cpufreq-cpu0.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. /*
  2. * Copyright (C) 2012 Freescale Semiconductor, Inc.
  3. *
  4. * The OPP code in function cpu0_set_target() is reused from
  5. * drivers/cpufreq/omap-cpufreq.c
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/clk.h>
  13. #include <linux/cpufreq.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/of.h>
  17. #include <linux/opp.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/regulator/consumer.h>
  20. #include <linux/slab.h>
  21. static unsigned int transition_latency;
  22. static unsigned int voltage_tolerance; /* in percentage */
  23. static struct device *cpu_dev;
  24. static struct clk *cpu_clk;
  25. static struct regulator *cpu_reg;
  26. static struct cpufreq_frequency_table *freq_table;
  27. static int cpu0_verify_speed(struct cpufreq_policy *policy)
  28. {
  29. return cpufreq_frequency_table_verify(policy, freq_table);
  30. }
  31. static unsigned int cpu0_get_speed(unsigned int cpu)
  32. {
  33. return clk_get_rate(cpu_clk) / 1000;
  34. }
  35. static int cpu0_set_target(struct cpufreq_policy *policy,
  36. unsigned int target_freq, unsigned int relation)
  37. {
  38. struct cpufreq_freqs freqs;
  39. struct opp *opp;
  40. unsigned long volt = 0, volt_old = 0, tol = 0;
  41. long freq_Hz, freq_exact;
  42. unsigned int index;
  43. int ret;
  44. ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
  45. relation, &index);
  46. if (ret) {
  47. pr_err("failed to match target freqency %d: %d\n",
  48. target_freq, ret);
  49. return ret;
  50. }
  51. freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
  52. if (freq_Hz < 0)
  53. freq_Hz = freq_table[index].frequency * 1000;
  54. freq_exact = freq_Hz;
  55. freqs.new = freq_Hz / 1000;
  56. freqs.old = clk_get_rate(cpu_clk) / 1000;
  57. if (freqs.old == freqs.new)
  58. return 0;
  59. cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
  60. if (!IS_ERR(cpu_reg)) {
  61. rcu_read_lock();
  62. opp = opp_find_freq_ceil(cpu_dev, &freq_Hz);
  63. if (IS_ERR(opp)) {
  64. rcu_read_unlock();
  65. pr_err("failed to find OPP for %ld\n", freq_Hz);
  66. freqs.new = freqs.old;
  67. ret = PTR_ERR(opp);
  68. goto post_notify;
  69. }
  70. volt = opp_get_voltage(opp);
  71. rcu_read_unlock();
  72. tol = volt * voltage_tolerance / 100;
  73. volt_old = regulator_get_voltage(cpu_reg);
  74. }
  75. pr_debug("%u MHz, %ld mV --> %u MHz, %ld mV\n",
  76. freqs.old / 1000, volt_old ? volt_old / 1000 : -1,
  77. freqs.new / 1000, volt ? volt / 1000 : -1);
  78. /* scaling up? scale voltage before frequency */
  79. if (!IS_ERR(cpu_reg) && freqs.new > freqs.old) {
  80. ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
  81. if (ret) {
  82. pr_err("failed to scale voltage up: %d\n", ret);
  83. freqs.new = freqs.old;
  84. goto post_notify;
  85. }
  86. }
  87. ret = clk_set_rate(cpu_clk, freq_exact);
  88. if (ret) {
  89. pr_err("failed to set clock rate: %d\n", ret);
  90. if (!IS_ERR(cpu_reg))
  91. regulator_set_voltage_tol(cpu_reg, volt_old, tol);
  92. freqs.new = freqs.old;
  93. goto post_notify;
  94. }
  95. /* scaling down? scale voltage after frequency */
  96. if (!IS_ERR(cpu_reg) && freqs.new < freqs.old) {
  97. ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
  98. if (ret) {
  99. pr_err("failed to scale voltage down: %d\n", ret);
  100. clk_set_rate(cpu_clk, freqs.old * 1000);
  101. freqs.new = freqs.old;
  102. }
  103. }
  104. post_notify:
  105. cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
  106. return ret;
  107. }
  108. static int cpu0_cpufreq_init(struct cpufreq_policy *policy)
  109. {
  110. int ret;
  111. ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
  112. if (ret) {
  113. pr_err("invalid frequency table: %d\n", ret);
  114. return ret;
  115. }
  116. policy->cpuinfo.transition_latency = transition_latency;
  117. policy->cur = clk_get_rate(cpu_clk) / 1000;
  118. /*
  119. * The driver only supports the SMP configuartion where all processors
  120. * share the clock and voltage and clock. Use cpufreq affected_cpus
  121. * interface to have all CPUs scaled together.
  122. */
  123. cpumask_setall(policy->cpus);
  124. cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
  125. return 0;
  126. }
  127. static int cpu0_cpufreq_exit(struct cpufreq_policy *policy)
  128. {
  129. cpufreq_frequency_table_put_attr(policy->cpu);
  130. return 0;
  131. }
  132. static struct freq_attr *cpu0_cpufreq_attr[] = {
  133. &cpufreq_freq_attr_scaling_available_freqs,
  134. NULL,
  135. };
  136. static struct cpufreq_driver cpu0_cpufreq_driver = {
  137. .flags = CPUFREQ_STICKY,
  138. .verify = cpu0_verify_speed,
  139. .target = cpu0_set_target,
  140. .get = cpu0_get_speed,
  141. .init = cpu0_cpufreq_init,
  142. .exit = cpu0_cpufreq_exit,
  143. .name = "generic_cpu0",
  144. .attr = cpu0_cpufreq_attr,
  145. };
  146. static int cpu0_cpufreq_probe(struct platform_device *pdev)
  147. {
  148. struct device_node *np;
  149. int ret;
  150. cpu_dev = &pdev->dev;
  151. np = of_node_get(cpu_dev->of_node);
  152. if (!np) {
  153. pr_err("failed to find cpu0 node\n");
  154. return -ENOENT;
  155. }
  156. cpu_reg = devm_regulator_get_optional(cpu_dev, "cpu0");
  157. if (IS_ERR(cpu_reg)) {
  158. /*
  159. * If cpu0 regulator supply node is present, but regulator is
  160. * not yet registered, we should try defering probe.
  161. */
  162. if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
  163. dev_err(cpu_dev, "cpu0 regulator not ready, retry\n");
  164. ret = -EPROBE_DEFER;
  165. goto out_put_node;
  166. }
  167. pr_warn("failed to get cpu0 regulator: %ld\n",
  168. PTR_ERR(cpu_reg));
  169. }
  170. cpu_clk = devm_clk_get(cpu_dev, NULL);
  171. if (IS_ERR(cpu_clk)) {
  172. ret = PTR_ERR(cpu_clk);
  173. pr_err("failed to get cpu0 clock: %d\n", ret);
  174. goto out_put_node;
  175. }
  176. ret = of_init_opp_table(cpu_dev);
  177. if (ret) {
  178. pr_err("failed to init OPP table: %d\n", ret);
  179. goto out_put_node;
  180. }
  181. ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
  182. if (ret) {
  183. pr_err("failed to init cpufreq table: %d\n", ret);
  184. goto out_put_node;
  185. }
  186. of_property_read_u32(np, "voltage-tolerance", &voltage_tolerance);
  187. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  188. transition_latency = CPUFREQ_ETERNAL;
  189. if (cpu_reg) {
  190. struct opp *opp;
  191. unsigned long min_uV, max_uV;
  192. int i;
  193. /*
  194. * OPP is maintained in order of increasing frequency, and
  195. * freq_table initialised from OPP is therefore sorted in the
  196. * same order.
  197. */
  198. for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
  199. ;
  200. rcu_read_lock();
  201. opp = opp_find_freq_exact(cpu_dev,
  202. freq_table[0].frequency * 1000, true);
  203. min_uV = opp_get_voltage(opp);
  204. opp = opp_find_freq_exact(cpu_dev,
  205. freq_table[i-1].frequency * 1000, true);
  206. max_uV = opp_get_voltage(opp);
  207. rcu_read_unlock();
  208. ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
  209. if (ret > 0)
  210. transition_latency += ret * 1000;
  211. }
  212. ret = cpufreq_register_driver(&cpu0_cpufreq_driver);
  213. if (ret) {
  214. pr_err("failed register driver: %d\n", ret);
  215. goto out_free_table;
  216. }
  217. of_node_put(np);
  218. return 0;
  219. out_free_table:
  220. opp_free_cpufreq_table(cpu_dev, &freq_table);
  221. out_put_node:
  222. of_node_put(np);
  223. return ret;
  224. }
  225. static int cpu0_cpufreq_remove(struct platform_device *pdev)
  226. {
  227. cpufreq_unregister_driver(&cpu0_cpufreq_driver);
  228. opp_free_cpufreq_table(cpu_dev, &freq_table);
  229. return 0;
  230. }
  231. static struct platform_driver cpu0_cpufreq_platdrv = {
  232. .driver = {
  233. .name = "cpufreq-cpu0",
  234. .owner = THIS_MODULE,
  235. },
  236. .probe = cpu0_cpufreq_probe,
  237. .remove = cpu0_cpufreq_remove,
  238. };
  239. module_platform_driver(cpu0_cpufreq_platdrv);
  240. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  241. MODULE_DESCRIPTION("Generic CPU0 cpufreq driver");
  242. MODULE_LICENSE("GPL");