
  390. return 0;
  391. chan->cfg = sc;
  392. return hpb_dmae_alloc_chan_resources(chan, sc);
  393. }
  394. static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
  395. {
  396. }
  397. static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
  398. {
  399. struct hpb_dmae_chan *chan = to_chan(schan);
  400. return chan->cfg->addr;
  401. }
  402. static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
  403. {
  404. return &((struct hpb_desc *)buf)[i].shdma_desc;
  405. }
  406. static const struct shdma_ops hpb_dmae_ops = {
  407. .desc_completed = hpb_dmae_desc_completed,
  408. .halt_channel = hpb_dmae_halt,
  409. .channel_busy = hpb_dmae_channel_busy,
  410. .slave_addr = hpb_dmae_slave_addr,
  411. .desc_setup = hpb_dmae_desc_setup,
  412. .set_slave = hpb_dmae_set_slave,
  413. .setup_xfer = hpb_dmae_setup_xfer,
  414. .start_xfer = hpb_dmae_start_xfer,
  415. .embedded_desc = hpb_dmae_embedded_desc,
  416. .chan_irq = hpb_dmae_chan_irq,
  417. .get_partial = hpb_dmae_get_partial,
  418. };
  419. static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
  420. {
  421. struct shdma_dev *sdev = &hpbdev->shdma_dev;
  422. struct platform_device *pdev =
  423. to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
  424. struct hpb_dmae_chan *new_hpb_chan;
  425. struct shdma_chan *schan;
  426. /* Alloc channel */
  427. new_hpb_chan = devm_kzalloc(&pdev->dev,
  428. sizeof(struct hpb_dmae_chan), GFP_KERNEL);
  429. if (!new_hpb_chan) {
  430. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  431. "No free memory for allocating DMA channels!\n");
  432. return -ENOMEM;
  433. }
  434. schan = &new_hpb_chan->shdma_chan;
  435. shdma_chan_probe(sdev, schan, id);
  436. if (pdev->id >= 0)
  437. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  438. "hpb-dmae%d.%d", pdev->id, id);
  439. else
  440. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  441. "hpb-dma.%d", id);
  442. return 0;
  443. }
  444. static int hpb_dmae_probe(struct platform_device *pdev)
  445. {
  446. struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
  447. struct hpb_dmae_device *hpbdev;
  448. struct dma_device *dma_dev;
  449. struct resource *chan, *comm, *rest, *mode, *irq_res;
  450. int err, i;
  451. /* Get platform data */
  452. if (!pdata || !pdata->num_channels)
  453. return -ENODEV;
  454. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  455. comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  456. rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
  457. mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
  458. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  459. if (!irq_res)
  460. return -ENODEV;
  461. hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
  462. GFP_KERNEL);
  463. if (!hpbdev) {
  464. dev_err(&pdev->dev, "Not enough memory\n");
  465. return -ENOMEM;
  466. }
  467. hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
  468. if (IS_ERR(hpbdev->chan_reg))
  469. return PTR_ERR(hpbdev->chan_reg);
  470. hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
  471. if (IS_ERR(hpbdev->comm_reg))
  472. return PTR_ERR(hpbdev->comm_reg);
  473. hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
  474. if (IS_ERR(hpbdev->reset_reg))
  475. return PTR_ERR(hpbdev->reset_reg);
  476. hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
  477. if (IS_ERR(hpbdev->mode_reg))
  478. return PTR_ERR(hpbdev->mode_reg);
  479. dma_dev = &hpbdev->shdma_dev.dma_dev;
  480. spin_lock_init(&hpbdev->reg_lock);
  481. /* Platform data */
  482. hpbdev->pdata = pdata;
  483. pm_runtime_enable(&pdev->dev);
  484. err = pm_runtime_get_sync(&pdev->dev);
  485. if (err < 0)
  486. dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
  487. /* Reset DMA controller */
  488. hpb_dmae_reset(hpbdev);
  489. pm_runtime_put(&pdev->dev);
  490. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  491. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  492. hpbdev->shdma_dev.ops = &hpb_dmae_ops;
  493. hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
  494. err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
  495. if (err < 0)
  496. goto error;
  497. /* Create DMA channels */
  498. for (i = 0; i < pdata->num_channels; i++)
  499. hpb_dmae_chan_probe(hpbdev, i);
  500. platform_set_drvdata(pdev, hpbdev);
  501. err = dma_async_device_register(dma_dev);
  502. if (!err)
  503. return 0;
  504. shdma_cleanup(&hpbdev->shdma_dev);
  505. error:
  506. pm_runtime_disable(&pdev->dev);
  507. return err;
  508. }
  509. static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
  510. {
  511. struct dma_device *dma_dev = &hpbdev->shdma_dev.dma_dev;
  512. struct shdma_chan *schan;
  513. int i;
  514. shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
  515. BUG_ON(!schan);
  516. shdma_free_irq(schan);
  517. shdma_chan_remove(schan);
  518. }
  519. dma_dev->chancnt = 0;
  520. }
  521. static int hpb_dmae_remove(struct platform_device *pdev)
  522. {
  523. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  524. dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
  525. pm_runtime_disable(&pdev->dev);
  526. hpb_dmae_chan_remove(hpbdev);
  527. return 0;
  528. }
  529. static void hpb_dmae_shutdown(struct platform_device *pdev)
  530. {
  531. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  532. hpb_dmae_ctl_stop(hpbdev);
  533. }
  534. static struct platform_driver hpb_dmae_driver = {
  535. .probe = hpb_dmae_probe,
  536. .remove = hpb_dmae_remove,
  537. .shutdown = hpb_dmae_shutdown,
  538. .driver = {
  539. .owner = THIS_MODULE,
  540. .name = "hpb-dma-engine",
  541. },
  542. };
  543. module_platform_driver(hpb_dmae_driver);
  544. MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
  545. MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
  546. MODULE_LICENSE("GPL");