cppi41.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. #include <linux/dmaengine.h>
  2. #include <linux/dma-mapping.h>
  3. #include <linux/platform_device.h>
  4. #include <linux/module.h>
  5. #include <linux/of.h>
  6. #include <linux/slab.h>
  7. #include <linux/of_dma.h>
  8. #include <linux/of_irq.h>
  9. #include <linux/dmapool.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/of_address.h>
  12. #include <linux/pm_runtime.h>
  13. #include "dmaengine.h"
  14. #define DESC_TYPE 27
  15. #define DESC_TYPE_HOST 0x10
  16. #define DESC_TYPE_TEARD 0x13
  17. #define TD_DESC_IS_RX (1 << 16)
  18. #define TD_DESC_DMA_NUM 10
  19. #define DESC_LENGTH_BITS_NUM 21
  20. #define DESC_TYPE_USB (5 << 26)
  21. #define DESC_PD_COMPLETE (1 << 31)
  22. /* DMA engine */
  23. #define DMA_TDFDQ 4
  24. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  25. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  26. #define RXHPCRA0 4
  27. #define GCR_CHAN_ENABLE (1 << 31)
  28. #define GCR_TEARDOWN (1 << 30)
  29. #define GCR_STARV_RETRY (1 << 24)
  30. #define GCR_DESC_TYPE_HOST (1 << 14)
  31. /* DMA scheduler */
  32. #define DMA_SCHED_CTRL 0
  33. #define DMA_SCHED_CTRL_EN (1 << 31)
  34. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  35. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  36. #define SCHED_ENTRY0_IS_RX (1 << 7)
  37. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  38. #define SCHED_ENTRY1_IS_RX (1 << 15)
  39. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  40. #define SCHED_ENTRY2_IS_RX (1 << 23)
  41. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  42. #define SCHED_ENTRY3_IS_RX (1 << 31)
  43. /* Queue manager */
  44. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  45. #define ALLOC_DECS_NUM 128
  46. #define DESCS_AREAS 1
  47. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  48. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  49. #define QMGR_LRAM0_BASE 0x80
  50. #define QMGR_LRAM_SIZE 0x84
  51. #define QMGR_LRAM1_BASE 0x88
  52. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  53. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  54. #define QMGR_MEMCTRL_IDX_SH 16
  55. #define QMGR_MEMCTRL_DESC_SH 8
  56. #define QMGR_NUM_PEND 5
  57. #define QMGR_PEND(x) (0x90 + (x) * 4)
  58. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  59. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  60. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  61. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  62. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  63. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  64. /* Glue layer specific */
  65. /* USBSS / USB AM335x */
  66. #define USBSS_IRQ_STATUS 0x28
  67. #define USBSS_IRQ_ENABLER 0x2c
  68. #define USBSS_IRQ_CLEARR 0x30
  69. #define USBSS_IRQ_PD_COMP (1 << 2)
  70. struct cppi41_channel {
  71. struct dma_chan chan;
  72. struct dma_async_tx_descriptor txd;
  73. struct cppi41_dd *cdd;
  74. struct cppi41_desc *desc;
  75. dma_addr_t desc_phys;
  76. void __iomem *gcr_reg;
  77. int is_tx;
  78. u32 residue;
  79. unsigned int q_num;
  80. unsigned int q_comp_num;
  81. unsigned int port_num;
  82. unsigned td_retry;
  83. unsigned td_queued:1;
  84. unsigned td_seen:1;
  85. unsigned td_desc_seen:1;
  86. };
  87. struct cppi41_desc {
  88. u32 pd0;
  89. u32 pd1;
  90. u32 pd2;
  91. u32 pd3;
  92. u32 pd4;
  93. u32 pd5;
  94. u32 pd6;
  95. u32 pd7;
  96. } __aligned(32);
  97. struct chan_queues {
  98. u16 submit;
  99. u16 complete;
  100. };
  101. struct cppi41_dd {
  102. struct dma_device ddev;
  103. void *qmgr_scratch;
  104. dma_addr_t scratch_phys;
  105. struct cppi41_desc *cd;
  106. dma_addr_t descs_phys;
  107. u32 first_td_desc;
  108. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  109. void __iomem *usbss_mem;
  110. void __iomem *ctrl_mem;
  111. void __iomem *sched_mem;
  112. void __iomem *qmgr_mem;
  113. unsigned int irq;
  114. const struct chan_queues *queues_rx;
  115. const struct chan_queues *queues_tx;
  116. struct chan_queues td_queue;
  117. };
  118. #define FIST_COMPLETION_QUEUE 93
  119. static struct chan_queues usb_queues_tx[] = {
  120. /* USB0 ENDP 1 */
  121. [ 0] = { .submit = 32, .complete = 93},
  122. [ 1] = { .submit = 34, .complete = 94},
  123. [ 2] = { .submit = 36, .complete = 95},
  124. [ 3] = { .submit = 38, .complete = 96},
  125. [ 4] = { .submit = 40, .complete = 97},
  126. [ 5] = { .submit = 42, .complete = 98},
  127. [ 6] = { .submit = 44, .complete = 99},
  128. [ 7] = { .submit = 46, .complete = 100},
  129. [ 8] = { .submit = 48, .complete = 101},
  130. [ 9] = { .submit = 50, .complete = 102},
  131. [10] = { .submit = 52, .complete = 103},
  132. [11] = { .submit = 54, .complete = 104},
  133. [12] = { .submit = 56, .complete = 105},
  134. [13] = { .submit = 58, .complete = 106},
  135. [14] = { .submit = 60, .complete = 107},
  136. /* USB1 ENDP1 */
  137. [15] = { .submit = 62, .complete = 125},
  138. [16] = { .submit = 64, .complete = 126},
  139. [17] = { .submit = 66, .complete = 127},
  140. [18] = { .submit = 68, .complete = 128},
  141. [19] = { .submit = 70, .complete = 129},
  142. [20] = { .submit = 72, .complete = 130},
  143. [21] = { .submit = 74, .complete = 131},
  144. [22] = { .submit = 76, .complete = 132},
  145. [23] = { .submit = 78, .complete = 133},
  146. [24] = { .submit = 80, .complete = 134},
  147. [25] = { .submit = 82, .complete = 135},
  148. [26] = { .submit = 84, .complete = 136},
  149. [27] = { .submit = 86, .complete = 137},
  150. [28] = { .submit = 88, .complete = 138},
  151. [29] = { .submit = 90, .complete = 139},
  152. };
  153. static const struct chan_queues usb_queues_rx[] = {
  154. /* USB0 ENDP 1 */
  155. [ 0] = { .submit = 1, .complete = 109},
  156. [ 1] = { .submit = 2, .complete = 110},
  157. [ 2] = { .submit = 3, .complete = 111},
  158. [ 3] = { .submit = 4, .complete = 112},
  159. [ 4] = { .submit = 5, .complete = 113},
  160. [ 5] = { .submit = 6, .complete = 114},
  161. [ 6] = { .submit = 7, .complete = 115},
  162. [ 7] = { .submit = 8, .complete = 116},
  163. [ 8] = { .submit = 9, .complete = 117},
  164. [ 9] = { .submit = 10, .complete = 118},
  165. [10] = { .submit = 11, .complete = 119},
  166. [11] = { .submit = 12, .complete = 120},
  167. [12] = { .submit = 13, .complete = 121},
  168. [13] = { .submit = 14, .complete = 122},
  169. [14] = { .submit = 15, .complete = 123},
  170. /* USB1 ENDP 1 */
  171. [15] = { .submit = 16, .complete = 141},
  172. [16] = { .submit = 17, .complete = 142},
  173. [17] = { .submit = 18, .complete = 143},
  174. [18] = { .submit = 19, .complete = 144},
  175. [19] = { .submit = 20, .complete = 145},
  176. [20] = { .submit = 21, .complete = 146},
  177. [21] = { .submit = 22, .complete = 147},
  178. [22] = { .submit = 23, .complete = 148},
  179. [23] = { .submit = 24, .complete = 149},
  180. [24] = { .submit = 25, .complete = 150},
  181. [25] = { .submit = 26, .complete = 151},
  182. [26] = { .submit = 27, .complete = 152},
  183. [27] = { .submit = 28, .complete = 153},
  184. [28] = { .submit = 29, .complete = 154},
  185. [29] = { .submit = 30, .complete = 155},
  186. };
  187. struct cppi_glue_infos {
  188. irqreturn_t (*isr)(int irq, void *data);
  189. const struct chan_queues *queues_rx;
  190. const struct chan_queues *queues_tx;
  191. struct chan_queues td_queue;
  192. };
  193. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  194. {
  195. return container_of(c, struct cppi41_channel, chan);
  196. }
  197. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  198. {
  199. struct cppi41_channel *c;
  200. u32 descs_size;
  201. u32 desc_num;
  202. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  203. if (!((desc >= cdd->descs_phys) &&
  204. (desc < (cdd->descs_phys + descs_size)))) {
  205. return NULL;
  206. }
  207. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  208. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  209. c = cdd->chan_busy[desc_num];
  210. cdd->chan_busy[desc_num] = NULL;
  211. return c;
  212. }
  213. static void cppi_writel(u32 val, void *__iomem *mem)
  214. {
  215. __raw_writel(val, mem);
  216. }
  217. static u32 cppi_readl(void *__iomem *mem)
  218. {
  219. return __raw_readl(mem);
  220. }
  221. static u32 pd_trans_len(u32 val)
  222. {
  223. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  224. }
  225. static irqreturn_t cppi41_irq(int irq, void *data)
  226. {
  227. struct cppi41_dd *cdd = data;
  228. struct cppi41_channel *c;
  229. u32 status;
  230. int i;
  231. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  232. if (!(status & USBSS_IRQ_PD_COMP))
  233. return IRQ_NONE;
  234. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  235. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  236. i++) {
  237. u32 val;
  238. u32 q_num;
  239. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  240. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  241. u32 mask;
  242. /* set corresponding bit for completetion Q 93 */
  243. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  244. /* not set all bits for queues less than Q 93 */
  245. mask--;
  246. /* now invert and keep only Q 93+ set */
  247. val &= ~mask;
  248. }
  249. if (val)
  250. __iormb();
  251. while (val) {
  252. u32 desc;
  253. q_num = __fls(val);
  254. val &= ~(1 << q_num);
  255. q_num += 32 * i;
  256. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(q_num));
  257. desc &= ~0x1f;
  258. c = desc_to_chan(cdd, desc);
  259. if (WARN_ON(!c)) {
  260. pr_err("%s() q %d desc %08x\n", __func__,
  261. q_num, desc);
  262. continue;
  263. }
  264. c->residue = pd_trans_len(c->desc->pd6) -
  265. pd_trans_len(c->desc->pd0);
  266. dma_cookie_complete(&c->txd);
  267. c->txd.callback(c->txd.callback_param);
  268. }
  269. }
  270. return IRQ_HANDLED;
  271. }
  272. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  273. {
  274. dma_cookie_t cookie;
  275. cookie = dma_cookie_assign(tx);
  276. return cookie;
  277. }
  278. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  279. {
  280. struct cppi41_channel *c = to_cpp41_chan(chan);
  281. dma_cookie_init(chan);
  282. dma_async_tx_descriptor_init(&c->txd, chan);
  283. c->txd.tx_submit = cppi41_tx_submit;
  284. if (!c->is_tx)
  285. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  286. return 0;
  287. }
  288. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  289. {
  290. }
  291. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  292. dma_cookie_t cookie, struct dma_tx_state *txstate)
  293. {
  294. struct cppi41_channel *c = to_cpp41_chan(chan);
  295. enum dma_status ret;
  296. /* lock */
  297. ret = dma_cookie_status(chan, cookie, txstate);
  298. if (txstate && ret == DMA_SUCCESS)
  299. txstate->residue = c->residue;
  300. /* unlock */
  301. return ret;
  302. }
  303. static void push_desc_queue(struct cppi41_channel *c)
  304. {
  305. struct cppi41_dd *cdd = c->cdd;
  306. u32 desc_num;
  307. u32 desc_phys;
  308. u32 reg;
  309. desc_phys = lower_32_bits(c->desc_phys);
  310. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  311. WARN_ON(cdd->chan_busy[desc_num]);
  312. cdd->chan_busy[desc_num] = c;
  313. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  314. reg |= desc_phys;
  315. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  316. }
  317. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  318. {
  319. struct cppi41_channel *c = to_cpp41_chan(chan);
  320. u32 reg;
  321. c->residue = 0;
  322. reg = GCR_CHAN_ENABLE;
  323. if (!c->is_tx) {
  324. reg |= GCR_STARV_RETRY;
  325. reg |= GCR_DESC_TYPE_HOST;
  326. reg |= c->q_comp_num;
  327. }
  328. cppi_writel(reg, c->gcr_reg);
  329. /*
  330. * We don't use writel() but __raw_writel() so we have to make sure
  331. * that the DMA descriptor in coherent memory made to the main memory
  332. * before starting the dma engine.
  333. */
  334. __iowmb();
  335. push_desc_queue(c);
  336. }
  337. static u32 get_host_pd0(u32 length)
  338. {
  339. u32 reg;
  340. reg = DESC_TYPE_HOST << DESC_TYPE;
  341. reg |= length;
  342. return reg;
  343. }
  344. static u32 get_host_pd1(struct cppi41_channel *c)
  345. {
  346. u32 reg;
  347. reg = 0;
  348. return reg;
  349. }
  350. static u32 get_host_pd2(struct cppi41_channel *c)
  351. {
  352. u32 reg;
  353. reg = DESC_TYPE_USB;
  354. reg |= c->q_comp_num;
  355. return reg;
  356. }
  357. static u32 get_host_pd3(u32 length)
  358. {
  359. u32 reg;
  360. /* PD3 = packet size */
  361. reg = length;
  362. return reg;
  363. }
  364. static u32 get_host_pd6(u32 length)
  365. {
  366. u32 reg;
  367. /* PD6 buffer size */
  368. reg = DESC_PD_COMPLETE;
  369. reg |= length;
  370. return reg;
  371. }
  372. static u32 get_host_pd4_or_7(u32 addr)
  373. {
  374. u32 reg;
  375. reg = addr;
  376. return reg;
  377. }
  378. static u32 get_host_pd5(void)
  379. {
  380. u32 reg;
  381. reg = 0;
  382. return reg;
  383. }
  384. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  385. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  386. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  387. {
  388. struct cppi41_channel *c = to_cpp41_chan(chan);
  389. struct cppi41_desc *d;
  390. struct scatterlist *sg;
  391. unsigned int i;
  392. unsigned int num;
  393. num = 0;
  394. d = c->desc;
  395. for_each_sg(sgl, sg, sg_len, i) {
  396. u32 addr;
  397. u32 len;
  398. /* We need to use more than one desc once musb supports sg */
  399. BUG_ON(num > 0);
  400. addr = lower_32_bits(sg_dma_address(sg));
  401. len = sg_dma_len(sg);
  402. d->pd0 = get_host_pd0(len);
  403. d->pd1 = get_host_pd1(c);
  404. d->pd2 = get_host_pd2(c);
  405. d->pd3 = get_host_pd3(len);
  406. d->pd4 = get_host_pd4_or_7(addr);
  407. d->pd5 = get_host_pd5();
  408. d->pd6 = get_host_pd6(len);
  409. d->pd7 = get_host_pd4_or_7(addr);
  410. d++;
  411. }
  412. return &c->txd;
  413. }
  414. static int cpp41_cfg_chan(struct cppi41_channel *c,
  415. struct dma_slave_config *cfg)
  416. {
  417. return 0;
  418. }
  419. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  420. {
  421. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  422. }
  423. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  424. {
  425. u32 desc;
  426. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  427. desc &= ~0x1f;
  428. return desc;
  429. }
  430. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  431. {
  432. struct cppi41_dd *cdd = c->cdd;
  433. struct cppi41_desc *td;
  434. u32 reg;
  435. u32 desc_phys;
  436. u32 td_desc_phys;
  437. td = cdd->cd;
  438. td += cdd->first_td_desc;
  439. td_desc_phys = cdd->descs_phys;
  440. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  441. if (!c->td_queued) {
  442. cppi41_compute_td_desc(td);
  443. __iowmb();
  444. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  445. reg |= td_desc_phys;
  446. cppi_writel(reg, cdd->qmgr_mem +
  447. QMGR_QUEUE_D(cdd->td_queue.submit));
  448. reg = GCR_CHAN_ENABLE;
  449. if (!c->is_tx) {
  450. reg |= GCR_STARV_RETRY;
  451. reg |= GCR_DESC_TYPE_HOST;
  452. reg |= c->q_comp_num;
  453. }
  454. reg |= GCR_TEARDOWN;
  455. cppi_writel(reg, c->gcr_reg);
  456. c->td_queued = 1;
  457. c->td_retry = 100;
  458. }
  459. if (!c->td_seen) {
  460. unsigned td_comp_queue;
  461. if (c->is_tx)
  462. td_comp_queue = cdd->td_queue.complete;
  463. else
  464. td_comp_queue = c->q_comp_num;
  465. desc_phys = cppi41_pop_desc(cdd, td_comp_queue);
  466. if (desc_phys) {
  467. __iormb();
  468. if (desc_phys == td_desc_phys) {
  469. u32 pd0;
  470. pd0 = td->pd0;
  471. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  472. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  473. WARN_ON((pd0 & 0x1f) != c->port_num);
  474. } else {
  475. WARN_ON_ONCE(1);
  476. }
  477. c->td_seen = 1;
  478. }
  479. }
  480. if (!c->td_desc_seen) {
  481. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  482. if (desc_phys) {
  483. __iormb();
  484. WARN_ON(c->desc_phys != desc_phys);
  485. c->td_desc_seen = 1;
  486. }
  487. }
  488. c->td_retry--;
  489. /*
  490. * If the TX descriptor / channel is in use, the caller needs to poke
  491. * his TD bit multiple times. After that he hardware releases the
  492. * transfer descriptor followed by TD descriptor. Waiting seems not to
  493. * cause any difference.
  494. * RX seems to be thrown out right away. However once the TearDown
  495. * descriptor gets through we are done. If we have seens the transfer
  496. * descriptor before the TD we fetch it from enqueue, it has to be
  497. * there waiting for us.
  498. */
  499. if (!c->td_seen && c->td_retry)
  500. return -EAGAIN;
  501. WARN_ON(!c->td_retry);
  502. if (!c->td_desc_seen) {
  503. desc_phys = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  504. WARN_ON(!desc_phys);
  505. }
  506. c->td_queued = 0;
  507. c->td_seen = 0;
  508. c->td_desc_seen = 0;
  509. cppi_writel(0, c->gcr_reg);
  510. return 0;
  511. }
  512. static int cppi41_stop_chan(struct dma_chan *chan)
  513. {
  514. struct cppi41_channel *c = to_cpp41_chan(chan);
  515. struct cppi41_dd *cdd = c->cdd;
  516. u32 desc_num;
  517. u32 desc_phys;
  518. int ret;
  519. ret = cppi41_tear_down_chan(c);
  520. if (ret)
  521. return ret;
  522. desc_phys = lower_32_bits(c->desc_phys);
  523. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  524. WARN_ON(!cdd->chan_busy[desc_num]);
  525. cdd->chan_busy[desc_num] = NULL;
  526. return 0;
  527. }
  528. static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  529. unsigned long arg)
  530. {
  531. struct cppi41_channel *c = to_cpp41_chan(chan);
  532. int ret;
  533. switch (cmd) {
  534. case DMA_SLAVE_CONFIG:
  535. ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
  536. break;
  537. case DMA_TERMINATE_ALL:
  538. ret = cppi41_stop_chan(chan);
  539. break;
  540. default:
  541. ret = -ENXIO;
  542. break;
  543. }
  544. return ret;
  545. }
  546. static void cleanup_chans(struct cppi41_dd *cdd)
  547. {
  548. while (!list_empty(&cdd->ddev.channels)) {
  549. struct cppi41_channel *cchan;
  550. cchan = list_first_entry(&cdd->ddev.channels,
  551. struct cppi41_channel, chan.device_node);
  552. list_del(&cchan->chan.device_node);
  553. kfree(cchan);
  554. }
  555. }
  556. static int cppi41_add_chans(struct platform_device *pdev, struct cppi41_dd *cdd)
  557. {
  558. struct cppi41_channel *cchan;
  559. int i;
  560. int ret;
  561. u32 n_chans;
  562. ret = of_property_read_u32(pdev->dev.of_node, "#dma-channels",
  563. &n_chans);
  564. if (ret)
  565. return ret;
  566. /*
  567. * The channels can only be used as TX or as RX. So we add twice
  568. * that much dma channels because USB can only do RX or TX.
  569. */
  570. n_chans *= 2;
  571. for (i = 0; i < n_chans; i++) {
  572. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  573. if (!cchan)
  574. goto err;
  575. cchan->cdd = cdd;
  576. if (i & 1) {
  577. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  578. cchan->is_tx = 1;
  579. } else {
  580. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  581. cchan->is_tx = 0;
  582. }
  583. cchan->port_num = i >> 1;
  584. cchan->desc = &cdd->cd[i];
  585. cchan->desc_phys = cdd->descs_phys;
  586. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  587. cchan->chan.device = &cdd->ddev;
  588. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  589. }
  590. cdd->first_td_desc = n_chans;
  591. return 0;
  592. err:
  593. cleanup_chans(cdd);
  594. return -ENOMEM;
  595. }
  596. static void purge_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
  597. {
  598. unsigned int mem_decs;
  599. int i;
  600. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  601. for (i = 0; i < DESCS_AREAS; i++) {
  602. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  603. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  604. dma_free_coherent(&pdev->dev, mem_decs, cdd->cd,
  605. cdd->descs_phys);
  606. }
  607. }
  608. static void disable_sched(struct cppi41_dd *cdd)
  609. {
  610. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  611. }
  612. static void deinit_cpii41(struct platform_device *pdev, struct cppi41_dd *cdd)
  613. {
  614. disable_sched(cdd);
  615. purge_descs(pdev, cdd);
  616. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  617. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  618. dma_free_coherent(&pdev->dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  619. cdd->scratch_phys);
  620. }
  621. static int init_descs(struct platform_device *pdev, struct cppi41_dd *cdd)
  622. {
  623. unsigned int desc_size;
  624. unsigned int mem_decs;
  625. int i;
  626. u32 reg;
  627. u32 idx;
  628. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  629. (sizeof(struct cppi41_desc) - 1));
  630. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  631. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  632. desc_size = sizeof(struct cppi41_desc);
  633. mem_decs = ALLOC_DECS_NUM * desc_size;
  634. idx = 0;
  635. for (i = 0; i < DESCS_AREAS; i++) {
  636. reg = idx << QMGR_MEMCTRL_IDX_SH;
  637. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  638. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  639. BUILD_BUG_ON(DESCS_AREAS != 1);
  640. cdd->cd = dma_alloc_coherent(&pdev->dev, mem_decs,
  641. &cdd->descs_phys, GFP_KERNEL);
  642. if (!cdd->cd)
  643. return -ENOMEM;
  644. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  645. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  646. idx += ALLOC_DECS_NUM;
  647. }
  648. return 0;
  649. }
  650. static void init_sched(struct cppi41_dd *cdd)
  651. {
  652. unsigned ch;
  653. unsigned word;
  654. u32 reg;
  655. word = 0;
  656. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  657. for (ch = 0; ch < 15 * 2; ch += 2) {
  658. reg = SCHED_ENTRY0_CHAN(ch);
  659. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  660. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  661. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  662. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  663. word++;
  664. }
  665. reg = 15 * 2 * 2 - 1;
  666. reg |= DMA_SCHED_CTRL_EN;
  667. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  668. }
  669. static int init_cppi41(struct platform_device *pdev, struct cppi41_dd *cdd)
  670. {
  671. int ret;
  672. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  673. cdd->qmgr_scratch = dma_alloc_coherent(&pdev->dev, QMGR_SCRATCH_SIZE,
  674. &cdd->scratch_phys, GFP_KERNEL);
  675. if (!cdd->qmgr_scratch)
  676. return -ENOMEM;
  677. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  678. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  679. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  680. ret = init_descs(pdev, cdd);
  681. if (ret)
  682. goto err_td;
  683. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  684. init_sched(cdd);
  685. return 0;
  686. err_td:
  687. deinit_cpii41(pdev, cdd);
  688. return ret;
  689. }
  690. static struct platform_driver cpp41_dma_driver;
  691. /*
  692. * The param format is:
  693. * X Y
  694. * X: Port
  695. * Y: 0 = RX else TX
  696. */
  697. #define INFO_PORT 0
  698. #define INFO_IS_TX 1
  699. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  700. {
  701. struct cppi41_channel *cchan;
  702. struct cppi41_dd *cdd;
  703. const struct chan_queues *queues;
  704. u32 *num = param;
  705. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  706. return false;
  707. cchan = to_cpp41_chan(chan);
  708. if (cchan->port_num != num[INFO_PORT])
  709. return false;
  710. if (cchan->is_tx && !num[INFO_IS_TX])
  711. return false;
  712. cdd = cchan->cdd;
  713. if (cchan->is_tx)
  714. queues = cdd->queues_tx;
  715. else
  716. queues = cdd->queues_rx;
  717. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  718. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  719. return false;
  720. cchan->q_num = queues[cchan->port_num].submit;
  721. cchan->q_comp_num = queues[cchan->port_num].complete;
  722. return true;
  723. }
  724. static struct of_dma_filter_info cpp41_dma_info = {
  725. .filter_fn = cpp41_dma_filter_fn,
  726. };
  727. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  728. struct of_dma *ofdma)
  729. {
  730. int count = dma_spec->args_count;
  731. struct of_dma_filter_info *info = ofdma->of_dma_data;
  732. if (!info || !info->filter_fn)
  733. return NULL;
  734. if (count != 2)
  735. return NULL;
  736. return dma_request_channel(info->dma_cap, info->filter_fn,
  737. &dma_spec->args[0]);
  738. }
  739. static const struct cppi_glue_infos usb_infos = {
  740. .isr = cppi41_irq,
  741. .queues_rx = usb_queues_rx,
  742. .queues_tx = usb_queues_tx,
  743. .td_queue = { .submit = 31, .complete = 0 },
  744. };
  745. static const struct of_device_id cppi41_dma_ids[] = {
  746. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  747. {},
  748. };
  749. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  750. static const struct cppi_glue_infos *get_glue_info(struct platform_device *pdev)
  751. {
  752. const struct of_device_id *of_id;
  753. of_id = of_match_node(cppi41_dma_ids, pdev->dev.of_node);
  754. if (!of_id)
  755. return NULL;
  756. return of_id->data;
  757. }
  758. static int cppi41_dma_probe(struct platform_device *pdev)
  759. {
  760. struct cppi41_dd *cdd;
  761. const struct cppi_glue_infos *glue_info;
  762. int irq;
  763. int ret;
  764. glue_info = get_glue_info(pdev);
  765. if (!glue_info)
  766. return -EINVAL;
  767. cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
  768. if (!cdd)
  769. return -ENOMEM;
  770. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  771. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  772. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  773. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  774. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  775. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  776. cdd->ddev.device_control = cppi41_dma_control;
  777. cdd->ddev.dev = &pdev->dev;
  778. INIT_LIST_HEAD(&cdd->ddev.channels);
  779. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  780. cdd->usbss_mem = of_iomap(pdev->dev.of_node, 0);
  781. cdd->ctrl_mem = of_iomap(pdev->dev.of_node, 1);
  782. cdd->sched_mem = of_iomap(pdev->dev.of_node, 2);
  783. cdd->qmgr_mem = of_iomap(pdev->dev.of_node, 3);
  784. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  785. !cdd->qmgr_mem) {
  786. ret = -ENXIO;
  787. goto err_remap;
  788. }
  789. pm_runtime_enable(&pdev->dev);
  790. ret = pm_runtime_get_sync(&pdev->dev);
  791. if (ret)
  792. goto err_get_sync;
  793. cdd->queues_rx = glue_info->queues_rx;
  794. cdd->queues_tx = glue_info->queues_tx;
  795. cdd->td_queue = glue_info->td_queue;
  796. ret = init_cppi41(pdev, cdd);
  797. if (ret)
  798. goto err_init_cppi;
  799. ret = cppi41_add_chans(pdev, cdd);
  800. if (ret)
  801. goto err_chans;
  802. irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  803. if (!irq)
  804. goto err_irq;
  805. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  806. ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
  807. dev_name(&pdev->dev), cdd);
  808. if (ret)
  809. goto err_irq;
  810. cdd->irq = irq;
  811. ret = dma_async_device_register(&cdd->ddev);
  812. if (ret)
  813. goto err_dma_reg;
  814. ret = of_dma_controller_register(pdev->dev.of_node,
  815. cppi41_dma_xlate, &cpp41_dma_info);
  816. if (ret)
  817. goto err_of;
  818. platform_set_drvdata(pdev, cdd);
  819. return 0;
  820. err_of:
  821. dma_async_device_unregister(&cdd->ddev);
  822. err_dma_reg:
  823. free_irq(irq, cdd);
  824. err_irq:
  825. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  826. cleanup_chans(cdd);
  827. err_chans:
  828. deinit_cpii41(pdev, cdd);
  829. err_init_cppi:
  830. pm_runtime_put(&pdev->dev);
  831. err_get_sync:
  832. pm_runtime_disable(&pdev->dev);
  833. iounmap(cdd->usbss_mem);
  834. iounmap(cdd->ctrl_mem);
  835. iounmap(cdd->sched_mem);
  836. iounmap(cdd->qmgr_mem);
  837. err_remap:
  838. kfree(cdd);
  839. return ret;
  840. }
  841. static int cppi41_dma_remove(struct platform_device *pdev)
  842. {
  843. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  844. of_dma_controller_free(pdev->dev.of_node);
  845. dma_async_device_unregister(&cdd->ddev);
  846. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  847. free_irq(cdd->irq, cdd);
  848. cleanup_chans(cdd);
  849. deinit_cpii41(pdev, cdd);
  850. iounmap(cdd->usbss_mem);
  851. iounmap(cdd->ctrl_mem);
  852. iounmap(cdd->sched_mem);
  853. iounmap(cdd->qmgr_mem);
  854. pm_runtime_put(&pdev->dev);
  855. pm_runtime_disable(&pdev->dev);
  856. kfree(cdd);
  857. return 0;
  858. }
  859. static struct platform_driver cpp41_dma_driver = {
  860. .probe = cppi41_dma_probe,
  861. .remove = cppi41_dma_remove,
  862. .driver = {
  863. .name = "cppi41-dma-engine",
  864. .owner = THIS_MODULE,
  865. .of_match_table = of_match_ptr(cppi41_dma_ids),
  866. },
  867. };
  868. module_platform_driver(cpp41_dma_driver);
  869. MODULE_LICENSE("GPL");
  870. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");