caamhash.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. /* ahash per-session context */
  88. struct caam_hash_ctx {
  89. struct device *jrdev;
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  95. dma_addr_t sh_desc_update_dma;
  96. dma_addr_t sh_desc_update_first_dma;
  97. dma_addr_t sh_desc_fin_dma;
  98. dma_addr_t sh_desc_digest_dma;
  99. dma_addr_t sh_desc_finup_dma;
  100. u32 alg_type;
  101. u32 alg_op;
  102. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  103. dma_addr_t key_dma;
  104. int ctx_len;
  105. unsigned int split_key_len;
  106. unsigned int split_key_pad_len;
  107. };
  108. /* ahash state */
  109. struct caam_hash_state {
  110. dma_addr_t buf_dma;
  111. dma_addr_t ctx_dma;
  112. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  113. int buflen_0;
  114. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  115. int buflen_1;
  116. u8 caam_ctx[MAX_CTX_LEN];
  117. int (*update)(struct ahash_request *req);
  118. int (*final)(struct ahash_request *req);
  119. int (*finup)(struct ahash_request *req);
  120. int current_buf;
  121. };
  122. /* Common job descriptor seq in/out ptr routines */
  123. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  124. static inline void map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  125. struct caam_hash_state *state,
  126. int ctx_len)
  127. {
  128. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  129. ctx_len, DMA_FROM_DEVICE);
  130. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  131. }
  132. /* Map req->result, and append seq_out_ptr command that points to it */
  133. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  134. u8 *result, int digestsize)
  135. {
  136. dma_addr_t dst_dma;
  137. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  138. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  139. return dst_dma;
  140. }
  141. /* Map current buffer in state and put it in link table */
  142. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  143. struct sec4_sg_entry *sec4_sg,
  144. u8 *buf, int buflen)
  145. {
  146. dma_addr_t buf_dma;
  147. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  148. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  149. return buf_dma;
  150. }
  151. /* Map req->src and put it in link table */
  152. static inline void src_map_to_sec4_sg(struct device *jrdev,
  153. struct scatterlist *src, int src_nents,
  154. struct sec4_sg_entry *sec4_sg,
  155. bool chained)
  156. {
  157. dma_map_sg_chained(jrdev, src, src_nents, DMA_TO_DEVICE, chained);
  158. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  159. }
  160. /*
  161. * Only put buffer in link table if it contains data, which is possible,
  162. * since a buffer has previously been used, and needs to be unmapped,
  163. */
  164. static inline dma_addr_t
  165. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  166. u8 *buf, dma_addr_t buf_dma, int buflen,
  167. int last_buflen)
  168. {
  169. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  170. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  171. if (buflen)
  172. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  173. else
  174. buf_dma = 0;
  175. return buf_dma;
  176. }
  177. /* Map state->caam_ctx, and add it to link table */
  178. static inline void ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  179. struct caam_hash_state *state,
  180. int ctx_len,
  181. struct sec4_sg_entry *sec4_sg,
  182. u32 flag)
  183. {
  184. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  185. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  186. }
  187. /* Common shared descriptor commands */
  188. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  189. {
  190. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  191. ctx->split_key_len, CLASS_2 |
  192. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  193. }
  194. /* Append key if it has been set */
  195. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  196. {
  197. u32 *key_jump_cmd;
  198. init_sh_desc(desc, HDR_SHARE_SERIAL);
  199. if (ctx->split_key_len) {
  200. /* Skip if already shared */
  201. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  202. JUMP_COND_SHRD);
  203. append_key_ahash(desc, ctx);
  204. set_jump_tgt_here(desc, key_jump_cmd);
  205. }
  206. /* Propagate errors from shared to job descriptor */
  207. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  208. }
  209. /*
  210. * For ahash read data from seqin following state->caam_ctx,
  211. * and write resulting class2 context to seqout, which may be state->caam_ctx
  212. * or req->result
  213. */
  214. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  215. {
  216. /* Calculate remaining bytes to read */
  217. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  218. /* Read remaining bytes */
  219. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  220. FIFOLD_TYPE_MSG | KEY_VLF);
  221. /* Store class2 context bytes */
  222. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  223. LDST_SRCDST_BYTE_CONTEXT);
  224. }
  225. /*
  226. * For ahash update, final and finup, import context, read and write to seqout
  227. */
  228. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  229. int digestsize,
  230. struct caam_hash_ctx *ctx)
  231. {
  232. init_sh_desc_key_ahash(desc, ctx);
  233. /* Import context from software */
  234. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  235. LDST_CLASS_2_CCB | ctx->ctx_len);
  236. /* Class 2 operation */
  237. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  238. /*
  239. * Load from buf and/or src and write to req->result or state->context
  240. */
  241. ahash_append_load_str(desc, digestsize);
  242. }
  243. /* For ahash firsts and digest, read and write to seqout */
  244. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  245. int digestsize, struct caam_hash_ctx *ctx)
  246. {
  247. init_sh_desc_key_ahash(desc, ctx);
  248. /* Class 2 operation */
  249. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  250. /*
  251. * Load from buf and/or src and write to req->result or state->context
  252. */
  253. ahash_append_load_str(desc, digestsize);
  254. }
  255. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  256. {
  257. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  258. int digestsize = crypto_ahash_digestsize(ahash);
  259. struct device *jrdev = ctx->jrdev;
  260. u32 have_key = 0;
  261. u32 *desc;
  262. if (ctx->split_key_len)
  263. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  264. /* ahash_update shared descriptor */
  265. desc = ctx->sh_desc_update;
  266. init_sh_desc(desc, HDR_SHARE_SERIAL);
  267. /* Import context from software */
  268. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  269. LDST_CLASS_2_CCB | ctx->ctx_len);
  270. /* Class 2 operation */
  271. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  272. OP_ALG_ENCRYPT);
  273. /* Load data and write to result or context */
  274. ahash_append_load_str(desc, ctx->ctx_len);
  275. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  276. DMA_TO_DEVICE);
  277. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  278. dev_err(jrdev, "unable to map shared descriptor\n");
  279. return -ENOMEM;
  280. }
  281. #ifdef DEBUG
  282. print_hex_dump(KERN_ERR,
  283. "ahash update shdesc@"__stringify(__LINE__)": ",
  284. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  285. #endif
  286. /* ahash_update_first shared descriptor */
  287. desc = ctx->sh_desc_update_first;
  288. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  289. ctx->ctx_len, ctx);
  290. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  291. desc_bytes(desc),
  292. DMA_TO_DEVICE);
  293. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  294. dev_err(jrdev, "unable to map shared descriptor\n");
  295. return -ENOMEM;
  296. }
  297. #ifdef DEBUG
  298. print_hex_dump(KERN_ERR,
  299. "ahash update first shdesc@"__stringify(__LINE__)": ",
  300. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  301. #endif
  302. /* ahash_final shared descriptor */
  303. desc = ctx->sh_desc_fin;
  304. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  305. OP_ALG_AS_FINALIZE, digestsize, ctx);
  306. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  307. DMA_TO_DEVICE);
  308. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  309. dev_err(jrdev, "unable to map shared descriptor\n");
  310. return -ENOMEM;
  311. }
  312. #ifdef DEBUG
  313. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  314. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  315. desc_bytes(desc), 1);
  316. #endif
  317. /* ahash_finup shared descriptor */
  318. desc = ctx->sh_desc_finup;
  319. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  320. OP_ALG_AS_FINALIZE, digestsize, ctx);
  321. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  322. DMA_TO_DEVICE);
  323. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  324. dev_err(jrdev, "unable to map shared descriptor\n");
  325. return -ENOMEM;
  326. }
  327. #ifdef DEBUG
  328. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  329. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  330. desc_bytes(desc), 1);
  331. #endif
  332. /* ahash_digest shared descriptor */
  333. desc = ctx->sh_desc_digest;
  334. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  335. digestsize, ctx);
  336. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  337. desc_bytes(desc),
  338. DMA_TO_DEVICE);
  339. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  340. dev_err(jrdev, "unable to map shared descriptor\n");
  341. return -ENOMEM;
  342. }
  343. #ifdef DEBUG
  344. print_hex_dump(KERN_ERR,
  345. "ahash digest shdesc@"__stringify(__LINE__)": ",
  346. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  347. desc_bytes(desc), 1);
  348. #endif
  349. return 0;
  350. }
  351. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  352. u32 keylen)
  353. {
  354. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  355. ctx->split_key_pad_len, key_in, keylen,
  356. ctx->alg_op);
  357. }
  358. /* Digest hash size if it is too large */
  359. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  360. u32 *keylen, u8 *key_out, u32 digestsize)
  361. {
  362. struct device *jrdev = ctx->jrdev;
  363. u32 *desc;
  364. struct split_key_result result;
  365. dma_addr_t src_dma, dst_dma;
  366. int ret = 0;
  367. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  368. if (!desc) {
  369. dev_err(jrdev, "unable to allocate key input memory\n");
  370. return -ENOMEM;
  371. }
  372. init_job_desc(desc, 0);
  373. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  374. DMA_TO_DEVICE);
  375. if (dma_mapping_error(jrdev, src_dma)) {
  376. dev_err(jrdev, "unable to map key input memory\n");
  377. kfree(desc);
  378. return -ENOMEM;
  379. }
  380. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  381. DMA_FROM_DEVICE);
  382. if (dma_mapping_error(jrdev, dst_dma)) {
  383. dev_err(jrdev, "unable to map key output memory\n");
  384. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  385. kfree(desc);
  386. return -ENOMEM;
  387. }
  388. /* Job descriptor to perform unkeyed hash on key_in */
  389. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  390. OP_ALG_AS_INITFINAL);
  391. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  392. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  393. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  394. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  395. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  396. LDST_SRCDST_BYTE_CONTEXT);
  397. #ifdef DEBUG
  398. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  399. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  400. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  401. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  402. #endif
  403. result.err = 0;
  404. init_completion(&result.completion);
  405. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  406. if (!ret) {
  407. /* in progress */
  408. wait_for_completion_interruptible(&result.completion);
  409. ret = result.err;
  410. #ifdef DEBUG
  411. print_hex_dump(KERN_ERR,
  412. "digested key@"__stringify(__LINE__)": ",
  413. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  414. digestsize, 1);
  415. #endif
  416. }
  417. *keylen = digestsize;
  418. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  419. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  420. kfree(desc);
  421. return ret;
  422. }
  423. static int ahash_setkey(struct crypto_ahash *ahash,
  424. const u8 *key, unsigned int keylen)
  425. {
  426. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  427. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  428. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  429. struct device *jrdev = ctx->jrdev;
  430. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  431. int digestsize = crypto_ahash_digestsize(ahash);
  432. int ret = 0;
  433. u8 *hashed_key = NULL;
  434. #ifdef DEBUG
  435. printk(KERN_ERR "keylen %d\n", keylen);
  436. #endif
  437. if (keylen > blocksize) {
  438. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  439. GFP_DMA);
  440. if (!hashed_key)
  441. return -ENOMEM;
  442. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  443. digestsize);
  444. if (ret)
  445. goto badkey;
  446. key = hashed_key;
  447. }
  448. /* Pick class 2 key length from algorithm submask */
  449. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  450. OP_ALG_ALGSEL_SHIFT] * 2;
  451. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  452. #ifdef DEBUG
  453. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  454. ctx->split_key_len, ctx->split_key_pad_len);
  455. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  456. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  457. #endif
  458. ret = gen_split_hash_key(ctx, key, keylen);
  459. if (ret)
  460. goto badkey;
  461. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  462. DMA_TO_DEVICE);
  463. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  464. dev_err(jrdev, "unable to map key i/o memory\n");
  465. return -ENOMEM;
  466. }
  467. #ifdef DEBUG
  468. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  469. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  470. ctx->split_key_pad_len, 1);
  471. #endif
  472. ret = ahash_set_sh_desc(ahash);
  473. if (ret) {
  474. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  475. DMA_TO_DEVICE);
  476. }
  477. kfree(hashed_key);
  478. return ret;
  479. badkey:
  480. kfree(hashed_key);
  481. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  482. return -EINVAL;
  483. }
  484. /*
  485. * ahash_edesc - s/w-extended ahash descriptor
  486. * @dst_dma: physical mapped address of req->result
  487. * @sec4_sg_dma: physical mapped address of h/w link table
  488. * @chained: if source is chained
  489. * @src_nents: number of segments in input scatterlist
  490. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  491. * @sec4_sg: pointer to h/w link table
  492. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  493. */
  494. struct ahash_edesc {
  495. dma_addr_t dst_dma;
  496. dma_addr_t sec4_sg_dma;
  497. bool chained;
  498. int src_nents;
  499. int sec4_sg_bytes;
  500. struct sec4_sg_entry *sec4_sg;
  501. u32 hw_desc[0];
  502. };
  503. static inline void ahash_unmap(struct device *dev,
  504. struct ahash_edesc *edesc,
  505. struct ahash_request *req, int dst_len)
  506. {
  507. if (edesc->src_nents)
  508. dma_unmap_sg_chained(dev, req->src, edesc->src_nents,
  509. DMA_TO_DEVICE, edesc->chained);
  510. if (edesc->dst_dma)
  511. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  512. if (edesc->sec4_sg_bytes)
  513. dma_unmap_single(dev, edesc->sec4_sg_dma,
  514. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  515. }
  516. static inline void ahash_unmap_ctx(struct device *dev,
  517. struct ahash_edesc *edesc,
  518. struct ahash_request *req, int dst_len, u32 flag)
  519. {
  520. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  521. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  522. struct caam_hash_state *state = ahash_request_ctx(req);
  523. if (state->ctx_dma)
  524. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  525. ahash_unmap(dev, edesc, req, dst_len);
  526. }
  527. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  528. void *context)
  529. {
  530. struct ahash_request *req = context;
  531. struct ahash_edesc *edesc;
  532. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  533. int digestsize = crypto_ahash_digestsize(ahash);
  534. #ifdef DEBUG
  535. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  536. struct caam_hash_state *state = ahash_request_ctx(req);
  537. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  538. #endif
  539. edesc = (struct ahash_edesc *)((char *)desc -
  540. offsetof(struct ahash_edesc, hw_desc));
  541. if (err) {
  542. char tmp[CAAM_ERROR_STR_MAX];
  543. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  544. }
  545. ahash_unmap(jrdev, edesc, req, digestsize);
  546. kfree(edesc);
  547. #ifdef DEBUG
  548. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  549. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  550. ctx->ctx_len, 1);
  551. if (req->result)
  552. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  553. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  554. digestsize, 1);
  555. #endif
  556. req->base.complete(&req->base, err);
  557. }
  558. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  559. void *context)
  560. {
  561. struct ahash_request *req = context;
  562. struct ahash_edesc *edesc;
  563. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  564. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  565. #ifdef DEBUG
  566. struct caam_hash_state *state = ahash_request_ctx(req);
  567. int digestsize = crypto_ahash_digestsize(ahash);
  568. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  569. #endif
  570. edesc = (struct ahash_edesc *)((char *)desc -
  571. offsetof(struct ahash_edesc, hw_desc));
  572. if (err) {
  573. char tmp[CAAM_ERROR_STR_MAX];
  574. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  575. }
  576. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  577. kfree(edesc);
  578. #ifdef DEBUG
  579. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  580. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  581. ctx->ctx_len, 1);
  582. if (req->result)
  583. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  584. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  585. digestsize, 1);
  586. #endif
  587. req->base.complete(&req->base, err);
  588. }
  589. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  590. void *context)
  591. {
  592. struct ahash_request *req = context;
  593. struct ahash_edesc *edesc;
  594. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  595. int digestsize = crypto_ahash_digestsize(ahash);
  596. #ifdef DEBUG
  597. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  598. struct caam_hash_state *state = ahash_request_ctx(req);
  599. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  600. #endif
  601. edesc = (struct ahash_edesc *)((char *)desc -
  602. offsetof(struct ahash_edesc, hw_desc));
  603. if (err) {
  604. char tmp[CAAM_ERROR_STR_MAX];
  605. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  606. }
  607. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  608. kfree(edesc);
  609. #ifdef DEBUG
  610. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  611. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  612. ctx->ctx_len, 1);
  613. if (req->result)
  614. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  615. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  616. digestsize, 1);
  617. #endif
  618. req->base.complete(&req->base, err);
  619. }
  620. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  621. void *context)
  622. {
  623. struct ahash_request *req = context;
  624. struct ahash_edesc *edesc;
  625. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  626. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  627. #ifdef DEBUG
  628. struct caam_hash_state *state = ahash_request_ctx(req);
  629. int digestsize = crypto_ahash_digestsize(ahash);
  630. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  631. #endif
  632. edesc = (struct ahash_edesc *)((char *)desc -
  633. offsetof(struct ahash_edesc, hw_desc));
  634. if (err) {
  635. char tmp[CAAM_ERROR_STR_MAX];
  636. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  637. }
  638. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  639. kfree(edesc);
  640. #ifdef DEBUG
  641. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  642. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  643. ctx->ctx_len, 1);
  644. if (req->result)
  645. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  646. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  647. digestsize, 1);
  648. #endif
  649. req->base.complete(&req->base, err);
  650. }
  651. /* submit update job descriptor */
  652. static int ahash_update_ctx(struct ahash_request *req)
  653. {
  654. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  655. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  656. struct caam_hash_state *state = ahash_request_ctx(req);
  657. struct device *jrdev = ctx->jrdev;
  658. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  659. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  660. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  661. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  662. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  663. int *next_buflen = state->current_buf ? &state->buflen_0 :
  664. &state->buflen_1, last_buflen;
  665. int in_len = *buflen + req->nbytes, to_hash;
  666. u32 *sh_desc = ctx->sh_desc_update, *desc;
  667. dma_addr_t ptr = ctx->sh_desc_update_dma;
  668. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  669. struct ahash_edesc *edesc;
  670. bool chained = false;
  671. int ret = 0;
  672. int sh_len;
  673. last_buflen = *next_buflen;
  674. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  675. to_hash = in_len - *next_buflen;
  676. if (to_hash) {
  677. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  678. &chained);
  679. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  680. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  681. sizeof(struct sec4_sg_entry);
  682. /*
  683. * allocate space for base edesc and hw desc commands,
  684. * link tables
  685. */
  686. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  687. sec4_sg_bytes, GFP_DMA | flags);
  688. if (!edesc) {
  689. dev_err(jrdev,
  690. "could not allocate extended descriptor\n");
  691. return -ENOMEM;
  692. }
  693. edesc->src_nents = src_nents;
  694. edesc->chained = chained;
  695. edesc->sec4_sg_bytes = sec4_sg_bytes;
  696. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  697. DESC_JOB_IO_LEN;
  698. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  699. sec4_sg_bytes,
  700. DMA_TO_DEVICE);
  701. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  702. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  703. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  704. edesc->sec4_sg + 1,
  705. buf, state->buf_dma,
  706. *buflen, last_buflen);
  707. if (src_nents) {
  708. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  709. edesc->sec4_sg + sec4_sg_src_index,
  710. chained);
  711. if (*next_buflen) {
  712. sg_copy_part(next_buf, req->src, to_hash -
  713. *buflen, req->nbytes);
  714. state->current_buf = !state->current_buf;
  715. }
  716. } else {
  717. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  718. SEC4_SG_LEN_FIN;
  719. }
  720. sh_len = desc_len(sh_desc);
  721. desc = edesc->hw_desc;
  722. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  723. HDR_REVERSE);
  724. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  725. to_hash, LDST_SGF);
  726. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  727. #ifdef DEBUG
  728. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  729. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  730. desc_bytes(desc), 1);
  731. #endif
  732. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  733. if (!ret) {
  734. ret = -EINPROGRESS;
  735. } else {
  736. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  737. DMA_BIDIRECTIONAL);
  738. kfree(edesc);
  739. }
  740. } else if (*next_buflen) {
  741. sg_copy(buf + *buflen, req->src, req->nbytes);
  742. *buflen = *next_buflen;
  743. *next_buflen = last_buflen;
  744. }
  745. #ifdef DEBUG
  746. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  747. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  748. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  749. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  750. *next_buflen, 1);
  751. #endif
  752. return ret;
  753. }
  754. static int ahash_final_ctx(struct ahash_request *req)
  755. {
  756. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  757. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  758. struct caam_hash_state *state = ahash_request_ctx(req);
  759. struct device *jrdev = ctx->jrdev;
  760. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  761. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  762. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  763. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  764. int last_buflen = state->current_buf ? state->buflen_0 :
  765. state->buflen_1;
  766. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  767. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  768. int sec4_sg_bytes;
  769. int digestsize = crypto_ahash_digestsize(ahash);
  770. struct ahash_edesc *edesc;
  771. int ret = 0;
  772. int sh_len;
  773. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  774. /* allocate space for base edesc and hw desc commands, link tables */
  775. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  776. sec4_sg_bytes, GFP_DMA | flags);
  777. if (!edesc) {
  778. dev_err(jrdev, "could not allocate extended descriptor\n");
  779. return -ENOMEM;
  780. }
  781. sh_len = desc_len(sh_desc);
  782. desc = edesc->hw_desc;
  783. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  784. edesc->sec4_sg_bytes = sec4_sg_bytes;
  785. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  786. DESC_JOB_IO_LEN;
  787. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  788. sec4_sg_bytes, DMA_TO_DEVICE);
  789. edesc->src_nents = 0;
  790. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  791. DMA_TO_DEVICE);
  792. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  793. buf, state->buf_dma, buflen,
  794. last_buflen);
  795. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  796. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  797. LDST_SGF);
  798. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  799. digestsize);
  800. #ifdef DEBUG
  801. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  802. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  803. #endif
  804. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  805. if (!ret) {
  806. ret = -EINPROGRESS;
  807. } else {
  808. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  809. kfree(edesc);
  810. }
  811. return ret;
  812. }
  813. static int ahash_finup_ctx(struct ahash_request *req)
  814. {
  815. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  816. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  817. struct caam_hash_state *state = ahash_request_ctx(req);
  818. struct device *jrdev = ctx->jrdev;
  819. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  820. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  821. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  822. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  823. int last_buflen = state->current_buf ? state->buflen_0 :
  824. state->buflen_1;
  825. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  826. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  827. int sec4_sg_bytes, sec4_sg_src_index;
  828. int src_nents;
  829. int digestsize = crypto_ahash_digestsize(ahash);
  830. struct ahash_edesc *edesc;
  831. bool chained = false;
  832. int ret = 0;
  833. int sh_len;
  834. src_nents = __sg_count(req->src, req->nbytes, &chained);
  835. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  836. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  837. sizeof(struct sec4_sg_entry);
  838. /* allocate space for base edesc and hw desc commands, link tables */
  839. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  840. sec4_sg_bytes, GFP_DMA | flags);
  841. if (!edesc) {
  842. dev_err(jrdev, "could not allocate extended descriptor\n");
  843. return -ENOMEM;
  844. }
  845. sh_len = desc_len(sh_desc);
  846. desc = edesc->hw_desc;
  847. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  848. edesc->src_nents = src_nents;
  849. edesc->chained = chained;
  850. edesc->sec4_sg_bytes = sec4_sg_bytes;
  851. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  852. DESC_JOB_IO_LEN;
  853. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  854. sec4_sg_bytes, DMA_TO_DEVICE);
  855. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  856. DMA_TO_DEVICE);
  857. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  858. buf, state->buf_dma, buflen,
  859. last_buflen);
  860. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  861. sec4_sg_src_index, chained);
  862. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  863. buflen + req->nbytes, LDST_SGF);
  864. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  865. digestsize);
  866. #ifdef DEBUG
  867. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  868. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  869. #endif
  870. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  871. if (!ret) {
  872. ret = -EINPROGRESS;
  873. } else {
  874. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  875. kfree(edesc);
  876. }
  877. return ret;
  878. }
  879. static int ahash_digest(struct ahash_request *req)
  880. {
  881. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  882. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  883. struct device *jrdev = ctx->jrdev;
  884. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  885. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  886. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  887. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  888. int digestsize = crypto_ahash_digestsize(ahash);
  889. int src_nents, sec4_sg_bytes;
  890. dma_addr_t src_dma;
  891. struct ahash_edesc *edesc;
  892. bool chained = false;
  893. int ret = 0;
  894. u32 options;
  895. int sh_len;
  896. src_nents = sg_count(req->src, req->nbytes, &chained);
  897. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE,
  898. chained);
  899. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  900. /* allocate space for base edesc and hw desc commands, link tables */
  901. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  902. DESC_JOB_IO_LEN, GFP_DMA | flags);
  903. if (!edesc) {
  904. dev_err(jrdev, "could not allocate extended descriptor\n");
  905. return -ENOMEM;
  906. }
  907. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  908. DESC_JOB_IO_LEN;
  909. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  910. sec4_sg_bytes, DMA_TO_DEVICE);
  911. edesc->src_nents = src_nents;
  912. edesc->chained = chained;
  913. sh_len = desc_len(sh_desc);
  914. desc = edesc->hw_desc;
  915. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  916. if (src_nents) {
  917. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  918. src_dma = edesc->sec4_sg_dma;
  919. options = LDST_SGF;
  920. } else {
  921. src_dma = sg_dma_address(req->src);
  922. options = 0;
  923. }
  924. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  925. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  926. digestsize);
  927. #ifdef DEBUG
  928. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  929. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  930. #endif
  931. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  932. if (!ret) {
  933. ret = -EINPROGRESS;
  934. } else {
  935. ahash_unmap(jrdev, edesc, req, digestsize);
  936. kfree(edesc);
  937. }
  938. return ret;
  939. }
  940. /* submit ahash final if it the first job descriptor */
  941. static int ahash_final_no_ctx(struct ahash_request *req)
  942. {
  943. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  944. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  945. struct caam_hash_state *state = ahash_request_ctx(req);
  946. struct device *jrdev = ctx->jrdev;
  947. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  948. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  949. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  950. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  951. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  952. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  953. int digestsize = crypto_ahash_digestsize(ahash);
  954. struct ahash_edesc *edesc;
  955. int ret = 0;
  956. int sh_len;
  957. /* allocate space for base edesc and hw desc commands, link tables */
  958. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  959. GFP_DMA | flags);
  960. if (!edesc) {
  961. dev_err(jrdev, "could not allocate extended descriptor\n");
  962. return -ENOMEM;
  963. }
  964. sh_len = desc_len(sh_desc);
  965. desc = edesc->hw_desc;
  966. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  967. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  968. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  969. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  970. digestsize);
  971. edesc->src_nents = 0;
  972. #ifdef DEBUG
  973. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  974. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  975. #endif
  976. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  977. if (!ret) {
  978. ret = -EINPROGRESS;
  979. } else {
  980. ahash_unmap(jrdev, edesc, req, digestsize);
  981. kfree(edesc);
  982. }
  983. return ret;
  984. }
  985. /* submit ahash update if it the first job descriptor after update */
  986. static int ahash_update_no_ctx(struct ahash_request *req)
  987. {
  988. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  989. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  990. struct caam_hash_state *state = ahash_request_ctx(req);
  991. struct device *jrdev = ctx->jrdev;
  992. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  993. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  994. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  995. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  996. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  997. int *next_buflen = state->current_buf ? &state->buflen_0 :
  998. &state->buflen_1;
  999. int in_len = *buflen + req->nbytes, to_hash;
  1000. int sec4_sg_bytes, src_nents;
  1001. struct ahash_edesc *edesc;
  1002. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1003. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1004. bool chained = false;
  1005. int ret = 0;
  1006. int sh_len;
  1007. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1008. to_hash = in_len - *next_buflen;
  1009. if (to_hash) {
  1010. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  1011. &chained);
  1012. sec4_sg_bytes = (1 + src_nents) *
  1013. sizeof(struct sec4_sg_entry);
  1014. /*
  1015. * allocate space for base edesc and hw desc commands,
  1016. * link tables
  1017. */
  1018. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1019. sec4_sg_bytes, GFP_DMA | flags);
  1020. if (!edesc) {
  1021. dev_err(jrdev,
  1022. "could not allocate extended descriptor\n");
  1023. return -ENOMEM;
  1024. }
  1025. edesc->src_nents = src_nents;
  1026. edesc->chained = chained;
  1027. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1028. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1029. DESC_JOB_IO_LEN;
  1030. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1031. sec4_sg_bytes,
  1032. DMA_TO_DEVICE);
  1033. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1034. buf, *buflen);
  1035. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1036. edesc->sec4_sg + 1, chained);
  1037. if (*next_buflen) {
  1038. sg_copy_part(next_buf, req->src, to_hash - *buflen,
  1039. req->nbytes);
  1040. state->current_buf = !state->current_buf;
  1041. }
  1042. sh_len = desc_len(sh_desc);
  1043. desc = edesc->hw_desc;
  1044. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1045. HDR_REVERSE);
  1046. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1047. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1048. #ifdef DEBUG
  1049. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1050. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1051. desc_bytes(desc), 1);
  1052. #endif
  1053. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1054. if (!ret) {
  1055. ret = -EINPROGRESS;
  1056. state->update = ahash_update_ctx;
  1057. state->finup = ahash_finup_ctx;
  1058. state->final = ahash_final_ctx;
  1059. } else {
  1060. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1061. DMA_TO_DEVICE);
  1062. kfree(edesc);
  1063. }
  1064. } else if (*next_buflen) {
  1065. sg_copy(buf + *buflen, req->src, req->nbytes);
  1066. *buflen = *next_buflen;
  1067. *next_buflen = 0;
  1068. }
  1069. #ifdef DEBUG
  1070. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1071. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1072. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1073. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1074. *next_buflen, 1);
  1075. #endif
  1076. return ret;
  1077. }
  1078. /* submit ahash finup if it the first job descriptor after update */
  1079. static int ahash_finup_no_ctx(struct ahash_request *req)
  1080. {
  1081. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1082. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1083. struct caam_hash_state *state = ahash_request_ctx(req);
  1084. struct device *jrdev = ctx->jrdev;
  1085. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1086. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1087. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1088. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1089. int last_buflen = state->current_buf ? state->buflen_0 :
  1090. state->buflen_1;
  1091. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1092. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1093. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1094. int digestsize = crypto_ahash_digestsize(ahash);
  1095. struct ahash_edesc *edesc;
  1096. bool chained = false;
  1097. int sh_len;
  1098. int ret = 0;
  1099. src_nents = __sg_count(req->src, req->nbytes, &chained);
  1100. sec4_sg_src_index = 2;
  1101. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1102. sizeof(struct sec4_sg_entry);
  1103. /* allocate space for base edesc and hw desc commands, link tables */
  1104. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1105. sec4_sg_bytes, GFP_DMA | flags);
  1106. if (!edesc) {
  1107. dev_err(jrdev, "could not allocate extended descriptor\n");
  1108. return -ENOMEM;
  1109. }
  1110. sh_len = desc_len(sh_desc);
  1111. desc = edesc->hw_desc;
  1112. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1113. edesc->src_nents = src_nents;
  1114. edesc->chained = chained;
  1115. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1116. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1117. DESC_JOB_IO_LEN;
  1118. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1119. sec4_sg_bytes, DMA_TO_DEVICE);
  1120. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1121. state->buf_dma, buflen,
  1122. last_buflen);
  1123. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1,
  1124. chained);
  1125. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1126. req->nbytes, LDST_SGF);
  1127. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1128. digestsize);
  1129. #ifdef DEBUG
  1130. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1131. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1132. #endif
  1133. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1134. if (!ret) {
  1135. ret = -EINPROGRESS;
  1136. } else {
  1137. ahash_unmap(jrdev, edesc, req, digestsize);
  1138. kfree(edesc);
  1139. }
  1140. return ret;
  1141. }
  1142. /* submit first update job descriptor after init */
  1143. static int ahash_update_first(struct ahash_request *req)
  1144. {
  1145. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1146. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1147. struct caam_hash_state *state = ahash_request_ctx(req);
  1148. struct device *jrdev = ctx->jrdev;
  1149. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1150. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1151. u8 *next_buf = state->buf_0 + state->current_buf *
  1152. CAAM_MAX_HASH_BLOCK_SIZE;
  1153. int *next_buflen = &state->buflen_0 + state->current_buf;
  1154. int to_hash;
  1155. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1156. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1157. int sec4_sg_bytes, src_nents;
  1158. dma_addr_t src_dma;
  1159. u32 options;
  1160. struct ahash_edesc *edesc;
  1161. bool chained = false;
  1162. int ret = 0;
  1163. int sh_len;
  1164. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1165. 1);
  1166. to_hash = req->nbytes - *next_buflen;
  1167. if (to_hash) {
  1168. src_nents = sg_count(req->src, req->nbytes - (*next_buflen),
  1169. &chained);
  1170. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1,
  1171. DMA_TO_DEVICE, chained);
  1172. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1173. /*
  1174. * allocate space for base edesc and hw desc commands,
  1175. * link tables
  1176. */
  1177. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1178. sec4_sg_bytes, GFP_DMA | flags);
  1179. if (!edesc) {
  1180. dev_err(jrdev,
  1181. "could not allocate extended descriptor\n");
  1182. return -ENOMEM;
  1183. }
  1184. edesc->src_nents = src_nents;
  1185. edesc->chained = chained;
  1186. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1187. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1188. DESC_JOB_IO_LEN;
  1189. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1190. sec4_sg_bytes,
  1191. DMA_TO_DEVICE);
  1192. if (src_nents) {
  1193. sg_to_sec4_sg_last(req->src, src_nents,
  1194. edesc->sec4_sg, 0);
  1195. src_dma = edesc->sec4_sg_dma;
  1196. options = LDST_SGF;
  1197. } else {
  1198. src_dma = sg_dma_address(req->src);
  1199. options = 0;
  1200. }
  1201. if (*next_buflen)
  1202. sg_copy_part(next_buf, req->src, to_hash, req->nbytes);
  1203. sh_len = desc_len(sh_desc);
  1204. desc = edesc->hw_desc;
  1205. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1206. HDR_REVERSE);
  1207. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1208. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1209. #ifdef DEBUG
  1210. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1211. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1212. desc_bytes(desc), 1);
  1213. #endif
  1214. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1215. req);
  1216. if (!ret) {
  1217. ret = -EINPROGRESS;
  1218. state->update = ahash_update_ctx;
  1219. state->finup = ahash_finup_ctx;
  1220. state->final = ahash_final_ctx;
  1221. } else {
  1222. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1223. DMA_TO_DEVICE);
  1224. kfree(edesc);
  1225. }
  1226. } else if (*next_buflen) {
  1227. state->update = ahash_update_no_ctx;
  1228. state->finup = ahash_finup_no_ctx;
  1229. state->final = ahash_final_no_ctx;
  1230. sg_copy(next_buf, req->src, req->nbytes);
  1231. }
  1232. #ifdef DEBUG
  1233. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1234. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1235. *next_buflen, 1);
  1236. #endif
  1237. return ret;
  1238. }
  1239. static int ahash_finup_first(struct ahash_request *req)
  1240. {
  1241. return ahash_digest(req);
  1242. }
  1243. static int ahash_init(struct ahash_request *req)
  1244. {
  1245. struct caam_hash_state *state = ahash_request_ctx(req);
  1246. state->update = ahash_update_first;
  1247. state->finup = ahash_finup_first;
  1248. state->final = ahash_final_no_ctx;
  1249. state->current_buf = 0;
  1250. return 0;
  1251. }
  1252. static int ahash_update(struct ahash_request *req)
  1253. {
  1254. struct caam_hash_state *state = ahash_request_ctx(req);
  1255. return state->update(req);
  1256. }
  1257. static int ahash_finup(struct ahash_request *req)
  1258. {
  1259. struct caam_hash_state *state = ahash_request_ctx(req);
  1260. return state->finup(req);
  1261. }
  1262. static int ahash_final(struct ahash_request *req)
  1263. {
  1264. struct caam_hash_state *state = ahash_request_ctx(req);
  1265. return state->final(req);
  1266. }
  1267. static int ahash_export(struct ahash_request *req, void *out)
  1268. {
  1269. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1270. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1271. struct caam_hash_state *state = ahash_request_ctx(req);
  1272. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1273. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1274. sizeof(struct caam_hash_state));
  1275. return 0;
  1276. }
  1277. static int ahash_import(struct ahash_request *req, const void *in)
  1278. {
  1279. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1280. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1281. struct caam_hash_state *state = ahash_request_ctx(req);
  1282. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1283. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1284. sizeof(struct caam_hash_state));
  1285. return 0;
  1286. }
  1287. struct caam_hash_template {
  1288. char name[CRYPTO_MAX_ALG_NAME];
  1289. char driver_name[CRYPTO_MAX_ALG_NAME];
  1290. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1291. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1292. unsigned int blocksize;
  1293. struct ahash_alg template_ahash;
  1294. u32 alg_type;
  1295. u32 alg_op;
  1296. };
  1297. /* ahash descriptors */
  1298. static struct caam_hash_template driver_hash[] = {
  1299. {
  1300. .name = "sha1",
  1301. .driver_name = "sha1-caam",
  1302. .hmac_name = "hmac(sha1)",
  1303. .hmac_driver_name = "hmac-sha1-caam",
  1304. .blocksize = SHA1_BLOCK_SIZE,
  1305. .template_ahash = {
  1306. .init = ahash_init,
  1307. .update = ahash_update,
  1308. .final = ahash_final,
  1309. .finup = ahash_finup,
  1310. .digest = ahash_digest,
  1311. .export = ahash_export,
  1312. .import = ahash_import,
  1313. .setkey = ahash_setkey,
  1314. .halg = {
  1315. .digestsize = SHA1_DIGEST_SIZE,
  1316. },
  1317. },
  1318. .alg_type = OP_ALG_ALGSEL_SHA1,
  1319. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1320. }, {
  1321. .name = "sha224",
  1322. .driver_name = "sha224-caam",
  1323. .hmac_name = "hmac(sha224)",
  1324. .hmac_driver_name = "hmac-sha224-caam",
  1325. .blocksize = SHA224_BLOCK_SIZE,
  1326. .template_ahash = {
  1327. .init = ahash_init,
  1328. .update = ahash_update,
  1329. .final = ahash_final,
  1330. .finup = ahash_finup,
  1331. .digest = ahash_digest,
  1332. .export = ahash_export,
  1333. .import = ahash_import,
  1334. .setkey = ahash_setkey,
  1335. .halg = {
  1336. .digestsize = SHA224_DIGEST_SIZE,
  1337. },
  1338. },
  1339. .alg_type = OP_ALG_ALGSEL_SHA224,
  1340. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1341. }, {
  1342. .name = "sha256",
  1343. .driver_name = "sha256-caam",
  1344. .hmac_name = "hmac(sha256)",
  1345. .hmac_driver_name = "hmac-sha256-caam",
  1346. .blocksize = SHA256_BLOCK_SIZE,
  1347. .template_ahash = {
  1348. .init = ahash_init,
  1349. .update = ahash_update,
  1350. .final = ahash_final,
  1351. .finup = ahash_finup,
  1352. .digest = ahash_digest,
  1353. .export = ahash_export,
  1354. .import = ahash_import,
  1355. .setkey = ahash_setkey,
  1356. .halg = {
  1357. .digestsize = SHA256_DIGEST_SIZE,
  1358. },
  1359. },
  1360. .alg_type = OP_ALG_ALGSEL_SHA256,
  1361. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1362. }, {
  1363. .name = "sha384",
  1364. .driver_name = "sha384-caam",
  1365. .hmac_name = "hmac(sha384)",
  1366. .hmac_driver_name = "hmac-sha384-caam",
  1367. .blocksize = SHA384_BLOCK_SIZE,
  1368. .template_ahash = {
  1369. .init = ahash_init,
  1370. .update = ahash_update,
  1371. .final = ahash_final,
  1372. .finup = ahash_finup,
  1373. .digest = ahash_digest,
  1374. .export = ahash_export,
  1375. .import = ahash_import,
  1376. .setkey = ahash_setkey,
  1377. .halg = {
  1378. .digestsize = SHA384_DIGEST_SIZE,
  1379. },
  1380. },
  1381. .alg_type = OP_ALG_ALGSEL_SHA384,
  1382. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1383. }, {
  1384. .name = "sha512",
  1385. .driver_name = "sha512-caam",
  1386. .hmac_name = "hmac(sha512)",
  1387. .hmac_driver_name = "hmac-sha512-caam",
  1388. .blocksize = SHA512_BLOCK_SIZE,
  1389. .template_ahash = {
  1390. .init = ahash_init,
  1391. .update = ahash_update,
  1392. .final = ahash_final,
  1393. .finup = ahash_finup,
  1394. .digest = ahash_digest,
  1395. .export = ahash_export,
  1396. .import = ahash_import,
  1397. .setkey = ahash_setkey,
  1398. .halg = {
  1399. .digestsize = SHA512_DIGEST_SIZE,
  1400. },
  1401. },
  1402. .alg_type = OP_ALG_ALGSEL_SHA512,
  1403. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1404. }, {
  1405. .name = "md5",
  1406. .driver_name = "md5-caam",
  1407. .hmac_name = "hmac(md5)",
  1408. .hmac_driver_name = "hmac-md5-caam",
  1409. .blocksize = MD5_BLOCK_WORDS * 4,
  1410. .template_ahash = {
  1411. .init = ahash_init,
  1412. .update = ahash_update,
  1413. .final = ahash_final,
  1414. .finup = ahash_finup,
  1415. .digest = ahash_digest,
  1416. .export = ahash_export,
  1417. .import = ahash_import,
  1418. .setkey = ahash_setkey,
  1419. .halg = {
  1420. .digestsize = MD5_DIGEST_SIZE,
  1421. },
  1422. },
  1423. .alg_type = OP_ALG_ALGSEL_MD5,
  1424. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1425. },
  1426. };
  1427. struct caam_hash_alg {
  1428. struct list_head entry;
  1429. struct device *ctrldev;
  1430. int alg_type;
  1431. int alg_op;
  1432. struct ahash_alg ahash_alg;
  1433. };
  1434. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1435. {
  1436. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1437. struct crypto_alg *base = tfm->__crt_alg;
  1438. struct hash_alg_common *halg =
  1439. container_of(base, struct hash_alg_common, base);
  1440. struct ahash_alg *alg =
  1441. container_of(halg, struct ahash_alg, halg);
  1442. struct caam_hash_alg *caam_hash =
  1443. container_of(alg, struct caam_hash_alg, ahash_alg);
  1444. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1445. struct caam_drv_private *priv = dev_get_drvdata(caam_hash->ctrldev);
  1446. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1447. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1448. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1449. HASH_MSG_LEN + 32,
  1450. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1451. HASH_MSG_LEN + 64,
  1452. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1453. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  1454. int ret = 0;
  1455. /*
  1456. * distribute tfms across job rings to ensure in-order
  1457. * crypto request processing per tfm
  1458. */
  1459. ctx->jrdev = priv->jrdev[tgt_jr % priv->total_jobrs];
  1460. /* copy descriptor header template value */
  1461. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1462. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1463. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1464. OP_ALG_ALGSEL_SHIFT];
  1465. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1466. sizeof(struct caam_hash_state));
  1467. ret = ahash_set_sh_desc(ahash);
  1468. return ret;
  1469. }
  1470. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1471. {
  1472. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1473. if (ctx->sh_desc_update_dma &&
  1474. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1475. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1476. desc_bytes(ctx->sh_desc_update),
  1477. DMA_TO_DEVICE);
  1478. if (ctx->sh_desc_update_first_dma &&
  1479. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1480. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1481. desc_bytes(ctx->sh_desc_update_first),
  1482. DMA_TO_DEVICE);
  1483. if (ctx->sh_desc_fin_dma &&
  1484. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1485. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1486. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1487. if (ctx->sh_desc_digest_dma &&
  1488. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1489. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1490. desc_bytes(ctx->sh_desc_digest),
  1491. DMA_TO_DEVICE);
  1492. if (ctx->sh_desc_finup_dma &&
  1493. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1494. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1495. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1496. }
  1497. static void __exit caam_algapi_hash_exit(void)
  1498. {
  1499. struct device_node *dev_node;
  1500. struct platform_device *pdev;
  1501. struct device *ctrldev;
  1502. struct caam_drv_private *priv;
  1503. struct caam_hash_alg *t_alg, *n;
  1504. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1505. if (!dev_node) {
  1506. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1507. if (!dev_node)
  1508. return;
  1509. }
  1510. pdev = of_find_device_by_node(dev_node);
  1511. if (!pdev)
  1512. return;
  1513. ctrldev = &pdev->dev;
  1514. of_node_put(dev_node);
  1515. priv = dev_get_drvdata(ctrldev);
  1516. if (!priv->hash_list.next)
  1517. return;
  1518. list_for_each_entry_safe(t_alg, n, &priv->hash_list, entry) {
  1519. crypto_unregister_ahash(&t_alg->ahash_alg);
  1520. list_del(&t_alg->entry);
  1521. kfree(t_alg);
  1522. }
  1523. }
  1524. static struct caam_hash_alg *
  1525. caam_hash_alloc(struct device *ctrldev, struct caam_hash_template *template,
  1526. bool keyed)
  1527. {
  1528. struct caam_hash_alg *t_alg;
  1529. struct ahash_alg *halg;
  1530. struct crypto_alg *alg;
  1531. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1532. if (!t_alg) {
  1533. dev_err(ctrldev, "failed to allocate t_alg\n");
  1534. return ERR_PTR(-ENOMEM);
  1535. }
  1536. t_alg->ahash_alg = template->template_ahash;
  1537. halg = &t_alg->ahash_alg;
  1538. alg = &halg->halg.base;
  1539. if (keyed) {
  1540. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1541. template->hmac_name);
  1542. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1543. template->hmac_driver_name);
  1544. } else {
  1545. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1546. template->name);
  1547. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1548. template->driver_name);
  1549. }
  1550. alg->cra_module = THIS_MODULE;
  1551. alg->cra_init = caam_hash_cra_init;
  1552. alg->cra_exit = caam_hash_cra_exit;
  1553. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1554. alg->cra_priority = CAAM_CRA_PRIORITY;
  1555. alg->cra_blocksize = template->blocksize;
  1556. alg->cra_alignmask = 0;
  1557. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1558. alg->cra_type = &crypto_ahash_type;
  1559. t_alg->alg_type = template->alg_type;
  1560. t_alg->alg_op = template->alg_op;
  1561. t_alg->ctrldev = ctrldev;
  1562. return t_alg;
  1563. }
  1564. static int __init caam_algapi_hash_init(void)
  1565. {
  1566. struct device_node *dev_node;
  1567. struct platform_device *pdev;
  1568. struct device *ctrldev;
  1569. struct caam_drv_private *priv;
  1570. int i = 0, err = 0;
  1571. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1572. if (!dev_node) {
  1573. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1574. if (!dev_node)
  1575. return -ENODEV;
  1576. }
  1577. pdev = of_find_device_by_node(dev_node);
  1578. if (!pdev)
  1579. return -ENODEV;
  1580. ctrldev = &pdev->dev;
  1581. priv = dev_get_drvdata(ctrldev);
  1582. of_node_put(dev_node);
  1583. INIT_LIST_HEAD(&priv->hash_list);
  1584. atomic_set(&priv->tfm_count, -1);
  1585. /* register crypto algorithms the device supports */
  1586. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1587. /* TODO: check if h/w supports alg */
  1588. struct caam_hash_alg *t_alg;
  1589. /* register hmac version */
  1590. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], true);
  1591. if (IS_ERR(t_alg)) {
  1592. err = PTR_ERR(t_alg);
  1593. dev_warn(ctrldev, "%s alg allocation failed\n",
  1594. driver_hash[i].driver_name);
  1595. continue;
  1596. }
  1597. err = crypto_register_ahash(&t_alg->ahash_alg);
  1598. if (err) {
  1599. dev_warn(ctrldev, "%s alg registration failed\n",
  1600. t_alg->ahash_alg.halg.base.cra_driver_name);
  1601. kfree(t_alg);
  1602. } else
  1603. list_add_tail(&t_alg->entry, &priv->hash_list);
  1604. /* register unkeyed version */
  1605. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], false);
  1606. if (IS_ERR(t_alg)) {
  1607. err = PTR_ERR(t_alg);
  1608. dev_warn(ctrldev, "%s alg allocation failed\n",
  1609. driver_hash[i].driver_name);
  1610. continue;
  1611. }
  1612. err = crypto_register_ahash(&t_alg->ahash_alg);
  1613. if (err) {
  1614. dev_warn(ctrldev, "%s alg registration failed\n",
  1615. t_alg->ahash_alg.halg.base.cra_driver_name);
  1616. kfree(t_alg);
  1617. } else
  1618. list_add_tail(&t_alg->entry, &priv->hash_list);
  1619. }
  1620. return err;
  1621. }
  1622. module_init(caam_algapi_hash_init);
  1623. module_exit(caam_algapi_hash_exit);
  1624. MODULE_LICENSE("GPL");
  1625. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1626. MODULE_AUTHOR("Freescale Semiconductor - NMG");