adma.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944
  1. /*
  2. * Copyright (C) 2006-2009 DENX Software Engineering.
  3. *
  4. * Author: Yuri Tikhonov <yur@emcraft.com>
  5. *
  6. * Further porting to arch/powerpc by
  7. * Anatolij Gustschin <agust@denx.de>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. */
  26. /*
  27. * This driver supports the asynchrounous DMA copy and RAID engines available
  28. * on the AMCC PPC440SPe Processors.
  29. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  30. * ADMA driver written by D.Williams.
  31. */
  32. #include <linux/init.h>
  33. #include <linux/module.h>
  34. #include <linux/async_tx.h>
  35. #include <linux/delay.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/slab.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/of.h>
  43. #include <linux/of_platform.h>
  44. #include <asm/dcr.h>
  45. #include <asm/dcr-regs.h>
  46. #include "adma.h"
  47. #include "../dmaengine.h"
  48. enum ppc_adma_init_code {
  49. PPC_ADMA_INIT_OK = 0,
  50. PPC_ADMA_INIT_MEMRES,
  51. PPC_ADMA_INIT_MEMREG,
  52. PPC_ADMA_INIT_ALLOC,
  53. PPC_ADMA_INIT_COHERENT,
  54. PPC_ADMA_INIT_CHANNEL,
  55. PPC_ADMA_INIT_IRQ1,
  56. PPC_ADMA_INIT_IRQ2,
  57. PPC_ADMA_INIT_REGISTER
  58. };
  59. static char *ppc_adma_errors[] = {
  60. [PPC_ADMA_INIT_OK] = "ok",
  61. [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  62. [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  63. [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  64. "structure",
  65. [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  66. "hardware descriptors",
  67. [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  68. [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  69. [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  70. [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  71. };
  72. static enum ppc_adma_init_code
  73. ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  74. struct ppc_dma_chan_ref {
  75. struct dma_chan *chan;
  76. struct list_head node;
  77. };
  78. /* The list of channels exported by ppc440spe ADMA */
  79. struct list_head
  80. ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  81. /* This flag is set when want to refetch the xor chain in the interrupt
  82. * handler
  83. */
  84. static u32 do_xor_refetch;
  85. /* Pointer to DMA0, DMA1 CP/CS FIFO */
  86. static void *ppc440spe_dma_fifo_buf;
  87. /* Pointers to last submitted to DMA0, DMA1 CDBs */
  88. static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  89. static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  90. /* Pointer to last linked and submitted xor CB */
  91. static struct ppc440spe_adma_desc_slot *xor_last_linked;
  92. static struct ppc440spe_adma_desc_slot *xor_last_submit;
  93. /* This array is used in data-check operations for storing a pattern */
  94. static char ppc440spe_qword[16];
  95. static atomic_t ppc440spe_adma_err_irq_ref;
  96. static dcr_host_t ppc440spe_mq_dcr_host;
  97. static unsigned int ppc440spe_mq_dcr_len;
  98. /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  99. * the block size in transactions, then we do not allow to activate more than
  100. * only one RXOR transactions simultaneously. So use this var to store
  101. * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
  102. * set) or not (PPC440SPE_RXOR_RUN is clear).
  103. */
  104. static unsigned long ppc440spe_rxor_state;
  105. /* These are used in enable & check routines
  106. */
  107. static u32 ppc440spe_r6_enabled;
  108. static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
  109. static struct completion ppc440spe_r6_test_comp;
  110. static int ppc440spe_adma_dma2rxor_prep_src(
  111. struct ppc440spe_adma_desc_slot *desc,
  112. struct ppc440spe_rxor *cursor, int index,
  113. int src_cnt, u32 addr);
  114. static void ppc440spe_adma_dma2rxor_set_src(
  115. struct ppc440spe_adma_desc_slot *desc,
  116. int index, dma_addr_t addr);
  117. static void ppc440spe_adma_dma2rxor_set_mult(
  118. struct ppc440spe_adma_desc_slot *desc,
  119. int index, u8 mult);
  120. #ifdef ADMA_LL_DEBUG
  121. #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
  122. #else
  123. #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
  124. #endif
  125. static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
  126. {
  127. struct dma_cdb *cdb;
  128. struct xor_cb *cb;
  129. int i;
  130. switch (chan->device->id) {
  131. case 0:
  132. case 1:
  133. cdb = block;
  134. pr_debug("CDB at %p [%d]:\n"
  135. "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
  136. "\t sg1u 0x%08x sg1l 0x%08x\n"
  137. "\t sg2u 0x%08x sg2l 0x%08x\n"
  138. "\t sg3u 0x%08x sg3l 0x%08x\n",
  139. cdb, chan->device->id,
  140. cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
  141. le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
  142. le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
  143. le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
  144. );
  145. break;
  146. case 2:
  147. cb = block;
  148. pr_debug("CB at %p [%d]:\n"
  149. "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
  150. "\t cbtah 0x%08x cbtal 0x%08x\n"
  151. "\t cblah 0x%08x cblal 0x%08x\n",
  152. cb, chan->device->id,
  153. cb->cbc, cb->cbbc, cb->cbs,
  154. cb->cbtah, cb->cbtal,
  155. cb->cblah, cb->cblal);
  156. for (i = 0; i < 16; i++) {
  157. if (i && !cb->ops[i].h && !cb->ops[i].l)
  158. continue;
  159. pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
  160. i, cb->ops[i].h, cb->ops[i].l);
  161. }
  162. break;
  163. }
  164. }
  165. static void print_cb_list(struct ppc440spe_adma_chan *chan,
  166. struct ppc440spe_adma_desc_slot *iter)
  167. {
  168. for (; iter; iter = iter->hw_next)
  169. print_cb(chan, iter->hw_desc);
  170. }
  171. static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
  172. unsigned int src_cnt)
  173. {
  174. int i;
  175. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  176. for (i = 0; i < src_cnt; i++)
  177. pr_debug("\t0x%016llx ", src[i]);
  178. pr_debug("dst:\n\t0x%016llx\n", dst);
  179. }
  180. static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
  181. unsigned int src_cnt)
  182. {
  183. int i;
  184. pr_debug("\n%s(%d):\nsrc: ", __func__, id);
  185. for (i = 0; i < src_cnt; i++)
  186. pr_debug("\t0x%016llx ", src[i]);
  187. pr_debug("dst: ");
  188. for (i = 0; i < 2; i++)
  189. pr_debug("\t0x%016llx ", dst[i]);
  190. }
  191. static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
  192. unsigned int src_cnt,
  193. const unsigned char *scf)
  194. {
  195. int i;
  196. pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
  197. if (scf) {
  198. for (i = 0; i < src_cnt; i++)
  199. pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
  200. } else {
  201. for (i = 0; i < src_cnt; i++)
  202. pr_debug("\t0x%016llx(no) ", src[i]);
  203. }
  204. pr_debug("dst: ");
  205. for (i = 0; i < 2; i++)
  206. pr_debug("\t0x%016llx ", src[src_cnt + i]);
  207. }
  208. /******************************************************************************
  209. * Command (Descriptor) Blocks low-level routines
  210. ******************************************************************************/
  211. /**
  212. * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
  213. * pseudo operation
  214. */
  215. static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
  216. struct ppc440spe_adma_chan *chan)
  217. {
  218. struct xor_cb *p;
  219. switch (chan->device->id) {
  220. case PPC440SPE_XOR_ID:
  221. p = desc->hw_desc;
  222. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  223. /* NOP with Command Block Complete Enable */
  224. p->cbc = XOR_CBCR_CBCE_BIT;
  225. break;
  226. case PPC440SPE_DMA0_ID:
  227. case PPC440SPE_DMA1_ID:
  228. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  229. /* NOP with interrupt */
  230. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  231. break;
  232. default:
  233. printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
  234. __func__);
  235. break;
  236. }
  237. }
  238. /**
  239. * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
  240. * pseudo operation
  241. */
  242. static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
  243. {
  244. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  245. desc->hw_next = NULL;
  246. desc->src_cnt = 0;
  247. desc->dst_cnt = 1;
  248. }
  249. /**
  250. * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
  251. */
  252. static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
  253. int src_cnt, unsigned long flags)
  254. {
  255. struct xor_cb *hw_desc = desc->hw_desc;
  256. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  257. desc->hw_next = NULL;
  258. desc->src_cnt = src_cnt;
  259. desc->dst_cnt = 1;
  260. hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
  261. if (flags & DMA_PREP_INTERRUPT)
  262. /* Enable interrupt on completion */
  263. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  264. }
  265. /**
  266. * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
  267. * operation in DMA2 controller
  268. */
  269. static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
  270. int dst_cnt, int src_cnt, unsigned long flags)
  271. {
  272. struct xor_cb *hw_desc = desc->hw_desc;
  273. memset(desc->hw_desc, 0, sizeof(struct xor_cb));
  274. desc->hw_next = NULL;
  275. desc->src_cnt = src_cnt;
  276. desc->dst_cnt = dst_cnt;
  277. memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
  278. desc->descs_per_op = 0;
  279. hw_desc->cbc = XOR_CBCR_TGT_BIT;
  280. if (flags & DMA_PREP_INTERRUPT)
  281. /* Enable interrupt on completion */
  282. hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
  283. }
  284. #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
  285. #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
  286. #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
  287. /**
  288. * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
  289. * with DMA0/1
  290. */
  291. static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
  292. int dst_cnt, int src_cnt, unsigned long flags,
  293. unsigned long op)
  294. {
  295. struct dma_cdb *hw_desc;
  296. struct ppc440spe_adma_desc_slot *iter;
  297. u8 dopc;
  298. /* Common initialization of a PQ descriptors chain */
  299. set_bits(op, &desc->flags);
  300. desc->src_cnt = src_cnt;
  301. desc->dst_cnt = dst_cnt;
  302. /* WXOR MULTICAST if both P and Q are being computed
  303. * MV_SG1_SG2 if Q only
  304. */
  305. dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
  306. DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
  307. list_for_each_entry(iter, &desc->group_list, chain_node) {
  308. hw_desc = iter->hw_desc;
  309. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  310. if (likely(!list_is_last(&iter->chain_node,
  311. &desc->group_list))) {
  312. /* set 'next' pointer */
  313. iter->hw_next = list_entry(iter->chain_node.next,
  314. struct ppc440spe_adma_desc_slot, chain_node);
  315. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  316. } else {
  317. /* this is the last descriptor.
  318. * this slot will be pasted from ADMA level
  319. * each time it wants to configure parameters
  320. * of the transaction (src, dst, ...)
  321. */
  322. iter->hw_next = NULL;
  323. if (flags & DMA_PREP_INTERRUPT)
  324. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  325. else
  326. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  327. }
  328. }
  329. /* Set OPS depending on WXOR/RXOR type of operation */
  330. if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
  331. /* This is a WXOR only chain:
  332. * - first descriptors are for zeroing destinations
  333. * if PPC440SPE_ZERO_P/Q set;
  334. * - descriptors remained are for GF-XOR operations.
  335. */
  336. iter = list_first_entry(&desc->group_list,
  337. struct ppc440spe_adma_desc_slot,
  338. chain_node);
  339. if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
  340. hw_desc = iter->hw_desc;
  341. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  342. iter = list_first_entry(&iter->chain_node,
  343. struct ppc440spe_adma_desc_slot,
  344. chain_node);
  345. }
  346. if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
  347. hw_desc = iter->hw_desc;
  348. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  349. iter = list_first_entry(&iter->chain_node,
  350. struct ppc440spe_adma_desc_slot,
  351. chain_node);
  352. }
  353. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  354. hw_desc = iter->hw_desc;
  355. hw_desc->opc = dopc;
  356. }
  357. } else {
  358. /* This is either RXOR-only or mixed RXOR/WXOR */
  359. /* The first 1 or 2 slots in chain are always RXOR,
  360. * if need to calculate P & Q, then there are two
  361. * RXOR slots; if only P or only Q, then there is one
  362. */
  363. iter = list_first_entry(&desc->group_list,
  364. struct ppc440spe_adma_desc_slot,
  365. chain_node);
  366. hw_desc = iter->hw_desc;
  367. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  368. if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
  369. iter = list_first_entry(&iter->chain_node,
  370. struct ppc440spe_adma_desc_slot,
  371. chain_node);
  372. hw_desc = iter->hw_desc;
  373. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  374. }
  375. /* The remaining descs (if any) are WXORs */
  376. if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
  377. iter = list_first_entry(&iter->chain_node,
  378. struct ppc440spe_adma_desc_slot,
  379. chain_node);
  380. list_for_each_entry_from(iter, &desc->group_list,
  381. chain_node) {
  382. hw_desc = iter->hw_desc;
  383. hw_desc->opc = dopc;
  384. }
  385. }
  386. }
  387. }
  388. /**
  389. * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
  390. * for PQ_ZERO_SUM operation
  391. */
  392. static void ppc440spe_desc_init_dma01pqzero_sum(
  393. struct ppc440spe_adma_desc_slot *desc,
  394. int dst_cnt, int src_cnt)
  395. {
  396. struct dma_cdb *hw_desc;
  397. struct ppc440spe_adma_desc_slot *iter;
  398. int i = 0;
  399. u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
  400. DMA_CDB_OPC_MV_SG1_SG2;
  401. /*
  402. * Initialize starting from 2nd or 3rd descriptor dependent
  403. * on dst_cnt. First one or two slots are for cloning P
  404. * and/or Q to chan->pdest and/or chan->qdest as we have
  405. * to preserve original P/Q.
  406. */
  407. iter = list_first_entry(&desc->group_list,
  408. struct ppc440spe_adma_desc_slot, chain_node);
  409. iter = list_entry(iter->chain_node.next,
  410. struct ppc440spe_adma_desc_slot, chain_node);
  411. if (dst_cnt > 1) {
  412. iter = list_entry(iter->chain_node.next,
  413. struct ppc440spe_adma_desc_slot, chain_node);
  414. }
  415. /* initialize each source descriptor in chain */
  416. list_for_each_entry_from(iter, &desc->group_list, chain_node) {
  417. hw_desc = iter->hw_desc;
  418. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  419. iter->src_cnt = 0;
  420. iter->dst_cnt = 0;
  421. /* This is a ZERO_SUM operation:
  422. * - <src_cnt> descriptors starting from 2nd or 3rd
  423. * descriptor are for GF-XOR operations;
  424. * - remaining <dst_cnt> descriptors are for checking the result
  425. */
  426. if (i++ < src_cnt)
  427. /* MV_SG1_SG2 if only Q is being verified
  428. * MULTICAST if both P and Q are being verified
  429. */
  430. hw_desc->opc = dopc;
  431. else
  432. /* DMA_CDB_OPC_DCHECK128 operation */
  433. hw_desc->opc = DMA_CDB_OPC_DCHECK128;
  434. if (likely(!list_is_last(&iter->chain_node,
  435. &desc->group_list))) {
  436. /* set 'next' pointer */
  437. iter->hw_next = list_entry(iter->chain_node.next,
  438. struct ppc440spe_adma_desc_slot,
  439. chain_node);
  440. } else {
  441. /* this is the last descriptor.
  442. * this slot will be pasted from ADMA level
  443. * each time it wants to configure parameters
  444. * of the transaction (src, dst, ...)
  445. */
  446. iter->hw_next = NULL;
  447. /* always enable interrupt generation since we get
  448. * the status of pqzero from the handler
  449. */
  450. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  451. }
  452. }
  453. desc->src_cnt = src_cnt;
  454. desc->dst_cnt = dst_cnt;
  455. }
  456. /**
  457. * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
  458. */
  459. static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
  460. unsigned long flags)
  461. {
  462. struct dma_cdb *hw_desc = desc->hw_desc;
  463. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  464. desc->hw_next = NULL;
  465. desc->src_cnt = 1;
  466. desc->dst_cnt = 1;
  467. if (flags & DMA_PREP_INTERRUPT)
  468. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  469. else
  470. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  471. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  472. }
  473. /**
  474. * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
  475. */
  476. static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
  477. int value, unsigned long flags)
  478. {
  479. struct dma_cdb *hw_desc = desc->hw_desc;
  480. memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
  481. desc->hw_next = NULL;
  482. desc->src_cnt = 1;
  483. desc->dst_cnt = 1;
  484. if (flags & DMA_PREP_INTERRUPT)
  485. set_bit(PPC440SPE_DESC_INT, &desc->flags);
  486. else
  487. clear_bit(PPC440SPE_DESC_INT, &desc->flags);
  488. hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
  489. hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
  490. hw_desc->opc = DMA_CDB_OPC_DFILL128;
  491. }
  492. /**
  493. * ppc440spe_desc_set_src_addr - set source address into the descriptor
  494. */
  495. static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
  496. struct ppc440spe_adma_chan *chan,
  497. int src_idx, dma_addr_t addrh,
  498. dma_addr_t addrl)
  499. {
  500. struct dma_cdb *dma_hw_desc;
  501. struct xor_cb *xor_hw_desc;
  502. phys_addr_t addr64, tmplow, tmphi;
  503. switch (chan->device->id) {
  504. case PPC440SPE_DMA0_ID:
  505. case PPC440SPE_DMA1_ID:
  506. if (!addrh) {
  507. addr64 = addrl;
  508. tmphi = (addr64 >> 32);
  509. tmplow = (addr64 & 0xFFFFFFFF);
  510. } else {
  511. tmphi = addrh;
  512. tmplow = addrl;
  513. }
  514. dma_hw_desc = desc->hw_desc;
  515. dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
  516. dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
  517. break;
  518. case PPC440SPE_XOR_ID:
  519. xor_hw_desc = desc->hw_desc;
  520. xor_hw_desc->ops[src_idx].l = addrl;
  521. xor_hw_desc->ops[src_idx].h |= addrh;
  522. break;
  523. }
  524. }
  525. /**
  526. * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
  527. */
  528. static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
  529. struct ppc440spe_adma_chan *chan, u32 mult_index,
  530. int sg_index, unsigned char mult_value)
  531. {
  532. struct dma_cdb *dma_hw_desc;
  533. struct xor_cb *xor_hw_desc;
  534. u32 *psgu;
  535. switch (chan->device->id) {
  536. case PPC440SPE_DMA0_ID:
  537. case PPC440SPE_DMA1_ID:
  538. dma_hw_desc = desc->hw_desc;
  539. switch (sg_index) {
  540. /* for RXOR operations set multiplier
  541. * into source cued address
  542. */
  543. case DMA_CDB_SG_SRC:
  544. psgu = &dma_hw_desc->sg1u;
  545. break;
  546. /* for WXOR operations set multiplier
  547. * into destination cued address(es)
  548. */
  549. case DMA_CDB_SG_DST1:
  550. psgu = &dma_hw_desc->sg2u;
  551. break;
  552. case DMA_CDB_SG_DST2:
  553. psgu = &dma_hw_desc->sg3u;
  554. break;
  555. default:
  556. BUG();
  557. }
  558. *psgu |= cpu_to_le32(mult_value << mult_index);
  559. break;
  560. case PPC440SPE_XOR_ID:
  561. xor_hw_desc = desc->hw_desc;
  562. break;
  563. default:
  564. BUG();
  565. }
  566. }
  567. /**
  568. * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
  569. */
  570. static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  571. struct ppc440spe_adma_chan *chan,
  572. dma_addr_t addrh, dma_addr_t addrl,
  573. u32 dst_idx)
  574. {
  575. struct dma_cdb *dma_hw_desc;
  576. struct xor_cb *xor_hw_desc;
  577. phys_addr_t addr64, tmphi, tmplow;
  578. u32 *psgu, *psgl;
  579. switch (chan->device->id) {
  580. case PPC440SPE_DMA0_ID:
  581. case PPC440SPE_DMA1_ID:
  582. if (!addrh) {
  583. addr64 = addrl;
  584. tmphi = (addr64 >> 32);
  585. tmplow = (addr64 & 0xFFFFFFFF);
  586. } else {
  587. tmphi = addrh;
  588. tmplow = addrl;
  589. }
  590. dma_hw_desc = desc->hw_desc;
  591. psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
  592. psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
  593. *psgl = cpu_to_le32((u32)tmplow);
  594. *psgu |= cpu_to_le32((u32)tmphi);
  595. break;
  596. case PPC440SPE_XOR_ID:
  597. xor_hw_desc = desc->hw_desc;
  598. xor_hw_desc->cbtal = addrl;
  599. xor_hw_desc->cbtah |= addrh;
  600. break;
  601. }
  602. }
  603. /**
  604. * ppc440spe_desc_set_byte_count - set number of data bytes involved
  605. * into the operation
  606. */
  607. static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
  608. struct ppc440spe_adma_chan *chan,
  609. u32 byte_count)
  610. {
  611. struct dma_cdb *dma_hw_desc;
  612. struct xor_cb *xor_hw_desc;
  613. switch (chan->device->id) {
  614. case PPC440SPE_DMA0_ID:
  615. case PPC440SPE_DMA1_ID:
  616. dma_hw_desc = desc->hw_desc;
  617. dma_hw_desc->cnt = cpu_to_le32(byte_count);
  618. break;
  619. case PPC440SPE_XOR_ID:
  620. xor_hw_desc = desc->hw_desc;
  621. xor_hw_desc->cbbc = byte_count;
  622. break;
  623. }
  624. }
  625. /**
  626. * ppc440spe_desc_set_rxor_block_size - set RXOR block size
  627. */
  628. static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
  629. {
  630. /* assume that byte_count is aligned on the 512-boundary;
  631. * thus write it directly to the register (bits 23:31 are
  632. * reserved there).
  633. */
  634. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
  635. }
  636. /**
  637. * ppc440spe_desc_set_dcheck - set CHECK pattern
  638. */
  639. static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
  640. struct ppc440spe_adma_chan *chan, u8 *qword)
  641. {
  642. struct dma_cdb *dma_hw_desc;
  643. switch (chan->device->id) {
  644. case PPC440SPE_DMA0_ID:
  645. case PPC440SPE_DMA1_ID:
  646. dma_hw_desc = desc->hw_desc;
  647. iowrite32(qword[0], &dma_hw_desc->sg3l);
  648. iowrite32(qword[4], &dma_hw_desc->sg3u);
  649. iowrite32(qword[8], &dma_hw_desc->sg2l);
  650. iowrite32(qword[12], &dma_hw_desc->sg2u);
  651. break;
  652. default:
  653. BUG();
  654. }
  655. }
  656. /**
  657. * ppc440spe_xor_set_link - set link address in xor CB
  658. */
  659. static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
  660. struct ppc440spe_adma_desc_slot *next_desc)
  661. {
  662. struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
  663. if (unlikely(!next_desc || !(next_desc->phys))) {
  664. printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
  665. __func__, next_desc,
  666. next_desc ? next_desc->phys : 0);
  667. BUG();
  668. }
  669. xor_hw_desc->cbs = 0;
  670. xor_hw_desc->cblal = next_desc->phys;
  671. xor_hw_desc->cblah = 0;
  672. xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
  673. }
  674. /**
  675. * ppc440spe_desc_set_link - set the address of descriptor following this
  676. * descriptor in chain
  677. */
  678. static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
  679. struct ppc440spe_adma_desc_slot *prev_desc,
  680. struct ppc440spe_adma_desc_slot *next_desc)
  681. {
  682. unsigned long flags;
  683. struct ppc440spe_adma_desc_slot *tail = next_desc;
  684. if (unlikely(!prev_desc || !next_desc ||
  685. (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
  686. /* If previous next is overwritten something is wrong.
  687. * though we may refetch from append to initiate list
  688. * processing; in this case - it's ok.
  689. */
  690. printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
  691. "prev->hw_next=0x%p\n", __func__, prev_desc,
  692. next_desc, prev_desc ? prev_desc->hw_next : 0);
  693. BUG();
  694. }
  695. local_irq_save(flags);
  696. /* do s/w chaining both for DMA and XOR descriptors */
  697. prev_desc->hw_next = next_desc;
  698. switch (chan->device->id) {
  699. case PPC440SPE_DMA0_ID:
  700. case PPC440SPE_DMA1_ID:
  701. break;
  702. case PPC440SPE_XOR_ID:
  703. /* bind descriptor to the chain */
  704. while (tail->hw_next)
  705. tail = tail->hw_next;
  706. xor_last_linked = tail;
  707. if (prev_desc == xor_last_submit)
  708. /* do not link to the last submitted CB */
  709. break;
  710. ppc440spe_xor_set_link(prev_desc, next_desc);
  711. break;
  712. }
  713. local_irq_restore(flags);
  714. }
  715. /**
  716. * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
  717. */
  718. static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
  719. struct ppc440spe_adma_chan *chan, int src_idx)
  720. {
  721. struct dma_cdb *dma_hw_desc;
  722. struct xor_cb *xor_hw_desc;
  723. switch (chan->device->id) {
  724. case PPC440SPE_DMA0_ID:
  725. case PPC440SPE_DMA1_ID:
  726. dma_hw_desc = desc->hw_desc;
  727. /* May have 0, 1, 2, or 3 sources */
  728. switch (dma_hw_desc->opc) {
  729. case DMA_CDB_OPC_NO_OP:
  730. case DMA_CDB_OPC_DFILL128:
  731. return 0;
  732. case DMA_CDB_OPC_DCHECK128:
  733. if (unlikely(src_idx)) {
  734. printk(KERN_ERR "%s: try to get %d source for"
  735. " DCHECK128\n", __func__, src_idx);
  736. BUG();
  737. }
  738. return le32_to_cpu(dma_hw_desc->sg1l);
  739. case DMA_CDB_OPC_MULTICAST:
  740. case DMA_CDB_OPC_MV_SG1_SG2:
  741. if (unlikely(src_idx > 2)) {
  742. printk(KERN_ERR "%s: try to get %d source from"
  743. " DMA descr\n", __func__, src_idx);
  744. BUG();
  745. }
  746. if (src_idx) {
  747. if (le32_to_cpu(dma_hw_desc->sg1u) &
  748. DMA_CUED_XOR_WIN_MSK) {
  749. u8 region;
  750. if (src_idx == 1)
  751. return le32_to_cpu(
  752. dma_hw_desc->sg1l) +
  753. desc->unmap_len;
  754. region = (le32_to_cpu(
  755. dma_hw_desc->sg1u)) >>
  756. DMA_CUED_REGION_OFF;
  757. region &= DMA_CUED_REGION_MSK;
  758. switch (region) {
  759. case DMA_RXOR123:
  760. return le32_to_cpu(
  761. dma_hw_desc->sg1l) +
  762. (desc->unmap_len << 1);
  763. case DMA_RXOR124:
  764. return le32_to_cpu(
  765. dma_hw_desc->sg1l) +
  766. (desc->unmap_len * 3);
  767. case DMA_RXOR125:
  768. return le32_to_cpu(
  769. dma_hw_desc->sg1l) +
  770. (desc->unmap_len << 2);
  771. default:
  772. printk(KERN_ERR
  773. "%s: try to"
  774. " get src3 for region %02x"
  775. "PPC440SPE_DESC_RXOR12?\n",
  776. __func__, region);
  777. BUG();
  778. }
  779. } else {
  780. printk(KERN_ERR
  781. "%s: try to get %d"
  782. " source for non-cued descr\n",
  783. __func__, src_idx);
  784. BUG();
  785. }
  786. }
  787. return le32_to_cpu(dma_hw_desc->sg1l);
  788. default:
  789. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  790. __func__, dma_hw_desc->opc);
  791. BUG();
  792. }
  793. return le32_to_cpu(dma_hw_desc->sg1l);
  794. case PPC440SPE_XOR_ID:
  795. /* May have up to 16 sources */
  796. xor_hw_desc = desc->hw_desc;
  797. return xor_hw_desc->ops[src_idx].l;
  798. }
  799. return 0;
  800. }
  801. /**
  802. * ppc440spe_desc_get_dest_addr - extract the destination address from the
  803. * descriptor
  804. */
  805. static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
  806. struct ppc440spe_adma_chan *chan, int idx)
  807. {
  808. struct dma_cdb *dma_hw_desc;
  809. struct xor_cb *xor_hw_desc;
  810. switch (chan->device->id) {
  811. case PPC440SPE_DMA0_ID:
  812. case PPC440SPE_DMA1_ID:
  813. dma_hw_desc = desc->hw_desc;
  814. if (likely(!idx))
  815. return le32_to_cpu(dma_hw_desc->sg2l);
  816. return le32_to_cpu(dma_hw_desc->sg3l);
  817. case PPC440SPE_XOR_ID:
  818. xor_hw_desc = desc->hw_desc;
  819. return xor_hw_desc->cbtal;
  820. }
  821. return 0;
  822. }
  823. /**
  824. * ppc440spe_desc_get_src_num - extract the number of source addresses from
  825. * the descriptor
  826. */
  827. static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
  828. struct ppc440spe_adma_chan *chan)
  829. {
  830. struct dma_cdb *dma_hw_desc;
  831. struct xor_cb *xor_hw_desc;
  832. switch (chan->device->id) {
  833. case PPC440SPE_DMA0_ID:
  834. case PPC440SPE_DMA1_ID:
  835. dma_hw_desc = desc->hw_desc;
  836. switch (dma_hw_desc->opc) {
  837. case DMA_CDB_OPC_NO_OP:
  838. case DMA_CDB_OPC_DFILL128:
  839. return 0;
  840. case DMA_CDB_OPC_DCHECK128:
  841. return 1;
  842. case DMA_CDB_OPC_MV_SG1_SG2:
  843. case DMA_CDB_OPC_MULTICAST:
  844. /*
  845. * Only for RXOR operations we have more than
  846. * one source
  847. */
  848. if (le32_to_cpu(dma_hw_desc->sg1u) &
  849. DMA_CUED_XOR_WIN_MSK) {
  850. /* RXOR op, there are 2 or 3 sources */
  851. if (((le32_to_cpu(dma_hw_desc->sg1u) >>
  852. DMA_CUED_REGION_OFF) &
  853. DMA_CUED_REGION_MSK) == DMA_RXOR12) {
  854. /* RXOR 1-2 */
  855. return 2;
  856. } else {
  857. /* RXOR 1-2-3/1-2-4/1-2-5 */
  858. return 3;
  859. }
  860. }
  861. return 1;
  862. default:
  863. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  864. __func__, dma_hw_desc->opc);
  865. BUG();
  866. }
  867. case PPC440SPE_XOR_ID:
  868. /* up to 16 sources */
  869. xor_hw_desc = desc->hw_desc;
  870. return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
  871. default:
  872. BUG();
  873. }
  874. return 0;
  875. }
  876. /**
  877. * ppc440spe_desc_get_dst_num - get the number of destination addresses in
  878. * this descriptor
  879. */
  880. static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
  881. struct ppc440spe_adma_chan *chan)
  882. {
  883. struct dma_cdb *dma_hw_desc;
  884. switch (chan->device->id) {
  885. case PPC440SPE_DMA0_ID:
  886. case PPC440SPE_DMA1_ID:
  887. /* May be 1 or 2 destinations */
  888. dma_hw_desc = desc->hw_desc;
  889. switch (dma_hw_desc->opc) {
  890. case DMA_CDB_OPC_NO_OP:
  891. case DMA_CDB_OPC_DCHECK128:
  892. return 0;
  893. case DMA_CDB_OPC_MV_SG1_SG2:
  894. case DMA_CDB_OPC_DFILL128:
  895. return 1;
  896. case DMA_CDB_OPC_MULTICAST:
  897. if (desc->dst_cnt == 2)
  898. return 2;
  899. else
  900. return 1;
  901. default:
  902. printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
  903. __func__, dma_hw_desc->opc);
  904. BUG();
  905. }
  906. case PPC440SPE_XOR_ID:
  907. /* Always only 1 destination */
  908. return 1;
  909. default:
  910. BUG();
  911. }
  912. return 0;
  913. }
  914. /**
  915. * ppc440spe_desc_get_link - get the address of the descriptor that
  916. * follows this one
  917. */
  918. static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
  919. struct ppc440spe_adma_chan *chan)
  920. {
  921. if (!desc->hw_next)
  922. return 0;
  923. return desc->hw_next->phys;
  924. }
  925. /**
  926. * ppc440spe_desc_is_aligned - check alignment
  927. */
  928. static inline int ppc440spe_desc_is_aligned(
  929. struct ppc440spe_adma_desc_slot *desc, int num_slots)
  930. {
  931. return (desc->idx & (num_slots - 1)) ? 0 : 1;
  932. }
  933. /**
  934. * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
  935. * XOR operation
  936. */
  937. static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
  938. int *slots_per_op)
  939. {
  940. int slot_cnt;
  941. /* each XOR descriptor provides up to 16 source operands */
  942. slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
  943. if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
  944. return slot_cnt;
  945. printk(KERN_ERR "%s: len %d > max %d !!\n",
  946. __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  947. BUG();
  948. return slot_cnt;
  949. }
  950. /**
  951. * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
  952. * DMA2 PQ operation
  953. */
  954. static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
  955. int src_cnt, size_t len)
  956. {
  957. signed long long order = 0;
  958. int state = 0;
  959. int addr_count = 0;
  960. int i;
  961. for (i = 1; i < src_cnt; i++) {
  962. dma_addr_t cur_addr = srcs[i];
  963. dma_addr_t old_addr = srcs[i-1];
  964. switch (state) {
  965. case 0:
  966. if (cur_addr == old_addr + len) {
  967. /* direct RXOR */
  968. order = 1;
  969. state = 1;
  970. if (i == src_cnt-1)
  971. addr_count++;
  972. } else if (old_addr == cur_addr + len) {
  973. /* reverse RXOR */
  974. order = -1;
  975. state = 1;
  976. if (i == src_cnt-1)
  977. addr_count++;
  978. } else {
  979. state = 3;
  980. }
  981. break;
  982. case 1:
  983. if (i == src_cnt-2 || (order == -1
  984. && cur_addr != old_addr - len)) {
  985. order = 0;
  986. state = 0;
  987. addr_count++;
  988. } else if (cur_addr == old_addr + len*order) {
  989. state = 2;
  990. if (i == src_cnt-1)
  991. addr_count++;
  992. } else if (cur_addr == old_addr + 2*len) {
  993. state = 2;
  994. if (i == src_cnt-1)
  995. addr_count++;
  996. } else if (cur_addr == old_addr + 3*len) {
  997. state = 2;
  998. if (i == src_cnt-1)
  999. addr_count++;
  1000. } else {
  1001. order = 0;
  1002. state = 0;
  1003. addr_count++;
  1004. }
  1005. break;
  1006. case 2:
  1007. order = 0;
  1008. state = 0;
  1009. addr_count++;
  1010. break;
  1011. }
  1012. if (state == 3)
  1013. break;
  1014. }
  1015. if (src_cnt <= 1 || (state != 1 && state != 2)) {
  1016. pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
  1017. __func__, src_cnt, state, addr_count, order);
  1018. for (i = 0; i < src_cnt; i++)
  1019. pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
  1020. BUG();
  1021. }
  1022. return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
  1023. }
  1024. /******************************************************************************
  1025. * ADMA channel low-level routines
  1026. ******************************************************************************/
  1027. static u32
  1028. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
  1029. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
  1030. /**
  1031. * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
  1032. */
  1033. static void ppc440spe_adma_device_clear_eot_status(
  1034. struct ppc440spe_adma_chan *chan)
  1035. {
  1036. struct dma_regs *dma_reg;
  1037. struct xor_regs *xor_reg;
  1038. u8 *p = chan->device->dma_desc_pool_virt;
  1039. struct dma_cdb *cdb;
  1040. u32 rv, i;
  1041. switch (chan->device->id) {
  1042. case PPC440SPE_DMA0_ID:
  1043. case PPC440SPE_DMA1_ID:
  1044. /* read FIFO to ack */
  1045. dma_reg = chan->device->dma_reg;
  1046. while ((rv = ioread32(&dma_reg->csfpl))) {
  1047. i = rv & DMA_CDB_ADDR_MSK;
  1048. cdb = (struct dma_cdb *)&p[i -
  1049. (u32)chan->device->dma_desc_pool];
  1050. /* Clear opcode to ack. This is necessary for
  1051. * ZeroSum operations only
  1052. */
  1053. cdb->opc = 0;
  1054. if (test_bit(PPC440SPE_RXOR_RUN,
  1055. &ppc440spe_rxor_state)) {
  1056. /* probably this is a completed RXOR op,
  1057. * get pointer to CDB using the fact that
  1058. * physical and virtual addresses of CDB
  1059. * in pools have the same offsets
  1060. */
  1061. if (le32_to_cpu(cdb->sg1u) &
  1062. DMA_CUED_XOR_BASE) {
  1063. /* this is a RXOR */
  1064. clear_bit(PPC440SPE_RXOR_RUN,
  1065. &ppc440spe_rxor_state);
  1066. }
  1067. }
  1068. if (rv & DMA_CDB_STATUS_MSK) {
  1069. /* ZeroSum check failed
  1070. */
  1071. struct ppc440spe_adma_desc_slot *iter;
  1072. dma_addr_t phys = rv & ~DMA_CDB_MSK;
  1073. /*
  1074. * Update the status of corresponding
  1075. * descriptor.
  1076. */
  1077. list_for_each_entry(iter, &chan->chain,
  1078. chain_node) {
  1079. if (iter->phys == phys)
  1080. break;
  1081. }
  1082. /*
  1083. * if cannot find the corresponding
  1084. * slot it's a bug
  1085. */
  1086. BUG_ON(&iter->chain_node == &chan->chain);
  1087. if (iter->xor_check_result) {
  1088. if (test_bit(PPC440SPE_DESC_PCHECK,
  1089. &iter->flags)) {
  1090. *iter->xor_check_result |=
  1091. SUM_CHECK_P_RESULT;
  1092. } else
  1093. if (test_bit(PPC440SPE_DESC_QCHECK,
  1094. &iter->flags)) {
  1095. *iter->xor_check_result |=
  1096. SUM_CHECK_Q_RESULT;
  1097. } else
  1098. BUG();
  1099. }
  1100. }
  1101. }
  1102. rv = ioread32(&dma_reg->dsts);
  1103. if (rv) {
  1104. pr_err("DMA%d err status: 0x%x\n",
  1105. chan->device->id, rv);
  1106. /* write back to clear */
  1107. iowrite32(rv, &dma_reg->dsts);
  1108. }
  1109. break;
  1110. case PPC440SPE_XOR_ID:
  1111. /* reset status bits to ack */
  1112. xor_reg = chan->device->xor_reg;
  1113. rv = ioread32be(&xor_reg->sr);
  1114. iowrite32be(rv, &xor_reg->sr);
  1115. if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
  1116. if (rv & XOR_IE_RPTIE_BIT) {
  1117. /* Read PLB Timeout Error.
  1118. * Try to resubmit the CB
  1119. */
  1120. u32 val = ioread32be(&xor_reg->ccbalr);
  1121. iowrite32be(val, &xor_reg->cblalr);
  1122. val = ioread32be(&xor_reg->crsr);
  1123. iowrite32be(val | XOR_CRSR_XAE_BIT,
  1124. &xor_reg->crsr);
  1125. } else
  1126. pr_err("XOR ERR 0x%x status\n", rv);
  1127. break;
  1128. }
  1129. /* if the XORcore is idle, but there are unprocessed CBs
  1130. * then refetch the s/w chain here
  1131. */
  1132. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
  1133. do_xor_refetch)
  1134. ppc440spe_chan_append(chan);
  1135. break;
  1136. }
  1137. }
  1138. /**
  1139. * ppc440spe_chan_is_busy - get the channel status
  1140. */
  1141. static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
  1142. {
  1143. struct dma_regs *dma_reg;
  1144. struct xor_regs *xor_reg;
  1145. int busy = 0;
  1146. switch (chan->device->id) {
  1147. case PPC440SPE_DMA0_ID:
  1148. case PPC440SPE_DMA1_ID:
  1149. dma_reg = chan->device->dma_reg;
  1150. /* if command FIFO's head and tail pointers are equal and
  1151. * status tail is the same as command, then channel is free
  1152. */
  1153. if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
  1154. ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
  1155. busy = 1;
  1156. break;
  1157. case PPC440SPE_XOR_ID:
  1158. /* use the special status bit for the XORcore
  1159. */
  1160. xor_reg = chan->device->xor_reg;
  1161. busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
  1162. break;
  1163. }
  1164. return busy;
  1165. }
  1166. /**
  1167. * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
  1168. */
  1169. static void ppc440spe_chan_set_first_xor_descriptor(
  1170. struct ppc440spe_adma_chan *chan,
  1171. struct ppc440spe_adma_desc_slot *next_desc)
  1172. {
  1173. struct xor_regs *xor_reg = chan->device->xor_reg;
  1174. if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
  1175. printk(KERN_INFO "%s: Warn: XORcore is running "
  1176. "when try to set the first CDB!\n",
  1177. __func__);
  1178. xor_last_submit = xor_last_linked = next_desc;
  1179. iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
  1180. iowrite32be(next_desc->phys, &xor_reg->cblalr);
  1181. iowrite32be(0, &xor_reg->cblahr);
  1182. iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
  1183. &xor_reg->cbcr);
  1184. chan->hw_chain_inited = 1;
  1185. }
  1186. /**
  1187. * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
  1188. * called with irqs disabled
  1189. */
  1190. static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
  1191. struct ppc440spe_adma_desc_slot *desc)
  1192. {
  1193. u32 pcdb;
  1194. struct dma_regs *dma_reg = chan->device->dma_reg;
  1195. pcdb = desc->phys;
  1196. if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
  1197. pcdb |= DMA_CDB_NO_INT;
  1198. chan_last_sub[chan->device->id] = desc;
  1199. ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
  1200. iowrite32(pcdb, &dma_reg->cpfpl);
  1201. }
  1202. /**
  1203. * ppc440spe_chan_append - update the h/w chain in the channel
  1204. */
  1205. static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
  1206. {
  1207. struct xor_regs *xor_reg;
  1208. struct ppc440spe_adma_desc_slot *iter;
  1209. struct xor_cb *xcb;
  1210. u32 cur_desc;
  1211. unsigned long flags;
  1212. local_irq_save(flags);
  1213. switch (chan->device->id) {
  1214. case PPC440SPE_DMA0_ID:
  1215. case PPC440SPE_DMA1_ID:
  1216. cur_desc = ppc440spe_chan_get_current_descriptor(chan);
  1217. if (likely(cur_desc)) {
  1218. iter = chan_last_sub[chan->device->id];
  1219. BUG_ON(!iter);
  1220. } else {
  1221. /* first peer */
  1222. iter = chan_first_cdb[chan->device->id];
  1223. BUG_ON(!iter);
  1224. ppc440spe_dma_put_desc(chan, iter);
  1225. chan->hw_chain_inited = 1;
  1226. }
  1227. /* is there something new to append */
  1228. if (!iter->hw_next)
  1229. break;
  1230. /* flush descriptors from the s/w queue to fifo */
  1231. list_for_each_entry_continue(iter, &chan->chain, chain_node) {
  1232. ppc440spe_dma_put_desc(chan, iter);
  1233. if (!iter->hw_next)
  1234. break;
  1235. }
  1236. break;
  1237. case PPC440SPE_XOR_ID:
  1238. /* update h/w links and refetch */
  1239. if (!xor_last_submit->hw_next)
  1240. break;
  1241. xor_reg = chan->device->xor_reg;
  1242. /* the last linked CDB has to generate an interrupt
  1243. * that we'd be able to append the next lists to h/w
  1244. * regardless of the XOR engine state at the moment of
  1245. * appending of these next lists
  1246. */
  1247. xcb = xor_last_linked->hw_desc;
  1248. xcb->cbc |= XOR_CBCR_CBCE_BIT;
  1249. if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
  1250. /* XORcore is idle. Refetch now */
  1251. do_xor_refetch = 0;
  1252. ppc440spe_xor_set_link(xor_last_submit,
  1253. xor_last_submit->hw_next);
  1254. ADMA_LL_DBG(print_cb_list(chan,
  1255. xor_last_submit->hw_next));
  1256. xor_last_submit = xor_last_linked;
  1257. iowrite32be(ioread32be(&xor_reg->crsr) |
  1258. XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
  1259. &xor_reg->crsr);
  1260. } else {
  1261. /* XORcore is running. Refetch later in the handler */
  1262. do_xor_refetch = 1;
  1263. }
  1264. break;
  1265. }
  1266. local_irq_restore(flags);
  1267. }
  1268. /**
  1269. * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
  1270. */
  1271. static u32
  1272. ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
  1273. {
  1274. struct dma_regs *dma_reg;
  1275. struct xor_regs *xor_reg;
  1276. if (unlikely(!chan->hw_chain_inited))
  1277. /* h/w descriptor chain is not initialized yet */
  1278. return 0;
  1279. switch (chan->device->id) {
  1280. case PPC440SPE_DMA0_ID:
  1281. case PPC440SPE_DMA1_ID:
  1282. dma_reg = chan->device->dma_reg;
  1283. return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
  1284. case PPC440SPE_XOR_ID:
  1285. xor_reg = chan->device->xor_reg;
  1286. return ioread32be(&xor_reg->ccbalr);
  1287. }
  1288. return 0;
  1289. }
  1290. /**
  1291. * ppc440spe_chan_run - enable the channel
  1292. */
  1293. static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
  1294. {
  1295. struct xor_regs *xor_reg;
  1296. switch (chan->device->id) {
  1297. case PPC440SPE_DMA0_ID:
  1298. case PPC440SPE_DMA1_ID:
  1299. /* DMAs are always enabled, do nothing */
  1300. break;
  1301. case PPC440SPE_XOR_ID:
  1302. /* drain write buffer */
  1303. xor_reg = chan->device->xor_reg;
  1304. /* fetch descriptor pointed to in <link> */
  1305. iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
  1306. &xor_reg->crsr);
  1307. break;
  1308. }
  1309. }
  1310. /******************************************************************************
  1311. * ADMA device level
  1312. ******************************************************************************/
  1313. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
  1314. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
  1315. static dma_cookie_t
  1316. ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
  1317. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1318. dma_addr_t addr, int index);
  1319. static void
  1320. ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
  1321. dma_addr_t addr, int index);
  1322. static void
  1323. ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1324. dma_addr_t *paddr, unsigned long flags);
  1325. static void
  1326. ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
  1327. dma_addr_t addr, int index);
  1328. static void
  1329. ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
  1330. unsigned char mult, int index, int dst_pos);
  1331. static void
  1332. ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
  1333. dma_addr_t paddr, dma_addr_t qaddr);
  1334. static struct page *ppc440spe_rxor_srcs[32];
  1335. /**
  1336. * ppc440spe_can_rxor - check if the operands may be processed with RXOR
  1337. */
  1338. static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
  1339. {
  1340. int i, order = 0, state = 0;
  1341. int idx = 0;
  1342. if (unlikely(!(src_cnt > 1)))
  1343. return 0;
  1344. BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
  1345. /* Skip holes in the source list before checking */
  1346. for (i = 0; i < src_cnt; i++) {
  1347. if (!srcs[i])
  1348. continue;
  1349. ppc440spe_rxor_srcs[idx++] = srcs[i];
  1350. }
  1351. src_cnt = idx;
  1352. for (i = 1; i < src_cnt; i++) {
  1353. char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
  1354. char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
  1355. switch (state) {
  1356. case 0:
  1357. if (cur_addr == old_addr + len) {
  1358. /* direct RXOR */
  1359. order = 1;
  1360. state = 1;
  1361. } else if (old_addr == cur_addr + len) {
  1362. /* reverse RXOR */
  1363. order = -1;
  1364. state = 1;
  1365. } else
  1366. goto out;
  1367. break;
  1368. case 1:
  1369. if ((i == src_cnt - 2) ||
  1370. (order == -1 && cur_addr != old_addr - len)) {
  1371. order = 0;
  1372. state = 0;
  1373. } else if ((cur_addr == old_addr + len * order) ||
  1374. (cur_addr == old_addr + 2 * len) ||
  1375. (cur_addr == old_addr + 3 * len)) {
  1376. state = 2;
  1377. } else {
  1378. order = 0;
  1379. state = 0;
  1380. }
  1381. break;
  1382. case 2:
  1383. order = 0;
  1384. state = 0;
  1385. break;
  1386. }
  1387. }
  1388. out:
  1389. if (state == 1 || state == 2)
  1390. return 1;
  1391. return 0;
  1392. }
  1393. /**
  1394. * ppc440spe_adma_device_estimate - estimate the efficiency of processing
  1395. * the operation given on this channel. It's assumed that 'chan' is
  1396. * capable to process 'cap' type of operation.
  1397. * @chan: channel to use
  1398. * @cap: type of transaction
  1399. * @dst_lst: array of destination pointers
  1400. * @dst_cnt: number of destination operands
  1401. * @src_lst: array of source pointers
  1402. * @src_cnt: number of source operands
  1403. * @src_sz: size of each source operand
  1404. */
  1405. static int ppc440spe_adma_estimate(struct dma_chan *chan,
  1406. enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
  1407. struct page **src_lst, int src_cnt, size_t src_sz)
  1408. {
  1409. int ef = 1;
  1410. if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
  1411. /* If RAID-6 capabilities were not activated don't try
  1412. * to use them
  1413. */
  1414. if (unlikely(!ppc440spe_r6_enabled))
  1415. return -1;
  1416. }
  1417. /* In the current implementation of ppc440spe ADMA driver it
  1418. * makes sense to pick out only pq case, because it may be
  1419. * processed:
  1420. * (1) either using Biskup method on DMA2;
  1421. * (2) or on DMA0/1.
  1422. * Thus we give a favour to (1) if the sources are suitable;
  1423. * else let it be processed on one of the DMA0/1 engines.
  1424. * In the sum_product case where destination is also the
  1425. * source process it on DMA0/1 only.
  1426. */
  1427. if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
  1428. if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
  1429. ef = 0; /* sum_product case, process on DMA0/1 */
  1430. else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
  1431. ef = 3; /* override (DMA0/1 + idle) */
  1432. else
  1433. ef = 0; /* can't process on DMA2 if !rxor */
  1434. }
  1435. /* channel idleness increases the priority */
  1436. if (likely(ef) &&
  1437. !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
  1438. ef++;
  1439. return ef;
  1440. }
  1441. struct dma_chan *
  1442. ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
  1443. struct page **dst_lst, int dst_cnt, struct page **src_lst,
  1444. int src_cnt, size_t src_sz)
  1445. {
  1446. struct dma_chan *best_chan = NULL;
  1447. struct ppc_dma_chan_ref *ref;
  1448. int best_rank = -1;
  1449. if (unlikely(!src_sz))
  1450. return NULL;
  1451. if (src_sz > PAGE_SIZE) {
  1452. /*
  1453. * should a user of the api ever pass > PAGE_SIZE requests
  1454. * we sort out cases where temporary page-sized buffers
  1455. * are used.
  1456. */
  1457. switch (cap) {
  1458. case DMA_PQ:
  1459. if (src_cnt == 1 && dst_lst[1] == src_lst[0])
  1460. return NULL;
  1461. if (src_cnt == 2 && dst_lst[1] == src_lst[1])
  1462. return NULL;
  1463. break;
  1464. case DMA_PQ_VAL:
  1465. case DMA_XOR_VAL:
  1466. return NULL;
  1467. default:
  1468. break;
  1469. }
  1470. }
  1471. list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
  1472. if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
  1473. int rank;
  1474. rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
  1475. dst_cnt, src_lst, src_cnt, src_sz);
  1476. if (rank > best_rank) {
  1477. best_rank = rank;
  1478. best_chan = ref->chan;
  1479. }
  1480. }
  1481. }
  1482. return best_chan;
  1483. }
  1484. EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
  1485. /**
  1486. * ppc440spe_get_group_entry - get group entry with index idx
  1487. * @tdesc: is the last allocated slot in the group.
  1488. */
  1489. static struct ppc440spe_adma_desc_slot *
  1490. ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
  1491. {
  1492. struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
  1493. int i = 0;
  1494. if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
  1495. printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
  1496. __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
  1497. BUG();
  1498. }
  1499. list_for_each_entry(iter, &tdesc->group_list, chain_node) {
  1500. if (i++ == entry_idx)
  1501. break;
  1502. }
  1503. return iter;
  1504. }
  1505. /**
  1506. * ppc440spe_adma_free_slots - flags descriptor slots for reuse
  1507. * @slot: Slot to free
  1508. * Caller must hold &ppc440spe_chan->lock while calling this function
  1509. */
  1510. static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
  1511. struct ppc440spe_adma_chan *chan)
  1512. {
  1513. int stride = slot->slots_per_op;
  1514. while (stride--) {
  1515. slot->slots_per_op = 0;
  1516. slot = list_entry(slot->slot_node.next,
  1517. struct ppc440spe_adma_desc_slot,
  1518. slot_node);
  1519. }
  1520. }
  1521. static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
  1522. struct ppc440spe_adma_desc_slot *desc)
  1523. {
  1524. u32 src_cnt, dst_cnt;
  1525. dma_addr_t addr;
  1526. /*
  1527. * get the number of sources & destination
  1528. * included in this descriptor and unmap
  1529. * them all
  1530. */
  1531. src_cnt = ppc440spe_desc_get_src_num(desc, chan);
  1532. dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
  1533. /* unmap destinations */
  1534. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1535. while (dst_cnt--) {
  1536. addr = ppc440spe_desc_get_dest_addr(
  1537. desc, chan, dst_cnt);
  1538. dma_unmap_page(chan->device->dev,
  1539. addr, desc->unmap_len,
  1540. DMA_FROM_DEVICE);
  1541. }
  1542. }
  1543. /* unmap sources */
  1544. if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1545. while (src_cnt--) {
  1546. addr = ppc440spe_desc_get_src_addr(
  1547. desc, chan, src_cnt);
  1548. dma_unmap_page(chan->device->dev,
  1549. addr, desc->unmap_len,
  1550. DMA_TO_DEVICE);
  1551. }
  1552. }
  1553. }
  1554. /**
  1555. * ppc440spe_adma_run_tx_complete_actions - call functions to be called
  1556. * upon completion
  1557. */
  1558. static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
  1559. struct ppc440spe_adma_desc_slot *desc,
  1560. struct ppc440spe_adma_chan *chan,
  1561. dma_cookie_t cookie)
  1562. {
  1563. int i;
  1564. BUG_ON(desc->async_tx.cookie < 0);
  1565. if (desc->async_tx.cookie > 0) {
  1566. cookie = desc->async_tx.cookie;
  1567. desc->async_tx.cookie = 0;
  1568. /* call the callback (must not sleep or submit new
  1569. * operations to this channel)
  1570. */
  1571. if (desc->async_tx.callback)
  1572. desc->async_tx.callback(
  1573. desc->async_tx.callback_param);
  1574. /* unmap dma addresses
  1575. * (unmap_single vs unmap_page?)
  1576. *
  1577. * actually, ppc's dma_unmap_page() functions are empty, so
  1578. * the following code is just for the sake of completeness
  1579. */
  1580. if (chan && chan->needs_unmap && desc->group_head &&
  1581. desc->unmap_len) {
  1582. struct ppc440spe_adma_desc_slot *unmap =
  1583. desc->group_head;
  1584. /* assume 1 slot per op always */
  1585. u32 slot_count = unmap->slot_cnt;
  1586. /* Run through the group list and unmap addresses */
  1587. for (i = 0; i < slot_count; i++) {
  1588. BUG_ON(!unmap);
  1589. ppc440spe_adma_unmap(chan, unmap);
  1590. unmap = unmap->hw_next;
  1591. }
  1592. }
  1593. }
  1594. /* run dependent operations */
  1595. dma_run_dependencies(&desc->async_tx);
  1596. return cookie;
  1597. }
  1598. /**
  1599. * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
  1600. */
  1601. static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
  1602. struct ppc440spe_adma_chan *chan)
  1603. {
  1604. /* the client is allowed to attach dependent operations
  1605. * until 'ack' is set
  1606. */
  1607. if (!async_tx_test_ack(&desc->async_tx))
  1608. return 0;
  1609. /* leave the last descriptor in the chain
  1610. * so we can append to it
  1611. */
  1612. if (list_is_last(&desc->chain_node, &chan->chain) ||
  1613. desc->phys == ppc440spe_chan_get_current_descriptor(chan))
  1614. return 1;
  1615. if (chan->device->id != PPC440SPE_XOR_ID) {
  1616. /* our DMA interrupt handler clears opc field of
  1617. * each processed descriptor. For all types of
  1618. * operations except for ZeroSum we do not actually
  1619. * need ack from the interrupt handler. ZeroSum is a
  1620. * special case since the result of this operation
  1621. * is available from the handler only, so if we see
  1622. * such type of descriptor (which is unprocessed yet)
  1623. * then leave it in chain.
  1624. */
  1625. struct dma_cdb *cdb = desc->hw_desc;
  1626. if (cdb->opc == DMA_CDB_OPC_DCHECK128)
  1627. return 1;
  1628. }
  1629. dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
  1630. desc->phys, desc->idx, desc->slots_per_op);
  1631. list_del(&desc->chain_node);
  1632. ppc440spe_adma_free_slots(desc, chan);
  1633. return 0;
  1634. }
  1635. /**
  1636. * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
  1637. * which runs through the channel CDBs list until reach the descriptor
  1638. * currently processed. When routine determines that all CDBs of group
  1639. * are completed then corresponding callbacks (if any) are called and slots
  1640. * are freed.
  1641. */
  1642. static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1643. {
  1644. struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
  1645. dma_cookie_t cookie = 0;
  1646. u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
  1647. int busy = ppc440spe_chan_is_busy(chan);
  1648. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  1649. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
  1650. chan->device->id, __func__);
  1651. if (!current_desc) {
  1652. /* There were no transactions yet, so
  1653. * nothing to clean
  1654. */
  1655. return;
  1656. }
  1657. /* free completed slots from the chain starting with
  1658. * the oldest descriptor
  1659. */
  1660. list_for_each_entry_safe(iter, _iter, &chan->chain,
  1661. chain_node) {
  1662. dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
  1663. "busy: %d this_desc: %#llx next_desc: %#x "
  1664. "cur: %#x ack: %d\n",
  1665. iter->async_tx.cookie, iter->idx, busy, iter->phys,
  1666. ppc440spe_desc_get_link(iter, chan), current_desc,
  1667. async_tx_test_ack(&iter->async_tx));
  1668. prefetch(_iter);
  1669. prefetch(&_iter->async_tx);
  1670. /* do not advance past the current descriptor loaded into the
  1671. * hardware channel,subsequent descriptors are either in process
  1672. * or have not been submitted
  1673. */
  1674. if (seen_current)
  1675. break;
  1676. /* stop the search if we reach the current descriptor and the
  1677. * channel is busy, or if it appears that the current descriptor
  1678. * needs to be re-read (i.e. has been appended to)
  1679. */
  1680. if (iter->phys == current_desc) {
  1681. BUG_ON(seen_current++);
  1682. if (busy || ppc440spe_desc_get_link(iter, chan)) {
  1683. /* not all descriptors of the group have
  1684. * been completed; exit.
  1685. */
  1686. break;
  1687. }
  1688. }
  1689. /* detect the start of a group transaction */
  1690. if (!slot_cnt && !slots_per_op) {
  1691. slot_cnt = iter->slot_cnt;
  1692. slots_per_op = iter->slots_per_op;
  1693. if (slot_cnt <= slots_per_op) {
  1694. slot_cnt = 0;
  1695. slots_per_op = 0;
  1696. }
  1697. }
  1698. if (slot_cnt) {
  1699. if (!group_start)
  1700. group_start = iter;
  1701. slot_cnt -= slots_per_op;
  1702. }
  1703. /* all the members of a group are complete */
  1704. if (slots_per_op != 0 && slot_cnt == 0) {
  1705. struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
  1706. int end_of_chain = 0;
  1707. /* clean up the group */
  1708. slot_cnt = group_start->slot_cnt;
  1709. grp_iter = group_start;
  1710. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  1711. &chan->chain, chain_node) {
  1712. cookie = ppc440spe_adma_run_tx_complete_actions(
  1713. grp_iter, chan, cookie);
  1714. slot_cnt -= slots_per_op;
  1715. end_of_chain = ppc440spe_adma_clean_slot(
  1716. grp_iter, chan);
  1717. if (end_of_chain && slot_cnt) {
  1718. /* Should wait for ZeroSum completion */
  1719. if (cookie > 0)
  1720. chan->common.completed_cookie = cookie;
  1721. return;
  1722. }
  1723. if (slot_cnt == 0 || end_of_chain)
  1724. break;
  1725. }
  1726. /* the group should be complete at this point */
  1727. BUG_ON(slot_cnt);
  1728. slots_per_op = 0;
  1729. group_start = NULL;
  1730. if (end_of_chain)
  1731. break;
  1732. else
  1733. continue;
  1734. } else if (slots_per_op) /* wait for group completion */
  1735. continue;
  1736. cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
  1737. cookie);
  1738. if (ppc440spe_adma_clean_slot(iter, chan))
  1739. break;
  1740. }
  1741. BUG_ON(!seen_current);
  1742. if (cookie > 0) {
  1743. chan->common.completed_cookie = cookie;
  1744. pr_debug("\tcompleted cookie %d\n", cookie);
  1745. }
  1746. }
  1747. /**
  1748. * ppc440spe_adma_tasklet - clean up watch-dog initiator
  1749. */
  1750. static void ppc440spe_adma_tasklet(unsigned long data)
  1751. {
  1752. struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
  1753. spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
  1754. __ppc440spe_adma_slot_cleanup(chan);
  1755. spin_unlock(&chan->lock);
  1756. }
  1757. /**
  1758. * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
  1759. */
  1760. static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
  1761. {
  1762. spin_lock_bh(&chan->lock);
  1763. __ppc440spe_adma_slot_cleanup(chan);
  1764. spin_unlock_bh(&chan->lock);
  1765. }
  1766. /**
  1767. * ppc440spe_adma_alloc_slots - allocate free slots (if any)
  1768. */
  1769. static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
  1770. struct ppc440spe_adma_chan *chan, int num_slots,
  1771. int slots_per_op)
  1772. {
  1773. struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
  1774. struct ppc440spe_adma_desc_slot *alloc_start = NULL;
  1775. struct list_head chain = LIST_HEAD_INIT(chain);
  1776. int slots_found, retry = 0;
  1777. BUG_ON(!num_slots || !slots_per_op);
  1778. /* start search from the last allocated descrtiptor
  1779. * if a contiguous allocation can not be found start searching
  1780. * from the beginning of the list
  1781. */
  1782. retry:
  1783. slots_found = 0;
  1784. if (retry == 0)
  1785. iter = chan->last_used;
  1786. else
  1787. iter = list_entry(&chan->all_slots,
  1788. struct ppc440spe_adma_desc_slot,
  1789. slot_node);
  1790. list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
  1791. slot_node) {
  1792. prefetch(_iter);
  1793. prefetch(&_iter->async_tx);
  1794. if (iter->slots_per_op) {
  1795. slots_found = 0;
  1796. continue;
  1797. }
  1798. /* start the allocation if the slot is correctly aligned */
  1799. if (!slots_found++)
  1800. alloc_start = iter;
  1801. if (slots_found == num_slots) {
  1802. struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
  1803. struct ppc440spe_adma_desc_slot *last_used = NULL;
  1804. iter = alloc_start;
  1805. while (num_slots) {
  1806. int i;
  1807. /* pre-ack all but the last descriptor */
  1808. if (num_slots != slots_per_op)
  1809. async_tx_ack(&iter->async_tx);
  1810. list_add_tail(&iter->chain_node, &chain);
  1811. alloc_tail = iter;
  1812. iter->async_tx.cookie = 0;
  1813. iter->hw_next = NULL;
  1814. iter->flags = 0;
  1815. iter->slot_cnt = num_slots;
  1816. iter->xor_check_result = NULL;
  1817. for (i = 0; i < slots_per_op; i++) {
  1818. iter->slots_per_op = slots_per_op - i;
  1819. last_used = iter;
  1820. iter = list_entry(iter->slot_node.next,
  1821. struct ppc440spe_adma_desc_slot,
  1822. slot_node);
  1823. }
  1824. num_slots -= slots_per_op;
  1825. }
  1826. alloc_tail->group_head = alloc_start;
  1827. alloc_tail->async_tx.cookie = -EBUSY;
  1828. list_splice(&chain, &alloc_tail->group_list);
  1829. chan->last_used = last_used;
  1830. return alloc_tail;
  1831. }
  1832. }
  1833. if (!retry++)
  1834. goto retry;
  1835. /* try to free some slots if the allocation fails */
  1836. tasklet_schedule(&chan->irq_tasklet);
  1837. return NULL;
  1838. }
  1839. /**
  1840. * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
  1841. */
  1842. static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
  1843. {
  1844. struct ppc440spe_adma_chan *ppc440spe_chan;
  1845. struct ppc440spe_adma_desc_slot *slot = NULL;
  1846. char *hw_desc;
  1847. int i, db_sz;
  1848. int init;
  1849. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  1850. init = ppc440spe_chan->slots_allocated ? 0 : 1;
  1851. chan->chan_id = ppc440spe_chan->device->id;
  1852. /* Allocate descriptor slots */
  1853. i = ppc440spe_chan->slots_allocated;
  1854. if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
  1855. db_sz = sizeof(struct dma_cdb);
  1856. else
  1857. db_sz = sizeof(struct xor_cb);
  1858. for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
  1859. slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
  1860. GFP_KERNEL);
  1861. if (!slot) {
  1862. printk(KERN_INFO "SPE ADMA Channel only initialized"
  1863. " %d descriptor slots", i--);
  1864. break;
  1865. }
  1866. hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
  1867. slot->hw_desc = (void *) &hw_desc[i * db_sz];
  1868. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  1869. slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
  1870. INIT_LIST_HEAD(&slot->chain_node);
  1871. INIT_LIST_HEAD(&slot->slot_node);
  1872. INIT_LIST_HEAD(&slot->group_list);
  1873. slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
  1874. slot->idx = i;
  1875. spin_lock_bh(&ppc440spe_chan->lock);
  1876. ppc440spe_chan->slots_allocated++;
  1877. list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
  1878. spin_unlock_bh(&ppc440spe_chan->lock);
  1879. }
  1880. if (i && !ppc440spe_chan->last_used) {
  1881. ppc440spe_chan->last_used =
  1882. list_entry(ppc440spe_chan->all_slots.next,
  1883. struct ppc440spe_adma_desc_slot,
  1884. slot_node);
  1885. }
  1886. dev_dbg(ppc440spe_chan->device->common.dev,
  1887. "ppc440spe adma%d: allocated %d descriptor slots\n",
  1888. ppc440spe_chan->device->id, i);
  1889. /* initialize the channel and the chain with a null operation */
  1890. if (init) {
  1891. switch (ppc440spe_chan->device->id) {
  1892. case PPC440SPE_DMA0_ID:
  1893. case PPC440SPE_DMA1_ID:
  1894. ppc440spe_chan->hw_chain_inited = 0;
  1895. /* Use WXOR for self-testing */
  1896. if (!ppc440spe_r6_tchan)
  1897. ppc440spe_r6_tchan = ppc440spe_chan;
  1898. break;
  1899. case PPC440SPE_XOR_ID:
  1900. ppc440spe_chan_start_null_xor(ppc440spe_chan);
  1901. break;
  1902. default:
  1903. BUG();
  1904. }
  1905. ppc440spe_chan->needs_unmap = 1;
  1906. }
  1907. return (i > 0) ? i : -ENOMEM;
  1908. }
  1909. /**
  1910. * ppc440spe_rxor_set_region_data -
  1911. */
  1912. static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
  1913. u8 xor_arg_no, u32 mask)
  1914. {
  1915. struct xor_cb *xcb = desc->hw_desc;
  1916. xcb->ops[xor_arg_no].h |= mask;
  1917. }
  1918. /**
  1919. * ppc440spe_rxor_set_src -
  1920. */
  1921. static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
  1922. u8 xor_arg_no, dma_addr_t addr)
  1923. {
  1924. struct xor_cb *xcb = desc->hw_desc;
  1925. xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
  1926. xcb->ops[xor_arg_no].l = addr;
  1927. }
  1928. /**
  1929. * ppc440spe_rxor_set_mult -
  1930. */
  1931. static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
  1932. u8 xor_arg_no, u8 idx, u8 mult)
  1933. {
  1934. struct xor_cb *xcb = desc->hw_desc;
  1935. xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
  1936. }
  1937. /**
  1938. * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
  1939. * has been achieved
  1940. */
  1941. static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
  1942. {
  1943. dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
  1944. chan->device->id, chan->pending);
  1945. if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
  1946. chan->pending = 0;
  1947. ppc440spe_chan_append(chan);
  1948. }
  1949. }
  1950. /**
  1951. * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
  1952. * (it's not necessary that descriptors will be submitted to the h/w
  1953. * chains too right now)
  1954. */
  1955. static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  1956. {
  1957. struct ppc440spe_adma_desc_slot *sw_desc;
  1958. struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
  1959. struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
  1960. int slot_cnt;
  1961. int slots_per_op;
  1962. dma_cookie_t cookie;
  1963. sw_desc = tx_to_ppc440spe_adma_slot(tx);
  1964. group_start = sw_desc->group_head;
  1965. slot_cnt = group_start->slot_cnt;
  1966. slots_per_op = group_start->slots_per_op;
  1967. spin_lock_bh(&chan->lock);
  1968. cookie = dma_cookie_assign(tx);
  1969. if (unlikely(list_empty(&chan->chain))) {
  1970. /* first peer */
  1971. list_splice_init(&sw_desc->group_list, &chan->chain);
  1972. chan_first_cdb[chan->device->id] = group_start;
  1973. } else {
  1974. /* isn't first peer, bind CDBs to chain */
  1975. old_chain_tail = list_entry(chan->chain.prev,
  1976. struct ppc440spe_adma_desc_slot,
  1977. chain_node);
  1978. list_splice_init(&sw_desc->group_list,
  1979. &old_chain_tail->chain_node);
  1980. /* fix up the hardware chain */
  1981. ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
  1982. }
  1983. /* increment the pending count by the number of operations */
  1984. chan->pending += slot_cnt / slots_per_op;
  1985. ppc440spe_adma_check_threshold(chan);
  1986. spin_unlock_bh(&chan->lock);
  1987. dev_dbg(chan->device->common.dev,
  1988. "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
  1989. chan->device->id, __func__,
  1990. sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
  1991. return cookie;
  1992. }
  1993. /**
  1994. * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
  1995. */
  1996. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
  1997. struct dma_chan *chan, unsigned long flags)
  1998. {
  1999. struct ppc440spe_adma_chan *ppc440spe_chan;
  2000. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2001. int slot_cnt, slots_per_op;
  2002. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2003. dev_dbg(ppc440spe_chan->device->common.dev,
  2004. "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
  2005. __func__);
  2006. spin_lock_bh(&ppc440spe_chan->lock);
  2007. slot_cnt = slots_per_op = 1;
  2008. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2009. slots_per_op);
  2010. if (sw_desc) {
  2011. group_start = sw_desc->group_head;
  2012. ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
  2013. group_start->unmap_len = 0;
  2014. sw_desc->async_tx.flags = flags;
  2015. }
  2016. spin_unlock_bh(&ppc440spe_chan->lock);
  2017. return sw_desc ? &sw_desc->async_tx : NULL;
  2018. }
  2019. /**
  2020. * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
  2021. */
  2022. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
  2023. struct dma_chan *chan, dma_addr_t dma_dest,
  2024. dma_addr_t dma_src, size_t len, unsigned long flags)
  2025. {
  2026. struct ppc440spe_adma_chan *ppc440spe_chan;
  2027. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2028. int slot_cnt, slots_per_op;
  2029. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2030. if (unlikely(!len))
  2031. return NULL;
  2032. BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
  2033. spin_lock_bh(&ppc440spe_chan->lock);
  2034. dev_dbg(ppc440spe_chan->device->common.dev,
  2035. "ppc440spe adma%d: %s len: %u int_en %d\n",
  2036. ppc440spe_chan->device->id, __func__, len,
  2037. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2038. slot_cnt = slots_per_op = 1;
  2039. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2040. slots_per_op);
  2041. if (sw_desc) {
  2042. group_start = sw_desc->group_head;
  2043. ppc440spe_desc_init_memcpy(group_start, flags);
  2044. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2045. ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
  2046. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2047. sw_desc->unmap_len = len;
  2048. sw_desc->async_tx.flags = flags;
  2049. }
  2050. spin_unlock_bh(&ppc440spe_chan->lock);
  2051. return sw_desc ? &sw_desc->async_tx : NULL;
  2052. }
  2053. /**
  2054. * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
  2055. */
  2056. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
  2057. struct dma_chan *chan, dma_addr_t dma_dest,
  2058. dma_addr_t *dma_src, u32 src_cnt, size_t len,
  2059. unsigned long flags)
  2060. {
  2061. struct ppc440spe_adma_chan *ppc440spe_chan;
  2062. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  2063. int slot_cnt, slots_per_op;
  2064. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2065. ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
  2066. dma_dest, dma_src, src_cnt));
  2067. if (unlikely(!len))
  2068. return NULL;
  2069. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2070. dev_dbg(ppc440spe_chan->device->common.dev,
  2071. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2072. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2073. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2074. spin_lock_bh(&ppc440spe_chan->lock);
  2075. slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  2076. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2077. slots_per_op);
  2078. if (sw_desc) {
  2079. group_start = sw_desc->group_head;
  2080. ppc440spe_desc_init_xor(group_start, src_cnt, flags);
  2081. ppc440spe_adma_set_dest(group_start, dma_dest, 0);
  2082. while (src_cnt--)
  2083. ppc440spe_adma_memcpy_xor_set_src(group_start,
  2084. dma_src[src_cnt], src_cnt);
  2085. ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
  2086. sw_desc->unmap_len = len;
  2087. sw_desc->async_tx.flags = flags;
  2088. }
  2089. spin_unlock_bh(&ppc440spe_chan->lock);
  2090. return sw_desc ? &sw_desc->async_tx : NULL;
  2091. }
  2092. static inline void
  2093. ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
  2094. int src_cnt);
  2095. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
  2096. /**
  2097. * ppc440spe_adma_init_dma2rxor_slot -
  2098. */
  2099. static void ppc440spe_adma_init_dma2rxor_slot(
  2100. struct ppc440spe_adma_desc_slot *desc,
  2101. dma_addr_t *src, int src_cnt)
  2102. {
  2103. int i;
  2104. /* initialize CDB */
  2105. for (i = 0; i < src_cnt; i++) {
  2106. ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
  2107. desc->src_cnt, (u32)src[i]);
  2108. }
  2109. }
  2110. /**
  2111. * ppc440spe_dma01_prep_mult -
  2112. * for Q operation where destination is also the source
  2113. */
  2114. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
  2115. struct ppc440spe_adma_chan *ppc440spe_chan,
  2116. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2117. const unsigned char *scf, size_t len, unsigned long flags)
  2118. {
  2119. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2120. unsigned long op = 0;
  2121. int slot_cnt;
  2122. set_bit(PPC440SPE_DESC_WXOR, &op);
  2123. slot_cnt = 2;
  2124. spin_lock_bh(&ppc440spe_chan->lock);
  2125. /* use WXOR, each descriptor occupies one slot */
  2126. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2127. if (sw_desc) {
  2128. struct ppc440spe_adma_chan *chan;
  2129. struct ppc440spe_adma_desc_slot *iter;
  2130. struct dma_cdb *hw_desc;
  2131. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2132. set_bits(op, &sw_desc->flags);
  2133. sw_desc->src_cnt = src_cnt;
  2134. sw_desc->dst_cnt = dst_cnt;
  2135. /* First descriptor, zero data in the destination and copy it
  2136. * to q page using MULTICAST transfer.
  2137. */
  2138. iter = list_first_entry(&sw_desc->group_list,
  2139. struct ppc440spe_adma_desc_slot,
  2140. chain_node);
  2141. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2142. /* set 'next' pointer */
  2143. iter->hw_next = list_entry(iter->chain_node.next,
  2144. struct ppc440spe_adma_desc_slot,
  2145. chain_node);
  2146. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2147. hw_desc = iter->hw_desc;
  2148. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2149. ppc440spe_desc_set_dest_addr(iter, chan,
  2150. DMA_CUED_XOR_BASE, dst[0], 0);
  2151. ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
  2152. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2153. src[0]);
  2154. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2155. iter->unmap_len = len;
  2156. /*
  2157. * Second descriptor, multiply data from the q page
  2158. * and store the result in real destination.
  2159. */
  2160. iter = list_first_entry(&iter->chain_node,
  2161. struct ppc440spe_adma_desc_slot,
  2162. chain_node);
  2163. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2164. iter->hw_next = NULL;
  2165. if (flags & DMA_PREP_INTERRUPT)
  2166. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2167. else
  2168. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2169. hw_desc = iter->hw_desc;
  2170. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2171. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2172. DMA_CUED_XOR_HB, dst[1]);
  2173. ppc440spe_desc_set_dest_addr(iter, chan,
  2174. DMA_CUED_XOR_BASE, dst[0], 0);
  2175. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2176. DMA_CDB_SG_DST1, scf[0]);
  2177. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2178. iter->unmap_len = len;
  2179. sw_desc->async_tx.flags = flags;
  2180. }
  2181. spin_unlock_bh(&ppc440spe_chan->lock);
  2182. return sw_desc;
  2183. }
  2184. /**
  2185. * ppc440spe_dma01_prep_sum_product -
  2186. * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
  2187. * the source.
  2188. */
  2189. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
  2190. struct ppc440spe_adma_chan *ppc440spe_chan,
  2191. dma_addr_t *dst, dma_addr_t *src, int src_cnt,
  2192. const unsigned char *scf, size_t len, unsigned long flags)
  2193. {
  2194. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2195. unsigned long op = 0;
  2196. int slot_cnt;
  2197. set_bit(PPC440SPE_DESC_WXOR, &op);
  2198. slot_cnt = 3;
  2199. spin_lock_bh(&ppc440spe_chan->lock);
  2200. /* WXOR, each descriptor occupies one slot */
  2201. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2202. if (sw_desc) {
  2203. struct ppc440spe_adma_chan *chan;
  2204. struct ppc440spe_adma_desc_slot *iter;
  2205. struct dma_cdb *hw_desc;
  2206. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2207. set_bits(op, &sw_desc->flags);
  2208. sw_desc->src_cnt = src_cnt;
  2209. sw_desc->dst_cnt = 1;
  2210. /* 1st descriptor, src[1] data to q page and zero destination */
  2211. iter = list_first_entry(&sw_desc->group_list,
  2212. struct ppc440spe_adma_desc_slot,
  2213. chain_node);
  2214. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2215. iter->hw_next = list_entry(iter->chain_node.next,
  2216. struct ppc440spe_adma_desc_slot,
  2217. chain_node);
  2218. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2219. hw_desc = iter->hw_desc;
  2220. hw_desc->opc = DMA_CDB_OPC_MULTICAST;
  2221. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2222. *dst, 0);
  2223. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2224. ppc440spe_chan->qdest, 1);
  2225. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2226. src[1]);
  2227. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2228. iter->unmap_len = len;
  2229. /* 2nd descriptor, multiply src[1] data and store the
  2230. * result in destination */
  2231. iter = list_first_entry(&iter->chain_node,
  2232. struct ppc440spe_adma_desc_slot,
  2233. chain_node);
  2234. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2235. /* set 'next' pointer */
  2236. iter->hw_next = list_entry(iter->chain_node.next,
  2237. struct ppc440spe_adma_desc_slot,
  2238. chain_node);
  2239. if (flags & DMA_PREP_INTERRUPT)
  2240. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2241. else
  2242. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2243. hw_desc = iter->hw_desc;
  2244. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2245. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2246. ppc440spe_chan->qdest);
  2247. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2248. *dst, 0);
  2249. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2250. DMA_CDB_SG_DST1, scf[1]);
  2251. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2252. iter->unmap_len = len;
  2253. /*
  2254. * 3rd descriptor, multiply src[0] data and xor it
  2255. * with destination
  2256. */
  2257. iter = list_first_entry(&iter->chain_node,
  2258. struct ppc440spe_adma_desc_slot,
  2259. chain_node);
  2260. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2261. iter->hw_next = NULL;
  2262. if (flags & DMA_PREP_INTERRUPT)
  2263. set_bit(PPC440SPE_DESC_INT, &iter->flags);
  2264. else
  2265. clear_bit(PPC440SPE_DESC_INT, &iter->flags);
  2266. hw_desc = iter->hw_desc;
  2267. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2268. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
  2269. src[0]);
  2270. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
  2271. *dst, 0);
  2272. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2273. DMA_CDB_SG_DST1, scf[0]);
  2274. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
  2275. iter->unmap_len = len;
  2276. sw_desc->async_tx.flags = flags;
  2277. }
  2278. spin_unlock_bh(&ppc440spe_chan->lock);
  2279. return sw_desc;
  2280. }
  2281. static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
  2282. struct ppc440spe_adma_chan *ppc440spe_chan,
  2283. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2284. const unsigned char *scf, size_t len, unsigned long flags)
  2285. {
  2286. int slot_cnt;
  2287. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2288. unsigned long op = 0;
  2289. unsigned char mult = 1;
  2290. pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2291. __func__, dst_cnt, src_cnt, len);
  2292. /* select operations WXOR/RXOR depending on the
  2293. * source addresses of operators and the number
  2294. * of destinations (RXOR support only Q-parity calculations)
  2295. */
  2296. set_bit(PPC440SPE_DESC_WXOR, &op);
  2297. if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
  2298. /* no active RXOR;
  2299. * do RXOR if:
  2300. * - there are more than 1 source,
  2301. * - len is aligned on 512-byte boundary,
  2302. * - source addresses fit to one of 4 possible regions.
  2303. */
  2304. if (src_cnt > 1 &&
  2305. !(len & MQ0_CF2H_RXOR_BS_MASK) &&
  2306. (src[0] + len) == src[1]) {
  2307. /* may do RXOR R1 R2 */
  2308. set_bit(PPC440SPE_DESC_RXOR, &op);
  2309. if (src_cnt != 2) {
  2310. /* may try to enhance region of RXOR */
  2311. if ((src[1] + len) == src[2]) {
  2312. /* do RXOR R1 R2 R3 */
  2313. set_bit(PPC440SPE_DESC_RXOR123,
  2314. &op);
  2315. } else if ((src[1] + len * 2) == src[2]) {
  2316. /* do RXOR R1 R2 R4 */
  2317. set_bit(PPC440SPE_DESC_RXOR124, &op);
  2318. } else if ((src[1] + len * 3) == src[2]) {
  2319. /* do RXOR R1 R2 R5 */
  2320. set_bit(PPC440SPE_DESC_RXOR125,
  2321. &op);
  2322. } else {
  2323. /* do RXOR R1 R2 */
  2324. set_bit(PPC440SPE_DESC_RXOR12,
  2325. &op);
  2326. }
  2327. } else {
  2328. /* do RXOR R1 R2 */
  2329. set_bit(PPC440SPE_DESC_RXOR12, &op);
  2330. }
  2331. }
  2332. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2333. /* can not do this operation with RXOR */
  2334. clear_bit(PPC440SPE_RXOR_RUN,
  2335. &ppc440spe_rxor_state);
  2336. } else {
  2337. /* can do; set block size right now */
  2338. ppc440spe_desc_set_rxor_block_size(len);
  2339. }
  2340. }
  2341. /* Number of necessary slots depends on operation type selected */
  2342. if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
  2343. /* This is a WXOR only chain. Need descriptors for each
  2344. * source to GF-XOR them with WXOR, and need descriptors
  2345. * for each destination to zero them with WXOR
  2346. */
  2347. slot_cnt = src_cnt;
  2348. if (flags & DMA_PREP_ZERO_P) {
  2349. slot_cnt++;
  2350. set_bit(PPC440SPE_ZERO_P, &op);
  2351. }
  2352. if (flags & DMA_PREP_ZERO_Q) {
  2353. slot_cnt++;
  2354. set_bit(PPC440SPE_ZERO_Q, &op);
  2355. }
  2356. } else {
  2357. /* Need 1/2 descriptor for RXOR operation, and
  2358. * need (src_cnt - (2 or 3)) for WXOR of sources
  2359. * remained (if any)
  2360. */
  2361. slot_cnt = dst_cnt;
  2362. if (flags & DMA_PREP_ZERO_P)
  2363. set_bit(PPC440SPE_ZERO_P, &op);
  2364. if (flags & DMA_PREP_ZERO_Q)
  2365. set_bit(PPC440SPE_ZERO_Q, &op);
  2366. if (test_bit(PPC440SPE_DESC_RXOR12, &op))
  2367. slot_cnt += src_cnt - 2;
  2368. else
  2369. slot_cnt += src_cnt - 3;
  2370. /* Thus we have either RXOR only chain or
  2371. * mixed RXOR/WXOR
  2372. */
  2373. if (slot_cnt == dst_cnt)
  2374. /* RXOR only chain */
  2375. clear_bit(PPC440SPE_DESC_WXOR, &op);
  2376. }
  2377. spin_lock_bh(&ppc440spe_chan->lock);
  2378. /* for both RXOR/WXOR each descriptor occupies one slot */
  2379. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2380. if (sw_desc) {
  2381. ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
  2382. flags, op);
  2383. /* setup dst/src/mult */
  2384. pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
  2385. __func__, dst[0], dst[1]);
  2386. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2387. while (src_cnt--) {
  2388. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2389. src_cnt);
  2390. /* NOTE: "Multi = 0 is equivalent to = 1" as it
  2391. * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
  2392. * doesn't work for RXOR with DMA0/1! Instead, multi=0
  2393. * leads to zeroing source data after RXOR.
  2394. * So, for P case set-up mult=1 explicitly.
  2395. */
  2396. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2397. mult = scf[src_cnt];
  2398. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2399. mult, src_cnt, dst_cnt - 1);
  2400. }
  2401. /* Setup byte count foreach slot just allocated */
  2402. sw_desc->async_tx.flags = flags;
  2403. list_for_each_entry(iter, &sw_desc->group_list,
  2404. chain_node) {
  2405. ppc440spe_desc_set_byte_count(iter,
  2406. ppc440spe_chan, len);
  2407. iter->unmap_len = len;
  2408. }
  2409. }
  2410. spin_unlock_bh(&ppc440spe_chan->lock);
  2411. return sw_desc;
  2412. }
  2413. static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
  2414. struct ppc440spe_adma_chan *ppc440spe_chan,
  2415. dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
  2416. const unsigned char *scf, size_t len, unsigned long flags)
  2417. {
  2418. int slot_cnt, descs_per_op;
  2419. struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
  2420. unsigned long op = 0;
  2421. unsigned char mult = 1;
  2422. BUG_ON(!dst_cnt);
  2423. /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
  2424. __func__, dst_cnt, src_cnt, len);*/
  2425. spin_lock_bh(&ppc440spe_chan->lock);
  2426. descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
  2427. if (descs_per_op < 0) {
  2428. spin_unlock_bh(&ppc440spe_chan->lock);
  2429. return NULL;
  2430. }
  2431. /* depending on number of sources we have 1 or 2 RXOR chains */
  2432. slot_cnt = descs_per_op * dst_cnt;
  2433. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
  2434. if (sw_desc) {
  2435. op = slot_cnt;
  2436. sw_desc->async_tx.flags = flags;
  2437. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2438. ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
  2439. --op ? 0 : flags);
  2440. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2441. len);
  2442. iter->unmap_len = len;
  2443. ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
  2444. iter->rxor_cursor.len = len;
  2445. iter->descs_per_op = descs_per_op;
  2446. }
  2447. op = 0;
  2448. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2449. op++;
  2450. if (op % descs_per_op == 0)
  2451. ppc440spe_adma_init_dma2rxor_slot(iter, src,
  2452. src_cnt);
  2453. if (likely(!list_is_last(&iter->chain_node,
  2454. &sw_desc->group_list))) {
  2455. /* set 'next' pointer */
  2456. iter->hw_next =
  2457. list_entry(iter->chain_node.next,
  2458. struct ppc440spe_adma_desc_slot,
  2459. chain_node);
  2460. ppc440spe_xor_set_link(iter, iter->hw_next);
  2461. } else {
  2462. /* this is the last descriptor. */
  2463. iter->hw_next = NULL;
  2464. }
  2465. }
  2466. /* fixup head descriptor */
  2467. sw_desc->dst_cnt = dst_cnt;
  2468. if (flags & DMA_PREP_ZERO_P)
  2469. set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
  2470. if (flags & DMA_PREP_ZERO_Q)
  2471. set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
  2472. /* setup dst/src/mult */
  2473. ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
  2474. while (src_cnt--) {
  2475. /* handle descriptors (if dst_cnt == 2) inside
  2476. * the ppc440spe_adma_pq_set_srcxxx() functions
  2477. */
  2478. ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
  2479. src_cnt);
  2480. if (!(flags & DMA_PREP_PQ_DISABLE_Q))
  2481. mult = scf[src_cnt];
  2482. ppc440spe_adma_pq_set_src_mult(sw_desc,
  2483. mult, src_cnt, dst_cnt - 1);
  2484. }
  2485. }
  2486. spin_unlock_bh(&ppc440spe_chan->lock);
  2487. ppc440spe_desc_set_rxor_block_size(len);
  2488. return sw_desc;
  2489. }
  2490. /**
  2491. * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
  2492. */
  2493. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
  2494. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  2495. unsigned int src_cnt, const unsigned char *scf,
  2496. size_t len, unsigned long flags)
  2497. {
  2498. struct ppc440spe_adma_chan *ppc440spe_chan;
  2499. struct ppc440spe_adma_desc_slot *sw_desc = NULL;
  2500. int dst_cnt = 0;
  2501. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2502. ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
  2503. dst, src, src_cnt));
  2504. BUG_ON(!len);
  2505. BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
  2506. BUG_ON(!src_cnt);
  2507. if (src_cnt == 1 && dst[1] == src[0]) {
  2508. dma_addr_t dest[2];
  2509. /* dst[1] is real destination (Q) */
  2510. dest[0] = dst[1];
  2511. /* this is the page to multicast source data to */
  2512. dest[1] = ppc440spe_chan->qdest;
  2513. sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
  2514. dest, 2, src, src_cnt, scf, len, flags);
  2515. return sw_desc ? &sw_desc->async_tx : NULL;
  2516. }
  2517. if (src_cnt == 2 && dst[1] == src[1]) {
  2518. sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
  2519. &dst[1], src, 2, scf, len, flags);
  2520. return sw_desc ? &sw_desc->async_tx : NULL;
  2521. }
  2522. if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
  2523. BUG_ON(!dst[0]);
  2524. dst_cnt++;
  2525. flags |= DMA_PREP_ZERO_P;
  2526. }
  2527. if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
  2528. BUG_ON(!dst[1]);
  2529. dst_cnt++;
  2530. flags |= DMA_PREP_ZERO_Q;
  2531. }
  2532. BUG_ON(!dst_cnt);
  2533. dev_dbg(ppc440spe_chan->device->common.dev,
  2534. "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
  2535. ppc440spe_chan->device->id, __func__, src_cnt, len,
  2536. flags & DMA_PREP_INTERRUPT ? 1 : 0);
  2537. switch (ppc440spe_chan->device->id) {
  2538. case PPC440SPE_DMA0_ID:
  2539. case PPC440SPE_DMA1_ID:
  2540. sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
  2541. dst, dst_cnt, src, src_cnt, scf,
  2542. len, flags);
  2543. break;
  2544. case PPC440SPE_XOR_ID:
  2545. sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
  2546. dst, dst_cnt, src, src_cnt, scf,
  2547. len, flags);
  2548. break;
  2549. }
  2550. return sw_desc ? &sw_desc->async_tx : NULL;
  2551. }
  2552. /**
  2553. * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
  2554. * a PQ_ZERO_SUM operation
  2555. */
  2556. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
  2557. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  2558. unsigned int src_cnt, const unsigned char *scf, size_t len,
  2559. enum sum_check_flags *pqres, unsigned long flags)
  2560. {
  2561. struct ppc440spe_adma_chan *ppc440spe_chan;
  2562. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  2563. dma_addr_t pdest, qdest;
  2564. int slot_cnt, slots_per_op, idst, dst_cnt;
  2565. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  2566. if (flags & DMA_PREP_PQ_DISABLE_P)
  2567. pdest = 0;
  2568. else
  2569. pdest = pq[0];
  2570. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2571. qdest = 0;
  2572. else
  2573. qdest = pq[1];
  2574. ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
  2575. src, src_cnt, scf));
  2576. /* Always use WXOR for P/Q calculations (two destinations).
  2577. * Need 1 or 2 extra slots to verify results are zero.
  2578. */
  2579. idst = dst_cnt = (pdest && qdest) ? 2 : 1;
  2580. /* One additional slot per destination to clone P/Q
  2581. * before calculation (we have to preserve destinations).
  2582. */
  2583. slot_cnt = src_cnt + dst_cnt * 2;
  2584. slots_per_op = 1;
  2585. spin_lock_bh(&ppc440spe_chan->lock);
  2586. sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
  2587. slots_per_op);
  2588. if (sw_desc) {
  2589. ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
  2590. /* Setup byte count for each slot just allocated */
  2591. sw_desc->async_tx.flags = flags;
  2592. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  2593. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2594. len);
  2595. iter->unmap_len = len;
  2596. }
  2597. if (pdest) {
  2598. struct dma_cdb *hw_desc;
  2599. struct ppc440spe_adma_chan *chan;
  2600. iter = sw_desc->group_head;
  2601. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2602. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2603. iter->hw_next = list_entry(iter->chain_node.next,
  2604. struct ppc440spe_adma_desc_slot,
  2605. chain_node);
  2606. hw_desc = iter->hw_desc;
  2607. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2608. iter->src_cnt = 0;
  2609. iter->dst_cnt = 0;
  2610. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2611. ppc440spe_chan->pdest, 0);
  2612. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
  2613. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2614. len);
  2615. iter->unmap_len = 0;
  2616. /* override pdest to preserve original P */
  2617. pdest = ppc440spe_chan->pdest;
  2618. }
  2619. if (qdest) {
  2620. struct dma_cdb *hw_desc;
  2621. struct ppc440spe_adma_chan *chan;
  2622. iter = list_first_entry(&sw_desc->group_list,
  2623. struct ppc440spe_adma_desc_slot,
  2624. chain_node);
  2625. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2626. if (pdest) {
  2627. iter = list_entry(iter->chain_node.next,
  2628. struct ppc440spe_adma_desc_slot,
  2629. chain_node);
  2630. }
  2631. memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
  2632. iter->hw_next = list_entry(iter->chain_node.next,
  2633. struct ppc440spe_adma_desc_slot,
  2634. chain_node);
  2635. hw_desc = iter->hw_desc;
  2636. hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
  2637. iter->src_cnt = 0;
  2638. iter->dst_cnt = 0;
  2639. ppc440spe_desc_set_dest_addr(iter, chan, 0,
  2640. ppc440spe_chan->qdest, 0);
  2641. ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
  2642. ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
  2643. len);
  2644. iter->unmap_len = 0;
  2645. /* override qdest to preserve original Q */
  2646. qdest = ppc440spe_chan->qdest;
  2647. }
  2648. /* Setup destinations for P/Q ops */
  2649. ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
  2650. /* Setup zero QWORDs into DCHECK CDBs */
  2651. idst = dst_cnt;
  2652. list_for_each_entry_reverse(iter, &sw_desc->group_list,
  2653. chain_node) {
  2654. /*
  2655. * The last CDB corresponds to Q-parity check,
  2656. * the one before last CDB corresponds
  2657. * P-parity check
  2658. */
  2659. if (idst == DMA_DEST_MAX_NUM) {
  2660. if (idst == dst_cnt) {
  2661. set_bit(PPC440SPE_DESC_QCHECK,
  2662. &iter->flags);
  2663. } else {
  2664. set_bit(PPC440SPE_DESC_PCHECK,
  2665. &iter->flags);
  2666. }
  2667. } else {
  2668. if (qdest) {
  2669. set_bit(PPC440SPE_DESC_QCHECK,
  2670. &iter->flags);
  2671. } else {
  2672. set_bit(PPC440SPE_DESC_PCHECK,
  2673. &iter->flags);
  2674. }
  2675. }
  2676. iter->xor_check_result = pqres;
  2677. /*
  2678. * set it to zero, if check fail then result will
  2679. * be updated
  2680. */
  2681. *iter->xor_check_result = 0;
  2682. ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
  2683. ppc440spe_qword);
  2684. if (!(--dst_cnt))
  2685. break;
  2686. }
  2687. /* Setup sources and mults for P/Q ops */
  2688. list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
  2689. chain_node) {
  2690. struct ppc440spe_adma_chan *chan;
  2691. u32 mult_dst;
  2692. chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
  2693. ppc440spe_desc_set_src_addr(iter, chan, 0,
  2694. DMA_CUED_XOR_HB,
  2695. src[src_cnt - 1]);
  2696. if (qdest) {
  2697. mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
  2698. DMA_CDB_SG_DST1;
  2699. ppc440spe_desc_set_src_mult(iter, chan,
  2700. DMA_CUED_MULT1_OFF,
  2701. mult_dst,
  2702. scf[src_cnt - 1]);
  2703. }
  2704. if (!(--src_cnt))
  2705. break;
  2706. }
  2707. }
  2708. spin_unlock_bh(&ppc440spe_chan->lock);
  2709. return sw_desc ? &sw_desc->async_tx : NULL;
  2710. }
  2711. /**
  2712. * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
  2713. * XOR ZERO_SUM operation
  2714. */
  2715. static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
  2716. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  2717. size_t len, enum sum_check_flags *result, unsigned long flags)
  2718. {
  2719. struct dma_async_tx_descriptor *tx;
  2720. dma_addr_t pq[2];
  2721. /* validate P, disable Q */
  2722. pq[0] = src[0];
  2723. pq[1] = 0;
  2724. flags |= DMA_PREP_PQ_DISABLE_Q;
  2725. tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
  2726. src_cnt - 1, 0, len,
  2727. result, flags);
  2728. return tx;
  2729. }
  2730. /**
  2731. * ppc440spe_adma_set_dest - set destination address into descriptor
  2732. */
  2733. static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2734. dma_addr_t addr, int index)
  2735. {
  2736. struct ppc440spe_adma_chan *chan;
  2737. BUG_ON(index >= sw_desc->dst_cnt);
  2738. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2739. switch (chan->device->id) {
  2740. case PPC440SPE_DMA0_ID:
  2741. case PPC440SPE_DMA1_ID:
  2742. /* to do: support transfers lengths >
  2743. * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
  2744. */
  2745. ppc440spe_desc_set_dest_addr(sw_desc->group_head,
  2746. chan, 0, addr, index);
  2747. break;
  2748. case PPC440SPE_XOR_ID:
  2749. sw_desc = ppc440spe_get_group_entry(sw_desc, index);
  2750. ppc440spe_desc_set_dest_addr(sw_desc,
  2751. chan, 0, addr, index);
  2752. break;
  2753. }
  2754. }
  2755. static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
  2756. struct ppc440spe_adma_chan *chan, dma_addr_t addr)
  2757. {
  2758. /* To clear destinations update the descriptor
  2759. * (P or Q depending on index) as follows:
  2760. * addr is destination (0 corresponds to SG2):
  2761. */
  2762. ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
  2763. /* ... and the addr is source: */
  2764. ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
  2765. /* addr is always SG2 then the mult is always DST1 */
  2766. ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
  2767. DMA_CDB_SG_DST1, 1);
  2768. }
  2769. /**
  2770. * ppc440spe_adma_pq_set_dest - set destination address into descriptor
  2771. * for the PQXOR operation
  2772. */
  2773. static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
  2774. dma_addr_t *addrs, unsigned long flags)
  2775. {
  2776. struct ppc440spe_adma_desc_slot *iter;
  2777. struct ppc440spe_adma_chan *chan;
  2778. dma_addr_t paddr, qaddr;
  2779. dma_addr_t addr = 0, ppath, qpath;
  2780. int index = 0, i;
  2781. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2782. if (flags & DMA_PREP_PQ_DISABLE_P)
  2783. paddr = 0;
  2784. else
  2785. paddr = addrs[0];
  2786. if (flags & DMA_PREP_PQ_DISABLE_Q)
  2787. qaddr = 0;
  2788. else
  2789. qaddr = addrs[1];
  2790. if (!paddr || !qaddr)
  2791. addr = paddr ? paddr : qaddr;
  2792. switch (chan->device->id) {
  2793. case PPC440SPE_DMA0_ID:
  2794. case PPC440SPE_DMA1_ID:
  2795. /* walk through the WXOR source list and set P/Q-destinations
  2796. * for each slot:
  2797. */
  2798. if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  2799. /* This is WXOR-only chain; may have 1/2 zero descs */
  2800. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  2801. index++;
  2802. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  2803. index++;
  2804. iter = ppc440spe_get_group_entry(sw_desc, index);
  2805. if (addr) {
  2806. /* one destination */
  2807. list_for_each_entry_from(iter,
  2808. &sw_desc->group_list, chain_node)
  2809. ppc440spe_desc_set_dest_addr(iter, chan,
  2810. DMA_CUED_XOR_BASE, addr, 0);
  2811. } else {
  2812. /* two destinations */
  2813. list_for_each_entry_from(iter,
  2814. &sw_desc->group_list, chain_node) {
  2815. ppc440spe_desc_set_dest_addr(iter, chan,
  2816. DMA_CUED_XOR_BASE, paddr, 0);
  2817. ppc440spe_desc_set_dest_addr(iter, chan,
  2818. DMA_CUED_XOR_BASE, qaddr, 1);
  2819. }
  2820. }
  2821. if (index) {
  2822. /* To clear destinations update the descriptor
  2823. * (1st,2nd, or both depending on flags)
  2824. */
  2825. index = 0;
  2826. if (test_bit(PPC440SPE_ZERO_P,
  2827. &sw_desc->flags)) {
  2828. iter = ppc440spe_get_group_entry(
  2829. sw_desc, index++);
  2830. ppc440spe_adma_pq_zero_op(iter, chan,
  2831. paddr);
  2832. }
  2833. if (test_bit(PPC440SPE_ZERO_Q,
  2834. &sw_desc->flags)) {
  2835. iter = ppc440spe_get_group_entry(
  2836. sw_desc, index++);
  2837. ppc440spe_adma_pq_zero_op(iter, chan,
  2838. qaddr);
  2839. }
  2840. return;
  2841. }
  2842. } else {
  2843. /* This is RXOR-only or RXOR/WXOR mixed chain */
  2844. /* If we want to include destination into calculations,
  2845. * then make dest addresses cued with mult=1 (XOR).
  2846. */
  2847. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2848. DMA_CUED_XOR_HB :
  2849. DMA_CUED_XOR_BASE |
  2850. (1 << DMA_CUED_MULT1_OFF);
  2851. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2852. DMA_CUED_XOR_HB :
  2853. DMA_CUED_XOR_BASE |
  2854. (1 << DMA_CUED_MULT1_OFF);
  2855. /* Setup destination(s) in RXOR slot(s) */
  2856. iter = ppc440spe_get_group_entry(sw_desc, index++);
  2857. ppc440spe_desc_set_dest_addr(iter, chan,
  2858. paddr ? ppath : qpath,
  2859. paddr ? paddr : qaddr, 0);
  2860. if (!addr) {
  2861. /* two destinations */
  2862. iter = ppc440spe_get_group_entry(sw_desc,
  2863. index++);
  2864. ppc440spe_desc_set_dest_addr(iter, chan,
  2865. qpath, qaddr, 0);
  2866. }
  2867. if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
  2868. /* Setup destination(s) in remaining WXOR
  2869. * slots
  2870. */
  2871. iter = ppc440spe_get_group_entry(sw_desc,
  2872. index);
  2873. if (addr) {
  2874. /* one destination */
  2875. list_for_each_entry_from(iter,
  2876. &sw_desc->group_list,
  2877. chain_node)
  2878. ppc440spe_desc_set_dest_addr(
  2879. iter, chan,
  2880. DMA_CUED_XOR_BASE,
  2881. addr, 0);
  2882. } else {
  2883. /* two destinations */
  2884. list_for_each_entry_from(iter,
  2885. &sw_desc->group_list,
  2886. chain_node) {
  2887. ppc440spe_desc_set_dest_addr(
  2888. iter, chan,
  2889. DMA_CUED_XOR_BASE,
  2890. paddr, 0);
  2891. ppc440spe_desc_set_dest_addr(
  2892. iter, chan,
  2893. DMA_CUED_XOR_BASE,
  2894. qaddr, 1);
  2895. }
  2896. }
  2897. }
  2898. }
  2899. break;
  2900. case PPC440SPE_XOR_ID:
  2901. /* DMA2 descriptors have only 1 destination, so there are
  2902. * two chains - one for each dest.
  2903. * If we want to include destination into calculations,
  2904. * then make dest addresses cued with mult=1 (XOR).
  2905. */
  2906. ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
  2907. DMA_CUED_XOR_HB :
  2908. DMA_CUED_XOR_BASE |
  2909. (1 << DMA_CUED_MULT1_OFF);
  2910. qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
  2911. DMA_CUED_XOR_HB :
  2912. DMA_CUED_XOR_BASE |
  2913. (1 << DMA_CUED_MULT1_OFF);
  2914. iter = ppc440spe_get_group_entry(sw_desc, 0);
  2915. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2916. ppc440spe_desc_set_dest_addr(iter, chan,
  2917. paddr ? ppath : qpath,
  2918. paddr ? paddr : qaddr, 0);
  2919. iter = list_entry(iter->chain_node.next,
  2920. struct ppc440spe_adma_desc_slot,
  2921. chain_node);
  2922. }
  2923. if (!addr) {
  2924. /* Two destinations; setup Q here */
  2925. iter = ppc440spe_get_group_entry(sw_desc,
  2926. sw_desc->descs_per_op);
  2927. for (i = 0; i < sw_desc->descs_per_op; i++) {
  2928. ppc440spe_desc_set_dest_addr(iter,
  2929. chan, qpath, qaddr, 0);
  2930. iter = list_entry(iter->chain_node.next,
  2931. struct ppc440spe_adma_desc_slot,
  2932. chain_node);
  2933. }
  2934. }
  2935. break;
  2936. }
  2937. }
  2938. /**
  2939. * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
  2940. * for the PQ_ZERO_SUM operation
  2941. */
  2942. static void ppc440spe_adma_pqzero_sum_set_dest(
  2943. struct ppc440spe_adma_desc_slot *sw_desc,
  2944. dma_addr_t paddr, dma_addr_t qaddr)
  2945. {
  2946. struct ppc440spe_adma_desc_slot *iter, *end;
  2947. struct ppc440spe_adma_chan *chan;
  2948. dma_addr_t addr = 0;
  2949. int idx;
  2950. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  2951. /* walk through the WXOR source list and set P/Q-destinations
  2952. * for each slot
  2953. */
  2954. idx = (paddr && qaddr) ? 2 : 1;
  2955. /* set end */
  2956. list_for_each_entry_reverse(end, &sw_desc->group_list,
  2957. chain_node) {
  2958. if (!(--idx))
  2959. break;
  2960. }
  2961. /* set start */
  2962. idx = (paddr && qaddr) ? 2 : 1;
  2963. iter = ppc440spe_get_group_entry(sw_desc, idx);
  2964. if (paddr && qaddr) {
  2965. /* two destinations */
  2966. list_for_each_entry_from(iter, &sw_desc->group_list,
  2967. chain_node) {
  2968. if (unlikely(iter == end))
  2969. break;
  2970. ppc440spe_desc_set_dest_addr(iter, chan,
  2971. DMA_CUED_XOR_BASE, paddr, 0);
  2972. ppc440spe_desc_set_dest_addr(iter, chan,
  2973. DMA_CUED_XOR_BASE, qaddr, 1);
  2974. }
  2975. } else {
  2976. /* one destination */
  2977. addr = paddr ? paddr : qaddr;
  2978. list_for_each_entry_from(iter, &sw_desc->group_list,
  2979. chain_node) {
  2980. if (unlikely(iter == end))
  2981. break;
  2982. ppc440spe_desc_set_dest_addr(iter, chan,
  2983. DMA_CUED_XOR_BASE, addr, 0);
  2984. }
  2985. }
  2986. /* The remaining descriptors are DATACHECK. These have no need in
  2987. * destination. Actually, these destinations are used there
  2988. * as sources for check operation. So, set addr as source.
  2989. */
  2990. ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
  2991. if (!addr) {
  2992. end = list_entry(end->chain_node.next,
  2993. struct ppc440spe_adma_desc_slot, chain_node);
  2994. ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
  2995. }
  2996. }
  2997. /**
  2998. * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
  2999. */
  3000. static inline void ppc440spe_desc_set_xor_src_cnt(
  3001. struct ppc440spe_adma_desc_slot *desc,
  3002. int src_cnt)
  3003. {
  3004. struct xor_cb *hw_desc = desc->hw_desc;
  3005. hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
  3006. hw_desc->cbc |= src_cnt;
  3007. }
  3008. /**
  3009. * ppc440spe_adma_pq_set_src - set source address into descriptor
  3010. */
  3011. static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
  3012. dma_addr_t addr, int index)
  3013. {
  3014. struct ppc440spe_adma_chan *chan;
  3015. dma_addr_t haddr = 0;
  3016. struct ppc440spe_adma_desc_slot *iter = NULL;
  3017. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3018. switch (chan->device->id) {
  3019. case PPC440SPE_DMA0_ID:
  3020. case PPC440SPE_DMA1_ID:
  3021. /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
  3022. */
  3023. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3024. /* RXOR-only or RXOR/WXOR operation */
  3025. int iskip = test_bit(PPC440SPE_DESC_RXOR12,
  3026. &sw_desc->flags) ? 2 : 3;
  3027. if (index == 0) {
  3028. /* 1st slot (RXOR) */
  3029. /* setup sources region (R1-2-3, R1-2-4,
  3030. * or R1-2-5)
  3031. */
  3032. if (test_bit(PPC440SPE_DESC_RXOR12,
  3033. &sw_desc->flags))
  3034. haddr = DMA_RXOR12 <<
  3035. DMA_CUED_REGION_OFF;
  3036. else if (test_bit(PPC440SPE_DESC_RXOR123,
  3037. &sw_desc->flags))
  3038. haddr = DMA_RXOR123 <<
  3039. DMA_CUED_REGION_OFF;
  3040. else if (test_bit(PPC440SPE_DESC_RXOR124,
  3041. &sw_desc->flags))
  3042. haddr = DMA_RXOR124 <<
  3043. DMA_CUED_REGION_OFF;
  3044. else if (test_bit(PPC440SPE_DESC_RXOR125,
  3045. &sw_desc->flags))
  3046. haddr = DMA_RXOR125 <<
  3047. DMA_CUED_REGION_OFF;
  3048. else
  3049. BUG();
  3050. haddr |= DMA_CUED_XOR_BASE;
  3051. iter = ppc440spe_get_group_entry(sw_desc, 0);
  3052. } else if (index < iskip) {
  3053. /* 1st slot (RXOR)
  3054. * shall actually set source address only once
  3055. * instead of first <iskip>
  3056. */
  3057. iter = NULL;
  3058. } else {
  3059. /* 2nd/3d and next slots (WXOR);
  3060. * skip first slot with RXOR
  3061. */
  3062. haddr = DMA_CUED_XOR_HB;
  3063. iter = ppc440spe_get_group_entry(sw_desc,
  3064. index - iskip + sw_desc->dst_cnt);
  3065. }
  3066. } else {
  3067. int znum = 0;
  3068. /* WXOR-only operation; skip first slots with
  3069. * zeroing destinations
  3070. */
  3071. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3072. znum++;
  3073. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3074. znum++;
  3075. haddr = DMA_CUED_XOR_HB;
  3076. iter = ppc440spe_get_group_entry(sw_desc,
  3077. index + znum);
  3078. }
  3079. if (likely(iter)) {
  3080. ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
  3081. if (!index &&
  3082. test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
  3083. sw_desc->dst_cnt == 2) {
  3084. /* if we have two destinations for RXOR, then
  3085. * setup source in the second descr too
  3086. */
  3087. iter = ppc440spe_get_group_entry(sw_desc, 1);
  3088. ppc440spe_desc_set_src_addr(iter, chan, 0,
  3089. haddr, addr);
  3090. }
  3091. }
  3092. break;
  3093. case PPC440SPE_XOR_ID:
  3094. /* DMA2 may do Biskup */
  3095. iter = sw_desc->group_head;
  3096. if (iter->dst_cnt == 2) {
  3097. /* both P & Q calculations required; set P src here */
  3098. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3099. /* this is for Q */
  3100. iter = ppc440spe_get_group_entry(sw_desc,
  3101. sw_desc->descs_per_op);
  3102. }
  3103. ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
  3104. break;
  3105. }
  3106. }
  3107. /**
  3108. * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
  3109. */
  3110. static void ppc440spe_adma_memcpy_xor_set_src(
  3111. struct ppc440spe_adma_desc_slot *sw_desc,
  3112. dma_addr_t addr, int index)
  3113. {
  3114. struct ppc440spe_adma_chan *chan;
  3115. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3116. sw_desc = sw_desc->group_head;
  3117. if (likely(sw_desc))
  3118. ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
  3119. }
  3120. /**
  3121. * ppc440spe_adma_dma2rxor_inc_addr -
  3122. */
  3123. static void ppc440spe_adma_dma2rxor_inc_addr(
  3124. struct ppc440spe_adma_desc_slot *desc,
  3125. struct ppc440spe_rxor *cursor, int index, int src_cnt)
  3126. {
  3127. cursor->addr_count++;
  3128. if (index == src_cnt - 1) {
  3129. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3130. } else if (cursor->addr_count == XOR_MAX_OPS) {
  3131. ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
  3132. cursor->addr_count = 0;
  3133. cursor->desc_count++;
  3134. }
  3135. }
  3136. /**
  3137. * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
  3138. */
  3139. static int ppc440spe_adma_dma2rxor_prep_src(
  3140. struct ppc440spe_adma_desc_slot *hdesc,
  3141. struct ppc440spe_rxor *cursor, int index,
  3142. int src_cnt, u32 addr)
  3143. {
  3144. int rval = 0;
  3145. u32 sign;
  3146. struct ppc440spe_adma_desc_slot *desc = hdesc;
  3147. int i;
  3148. for (i = 0; i < cursor->desc_count; i++) {
  3149. desc = list_entry(hdesc->chain_node.next,
  3150. struct ppc440spe_adma_desc_slot,
  3151. chain_node);
  3152. }
  3153. switch (cursor->state) {
  3154. case 0:
  3155. if (addr == cursor->addrl + cursor->len) {
  3156. /* direct RXOR */
  3157. cursor->state = 1;
  3158. cursor->xor_count++;
  3159. if (index == src_cnt-1) {
  3160. ppc440spe_rxor_set_region(desc,
  3161. cursor->addr_count,
  3162. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3163. ppc440spe_adma_dma2rxor_inc_addr(
  3164. desc, cursor, index, src_cnt);
  3165. }
  3166. } else if (cursor->addrl == addr + cursor->len) {
  3167. /* reverse RXOR */
  3168. cursor->state = 1;
  3169. cursor->xor_count++;
  3170. set_bit(cursor->addr_count, &desc->reverse_flags[0]);
  3171. if (index == src_cnt-1) {
  3172. ppc440spe_rxor_set_region(desc,
  3173. cursor->addr_count,
  3174. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3175. ppc440spe_adma_dma2rxor_inc_addr(
  3176. desc, cursor, index, src_cnt);
  3177. }
  3178. } else {
  3179. printk(KERN_ERR "Cannot build "
  3180. "DMA2 RXOR command block.\n");
  3181. BUG();
  3182. }
  3183. break;
  3184. case 1:
  3185. sign = test_bit(cursor->addr_count,
  3186. desc->reverse_flags)
  3187. ? -1 : 1;
  3188. if (index == src_cnt-2 || (sign == -1
  3189. && addr != cursor->addrl - 2*cursor->len)) {
  3190. cursor->state = 0;
  3191. cursor->xor_count = 1;
  3192. cursor->addrl = addr;
  3193. ppc440spe_rxor_set_region(desc,
  3194. cursor->addr_count,
  3195. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3196. ppc440spe_adma_dma2rxor_inc_addr(
  3197. desc, cursor, index, src_cnt);
  3198. } else if (addr == cursor->addrl + 2*sign*cursor->len) {
  3199. cursor->state = 2;
  3200. cursor->xor_count = 0;
  3201. ppc440spe_rxor_set_region(desc,
  3202. cursor->addr_count,
  3203. DMA_RXOR123 << DMA_CUED_REGION_OFF);
  3204. if (index == src_cnt-1) {
  3205. ppc440spe_adma_dma2rxor_inc_addr(
  3206. desc, cursor, index, src_cnt);
  3207. }
  3208. } else if (addr == cursor->addrl + 3*cursor->len) {
  3209. cursor->state = 2;
  3210. cursor->xor_count = 0;
  3211. ppc440spe_rxor_set_region(desc,
  3212. cursor->addr_count,
  3213. DMA_RXOR124 << DMA_CUED_REGION_OFF);
  3214. if (index == src_cnt-1) {
  3215. ppc440spe_adma_dma2rxor_inc_addr(
  3216. desc, cursor, index, src_cnt);
  3217. }
  3218. } else if (addr == cursor->addrl + 4*cursor->len) {
  3219. cursor->state = 2;
  3220. cursor->xor_count = 0;
  3221. ppc440spe_rxor_set_region(desc,
  3222. cursor->addr_count,
  3223. DMA_RXOR125 << DMA_CUED_REGION_OFF);
  3224. if (index == src_cnt-1) {
  3225. ppc440spe_adma_dma2rxor_inc_addr(
  3226. desc, cursor, index, src_cnt);
  3227. }
  3228. } else {
  3229. cursor->state = 0;
  3230. cursor->xor_count = 1;
  3231. cursor->addrl = addr;
  3232. ppc440spe_rxor_set_region(desc,
  3233. cursor->addr_count,
  3234. DMA_RXOR12 << DMA_CUED_REGION_OFF);
  3235. ppc440spe_adma_dma2rxor_inc_addr(
  3236. desc, cursor, index, src_cnt);
  3237. }
  3238. break;
  3239. case 2:
  3240. cursor->state = 0;
  3241. cursor->addrl = addr;
  3242. cursor->xor_count++;
  3243. if (index) {
  3244. ppc440spe_adma_dma2rxor_inc_addr(
  3245. desc, cursor, index, src_cnt);
  3246. }
  3247. break;
  3248. }
  3249. return rval;
  3250. }
  3251. /**
  3252. * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
  3253. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3254. */
  3255. static void ppc440spe_adma_dma2rxor_set_src(
  3256. struct ppc440spe_adma_desc_slot *desc,
  3257. int index, dma_addr_t addr)
  3258. {
  3259. struct xor_cb *xcb = desc->hw_desc;
  3260. int k = 0, op = 0, lop = 0;
  3261. /* get the RXOR operand which corresponds to index addr */
  3262. while (op <= index) {
  3263. lop = op;
  3264. if (k == XOR_MAX_OPS) {
  3265. k = 0;
  3266. desc = list_entry(desc->chain_node.next,
  3267. struct ppc440spe_adma_desc_slot, chain_node);
  3268. xcb = desc->hw_desc;
  3269. }
  3270. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3271. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3272. op += 2;
  3273. else
  3274. op += 3;
  3275. }
  3276. BUG_ON(k < 1);
  3277. if (test_bit(k-1, desc->reverse_flags)) {
  3278. /* reverse operand order; put last op in RXOR group */
  3279. if (index == op - 1)
  3280. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3281. } else {
  3282. /* direct operand order; put first op in RXOR group */
  3283. if (index == lop)
  3284. ppc440spe_rxor_set_src(desc, k - 1, addr);
  3285. }
  3286. }
  3287. /**
  3288. * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
  3289. * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
  3290. */
  3291. static void ppc440spe_adma_dma2rxor_set_mult(
  3292. struct ppc440spe_adma_desc_slot *desc,
  3293. int index, u8 mult)
  3294. {
  3295. struct xor_cb *xcb = desc->hw_desc;
  3296. int k = 0, op = 0, lop = 0;
  3297. /* get the RXOR operand which corresponds to index mult */
  3298. while (op <= index) {
  3299. lop = op;
  3300. if (k == XOR_MAX_OPS) {
  3301. k = 0;
  3302. desc = list_entry(desc->chain_node.next,
  3303. struct ppc440spe_adma_desc_slot,
  3304. chain_node);
  3305. xcb = desc->hw_desc;
  3306. }
  3307. if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
  3308. (DMA_RXOR12 << DMA_CUED_REGION_OFF))
  3309. op += 2;
  3310. else
  3311. op += 3;
  3312. }
  3313. BUG_ON(k < 1);
  3314. if (test_bit(k-1, desc->reverse_flags)) {
  3315. /* reverse order */
  3316. ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
  3317. } else {
  3318. /* direct order */
  3319. ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
  3320. }
  3321. }
  3322. /**
  3323. * ppc440spe_init_rxor_cursor -
  3324. */
  3325. static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
  3326. {
  3327. memset(cursor, 0, sizeof(struct ppc440spe_rxor));
  3328. cursor->state = 2;
  3329. }
  3330. /**
  3331. * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
  3332. * descriptor for the PQXOR operation
  3333. */
  3334. static void ppc440spe_adma_pq_set_src_mult(
  3335. struct ppc440spe_adma_desc_slot *sw_desc,
  3336. unsigned char mult, int index, int dst_pos)
  3337. {
  3338. struct ppc440spe_adma_chan *chan;
  3339. u32 mult_idx, mult_dst;
  3340. struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
  3341. chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
  3342. switch (chan->device->id) {
  3343. case PPC440SPE_DMA0_ID:
  3344. case PPC440SPE_DMA1_ID:
  3345. if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
  3346. int region = test_bit(PPC440SPE_DESC_RXOR12,
  3347. &sw_desc->flags) ? 2 : 3;
  3348. if (index < region) {
  3349. /* RXOR multipliers */
  3350. iter = ppc440spe_get_group_entry(sw_desc,
  3351. sw_desc->dst_cnt - 1);
  3352. if (sw_desc->dst_cnt == 2)
  3353. iter1 = ppc440spe_get_group_entry(
  3354. sw_desc, 0);
  3355. mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
  3356. mult_dst = DMA_CDB_SG_SRC;
  3357. } else {
  3358. /* WXOR multiplier */
  3359. iter = ppc440spe_get_group_entry(sw_desc,
  3360. index - region +
  3361. sw_desc->dst_cnt);
  3362. mult_idx = DMA_CUED_MULT1_OFF;
  3363. mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
  3364. DMA_CDB_SG_DST1;
  3365. }
  3366. } else {
  3367. int znum = 0;
  3368. /* WXOR-only;
  3369. * skip first slots with destinations (if ZERO_DST has
  3370. * place)
  3371. */
  3372. if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
  3373. znum++;
  3374. if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
  3375. znum++;
  3376. iter = ppc440spe_get_group_entry(sw_desc, index + znum);
  3377. mult_idx = DMA_CUED_MULT1_OFF;
  3378. mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
  3379. }
  3380. if (likely(iter)) {
  3381. ppc440spe_desc_set_src_mult(iter, chan,
  3382. mult_idx, mult_dst, mult);
  3383. if (unlikely(iter1)) {
  3384. /* if we have two destinations for RXOR, then
  3385. * we've just set Q mult. Set-up P now.
  3386. */
  3387. ppc440spe_desc_set_src_mult(iter1, chan,
  3388. mult_idx, mult_dst, 1);
  3389. }
  3390. }
  3391. break;
  3392. case PPC440SPE_XOR_ID:
  3393. iter = sw_desc->group_head;
  3394. if (sw_desc->dst_cnt == 2) {
  3395. /* both P & Q calculations required; set P mult here */
  3396. ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
  3397. /* and then set Q mult */
  3398. iter = ppc440spe_get_group_entry(sw_desc,
  3399. sw_desc->descs_per_op);
  3400. }
  3401. ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
  3402. break;
  3403. }
  3404. }
  3405. /**
  3406. * ppc440spe_adma_free_chan_resources - free the resources allocated
  3407. */
  3408. static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
  3409. {
  3410. struct ppc440spe_adma_chan *ppc440spe_chan;
  3411. struct ppc440spe_adma_desc_slot *iter, *_iter;
  3412. int in_use_descs = 0;
  3413. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3414. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3415. spin_lock_bh(&ppc440spe_chan->lock);
  3416. list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
  3417. chain_node) {
  3418. in_use_descs++;
  3419. list_del(&iter->chain_node);
  3420. }
  3421. list_for_each_entry_safe_reverse(iter, _iter,
  3422. &ppc440spe_chan->all_slots, slot_node) {
  3423. list_del(&iter->slot_node);
  3424. kfree(iter);
  3425. ppc440spe_chan->slots_allocated--;
  3426. }
  3427. ppc440spe_chan->last_used = NULL;
  3428. dev_dbg(ppc440spe_chan->device->common.dev,
  3429. "ppc440spe adma%d %s slots_allocated %d\n",
  3430. ppc440spe_chan->device->id,
  3431. __func__, ppc440spe_chan->slots_allocated);
  3432. spin_unlock_bh(&ppc440spe_chan->lock);
  3433. /* one is ok since we left it on there on purpose */
  3434. if (in_use_descs > 1)
  3435. printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
  3436. in_use_descs - 1);
  3437. }
  3438. /**
  3439. * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
  3440. * @chan: ADMA channel handle
  3441. * @cookie: ADMA transaction identifier
  3442. * @txstate: a holder for the current state of the channel
  3443. */
  3444. static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
  3445. dma_cookie_t cookie, struct dma_tx_state *txstate)
  3446. {
  3447. struct ppc440spe_adma_chan *ppc440spe_chan;
  3448. enum dma_status ret;
  3449. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3450. ret = dma_cookie_status(chan, cookie, txstate);
  3451. if (ret == DMA_SUCCESS)
  3452. return ret;
  3453. ppc440spe_adma_slot_cleanup(ppc440spe_chan);
  3454. return dma_cookie_status(chan, cookie, txstate);
  3455. }
  3456. /**
  3457. * ppc440spe_adma_eot_handler - end of transfer interrupt handler
  3458. */
  3459. static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
  3460. {
  3461. struct ppc440spe_adma_chan *chan = data;
  3462. dev_dbg(chan->device->common.dev,
  3463. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3464. tasklet_schedule(&chan->irq_tasklet);
  3465. ppc440spe_adma_device_clear_eot_status(chan);
  3466. return IRQ_HANDLED;
  3467. }
  3468. /**
  3469. * ppc440spe_adma_err_handler - DMA error interrupt handler;
  3470. * do the same things as a eot handler
  3471. */
  3472. static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
  3473. {
  3474. struct ppc440spe_adma_chan *chan = data;
  3475. dev_dbg(chan->device->common.dev,
  3476. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3477. tasklet_schedule(&chan->irq_tasklet);
  3478. ppc440spe_adma_device_clear_eot_status(chan);
  3479. return IRQ_HANDLED;
  3480. }
  3481. /**
  3482. * ppc440spe_test_callback - called when test operation has been done
  3483. */
  3484. static void ppc440spe_test_callback(void *unused)
  3485. {
  3486. complete(&ppc440spe_r6_test_comp);
  3487. }
  3488. /**
  3489. * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
  3490. */
  3491. static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
  3492. {
  3493. struct ppc440spe_adma_chan *ppc440spe_chan;
  3494. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  3495. dev_dbg(ppc440spe_chan->device->common.dev,
  3496. "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
  3497. __func__, ppc440spe_chan->pending);
  3498. if (ppc440spe_chan->pending) {
  3499. ppc440spe_chan->pending = 0;
  3500. ppc440spe_chan_append(ppc440spe_chan);
  3501. }
  3502. }
  3503. /**
  3504. * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
  3505. * use FIFOs (as opposite to chains used in XOR) so this is a XOR
  3506. * specific operation)
  3507. */
  3508. static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
  3509. {
  3510. struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
  3511. dma_cookie_t cookie;
  3512. int slot_cnt, slots_per_op;
  3513. dev_dbg(chan->device->common.dev,
  3514. "ppc440spe adma%d: %s\n", chan->device->id, __func__);
  3515. spin_lock_bh(&chan->lock);
  3516. slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
  3517. sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
  3518. if (sw_desc) {
  3519. group_start = sw_desc->group_head;
  3520. list_splice_init(&sw_desc->group_list, &chan->chain);
  3521. async_tx_ack(&sw_desc->async_tx);
  3522. ppc440spe_desc_init_null_xor(group_start);
  3523. cookie = dma_cookie_assign(&sw_desc->async_tx);
  3524. /* initialize the completed cookie to be less than
  3525. * the most recently used cookie
  3526. */
  3527. chan->common.completed_cookie = cookie - 1;
  3528. /* channel should not be busy */
  3529. BUG_ON(ppc440spe_chan_is_busy(chan));
  3530. /* set the descriptor address */
  3531. ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
  3532. /* run the descriptor */
  3533. ppc440spe_chan_run(chan);
  3534. } else
  3535. printk(KERN_ERR "ppc440spe adma%d"
  3536. " failed to allocate null descriptor\n",
  3537. chan->device->id);
  3538. spin_unlock_bh(&chan->lock);
  3539. }
  3540. /**
  3541. * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
  3542. * For this we just perform one WXOR operation with the same source
  3543. * and destination addresses, the GF-multiplier is 1; so if RAID-6
  3544. * capabilities are enabled then we'll get src/dst filled with zero.
  3545. */
  3546. static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
  3547. {
  3548. struct ppc440spe_adma_desc_slot *sw_desc, *iter;
  3549. struct page *pg;
  3550. char *a;
  3551. dma_addr_t dma_addr, addrs[2];
  3552. unsigned long op = 0;
  3553. int rval = 0;
  3554. set_bit(PPC440SPE_DESC_WXOR, &op);
  3555. pg = alloc_page(GFP_KERNEL);
  3556. if (!pg)
  3557. return -ENOMEM;
  3558. spin_lock_bh(&chan->lock);
  3559. sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
  3560. if (sw_desc) {
  3561. /* 1 src, 1 dsr, int_ena, WXOR */
  3562. ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
  3563. list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
  3564. ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
  3565. iter->unmap_len = PAGE_SIZE;
  3566. }
  3567. } else {
  3568. rval = -EFAULT;
  3569. spin_unlock_bh(&chan->lock);
  3570. goto exit;
  3571. }
  3572. spin_unlock_bh(&chan->lock);
  3573. /* Fill the test page with ones */
  3574. memset(page_address(pg), 0xFF, PAGE_SIZE);
  3575. dma_addr = dma_map_page(chan->device->dev, pg, 0,
  3576. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3577. /* Setup addresses */
  3578. ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
  3579. ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
  3580. addrs[0] = dma_addr;
  3581. addrs[1] = 0;
  3582. ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
  3583. async_tx_ack(&sw_desc->async_tx);
  3584. sw_desc->async_tx.callback = ppc440spe_test_callback;
  3585. sw_desc->async_tx.callback_param = NULL;
  3586. init_completion(&ppc440spe_r6_test_comp);
  3587. ppc440spe_adma_tx_submit(&sw_desc->async_tx);
  3588. ppc440spe_adma_issue_pending(&chan->common);
  3589. wait_for_completion(&ppc440spe_r6_test_comp);
  3590. /* Now check if the test page is zeroed */
  3591. a = page_address(pg);
  3592. if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
  3593. /* page is zero - RAID-6 enabled */
  3594. rval = 0;
  3595. } else {
  3596. /* RAID-6 was not enabled */
  3597. rval = -EINVAL;
  3598. }
  3599. exit:
  3600. __free_page(pg);
  3601. return rval;
  3602. }
  3603. static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
  3604. {
  3605. switch (adev->id) {
  3606. case PPC440SPE_DMA0_ID:
  3607. case PPC440SPE_DMA1_ID:
  3608. dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
  3609. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3610. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3611. dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
  3612. dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
  3613. break;
  3614. case PPC440SPE_XOR_ID:
  3615. dma_cap_set(DMA_XOR, adev->common.cap_mask);
  3616. dma_cap_set(DMA_PQ, adev->common.cap_mask);
  3617. dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
  3618. adev->common.cap_mask = adev->common.cap_mask;
  3619. break;
  3620. }
  3621. /* Set base routines */
  3622. adev->common.device_alloc_chan_resources =
  3623. ppc440spe_adma_alloc_chan_resources;
  3624. adev->common.device_free_chan_resources =
  3625. ppc440spe_adma_free_chan_resources;
  3626. adev->common.device_tx_status = ppc440spe_adma_tx_status;
  3627. adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
  3628. /* Set prep routines based on capability */
  3629. if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
  3630. adev->common.device_prep_dma_memcpy =
  3631. ppc440spe_adma_prep_dma_memcpy;
  3632. }
  3633. if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
  3634. adev->common.max_xor = XOR_MAX_OPS;
  3635. adev->common.device_prep_dma_xor =
  3636. ppc440spe_adma_prep_dma_xor;
  3637. }
  3638. if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
  3639. switch (adev->id) {
  3640. case PPC440SPE_DMA0_ID:
  3641. dma_set_maxpq(&adev->common,
  3642. DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3643. break;
  3644. case PPC440SPE_DMA1_ID:
  3645. dma_set_maxpq(&adev->common,
  3646. DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
  3647. break;
  3648. case PPC440SPE_XOR_ID:
  3649. adev->common.max_pq = XOR_MAX_OPS * 3;
  3650. break;
  3651. }
  3652. adev->common.device_prep_dma_pq =
  3653. ppc440spe_adma_prep_dma_pq;
  3654. }
  3655. if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
  3656. switch (adev->id) {
  3657. case PPC440SPE_DMA0_ID:
  3658. adev->common.max_pq = DMA0_FIFO_SIZE /
  3659. sizeof(struct dma_cdb);
  3660. break;
  3661. case PPC440SPE_DMA1_ID:
  3662. adev->common.max_pq = DMA1_FIFO_SIZE /
  3663. sizeof(struct dma_cdb);
  3664. break;
  3665. }
  3666. adev->common.device_prep_dma_pq_val =
  3667. ppc440spe_adma_prep_dma_pqzero_sum;
  3668. }
  3669. if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
  3670. switch (adev->id) {
  3671. case PPC440SPE_DMA0_ID:
  3672. adev->common.max_xor = DMA0_FIFO_SIZE /
  3673. sizeof(struct dma_cdb);
  3674. break;
  3675. case PPC440SPE_DMA1_ID:
  3676. adev->common.max_xor = DMA1_FIFO_SIZE /
  3677. sizeof(struct dma_cdb);
  3678. break;
  3679. }
  3680. adev->common.device_prep_dma_xor_val =
  3681. ppc440spe_adma_prep_dma_xor_zero_sum;
  3682. }
  3683. if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
  3684. adev->common.device_prep_dma_interrupt =
  3685. ppc440spe_adma_prep_dma_interrupt;
  3686. }
  3687. pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
  3688. "( %s%s%s%s%s%s%s)\n",
  3689. dev_name(adev->dev),
  3690. dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
  3691. dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
  3692. dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
  3693. dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
  3694. dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
  3695. dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
  3696. }
  3697. static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
  3698. struct ppc440spe_adma_chan *chan,
  3699. int *initcode)
  3700. {
  3701. struct platform_device *ofdev;
  3702. struct device_node *np;
  3703. int ret;
  3704. ofdev = container_of(adev->dev, struct platform_device, dev);
  3705. np = ofdev->dev.of_node;
  3706. if (adev->id != PPC440SPE_XOR_ID) {
  3707. adev->err_irq = irq_of_parse_and_map(np, 1);
  3708. if (adev->err_irq == NO_IRQ) {
  3709. dev_warn(adev->dev, "no err irq resource?\n");
  3710. *initcode = PPC_ADMA_INIT_IRQ2;
  3711. adev->err_irq = -ENXIO;
  3712. } else
  3713. atomic_inc(&ppc440spe_adma_err_irq_ref);
  3714. } else {
  3715. adev->err_irq = -ENXIO;
  3716. }
  3717. adev->irq = irq_of_parse_and_map(np, 0);
  3718. if (adev->irq == NO_IRQ) {
  3719. dev_err(adev->dev, "no irq resource\n");
  3720. *initcode = PPC_ADMA_INIT_IRQ1;
  3721. ret = -ENXIO;
  3722. goto err_irq_map;
  3723. }
  3724. dev_dbg(adev->dev, "irq %d, err irq %d\n",
  3725. adev->irq, adev->err_irq);
  3726. ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
  3727. 0, dev_driver_string(adev->dev), chan);
  3728. if (ret) {
  3729. dev_err(adev->dev, "can't request irq %d\n",
  3730. adev->irq);
  3731. *initcode = PPC_ADMA_INIT_IRQ1;
  3732. ret = -EIO;
  3733. goto err_req1;
  3734. }
  3735. /* only DMA engines have a separate error IRQ
  3736. * so it's Ok if err_irq < 0 in XOR engine case.
  3737. */
  3738. if (adev->err_irq > 0) {
  3739. /* both DMA engines share common error IRQ */
  3740. ret = request_irq(adev->err_irq,
  3741. ppc440spe_adma_err_handler,
  3742. IRQF_SHARED,
  3743. dev_driver_string(adev->dev),
  3744. chan);
  3745. if (ret) {
  3746. dev_err(adev->dev, "can't request irq %d\n",
  3747. adev->err_irq);
  3748. *initcode = PPC_ADMA_INIT_IRQ2;
  3749. ret = -EIO;
  3750. goto err_req2;
  3751. }
  3752. }
  3753. if (adev->id == PPC440SPE_XOR_ID) {
  3754. /* enable XOR engine interrupts */
  3755. iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3756. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
  3757. &adev->xor_reg->ier);
  3758. } else {
  3759. u32 mask, enable;
  3760. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  3761. if (!np) {
  3762. pr_err("%s: can't find I2O device tree node\n",
  3763. __func__);
  3764. ret = -ENODEV;
  3765. goto err_req2;
  3766. }
  3767. adev->i2o_reg = of_iomap(np, 0);
  3768. if (!adev->i2o_reg) {
  3769. pr_err("%s: failed to map I2O registers\n", __func__);
  3770. of_node_put(np);
  3771. ret = -EINVAL;
  3772. goto err_req2;
  3773. }
  3774. of_node_put(np);
  3775. /* Unmask 'CS FIFO Attention' interrupts and
  3776. * enable generating interrupts on errors
  3777. */
  3778. enable = (adev->id == PPC440SPE_DMA0_ID) ?
  3779. ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3780. ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3781. mask = ioread32(&adev->i2o_reg->iopim) & enable;
  3782. iowrite32(mask, &adev->i2o_reg->iopim);
  3783. }
  3784. return 0;
  3785. err_req2:
  3786. free_irq(adev->irq, chan);
  3787. err_req1:
  3788. irq_dispose_mapping(adev->irq);
  3789. err_irq_map:
  3790. if (adev->err_irq > 0) {
  3791. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
  3792. irq_dispose_mapping(adev->err_irq);
  3793. }
  3794. return ret;
  3795. }
  3796. static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
  3797. struct ppc440spe_adma_chan *chan)
  3798. {
  3799. u32 mask, disable;
  3800. if (adev->id == PPC440SPE_XOR_ID) {
  3801. /* disable XOR engine interrupts */
  3802. mask = ioread32be(&adev->xor_reg->ier);
  3803. mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
  3804. XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
  3805. iowrite32be(mask, &adev->xor_reg->ier);
  3806. } else {
  3807. /* disable DMAx engine interrupts */
  3808. disable = (adev->id == PPC440SPE_DMA0_ID) ?
  3809. (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
  3810. (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
  3811. mask = ioread32(&adev->i2o_reg->iopim) | disable;
  3812. iowrite32(mask, &adev->i2o_reg->iopim);
  3813. }
  3814. free_irq(adev->irq, chan);
  3815. irq_dispose_mapping(adev->irq);
  3816. if (adev->err_irq > 0) {
  3817. free_irq(adev->err_irq, chan);
  3818. if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
  3819. irq_dispose_mapping(adev->err_irq);
  3820. iounmap(adev->i2o_reg);
  3821. }
  3822. }
  3823. }
  3824. /**
  3825. * ppc440spe_adma_probe - probe the asynch device
  3826. */
  3827. static int ppc440spe_adma_probe(struct platform_device *ofdev)
  3828. {
  3829. struct device_node *np = ofdev->dev.of_node;
  3830. struct resource res;
  3831. struct ppc440spe_adma_device *adev;
  3832. struct ppc440spe_adma_chan *chan;
  3833. struct ppc_dma_chan_ref *ref, *_ref;
  3834. int ret = 0, initcode = PPC_ADMA_INIT_OK;
  3835. const u32 *idx;
  3836. int len;
  3837. void *regs;
  3838. u32 id, pool_size;
  3839. if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
  3840. id = PPC440SPE_XOR_ID;
  3841. /* As far as the XOR engine is concerned, it does not
  3842. * use FIFOs but uses linked list. So there is no dependency
  3843. * between pool size to allocate and the engine configuration.
  3844. */
  3845. pool_size = PAGE_SIZE << 1;
  3846. } else {
  3847. /* it is DMA0 or DMA1 */
  3848. idx = of_get_property(np, "cell-index", &len);
  3849. if (!idx || (len != sizeof(u32))) {
  3850. dev_err(&ofdev->dev, "Device node %s has missing "
  3851. "or invalid cell-index property\n",
  3852. np->full_name);
  3853. return -EINVAL;
  3854. }
  3855. id = *idx;
  3856. /* DMA0,1 engines use FIFO to maintain CDBs, so we
  3857. * should allocate the pool accordingly to size of this
  3858. * FIFO. Thus, the pool size depends on the FIFO depth:
  3859. * how much CDBs pointers the FIFO may contain then so
  3860. * much CDBs we should provide in the pool.
  3861. * That is
  3862. * CDB size = 32B;
  3863. * CDBs number = (DMA0_FIFO_SIZE >> 3);
  3864. * Pool size = CDBs number * CDB size =
  3865. * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
  3866. */
  3867. pool_size = (id == PPC440SPE_DMA0_ID) ?
  3868. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3869. pool_size <<= 2;
  3870. }
  3871. if (of_address_to_resource(np, 0, &res)) {
  3872. dev_err(&ofdev->dev, "failed to get memory resource\n");
  3873. initcode = PPC_ADMA_INIT_MEMRES;
  3874. ret = -ENODEV;
  3875. goto out;
  3876. }
  3877. if (!request_mem_region(res.start, resource_size(&res),
  3878. dev_driver_string(&ofdev->dev))) {
  3879. dev_err(&ofdev->dev, "failed to request memory region %pR\n",
  3880. &res);
  3881. initcode = PPC_ADMA_INIT_MEMREG;
  3882. ret = -EBUSY;
  3883. goto out;
  3884. }
  3885. /* create a device */
  3886. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  3887. if (!adev) {
  3888. dev_err(&ofdev->dev, "failed to allocate device\n");
  3889. initcode = PPC_ADMA_INIT_ALLOC;
  3890. ret = -ENOMEM;
  3891. goto err_adev_alloc;
  3892. }
  3893. adev->id = id;
  3894. adev->pool_size = pool_size;
  3895. /* allocate coherent memory for hardware descriptors */
  3896. adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
  3897. adev->pool_size, &adev->dma_desc_pool,
  3898. GFP_KERNEL);
  3899. if (adev->dma_desc_pool_virt == NULL) {
  3900. dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
  3901. "memory for hardware descriptors\n",
  3902. adev->pool_size);
  3903. initcode = PPC_ADMA_INIT_COHERENT;
  3904. ret = -ENOMEM;
  3905. goto err_dma_alloc;
  3906. }
  3907. dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
  3908. adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
  3909. regs = ioremap(res.start, resource_size(&res));
  3910. if (!regs) {
  3911. dev_err(&ofdev->dev, "failed to ioremap regs!\n");
  3912. goto err_regs_alloc;
  3913. }
  3914. if (adev->id == PPC440SPE_XOR_ID) {
  3915. adev->xor_reg = regs;
  3916. /* Reset XOR */
  3917. iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
  3918. iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
  3919. } else {
  3920. size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
  3921. DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
  3922. adev->dma_reg = regs;
  3923. /* DMAx_FIFO_SIZE is defined in bytes,
  3924. * <fsiz> - is defined in number of CDB pointers (8byte).
  3925. * DMA FIFO Length = CSlength + CPlength, where
  3926. * CSlength = CPlength = (fsiz + 1) * 8.
  3927. */
  3928. iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
  3929. &adev->dma_reg->fsiz);
  3930. /* Configure DMA engine */
  3931. iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
  3932. &adev->dma_reg->cfg);
  3933. /* Clear Status */
  3934. iowrite32(~0, &adev->dma_reg->dsts);
  3935. }
  3936. adev->dev = &ofdev->dev;
  3937. adev->common.dev = &ofdev->dev;
  3938. INIT_LIST_HEAD(&adev->common.channels);
  3939. platform_set_drvdata(ofdev, adev);
  3940. /* create a channel */
  3941. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  3942. if (!chan) {
  3943. dev_err(&ofdev->dev, "can't allocate channel structure\n");
  3944. initcode = PPC_ADMA_INIT_CHANNEL;
  3945. ret = -ENOMEM;
  3946. goto err_chan_alloc;
  3947. }
  3948. spin_lock_init(&chan->lock);
  3949. INIT_LIST_HEAD(&chan->chain);
  3950. INIT_LIST_HEAD(&chan->all_slots);
  3951. chan->device = adev;
  3952. chan->common.device = &adev->common;
  3953. dma_cookie_init(&chan->common);
  3954. list_add_tail(&chan->common.device_node, &adev->common.channels);
  3955. tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
  3956. (unsigned long)chan);
  3957. /* allocate and map helper pages for async validation or
  3958. * async_mult/async_sum_product operations on DMA0/1.
  3959. */
  3960. if (adev->id != PPC440SPE_XOR_ID) {
  3961. chan->pdest_page = alloc_page(GFP_KERNEL);
  3962. chan->qdest_page = alloc_page(GFP_KERNEL);
  3963. if (!chan->pdest_page ||
  3964. !chan->qdest_page) {
  3965. if (chan->pdest_page)
  3966. __free_page(chan->pdest_page);
  3967. if (chan->qdest_page)
  3968. __free_page(chan->qdest_page);
  3969. ret = -ENOMEM;
  3970. goto err_page_alloc;
  3971. }
  3972. chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
  3973. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3974. chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
  3975. PAGE_SIZE, DMA_BIDIRECTIONAL);
  3976. }
  3977. ref = kmalloc(sizeof(*ref), GFP_KERNEL);
  3978. if (ref) {
  3979. ref->chan = &chan->common;
  3980. INIT_LIST_HEAD(&ref->node);
  3981. list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
  3982. } else {
  3983. dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
  3984. ret = -ENOMEM;
  3985. goto err_ref_alloc;
  3986. }
  3987. ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
  3988. if (ret)
  3989. goto err_irq;
  3990. ppc440spe_adma_init_capabilities(adev);
  3991. ret = dma_async_device_register(&adev->common);
  3992. if (ret) {
  3993. initcode = PPC_ADMA_INIT_REGISTER;
  3994. dev_err(&ofdev->dev, "failed to register dma device\n");
  3995. goto err_dev_reg;
  3996. }
  3997. goto out;
  3998. err_dev_reg:
  3999. ppc440spe_adma_release_irqs(adev, chan);
  4000. err_irq:
  4001. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
  4002. if (chan == to_ppc440spe_adma_chan(ref->chan)) {
  4003. list_del(&ref->node);
  4004. kfree(ref);
  4005. }
  4006. }
  4007. err_ref_alloc:
  4008. if (adev->id != PPC440SPE_XOR_ID) {
  4009. dma_unmap_page(&ofdev->dev, chan->pdest,
  4010. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4011. dma_unmap_page(&ofdev->dev, chan->qdest,
  4012. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4013. __free_page(chan->pdest_page);
  4014. __free_page(chan->qdest_page);
  4015. }
  4016. err_page_alloc:
  4017. kfree(chan);
  4018. err_chan_alloc:
  4019. if (adev->id == PPC440SPE_XOR_ID)
  4020. iounmap(adev->xor_reg);
  4021. else
  4022. iounmap(adev->dma_reg);
  4023. err_regs_alloc:
  4024. dma_free_coherent(adev->dev, adev->pool_size,
  4025. adev->dma_desc_pool_virt,
  4026. adev->dma_desc_pool);
  4027. err_dma_alloc:
  4028. kfree(adev);
  4029. err_adev_alloc:
  4030. release_mem_region(res.start, resource_size(&res));
  4031. out:
  4032. if (id < PPC440SPE_ADMA_ENGINES_NUM)
  4033. ppc440spe_adma_devices[id] = initcode;
  4034. return ret;
  4035. }
  4036. /**
  4037. * ppc440spe_adma_remove - remove the asynch device
  4038. */
  4039. static int ppc440spe_adma_remove(struct platform_device *ofdev)
  4040. {
  4041. struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
  4042. struct device_node *np = ofdev->dev.of_node;
  4043. struct resource res;
  4044. struct dma_chan *chan, *_chan;
  4045. struct ppc_dma_chan_ref *ref, *_ref;
  4046. struct ppc440spe_adma_chan *ppc440spe_chan;
  4047. if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
  4048. ppc440spe_adma_devices[adev->id] = -1;
  4049. dma_async_device_unregister(&adev->common);
  4050. list_for_each_entry_safe(chan, _chan, &adev->common.channels,
  4051. device_node) {
  4052. ppc440spe_chan = to_ppc440spe_adma_chan(chan);
  4053. ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
  4054. tasklet_kill(&ppc440spe_chan->irq_tasklet);
  4055. if (adev->id != PPC440SPE_XOR_ID) {
  4056. dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
  4057. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4058. dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
  4059. PAGE_SIZE, DMA_BIDIRECTIONAL);
  4060. __free_page(ppc440spe_chan->pdest_page);
  4061. __free_page(ppc440spe_chan->qdest_page);
  4062. }
  4063. list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
  4064. node) {
  4065. if (ppc440spe_chan ==
  4066. to_ppc440spe_adma_chan(ref->chan)) {
  4067. list_del(&ref->node);
  4068. kfree(ref);
  4069. }
  4070. }
  4071. list_del(&chan->device_node);
  4072. kfree(ppc440spe_chan);
  4073. }
  4074. dma_free_coherent(adev->dev, adev->pool_size,
  4075. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  4076. if (adev->id == PPC440SPE_XOR_ID)
  4077. iounmap(adev->xor_reg);
  4078. else
  4079. iounmap(adev->dma_reg);
  4080. of_address_to_resource(np, 0, &res);
  4081. release_mem_region(res.start, resource_size(&res));
  4082. kfree(adev);
  4083. return 0;
  4084. }
  4085. /*
  4086. * /sys driver interface to enable h/w RAID-6 capabilities
  4087. * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
  4088. * directory are "devices", "enable" and "poly".
  4089. * "devices" shows available engines.
  4090. * "enable" is used to enable RAID-6 capabilities or to check
  4091. * whether these has been activated.
  4092. * "poly" allows setting/checking used polynomial (for PPC440SPe only).
  4093. */
  4094. static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
  4095. {
  4096. ssize_t size = 0;
  4097. int i;
  4098. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
  4099. if (ppc440spe_adma_devices[i] == -1)
  4100. continue;
  4101. size += snprintf(buf + size, PAGE_SIZE - size,
  4102. "PPC440SP(E)-ADMA.%d: %s\n", i,
  4103. ppc_adma_errors[ppc440spe_adma_devices[i]]);
  4104. }
  4105. return size;
  4106. }
  4107. static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
  4108. {
  4109. return snprintf(buf, PAGE_SIZE,
  4110. "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
  4111. ppc440spe_r6_enabled ? "EN" : "DIS");
  4112. }
  4113. static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
  4114. const char *buf, size_t count)
  4115. {
  4116. unsigned long val;
  4117. if (!count || count > 11)
  4118. return -EINVAL;
  4119. if (!ppc440spe_r6_tchan)
  4120. return -EFAULT;
  4121. /* Write a key */
  4122. sscanf(buf, "%lx", &val);
  4123. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
  4124. isync();
  4125. /* Verify whether it really works now */
  4126. if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
  4127. pr_info("PPC440SP(e) RAID-6 has been activated "
  4128. "successfully\n");
  4129. ppc440spe_r6_enabled = 1;
  4130. } else {
  4131. pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
  4132. " Error key ?\n");
  4133. ppc440spe_r6_enabled = 0;
  4134. }
  4135. return count;
  4136. }
  4137. static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
  4138. {
  4139. ssize_t size = 0;
  4140. u32 reg;
  4141. #ifdef CONFIG_440SP
  4142. /* 440SP has fixed polynomial */
  4143. reg = 0x4d;
  4144. #else
  4145. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4146. reg >>= MQ0_CFBHL_POLY;
  4147. reg &= 0xFF;
  4148. #endif
  4149. size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
  4150. "uses 0x1%02x polynomial.\n", reg);
  4151. return size;
  4152. }
  4153. static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
  4154. const char *buf, size_t count)
  4155. {
  4156. unsigned long reg, val;
  4157. #ifdef CONFIG_440SP
  4158. /* 440SP uses default 0x14D polynomial only */
  4159. return -EINVAL;
  4160. #endif
  4161. if (!count || count > 6)
  4162. return -EINVAL;
  4163. /* e.g., 0x14D or 0x11D */
  4164. sscanf(buf, "%lx", &val);
  4165. if (val & ~0x1FF)
  4166. return -EINVAL;
  4167. val &= 0xFF;
  4168. reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
  4169. reg &= ~(0xFF << MQ0_CFBHL_POLY);
  4170. reg |= val << MQ0_CFBHL_POLY;
  4171. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
  4172. return count;
  4173. }
  4174. static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
  4175. static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
  4176. store_ppc440spe_r6enable);
  4177. static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
  4178. store_ppc440spe_r6poly);
  4179. /*
  4180. * Common initialisation for RAID engines; allocate memory for
  4181. * DMAx FIFOs, perform configuration common for all DMA engines.
  4182. * Further DMA engine specific configuration is done at probe time.
  4183. */
  4184. static int ppc440spe_configure_raid_devices(void)
  4185. {
  4186. struct device_node *np;
  4187. struct resource i2o_res;
  4188. struct i2o_regs __iomem *i2o_reg;
  4189. dcr_host_t i2o_dcr_host;
  4190. unsigned int dcr_base, dcr_len;
  4191. int i, ret;
  4192. np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
  4193. if (!np) {
  4194. pr_err("%s: can't find I2O device tree node\n",
  4195. __func__);
  4196. return -ENODEV;
  4197. }
  4198. if (of_address_to_resource(np, 0, &i2o_res)) {
  4199. of_node_put(np);
  4200. return -EINVAL;
  4201. }
  4202. i2o_reg = of_iomap(np, 0);
  4203. if (!i2o_reg) {
  4204. pr_err("%s: failed to map I2O registers\n", __func__);
  4205. of_node_put(np);
  4206. return -EINVAL;
  4207. }
  4208. /* Get I2O DCRs base */
  4209. dcr_base = dcr_resource_start(np, 0);
  4210. dcr_len = dcr_resource_len(np, 0);
  4211. if (!dcr_base && !dcr_len) {
  4212. pr_err("%s: can't get DCR registers base/len!\n",
  4213. np->full_name);
  4214. of_node_put(np);
  4215. iounmap(i2o_reg);
  4216. return -ENODEV;
  4217. }
  4218. i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4219. if (!DCR_MAP_OK(i2o_dcr_host)) {
  4220. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4221. of_node_put(np);
  4222. iounmap(i2o_reg);
  4223. return -ENODEV;
  4224. }
  4225. of_node_put(np);
  4226. /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
  4227. * the base address of FIFO memory space.
  4228. * Actually we need twice more physical memory than programmed in the
  4229. * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
  4230. */
  4231. ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
  4232. GFP_KERNEL);
  4233. if (!ppc440spe_dma_fifo_buf) {
  4234. pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
  4235. iounmap(i2o_reg);
  4236. dcr_unmap(i2o_dcr_host, dcr_len);
  4237. return -ENOMEM;
  4238. }
  4239. /*
  4240. * Configure h/w
  4241. */
  4242. /* Reset I2O/DMA */
  4243. mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
  4244. mtdcri(SDR0, DCRN_SDR0_SRST, 0);
  4245. /* Setup the base address of mmaped registers */
  4246. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
  4247. dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
  4248. I2O_REG_ENABLE);
  4249. dcr_unmap(i2o_dcr_host, dcr_len);
  4250. /* Setup FIFO memory space base address */
  4251. iowrite32(0, &i2o_reg->ifbah);
  4252. iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
  4253. /* set zero FIFO size for I2O, so the whole
  4254. * ppc440spe_dma_fifo_buf is used by DMAs.
  4255. * DMAx_FIFOs will be configured while probe.
  4256. */
  4257. iowrite32(0, &i2o_reg->ifsiz);
  4258. iounmap(i2o_reg);
  4259. /* To prepare WXOR/RXOR functionality we need access to
  4260. * Memory Queue Module DCRs (finally it will be enabled
  4261. * via /sys interface of the ppc440spe ADMA driver).
  4262. */
  4263. np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
  4264. if (!np) {
  4265. pr_err("%s: can't find MQ device tree node\n",
  4266. __func__);
  4267. ret = -ENODEV;
  4268. goto out_free;
  4269. }
  4270. /* Get MQ DCRs base */
  4271. dcr_base = dcr_resource_start(np, 0);
  4272. dcr_len = dcr_resource_len(np, 0);
  4273. if (!dcr_base && !dcr_len) {
  4274. pr_err("%s: can't get DCR registers base/len!\n",
  4275. np->full_name);
  4276. ret = -ENODEV;
  4277. goto out_mq;
  4278. }
  4279. ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
  4280. if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
  4281. pr_err("%s: failed to map DCRs!\n", np->full_name);
  4282. ret = -ENODEV;
  4283. goto out_mq;
  4284. }
  4285. of_node_put(np);
  4286. ppc440spe_mq_dcr_len = dcr_len;
  4287. /* Set HB alias */
  4288. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
  4289. /* Set:
  4290. * - LL transaction passing limit to 1;
  4291. * - Memory controller cycle limit to 1;
  4292. * - Galois Polynomial to 0x14d (default)
  4293. */
  4294. dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
  4295. (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
  4296. (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
  4297. atomic_set(&ppc440spe_adma_err_irq_ref, 0);
  4298. for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
  4299. ppc440spe_adma_devices[i] = -1;
  4300. return 0;
  4301. out_mq:
  4302. of_node_put(np);
  4303. out_free:
  4304. kfree(ppc440spe_dma_fifo_buf);
  4305. return ret;
  4306. }
  4307. static const struct of_device_id ppc440spe_adma_of_match[] = {
  4308. { .compatible = "ibm,dma-440spe", },
  4309. { .compatible = "amcc,xor-accelerator", },
  4310. {},
  4311. };
  4312. MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
  4313. static struct platform_driver ppc440spe_adma_driver = {
  4314. .probe = ppc440spe_adma_probe,
  4315. .remove = ppc440spe_adma_remove,
  4316. .driver = {
  4317. .name = "PPC440SP(E)-ADMA",
  4318. .owner = THIS_MODULE,
  4319. .of_match_table = ppc440spe_adma_of_match,
  4320. },
  4321. };
  4322. static __init int ppc440spe_adma_init(void)
  4323. {
  4324. int ret;
  4325. ret = ppc440spe_configure_raid_devices();
  4326. if (ret)
  4327. return ret;
  4328. ret = platform_driver_register(&ppc440spe_adma_driver);
  4329. if (ret) {
  4330. pr_err("%s: failed to register platform driver\n",
  4331. __func__);
  4332. goto out_reg;
  4333. }
  4334. /* Initialization status */
  4335. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4336. &driver_attr_devices);
  4337. if (ret)
  4338. goto out_dev;
  4339. /* RAID-6 h/w enable entry */
  4340. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4341. &driver_attr_enable);
  4342. if (ret)
  4343. goto out_en;
  4344. /* GF polynomial to use */
  4345. ret = driver_create_file(&ppc440spe_adma_driver.driver,
  4346. &driver_attr_poly);
  4347. if (!ret)
  4348. return ret;
  4349. driver_remove_file(&ppc440spe_adma_driver.driver,
  4350. &driver_attr_enable);
  4351. out_en:
  4352. driver_remove_file(&ppc440spe_adma_driver.driver,
  4353. &driver_attr_devices);
  4354. out_dev:
  4355. /* User will not be able to enable h/w RAID-6 */
  4356. pr_err("%s: failed to create RAID-6 driver interface\n",
  4357. __func__);
  4358. platform_driver_unregister(&ppc440spe_adma_driver);
  4359. out_reg:
  4360. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4361. kfree(ppc440spe_dma_fifo_buf);
  4362. return ret;
  4363. }
  4364. static void __exit ppc440spe_adma_exit(void)
  4365. {
  4366. driver_remove_file(&ppc440spe_adma_driver.driver,
  4367. &driver_attr_poly);
  4368. driver_remove_file(&ppc440spe_adma_driver.driver,
  4369. &driver_attr_enable);
  4370. driver_remove_file(&ppc440spe_adma_driver.driver,
  4371. &driver_attr_devices);
  4372. platform_driver_unregister(&ppc440spe_adma_driver);
  4373. dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
  4374. kfree(ppc440spe_dma_fifo_buf);
  4375. }
  4376. arch_initcall(ppc440spe_adma_init);
  4377. module_exit(ppc440spe_adma_exit);
  4378. MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
  4379. MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
  4380. MODULE_LICENSE("GPL");