clkc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. /*
  2. * Zynq clock controller
  3. *
  4. * Copyright (C) 2012 - 2013 Xilinx
  5. *
  6. * Sören Brinkmann <soren.brinkmann@xilinx.com>
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License v2 as published by
  10. * the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk/zynq.h>
  21. #include <linux/clk-provider.h>
  22. #include <linux/of.h>
  23. #include <linux/slab.h>
  24. #include <linux/string.h>
  25. #include <linux/io.h>
  26. static void __iomem *zynq_slcr_base_priv;
  27. #define SLCR_ARMPLL_CTRL (zynq_slcr_base_priv + 0x100)
  28. #define SLCR_DDRPLL_CTRL (zynq_slcr_base_priv + 0x104)
  29. #define SLCR_IOPLL_CTRL (zynq_slcr_base_priv + 0x108)
  30. #define SLCR_PLL_STATUS (zynq_slcr_base_priv + 0x10c)
  31. #define SLCR_ARM_CLK_CTRL (zynq_slcr_base_priv + 0x120)
  32. #define SLCR_DDR_CLK_CTRL (zynq_slcr_base_priv + 0x124)
  33. #define SLCR_DCI_CLK_CTRL (zynq_slcr_base_priv + 0x128)
  34. #define SLCR_APER_CLK_CTRL (zynq_slcr_base_priv + 0x12c)
  35. #define SLCR_GEM0_CLK_CTRL (zynq_slcr_base_priv + 0x140)
  36. #define SLCR_GEM1_CLK_CTRL (zynq_slcr_base_priv + 0x144)
  37. #define SLCR_SMC_CLK_CTRL (zynq_slcr_base_priv + 0x148)
  38. #define SLCR_LQSPI_CLK_CTRL (zynq_slcr_base_priv + 0x14c)
  39. #define SLCR_SDIO_CLK_CTRL (zynq_slcr_base_priv + 0x150)
  40. #define SLCR_UART_CLK_CTRL (zynq_slcr_base_priv + 0x154)
  41. #define SLCR_SPI_CLK_CTRL (zynq_slcr_base_priv + 0x158)
  42. #define SLCR_CAN_CLK_CTRL (zynq_slcr_base_priv + 0x15c)
  43. #define SLCR_CAN_MIOCLK_CTRL (zynq_slcr_base_priv + 0x160)
  44. #define SLCR_DBG_CLK_CTRL (zynq_slcr_base_priv + 0x164)
  45. #define SLCR_PCAP_CLK_CTRL (zynq_slcr_base_priv + 0x168)
  46. #define SLCR_FPGA0_CLK_CTRL (zynq_slcr_base_priv + 0x170)
  47. #define SLCR_621_TRUE (zynq_slcr_base_priv + 0x1c4)
  48. #define SLCR_SWDT_CLK_SEL (zynq_slcr_base_priv + 0x304)
  49. #define NUM_MIO_PINS 54
  50. enum zynq_clk {
  51. armpll, ddrpll, iopll,
  52. cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x,
  53. ddr2x, ddr3x, dci,
  54. lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1,
  55. sdio0, sdio1, uart0, uart1, spi0, spi1, dma,
  56. usb0_aper, usb1_aper, gem0_aper, gem1_aper,
  57. sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper,
  58. i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper,
  59. smc_aper, swdt, dbg_trc, dbg_apb, clk_max};
  60. static struct clk *ps_clk;
  61. static struct clk *clks[clk_max];
  62. static struct clk_onecell_data clk_data;
  63. static DEFINE_SPINLOCK(armpll_lock);
  64. static DEFINE_SPINLOCK(ddrpll_lock);
  65. static DEFINE_SPINLOCK(iopll_lock);
  66. static DEFINE_SPINLOCK(armclk_lock);
  67. static DEFINE_SPINLOCK(swdtclk_lock);
  68. static DEFINE_SPINLOCK(ddrclk_lock);
  69. static DEFINE_SPINLOCK(dciclk_lock);
  70. static DEFINE_SPINLOCK(gem0clk_lock);
  71. static DEFINE_SPINLOCK(gem1clk_lock);
  72. static DEFINE_SPINLOCK(canclk_lock);
  73. static DEFINE_SPINLOCK(canmioclk_lock);
  74. static DEFINE_SPINLOCK(dbgclk_lock);
  75. static DEFINE_SPINLOCK(aperclk_lock);
  76. static const char dummy_nm[] __initconst = "dummy_name";
  77. static const char *armpll_parents[] __initdata = {"armpll_int", "ps_clk"};
  78. static const char *ddrpll_parents[] __initdata = {"ddrpll_int", "ps_clk"};
  79. static const char *iopll_parents[] __initdata = {"iopll_int", "ps_clk"};
  80. static const char *gem0_mux_parents[] __initdata = {"gem0_div1", dummy_nm};
  81. static const char *gem1_mux_parents[] __initdata = {"gem1_div1", dummy_nm};
  82. static const char *can0_mio_mux2_parents[] __initdata = {"can0_gate",
  83. "can0_mio_mux"};
  84. static const char *can1_mio_mux2_parents[] __initdata = {"can1_gate",
  85. "can1_mio_mux"};
  86. static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div",
  87. dummy_nm};
  88. static const char *dbgtrc_emio_input_names[] __initdata = {"trace_emio_clk"};
  89. static const char *gem0_emio_input_names[] __initdata = {"gem0_emio_clk"};
  90. static const char *gem1_emio_input_names[] __initdata = {"gem1_emio_clk"};
  91. static const char *swdt_ext_clk_input_names[] __initdata = {"swdt_ext_clk"};
  92. static void __init zynq_clk_register_fclk(enum zynq_clk fclk,
  93. const char *clk_name, void __iomem *fclk_ctrl_reg,
  94. const char **parents)
  95. {
  96. struct clk *clk;
  97. char *mux_name;
  98. char *div0_name;
  99. char *div1_name;
  100. spinlock_t *fclk_lock;
  101. spinlock_t *fclk_gate_lock;
  102. void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8;
  103. fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL);
  104. if (!fclk_lock)
  105. goto err;
  106. fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL);
  107. if (!fclk_gate_lock)
  108. goto err;
  109. spin_lock_init(fclk_lock);
  110. spin_lock_init(fclk_gate_lock);
  111. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name);
  112. div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name);
  113. div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name);
  114. clk = clk_register_mux(NULL, mux_name, parents, 4,
  115. CLK_SET_RATE_NO_REPARENT, fclk_ctrl_reg, 4, 2, 0,
  116. fclk_lock);
  117. clk = clk_register_divider(NULL, div0_name, mux_name,
  118. 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED |
  119. CLK_DIVIDER_ALLOW_ZERO, fclk_lock);
  120. clk = clk_register_divider(NULL, div1_name, div0_name,
  121. CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6,
  122. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  123. fclk_lock);
  124. clks[fclk] = clk_register_gate(NULL, clk_name,
  125. div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg,
  126. 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock);
  127. kfree(mux_name);
  128. kfree(div0_name);
  129. kfree(div1_name);
  130. return;
  131. err:
  132. clks[fclk] = ERR_PTR(-ENOMEM);
  133. }
  134. static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0,
  135. enum zynq_clk clk1, const char *clk_name0,
  136. const char *clk_name1, void __iomem *clk_ctrl,
  137. const char **parents, unsigned int two_gates)
  138. {
  139. struct clk *clk;
  140. char *mux_name;
  141. char *div_name;
  142. spinlock_t *lock;
  143. lock = kmalloc(sizeof(*lock), GFP_KERNEL);
  144. if (!lock)
  145. goto err;
  146. spin_lock_init(lock);
  147. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0);
  148. div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0);
  149. clk = clk_register_mux(NULL, mux_name, parents, 4,
  150. CLK_SET_RATE_NO_REPARENT, clk_ctrl, 4, 2, 0, lock);
  151. clk = clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6,
  152. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock);
  153. clks[clk0] = clk_register_gate(NULL, clk_name0, div_name,
  154. CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock);
  155. if (two_gates)
  156. clks[clk1] = clk_register_gate(NULL, clk_name1, div_name,
  157. CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock);
  158. kfree(mux_name);
  159. kfree(div_name);
  160. return;
  161. err:
  162. clks[clk0] = ERR_PTR(-ENOMEM);
  163. if (two_gates)
  164. clks[clk1] = ERR_PTR(-ENOMEM);
  165. }
  166. static void __init zynq_clk_setup(struct device_node *np)
  167. {
  168. int i;
  169. u32 tmp;
  170. int ret;
  171. struct clk *clk;
  172. char *clk_name;
  173. const char *clk_output_name[clk_max];
  174. const char *cpu_parents[4];
  175. const char *periph_parents[4];
  176. const char *swdt_ext_clk_mux_parents[2];
  177. const char *can_mio_mux_parents[NUM_MIO_PINS];
  178. pr_info("Zynq clock init\n");
  179. /* get clock output names from DT */
  180. for (i = 0; i < clk_max; i++) {
  181. if (of_property_read_string_index(np, "clock-output-names",
  182. i, &clk_output_name[i])) {
  183. pr_err("%s: clock output name not in DT\n", __func__);
  184. BUG();
  185. }
  186. }
  187. cpu_parents[0] = clk_output_name[armpll];
  188. cpu_parents[1] = clk_output_name[armpll];
  189. cpu_parents[2] = clk_output_name[ddrpll];
  190. cpu_parents[3] = clk_output_name[iopll];
  191. periph_parents[0] = clk_output_name[iopll];
  192. periph_parents[1] = clk_output_name[iopll];
  193. periph_parents[2] = clk_output_name[armpll];
  194. periph_parents[3] = clk_output_name[ddrpll];
  195. /* ps_clk */
  196. ret = of_property_read_u32(np, "ps-clk-frequency", &tmp);
  197. if (ret) {
  198. pr_warn("ps_clk frequency not specified, using 33 MHz.\n");
  199. tmp = 33333333;
  200. }
  201. ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, CLK_IS_ROOT,
  202. tmp);
  203. /* PLLs */
  204. clk = clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL,
  205. SLCR_PLL_STATUS, 0, &armpll_lock);
  206. clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll],
  207. armpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  208. SLCR_ARMPLL_CTRL, 4, 1, 0, &armpll_lock);
  209. clk = clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL,
  210. SLCR_PLL_STATUS, 1, &ddrpll_lock);
  211. clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll],
  212. ddrpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  213. SLCR_DDRPLL_CTRL, 4, 1, 0, &ddrpll_lock);
  214. clk = clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL,
  215. SLCR_PLL_STATUS, 2, &iopll_lock);
  216. clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll],
  217. iopll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  218. SLCR_IOPLL_CTRL, 4, 1, 0, &iopll_lock);
  219. /* CPU clocks */
  220. tmp = readl(SLCR_621_TRUE) & 1;
  221. clk = clk_register_mux(NULL, "cpu_mux", cpu_parents, 4,
  222. CLK_SET_RATE_NO_REPARENT, SLCR_ARM_CLK_CTRL, 4, 2, 0,
  223. &armclk_lock);
  224. clk = clk_register_divider(NULL, "cpu_div", "cpu_mux", 0,
  225. SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  226. CLK_DIVIDER_ALLOW_ZERO, &armclk_lock);
  227. clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x],
  228. "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED,
  229. SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock);
  230. clk = clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0,
  231. 1, 2);
  232. clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x],
  233. "cpu_3or2x_div", CLK_IGNORE_UNUSED,
  234. SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock);
  235. clk = clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1,
  236. 2 + tmp);
  237. clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x],
  238. "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL,
  239. 26, 0, &armclk_lock);
  240. clk = clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1,
  241. 4 + 2 * tmp);
  242. clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x],
  243. "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27,
  244. 0, &armclk_lock);
  245. /* Timers */
  246. swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x];
  247. for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) {
  248. int idx = of_property_match_string(np, "clock-names",
  249. swdt_ext_clk_input_names[i]);
  250. if (idx >= 0)
  251. swdt_ext_clk_mux_parents[i + 1] =
  252. of_clk_get_parent_name(np, idx);
  253. else
  254. swdt_ext_clk_mux_parents[i + 1] = dummy_nm;
  255. }
  256. clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt],
  257. swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT |
  258. CLK_SET_RATE_NO_REPARENT, SLCR_SWDT_CLK_SEL, 0, 1, 0,
  259. &swdtclk_lock);
  260. /* DDR clocks */
  261. clk = clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0,
  262. SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED |
  263. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  264. clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x],
  265. "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock);
  266. clk_prepare_enable(clks[ddr2x]);
  267. clk = clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0,
  268. SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED |
  269. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  270. clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x],
  271. "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock);
  272. clk_prepare_enable(clks[ddr3x]);
  273. clk = clk_register_divider(NULL, "dci_div0", "ddrpll", 0,
  274. SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  275. CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock);
  276. clk = clk_register_divider(NULL, "dci_div1", "dci_div0",
  277. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6,
  278. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  279. &dciclk_lock);
  280. clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1",
  281. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0,
  282. &dciclk_lock);
  283. clk_prepare_enable(clks[dci]);
  284. /* Peripheral clocks */
  285. for (i = fclk0; i <= fclk3; i++)
  286. zynq_clk_register_fclk(i, clk_output_name[i],
  287. SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0),
  288. periph_parents);
  289. zynq_clk_register_periph_clk(lqspi, 0, clk_output_name[lqspi], NULL,
  290. SLCR_LQSPI_CLK_CTRL, periph_parents, 0);
  291. zynq_clk_register_periph_clk(smc, 0, clk_output_name[smc], NULL,
  292. SLCR_SMC_CLK_CTRL, periph_parents, 0);
  293. zynq_clk_register_periph_clk(pcap, 0, clk_output_name[pcap], NULL,
  294. SLCR_PCAP_CLK_CTRL, periph_parents, 0);
  295. zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0],
  296. clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL,
  297. periph_parents, 1);
  298. zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0],
  299. clk_output_name[uart1], SLCR_UART_CLK_CTRL,
  300. periph_parents, 1);
  301. zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0],
  302. clk_output_name[spi1], SLCR_SPI_CLK_CTRL,
  303. periph_parents, 1);
  304. for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) {
  305. int idx = of_property_match_string(np, "clock-names",
  306. gem0_emio_input_names[i]);
  307. if (idx >= 0)
  308. gem0_mux_parents[i + 1] = of_clk_get_parent_name(np,
  309. idx);
  310. }
  311. clk = clk_register_mux(NULL, "gem0_mux", periph_parents, 4,
  312. CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 4, 2, 0,
  313. &gem0clk_lock);
  314. clk = clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0,
  315. SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  316. CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock);
  317. clk = clk_register_divider(NULL, "gem0_div1", "gem0_div0",
  318. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6,
  319. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  320. &gem0clk_lock);
  321. clk = clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2,
  322. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  323. SLCR_GEM0_CLK_CTRL, 6, 1, 0,
  324. &gem0clk_lock);
  325. clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0],
  326. "gem0_emio_mux", CLK_SET_RATE_PARENT,
  327. SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock);
  328. for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) {
  329. int idx = of_property_match_string(np, "clock-names",
  330. gem1_emio_input_names[i]);
  331. if (idx >= 0)
  332. gem1_mux_parents[i + 1] = of_clk_get_parent_name(np,
  333. idx);
  334. }
  335. clk = clk_register_mux(NULL, "gem1_mux", periph_parents, 4,
  336. CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 4, 2, 0,
  337. &gem1clk_lock);
  338. clk = clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0,
  339. SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  340. CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock);
  341. clk = clk_register_divider(NULL, "gem1_div1", "gem1_div0",
  342. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6,
  343. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  344. &gem1clk_lock);
  345. clk = clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2,
  346. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  347. SLCR_GEM1_CLK_CTRL, 6, 1, 0,
  348. &gem1clk_lock);
  349. clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1],
  350. "gem1_emio_mux", CLK_SET_RATE_PARENT,
  351. SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock);
  352. tmp = strlen("mio_clk_00x");
  353. clk_name = kmalloc(tmp, GFP_KERNEL);
  354. for (i = 0; i < NUM_MIO_PINS; i++) {
  355. int idx;
  356. snprintf(clk_name, tmp, "mio_clk_%2.2d", i);
  357. idx = of_property_match_string(np, "clock-names", clk_name);
  358. if (idx >= 0)
  359. can_mio_mux_parents[i] = of_clk_get_parent_name(np,
  360. idx);
  361. else
  362. can_mio_mux_parents[i] = dummy_nm;
  363. }
  364. kfree(clk_name);
  365. clk = clk_register_mux(NULL, "can_mux", periph_parents, 4,
  366. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_CLK_CTRL, 4, 2, 0,
  367. &canclk_lock);
  368. clk = clk_register_divider(NULL, "can_div0", "can_mux", 0,
  369. SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  370. CLK_DIVIDER_ALLOW_ZERO, &canclk_lock);
  371. clk = clk_register_divider(NULL, "can_div1", "can_div0",
  372. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6,
  373. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  374. &canclk_lock);
  375. clk = clk_register_gate(NULL, "can0_gate", "can_div1",
  376. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0,
  377. &canclk_lock);
  378. clk = clk_register_gate(NULL, "can1_gate", "can_div1",
  379. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0,
  380. &canclk_lock);
  381. clk = clk_register_mux(NULL, "can0_mio_mux",
  382. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  383. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 0, 6, 0,
  384. &canmioclk_lock);
  385. clk = clk_register_mux(NULL, "can1_mio_mux",
  386. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  387. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 16, 6,
  388. 0, &canmioclk_lock);
  389. clks[can0] = clk_register_mux(NULL, clk_output_name[can0],
  390. can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  391. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 6, 1, 0,
  392. &canmioclk_lock);
  393. clks[can1] = clk_register_mux(NULL, clk_output_name[can1],
  394. can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  395. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 22, 1,
  396. 0, &canmioclk_lock);
  397. for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) {
  398. int idx = of_property_match_string(np, "clock-names",
  399. dbgtrc_emio_input_names[i]);
  400. if (idx >= 0)
  401. dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np,
  402. idx);
  403. }
  404. clk = clk_register_mux(NULL, "dbg_mux", periph_parents, 4,
  405. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 4, 2, 0,
  406. &dbgclk_lock);
  407. clk = clk_register_divider(NULL, "dbg_div", "dbg_mux", 0,
  408. SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  409. CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock);
  410. clk = clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2,
  411. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 6, 1, 0,
  412. &dbgclk_lock);
  413. clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc],
  414. "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL,
  415. 0, 0, &dbgclk_lock);
  416. clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb],
  417. clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0,
  418. &dbgclk_lock);
  419. /* One gated clock for all APER clocks. */
  420. clks[dma] = clk_register_gate(NULL, clk_output_name[dma],
  421. clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0,
  422. &aperclk_lock);
  423. clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper],
  424. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0,
  425. &aperclk_lock);
  426. clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper],
  427. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0,
  428. &aperclk_lock);
  429. clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper],
  430. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0,
  431. &aperclk_lock);
  432. clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper],
  433. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0,
  434. &aperclk_lock);
  435. clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper],
  436. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0,
  437. &aperclk_lock);
  438. clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper],
  439. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0,
  440. &aperclk_lock);
  441. clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper],
  442. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0,
  443. &aperclk_lock);
  444. clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper],
  445. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0,
  446. &aperclk_lock);
  447. clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper],
  448. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0,
  449. &aperclk_lock);
  450. clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper],
  451. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0,
  452. &aperclk_lock);
  453. clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper],
  454. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0,
  455. &aperclk_lock);
  456. clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper],
  457. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0,
  458. &aperclk_lock);
  459. clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper],
  460. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0,
  461. &aperclk_lock);
  462. clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper],
  463. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0,
  464. &aperclk_lock);
  465. clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper],
  466. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0,
  467. &aperclk_lock);
  468. clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper],
  469. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0,
  470. &aperclk_lock);
  471. clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper],
  472. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0,
  473. &aperclk_lock);
  474. for (i = 0; i < ARRAY_SIZE(clks); i++) {
  475. if (IS_ERR(clks[i])) {
  476. pr_err("Zynq clk %d: register failed with %ld\n",
  477. i, PTR_ERR(clks[i]));
  478. BUG();
  479. }
  480. }
  481. clk_data.clks = clks;
  482. clk_data.clk_num = ARRAY_SIZE(clks);
  483. of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
  484. }
  485. CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup);
  486. void __init zynq_clock_init(void __iomem *slcr_base)
  487. {
  488. zynq_slcr_base_priv = slcr_base;
  489. of_clk_init(NULL);
  490. }