random.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #include <linux/irq.h>
  257. #include <asm/processor.h>
  258. #include <asm/uaccess.h>
  259. #include <asm/irq.h>
  260. #include <asm/irq_regs.h>
  261. #include <asm/io.h>
  262. #define CREATE_TRACE_POINTS
  263. #include <trace/events/random.h>
  264. /*
  265. * Configuration information
  266. */
  267. #define INPUT_POOL_WORDS 128
  268. #define OUTPUT_POOL_WORDS 32
  269. #define SEC_XFER_SIZE 512
  270. #define EXTRACT_SIZE 10
  271. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  272. /*
  273. * The minimum number of bits of entropy before we wake up a read on
  274. * /dev/random. Should be enough to do a significant reseed.
  275. */
  276. static int random_read_wakeup_thresh = 64;
  277. /*
  278. * If the entropy count falls under this number of bits, then we
  279. * should wake up processes which are selecting or polling on write
  280. * access to /dev/random.
  281. */
  282. static int random_write_wakeup_thresh = 128;
  283. /*
  284. * When the input pool goes over trickle_thresh, start dropping most
  285. * samples to avoid wasting CPU time and reduce lock contention.
  286. */
  287. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  288. static DEFINE_PER_CPU(int, trickle_count);
  289. /*
  290. * A pool of size .poolwords is stirred with a primitive polynomial
  291. * of degree .poolwords over GF(2). The taps for various sizes are
  292. * defined below. They are chosen to be evenly spaced (minimum RMS
  293. * distance from evenly spaced; the numbers in the comments are a
  294. * scaled squared error sum) except for the last tap, which is 1 to
  295. * get the twisting happening as fast as possible.
  296. */
  297. static struct poolinfo {
  298. int poolwords;
  299. int tap1, tap2, tap3, tap4, tap5;
  300. } poolinfo_table[] = {
  301. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  302. { 128, 103, 76, 51, 25, 1 },
  303. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  304. { 32, 26, 20, 14, 7, 1 },
  305. #if 0
  306. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  307. { 2048, 1638, 1231, 819, 411, 1 },
  308. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  309. { 1024, 817, 615, 412, 204, 1 },
  310. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  311. { 1024, 819, 616, 410, 207, 2 },
  312. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  313. { 512, 411, 308, 208, 104, 1 },
  314. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  315. { 512, 409, 307, 206, 102, 2 },
  316. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  317. { 512, 409, 309, 205, 103, 2 },
  318. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  319. { 256, 205, 155, 101, 52, 1 },
  320. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  321. { 128, 103, 78, 51, 27, 2 },
  322. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  323. { 64, 52, 39, 26, 14, 1 },
  324. #endif
  325. };
  326. #define POOLBITS poolwords*32
  327. #define POOLBYTES poolwords*4
  328. /*
  329. * For the purposes of better mixing, we use the CRC-32 polynomial as
  330. * well to make a twisted Generalized Feedback Shift Reigster
  331. *
  332. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  333. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  334. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  335. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  336. *
  337. * Thanks to Colin Plumb for suggesting this.
  338. *
  339. * We have not analyzed the resultant polynomial to prove it primitive;
  340. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  341. * of a random large-degree polynomial over GF(2) are more than large enough
  342. * that periodicity is not a concern.
  343. *
  344. * The input hash is much less sensitive than the output hash. All
  345. * that we want of it is that it be a good non-cryptographic hash;
  346. * i.e. it not produce collisions when fed "random" data of the sort
  347. * we expect to see. As long as the pool state differs for different
  348. * inputs, we have preserved the input entropy and done a good job.
  349. * The fact that an intelligent attacker can construct inputs that
  350. * will produce controlled alterations to the pool's state is not
  351. * important because we don't consider such inputs to contribute any
  352. * randomness. The only property we need with respect to them is that
  353. * the attacker can't increase his/her knowledge of the pool's state.
  354. * Since all additions are reversible (knowing the final state and the
  355. * input, you can reconstruct the initial state), if an attacker has
  356. * any uncertainty about the initial state, he/she can only shuffle
  357. * that uncertainty about, but never cause any collisions (which would
  358. * decrease the uncertainty).
  359. *
  360. * The chosen system lets the state of the pool be (essentially) the input
  361. * modulo the generator polymnomial. Now, for random primitive polynomials,
  362. * this is a universal class of hash functions, meaning that the chance
  363. * of a collision is limited by the attacker's knowledge of the generator
  364. * polynomail, so if it is chosen at random, an attacker can never force
  365. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  366. * ###--> it is unknown to the processes generating the input entropy. <-###
  367. * Because of this important property, this is a good, collision-resistant
  368. * hash; hash collisions will occur no more often than chance.
  369. */
  370. /*
  371. * Static global variables
  372. */
  373. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  374. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  375. static struct fasync_struct *fasync;
  376. static bool debug;
  377. module_param(debug, bool, 0644);
  378. #define DEBUG_ENT(fmt, arg...) do { \
  379. if (debug) \
  380. printk(KERN_DEBUG "random %04d %04d %04d: " \
  381. fmt,\
  382. input_pool.entropy_count,\
  383. blocking_pool.entropy_count,\
  384. nonblocking_pool.entropy_count,\
  385. ## arg); } while (0)
  386. /**********************************************************************
  387. *
  388. * OS independent entropy store. Here are the functions which handle
  389. * storing entropy in an entropy pool.
  390. *
  391. **********************************************************************/
  392. struct entropy_store;
  393. struct entropy_store {
  394. /* read-only data: */
  395. struct poolinfo *poolinfo;
  396. __u32 *pool;
  397. const char *name;
  398. struct entropy_store *pull;
  399. int limit;
  400. /* read-write data: */
  401. spinlock_t lock;
  402. unsigned add_ptr;
  403. unsigned input_rotate;
  404. int entropy_count;
  405. int entropy_total;
  406. unsigned int initialized:1;
  407. bool last_data_init;
  408. __u8 last_data[EXTRACT_SIZE];
  409. };
  410. static __u32 input_pool_data[INPUT_POOL_WORDS];
  411. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  412. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  413. static struct entropy_store input_pool = {
  414. .poolinfo = &poolinfo_table[0],
  415. .name = "input",
  416. .limit = 1,
  417. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  418. .pool = input_pool_data
  419. };
  420. static struct entropy_store blocking_pool = {
  421. .poolinfo = &poolinfo_table[1],
  422. .name = "blocking",
  423. .limit = 1,
  424. .pull = &input_pool,
  425. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  426. .pool = blocking_pool_data
  427. };
  428. static struct entropy_store nonblocking_pool = {
  429. .poolinfo = &poolinfo_table[1],
  430. .name = "nonblocking",
  431. .pull = &input_pool,
  432. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  433. .pool = nonblocking_pool_data
  434. };
  435. static __u32 const twist_table[8] = {
  436. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  437. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  438. /*
  439. * This function adds bytes into the entropy "pool". It does not
  440. * update the entropy estimate. The caller should call
  441. * credit_entropy_bits if this is appropriate.
  442. *
  443. * The pool is stirred with a primitive polynomial of the appropriate
  444. * degree, and then twisted. We twist by three bits at a time because
  445. * it's cheap to do so and helps slightly in the expected case where
  446. * the entropy is concentrated in the low-order bits.
  447. */
  448. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  449. int nbytes, __u8 out[64])
  450. {
  451. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  452. int input_rotate;
  453. int wordmask = r->poolinfo->poolwords - 1;
  454. const char *bytes = in;
  455. __u32 w;
  456. tap1 = r->poolinfo->tap1;
  457. tap2 = r->poolinfo->tap2;
  458. tap3 = r->poolinfo->tap3;
  459. tap4 = r->poolinfo->tap4;
  460. tap5 = r->poolinfo->tap5;
  461. smp_rmb();
  462. input_rotate = ACCESS_ONCE(r->input_rotate);
  463. i = ACCESS_ONCE(r->add_ptr);
  464. /* mix one byte at a time to simplify size handling and churn faster */
  465. while (nbytes--) {
  466. w = rol32(*bytes++, input_rotate & 31);
  467. i = (i - 1) & wordmask;
  468. /* XOR in the various taps */
  469. w ^= r->pool[i];
  470. w ^= r->pool[(i + tap1) & wordmask];
  471. w ^= r->pool[(i + tap2) & wordmask];
  472. w ^= r->pool[(i + tap3) & wordmask];
  473. w ^= r->pool[(i + tap4) & wordmask];
  474. w ^= r->pool[(i + tap5) & wordmask];
  475. /* Mix the result back in with a twist */
  476. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  477. /*
  478. * Normally, we add 7 bits of rotation to the pool.
  479. * At the beginning of the pool, add an extra 7 bits
  480. * rotation, so that successive passes spread the
  481. * input bits across the pool evenly.
  482. */
  483. input_rotate += i ? 7 : 14;
  484. }
  485. ACCESS_ONCE(r->input_rotate) = input_rotate;
  486. ACCESS_ONCE(r->add_ptr) = i;
  487. smp_wmb();
  488. if (out)
  489. for (j = 0; j < 16; j++)
  490. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  491. }
  492. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  493. int nbytes, __u8 out[64])
  494. {
  495. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  496. _mix_pool_bytes(r, in, nbytes, out);
  497. }
  498. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  499. int nbytes, __u8 out[64])
  500. {
  501. unsigned long flags;
  502. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  503. spin_lock_irqsave(&r->lock, flags);
  504. _mix_pool_bytes(r, in, nbytes, out);
  505. spin_unlock_irqrestore(&r->lock, flags);
  506. }
  507. struct fast_pool {
  508. __u32 pool[4];
  509. unsigned long last;
  510. unsigned short count;
  511. unsigned char rotate;
  512. unsigned char last_timer_intr;
  513. };
  514. /*
  515. * This is a fast mixing routine used by the interrupt randomness
  516. * collector. It's hardcoded for an 128 bit pool and assumes that any
  517. * locks that might be needed are taken by the caller.
  518. */
  519. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  520. {
  521. const char *bytes = in;
  522. __u32 w;
  523. unsigned i = f->count;
  524. unsigned input_rotate = f->rotate;
  525. while (nbytes--) {
  526. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  527. f->pool[(i + 1) & 3];
  528. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  529. input_rotate += (i++ & 3) ? 7 : 14;
  530. }
  531. f->count = i;
  532. f->rotate = input_rotate;
  533. }
  534. /*
  535. * Credit (or debit) the entropy store with n bits of entropy
  536. */
  537. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  538. {
  539. int entropy_count, orig;
  540. if (!nbits)
  541. return;
  542. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  543. retry:
  544. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  545. entropy_count += nbits;
  546. if (entropy_count < 0) {
  547. DEBUG_ENT("negative entropy/overflow\n");
  548. entropy_count = 0;
  549. } else if (entropy_count > r->poolinfo->POOLBITS)
  550. entropy_count = r->poolinfo->POOLBITS;
  551. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  552. goto retry;
  553. if (!r->initialized && nbits > 0) {
  554. r->entropy_total += nbits;
  555. if (r->entropy_total > 128)
  556. r->initialized = 1;
  557. }
  558. trace_credit_entropy_bits(r->name, nbits, entropy_count,
  559. r->entropy_total, _RET_IP_);
  560. /* should we wake readers? */
  561. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  562. wake_up_interruptible(&random_read_wait);
  563. kill_fasync(&fasync, SIGIO, POLL_IN);
  564. }
  565. }
  566. /*********************************************************************
  567. *
  568. * Entropy input management
  569. *
  570. *********************************************************************/
  571. /* There is one of these per entropy source */
  572. struct timer_rand_state {
  573. cycles_t last_time;
  574. long last_delta, last_delta2;
  575. unsigned dont_count_entropy:1;
  576. };
  577. /*
  578. * Add device- or boot-specific data to the input and nonblocking
  579. * pools to help initialize them to unique values.
  580. *
  581. * None of this adds any entropy, it is meant to avoid the
  582. * problem of the nonblocking pool having similar initial state
  583. * across largely identical devices.
  584. */
  585. void add_device_randomness(const void *buf, unsigned int size)
  586. {
  587. unsigned long time = get_cycles() ^ jiffies;
  588. mix_pool_bytes(&input_pool, buf, size, NULL);
  589. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  590. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  591. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  592. }
  593. EXPORT_SYMBOL(add_device_randomness);
  594. static struct timer_rand_state input_timer_state;
  595. /*
  596. * This function adds entropy to the entropy "pool" by using timing
  597. * delays. It uses the timer_rand_state structure to make an estimate
  598. * of how many bits of entropy this call has added to the pool.
  599. *
  600. * The number "num" is also added to the pool - it should somehow describe
  601. * the type of event which just happened. This is currently 0-255 for
  602. * keyboard scan codes, and 256 upwards for interrupts.
  603. *
  604. */
  605. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  606. {
  607. struct {
  608. long jiffies;
  609. unsigned cycles;
  610. unsigned num;
  611. } sample;
  612. long delta, delta2, delta3;
  613. preempt_disable();
  614. /* if over the trickle threshold, use only 1 in 4096 samples */
  615. if (input_pool.entropy_count > trickle_thresh &&
  616. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  617. goto out;
  618. sample.jiffies = jiffies;
  619. sample.cycles = get_cycles();
  620. sample.num = num;
  621. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  622. /*
  623. * Calculate number of bits of randomness we probably added.
  624. * We take into account the first, second and third-order deltas
  625. * in order to make our estimate.
  626. */
  627. if (!state->dont_count_entropy) {
  628. delta = sample.jiffies - state->last_time;
  629. state->last_time = sample.jiffies;
  630. delta2 = delta - state->last_delta;
  631. state->last_delta = delta;
  632. delta3 = delta2 - state->last_delta2;
  633. state->last_delta2 = delta2;
  634. if (delta < 0)
  635. delta = -delta;
  636. if (delta2 < 0)
  637. delta2 = -delta2;
  638. if (delta3 < 0)
  639. delta3 = -delta3;
  640. if (delta > delta2)
  641. delta = delta2;
  642. if (delta > delta3)
  643. delta = delta3;
  644. /*
  645. * delta is now minimum absolute delta.
  646. * Round down by 1 bit on general principles,
  647. * and limit entropy entimate to 12 bits.
  648. */
  649. credit_entropy_bits(&input_pool,
  650. min_t(int, fls(delta>>1), 11));
  651. }
  652. out:
  653. preempt_enable();
  654. }
  655. void add_input_randomness(unsigned int type, unsigned int code,
  656. unsigned int value)
  657. {
  658. static unsigned char last_value;
  659. /* ignore autorepeat and the like */
  660. if (value == last_value)
  661. return;
  662. DEBUG_ENT("input event\n");
  663. last_value = value;
  664. add_timer_randomness(&input_timer_state,
  665. (type << 4) ^ code ^ (code >> 4) ^ value);
  666. }
  667. EXPORT_SYMBOL_GPL(add_input_randomness);
  668. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  669. void add_interrupt_randomness(int irq, int irq_flags)
  670. {
  671. struct entropy_store *r;
  672. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  673. struct pt_regs *regs = get_irq_regs();
  674. unsigned long now = jiffies;
  675. __u32 input[4], cycles = get_cycles();
  676. input[0] = cycles ^ jiffies;
  677. input[1] = irq;
  678. if (regs) {
  679. __u64 ip = instruction_pointer(regs);
  680. input[2] = ip;
  681. input[3] = ip >> 32;
  682. }
  683. fast_mix(fast_pool, input, sizeof(input));
  684. if ((fast_pool->count & 1023) &&
  685. !time_after(now, fast_pool->last + HZ))
  686. return;
  687. fast_pool->last = now;
  688. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  689. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  690. /*
  691. * If we don't have a valid cycle counter, and we see
  692. * back-to-back timer interrupts, then skip giving credit for
  693. * any entropy.
  694. */
  695. if (cycles == 0) {
  696. if (irq_flags & __IRQF_TIMER) {
  697. if (fast_pool->last_timer_intr)
  698. return;
  699. fast_pool->last_timer_intr = 1;
  700. } else
  701. fast_pool->last_timer_intr = 0;
  702. }
  703. credit_entropy_bits(r, 1);
  704. }
  705. #ifdef CONFIG_BLOCK
  706. void add_disk_randomness(struct gendisk *disk)
  707. {
  708. if (!disk || !disk->random)
  709. return;
  710. /* first major is 1, so we get >= 0x200 here */
  711. DEBUG_ENT("disk event %d:%d\n",
  712. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  713. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  714. }
  715. #endif
  716. /*********************************************************************
  717. *
  718. * Entropy extraction routines
  719. *
  720. *********************************************************************/
  721. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  722. size_t nbytes, int min, int rsvd);
  723. /*
  724. * This utility inline function is responsible for transferring entropy
  725. * from the primary pool to the secondary extraction pool. We make
  726. * sure we pull enough for a 'catastrophic reseed'.
  727. */
  728. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  729. {
  730. __u32 tmp[OUTPUT_POOL_WORDS];
  731. if (r->pull && r->entropy_count < nbytes * 8 &&
  732. r->entropy_count < r->poolinfo->POOLBITS) {
  733. /* If we're limited, always leave two wakeup worth's BITS */
  734. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  735. int bytes = nbytes;
  736. /* pull at least as many as BYTES as wakeup BITS */
  737. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  738. /* but never more than the buffer size */
  739. bytes = min_t(int, bytes, sizeof(tmp));
  740. DEBUG_ENT("going to reseed %s with %d bits "
  741. "(%zu of %d requested)\n",
  742. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  743. bytes = extract_entropy(r->pull, tmp, bytes,
  744. random_read_wakeup_thresh / 8, rsvd);
  745. mix_pool_bytes(r, tmp, bytes, NULL);
  746. credit_entropy_bits(r, bytes*8);
  747. }
  748. }
  749. /*
  750. * These functions extracts randomness from the "entropy pool", and
  751. * returns it in a buffer.
  752. *
  753. * The min parameter specifies the minimum amount we can pull before
  754. * failing to avoid races that defeat catastrophic reseeding while the
  755. * reserved parameter indicates how much entropy we must leave in the
  756. * pool after each pull to avoid starving other readers.
  757. *
  758. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  759. */
  760. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  761. int reserved)
  762. {
  763. unsigned long flags;
  764. int wakeup_write = 0;
  765. /* Hold lock while accounting */
  766. spin_lock_irqsave(&r->lock, flags);
  767. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  768. DEBUG_ENT("trying to extract %zu bits from %s\n",
  769. nbytes * 8, r->name);
  770. /* Can we pull enough? */
  771. if (r->entropy_count / 8 < min + reserved) {
  772. nbytes = 0;
  773. } else {
  774. int entropy_count, orig;
  775. retry:
  776. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  777. /* If limited, never pull more than available */
  778. if (r->limit && nbytes + reserved >= entropy_count / 8)
  779. nbytes = entropy_count/8 - reserved;
  780. if (entropy_count / 8 >= nbytes + reserved) {
  781. entropy_count -= nbytes*8;
  782. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  783. goto retry;
  784. } else {
  785. entropy_count = reserved;
  786. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  787. goto retry;
  788. }
  789. if (entropy_count < random_write_wakeup_thresh)
  790. wakeup_write = 1;
  791. }
  792. DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
  793. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  794. spin_unlock_irqrestore(&r->lock, flags);
  795. if (wakeup_write) {
  796. wake_up_interruptible(&random_write_wait);
  797. kill_fasync(&fasync, SIGIO, POLL_OUT);
  798. }
  799. return nbytes;
  800. }
  801. static void extract_buf(struct entropy_store *r, __u8 *out)
  802. {
  803. int i;
  804. union {
  805. __u32 w[5];
  806. unsigned long l[LONGS(EXTRACT_SIZE)];
  807. } hash;
  808. __u32 workspace[SHA_WORKSPACE_WORDS];
  809. __u8 extract[64];
  810. unsigned long flags;
  811. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  812. sha_init(hash.w);
  813. spin_lock_irqsave(&r->lock, flags);
  814. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  815. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  816. /*
  817. * We mix the hash back into the pool to prevent backtracking
  818. * attacks (where the attacker knows the state of the pool
  819. * plus the current outputs, and attempts to find previous
  820. * ouputs), unless the hash function can be inverted. By
  821. * mixing at least a SHA1 worth of hash data back, we make
  822. * brute-forcing the feedback as hard as brute-forcing the
  823. * hash.
  824. */
  825. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  826. spin_unlock_irqrestore(&r->lock, flags);
  827. /*
  828. * To avoid duplicates, we atomically extract a portion of the
  829. * pool while mixing, and hash one final time.
  830. */
  831. sha_transform(hash.w, extract, workspace);
  832. memset(extract, 0, sizeof(extract));
  833. memset(workspace, 0, sizeof(workspace));
  834. /*
  835. * In case the hash function has some recognizable output
  836. * pattern, we fold it in half. Thus, we always feed back
  837. * twice as much data as we output.
  838. */
  839. hash.w[0] ^= hash.w[3];
  840. hash.w[1] ^= hash.w[4];
  841. hash.w[2] ^= rol32(hash.w[2], 16);
  842. /*
  843. * If we have a architectural hardware random number
  844. * generator, mix that in, too.
  845. */
  846. for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
  847. unsigned long v;
  848. if (!arch_get_random_long(&v))
  849. break;
  850. hash.l[i] ^= v;
  851. }
  852. memcpy(out, &hash, EXTRACT_SIZE);
  853. memset(&hash, 0, sizeof(hash));
  854. }
  855. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  856. size_t nbytes, int min, int reserved)
  857. {
  858. ssize_t ret = 0, i;
  859. __u8 tmp[EXTRACT_SIZE];
  860. unsigned long flags;
  861. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  862. if (fips_enabled) {
  863. spin_lock_irqsave(&r->lock, flags);
  864. if (!r->last_data_init) {
  865. r->last_data_init = true;
  866. spin_unlock_irqrestore(&r->lock, flags);
  867. trace_extract_entropy(r->name, EXTRACT_SIZE,
  868. r->entropy_count, _RET_IP_);
  869. xfer_secondary_pool(r, EXTRACT_SIZE);
  870. extract_buf(r, tmp);
  871. spin_lock_irqsave(&r->lock, flags);
  872. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  873. }
  874. spin_unlock_irqrestore(&r->lock, flags);
  875. }
  876. trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
  877. xfer_secondary_pool(r, nbytes);
  878. nbytes = account(r, nbytes, min, reserved);
  879. while (nbytes) {
  880. extract_buf(r, tmp);
  881. if (fips_enabled) {
  882. spin_lock_irqsave(&r->lock, flags);
  883. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  884. panic("Hardware RNG duplicated output!\n");
  885. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  886. spin_unlock_irqrestore(&r->lock, flags);
  887. }
  888. i = min_t(int, nbytes, EXTRACT_SIZE);
  889. memcpy(buf, tmp, i);
  890. nbytes -= i;
  891. buf += i;
  892. ret += i;
  893. }
  894. /* Wipe data just returned from memory */
  895. memset(tmp, 0, sizeof(tmp));
  896. return ret;
  897. }
  898. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  899. size_t nbytes)
  900. {
  901. ssize_t ret = 0, i;
  902. __u8 tmp[EXTRACT_SIZE];
  903. trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
  904. xfer_secondary_pool(r, nbytes);
  905. nbytes = account(r, nbytes, 0, 0);
  906. while (nbytes) {
  907. if (need_resched()) {
  908. if (signal_pending(current)) {
  909. if (ret == 0)
  910. ret = -ERESTARTSYS;
  911. break;
  912. }
  913. schedule();
  914. }
  915. extract_buf(r, tmp);
  916. i = min_t(int, nbytes, EXTRACT_SIZE);
  917. if (copy_to_user(buf, tmp, i)) {
  918. ret = -EFAULT;
  919. break;
  920. }
  921. nbytes -= i;
  922. buf += i;
  923. ret += i;
  924. }
  925. /* Wipe data just returned from memory */
  926. memset(tmp, 0, sizeof(tmp));
  927. return ret;
  928. }
  929. /*
  930. * This function is the exported kernel interface. It returns some
  931. * number of good random numbers, suitable for key generation, seeding
  932. * TCP sequence numbers, etc. It does not use the hw random number
  933. * generator, if available; use get_random_bytes_arch() for that.
  934. */
  935. void get_random_bytes(void *buf, int nbytes)
  936. {
  937. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  938. }
  939. EXPORT_SYMBOL(get_random_bytes);
  940. /*
  941. * This function will use the architecture-specific hardware random
  942. * number generator if it is available. The arch-specific hw RNG will
  943. * almost certainly be faster than what we can do in software, but it
  944. * is impossible to verify that it is implemented securely (as
  945. * opposed, to, say, the AES encryption of a sequence number using a
  946. * key known by the NSA). So it's useful if we need the speed, but
  947. * only if we're willing to trust the hardware manufacturer not to
  948. * have put in a back door.
  949. */
  950. void get_random_bytes_arch(void *buf, int nbytes)
  951. {
  952. char *p = buf;
  953. trace_get_random_bytes(nbytes, _RET_IP_);
  954. while (nbytes) {
  955. unsigned long v;
  956. int chunk = min(nbytes, (int)sizeof(unsigned long));
  957. if (!arch_get_random_long(&v))
  958. break;
  959. memcpy(p, &v, chunk);
  960. p += chunk;
  961. nbytes -= chunk;
  962. }
  963. if (nbytes)
  964. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  965. }
  966. EXPORT_SYMBOL(get_random_bytes_arch);
  967. /*
  968. * init_std_data - initialize pool with system data
  969. *
  970. * @r: pool to initialize
  971. *
  972. * This function clears the pool's entropy count and mixes some system
  973. * data into the pool to prepare it for use. The pool is not cleared
  974. * as that can only decrease the entropy in the pool.
  975. */
  976. static void init_std_data(struct entropy_store *r)
  977. {
  978. int i;
  979. ktime_t now = ktime_get_real();
  980. unsigned long rv;
  981. r->entropy_count = 0;
  982. r->entropy_total = 0;
  983. r->last_data_init = false;
  984. mix_pool_bytes(r, &now, sizeof(now), NULL);
  985. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
  986. if (!arch_get_random_long(&rv))
  987. break;
  988. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  989. }
  990. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  991. }
  992. /*
  993. * Note that setup_arch() may call add_device_randomness()
  994. * long before we get here. This allows seeding of the pools
  995. * with some platform dependent data very early in the boot
  996. * process. But it limits our options here. We must use
  997. * statically allocated structures that already have all
  998. * initializations complete at compile time. We should also
  999. * take care not to overwrite the precious per platform data
  1000. * we were given.
  1001. */
  1002. static int rand_initialize(void)
  1003. {
  1004. init_std_data(&input_pool);
  1005. init_std_data(&blocking_pool);
  1006. init_std_data(&nonblocking_pool);
  1007. return 0;
  1008. }
  1009. module_init(rand_initialize);
  1010. #ifdef CONFIG_BLOCK
  1011. void rand_initialize_disk(struct gendisk *disk)
  1012. {
  1013. struct timer_rand_state *state;
  1014. /*
  1015. * If kzalloc returns null, we just won't use that entropy
  1016. * source.
  1017. */
  1018. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1019. if (state)
  1020. disk->random = state;
  1021. }
  1022. #endif
  1023. static ssize_t
  1024. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1025. {
  1026. ssize_t n, retval = 0, count = 0;
  1027. if (nbytes == 0)
  1028. return 0;
  1029. while (nbytes > 0) {
  1030. n = nbytes;
  1031. if (n > SEC_XFER_SIZE)
  1032. n = SEC_XFER_SIZE;
  1033. DEBUG_ENT("reading %zu bits\n", n*8);
  1034. n = extract_entropy_user(&blocking_pool, buf, n);
  1035. if (n < 0) {
  1036. retval = n;
  1037. break;
  1038. }
  1039. DEBUG_ENT("read got %zd bits (%zd still needed)\n",
  1040. n*8, (nbytes-n)*8);
  1041. if (n == 0) {
  1042. if (file->f_flags & O_NONBLOCK) {
  1043. retval = -EAGAIN;
  1044. break;
  1045. }
  1046. DEBUG_ENT("sleeping?\n");
  1047. wait_event_interruptible(random_read_wait,
  1048. input_pool.entropy_count >=
  1049. random_read_wakeup_thresh);
  1050. DEBUG_ENT("awake\n");
  1051. if (signal_pending(current)) {
  1052. retval = -ERESTARTSYS;
  1053. break;
  1054. }
  1055. continue;
  1056. }
  1057. count += n;
  1058. buf += n;
  1059. nbytes -= n;
  1060. break; /* This break makes the device work */
  1061. /* like a named pipe */
  1062. }
  1063. return (count ? count : retval);
  1064. }
  1065. static ssize_t
  1066. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1067. {
  1068. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1069. }
  1070. static unsigned int
  1071. random_poll(struct file *file, poll_table * wait)
  1072. {
  1073. unsigned int mask;
  1074. poll_wait(file, &random_read_wait, wait);
  1075. poll_wait(file, &random_write_wait, wait);
  1076. mask = 0;
  1077. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  1078. mask |= POLLIN | POLLRDNORM;
  1079. if (input_pool.entropy_count < random_write_wakeup_thresh)
  1080. mask |= POLLOUT | POLLWRNORM;
  1081. return mask;
  1082. }
  1083. static int
  1084. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1085. {
  1086. size_t bytes;
  1087. __u32 buf[16];
  1088. const char __user *p = buffer;
  1089. while (count > 0) {
  1090. bytes = min(count, sizeof(buf));
  1091. if (copy_from_user(&buf, p, bytes))
  1092. return -EFAULT;
  1093. count -= bytes;
  1094. p += bytes;
  1095. mix_pool_bytes(r, buf, bytes, NULL);
  1096. cond_resched();
  1097. }
  1098. return 0;
  1099. }
  1100. static ssize_t random_write(struct file *file, const char __user *buffer,
  1101. size_t count, loff_t *ppos)
  1102. {
  1103. size_t ret;
  1104. ret = write_pool(&blocking_pool, buffer, count);
  1105. if (ret)
  1106. return ret;
  1107. ret = write_pool(&nonblocking_pool, buffer, count);
  1108. if (ret)
  1109. return ret;
  1110. return (ssize_t)count;
  1111. }
  1112. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1113. {
  1114. int size, ent_count;
  1115. int __user *p = (int __user *)arg;
  1116. int retval;
  1117. switch (cmd) {
  1118. case RNDGETENTCNT:
  1119. /* inherently racy, no point locking */
  1120. if (put_user(input_pool.entropy_count, p))
  1121. return -EFAULT;
  1122. return 0;
  1123. case RNDADDTOENTCNT:
  1124. if (!capable(CAP_SYS_ADMIN))
  1125. return -EPERM;
  1126. if (get_user(ent_count, p))
  1127. return -EFAULT;
  1128. credit_entropy_bits(&input_pool, ent_count);
  1129. return 0;
  1130. case RNDADDENTROPY:
  1131. if (!capable(CAP_SYS_ADMIN))
  1132. return -EPERM;
  1133. if (get_user(ent_count, p++))
  1134. return -EFAULT;
  1135. if (ent_count < 0)
  1136. return -EINVAL;
  1137. if (get_user(size, p++))
  1138. return -EFAULT;
  1139. retval = write_pool(&input_pool, (const char __user *)p,
  1140. size);
  1141. if (retval < 0)
  1142. return retval;
  1143. credit_entropy_bits(&input_pool, ent_count);
  1144. return 0;
  1145. case RNDZAPENTCNT:
  1146. case RNDCLEARPOOL:
  1147. /* Clear the entropy pool counters. */
  1148. if (!capable(CAP_SYS_ADMIN))
  1149. return -EPERM;
  1150. rand_initialize();
  1151. return 0;
  1152. default:
  1153. return -EINVAL;
  1154. }
  1155. }
  1156. static int random_fasync(int fd, struct file *filp, int on)
  1157. {
  1158. return fasync_helper(fd, filp, on, &fasync);
  1159. }
  1160. const struct file_operations random_fops = {
  1161. .read = random_read,
  1162. .write = random_write,
  1163. .poll = random_poll,
  1164. .unlocked_ioctl = random_ioctl,
  1165. .fasync = random_fasync,
  1166. .llseek = noop_llseek,
  1167. };
  1168. const struct file_operations urandom_fops = {
  1169. .read = urandom_read,
  1170. .write = random_write,
  1171. .unlocked_ioctl = random_ioctl,
  1172. .fasync = random_fasync,
  1173. .llseek = noop_llseek,
  1174. };
  1175. /***************************************************************
  1176. * Random UUID interface
  1177. *
  1178. * Used here for a Boot ID, but can be useful for other kernel
  1179. * drivers.
  1180. ***************************************************************/
  1181. /*
  1182. * Generate random UUID
  1183. */
  1184. void generate_random_uuid(unsigned char uuid_out[16])
  1185. {
  1186. get_random_bytes(uuid_out, 16);
  1187. /* Set UUID version to 4 --- truly random generation */
  1188. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1189. /* Set the UUID variant to DCE */
  1190. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1191. }
  1192. EXPORT_SYMBOL(generate_random_uuid);
  1193. /********************************************************************
  1194. *
  1195. * Sysctl interface
  1196. *
  1197. ********************************************************************/
  1198. #ifdef CONFIG_SYSCTL
  1199. #include <linux/sysctl.h>
  1200. static int min_read_thresh = 8, min_write_thresh;
  1201. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1202. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1203. static char sysctl_bootid[16];
  1204. /*
  1205. * These functions is used to return both the bootid UUID, and random
  1206. * UUID. The difference is in whether table->data is NULL; if it is,
  1207. * then a new UUID is generated and returned to the user.
  1208. *
  1209. * If the user accesses this via the proc interface, it will be returned
  1210. * as an ASCII string in the standard UUID format. If accesses via the
  1211. * sysctl system call, it is returned as 16 bytes of binary data.
  1212. */
  1213. static int proc_do_uuid(struct ctl_table *table, int write,
  1214. void __user *buffer, size_t *lenp, loff_t *ppos)
  1215. {
  1216. struct ctl_table fake_table;
  1217. unsigned char buf[64], tmp_uuid[16], *uuid;
  1218. uuid = table->data;
  1219. if (!uuid) {
  1220. uuid = tmp_uuid;
  1221. generate_random_uuid(uuid);
  1222. } else {
  1223. static DEFINE_SPINLOCK(bootid_spinlock);
  1224. spin_lock(&bootid_spinlock);
  1225. if (!uuid[8])
  1226. generate_random_uuid(uuid);
  1227. spin_unlock(&bootid_spinlock);
  1228. }
  1229. sprintf(buf, "%pU", uuid);
  1230. fake_table.data = buf;
  1231. fake_table.maxlen = sizeof(buf);
  1232. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1233. }
  1234. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1235. extern struct ctl_table random_table[];
  1236. struct ctl_table random_table[] = {
  1237. {
  1238. .procname = "poolsize",
  1239. .data = &sysctl_poolsize,
  1240. .maxlen = sizeof(int),
  1241. .mode = 0444,
  1242. .proc_handler = proc_dointvec,
  1243. },
  1244. {
  1245. .procname = "entropy_avail",
  1246. .maxlen = sizeof(int),
  1247. .mode = 0444,
  1248. .proc_handler = proc_dointvec,
  1249. .data = &input_pool.entropy_count,
  1250. },
  1251. {
  1252. .procname = "read_wakeup_threshold",
  1253. .data = &random_read_wakeup_thresh,
  1254. .maxlen = sizeof(int),
  1255. .mode = 0644,
  1256. .proc_handler = proc_dointvec_minmax,
  1257. .extra1 = &min_read_thresh,
  1258. .extra2 = &max_read_thresh,
  1259. },
  1260. {
  1261. .procname = "write_wakeup_threshold",
  1262. .data = &random_write_wakeup_thresh,
  1263. .maxlen = sizeof(int),
  1264. .mode = 0644,
  1265. .proc_handler = proc_dointvec_minmax,
  1266. .extra1 = &min_write_thresh,
  1267. .extra2 = &max_write_thresh,
  1268. },
  1269. {
  1270. .procname = "boot_id",
  1271. .data = &sysctl_bootid,
  1272. .maxlen = 16,
  1273. .mode = 0444,
  1274. .proc_handler = proc_do_uuid,
  1275. },
  1276. {
  1277. .procname = "uuid",
  1278. .maxlen = 16,
  1279. .mode = 0444,
  1280. .proc_handler = proc_do_uuid,
  1281. },
  1282. { }
  1283. };
  1284. #endif /* CONFIG_SYSCTL */
  1285. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1286. static int __init random_int_secret_init(void)
  1287. {
  1288. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1289. return 0;
  1290. }
  1291. late_initcall(random_int_secret_init);
  1292. /*
  1293. * Get a random word for internal kernel use only. Similar to urandom but
  1294. * with the goal of minimal entropy pool depletion. As a result, the random
  1295. * value is not cryptographically secure but for several uses the cost of
  1296. * depleting entropy is too high
  1297. */
  1298. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1299. unsigned int get_random_int(void)
  1300. {
  1301. __u32 *hash;
  1302. unsigned int ret;
  1303. if (arch_get_random_int(&ret))
  1304. return ret;
  1305. hash = get_cpu_var(get_random_int_hash);
  1306. hash[0] += current->pid + jiffies + get_cycles();
  1307. md5_transform(hash, random_int_secret);
  1308. ret = hash[0];
  1309. put_cpu_var(get_random_int_hash);
  1310. return ret;
  1311. }
  1312. EXPORT_SYMBOL(get_random_int);
  1313. /*
  1314. * randomize_range() returns a start address such that
  1315. *
  1316. * [...... <range> .....]
  1317. * start end
  1318. *
  1319. * a <range> with size "len" starting at the return value is inside in the
  1320. * area defined by [start, end], but is otherwise randomized.
  1321. */
  1322. unsigned long
  1323. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1324. {
  1325. unsigned long range = end - len - start;
  1326. if (end <= start + len)
  1327. return 0;
  1328. return PAGE_ALIGN(get_random_int() % range + start);
  1329. }