nicstar.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837
  1. /*
  2. * nicstar.c
  3. *
  4. * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
  5. *
  6. * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
  7. * It was taken from the frle-0.22 device driver.
  8. * As the file doesn't have a copyright notice, in the file
  9. * nicstarmac.copyright I put the copyright notice from the
  10. * frle-0.22 device driver.
  11. * Some code is based on the nicstar driver by M. Welsh.
  12. *
  13. * Author: Rui Prior (rprior@inescn.pt)
  14. * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
  15. *
  16. *
  17. * (C) INESC 1999
  18. */
  19. /*
  20. * IMPORTANT INFORMATION
  21. *
  22. * There are currently three types of spinlocks:
  23. *
  24. * 1 - Per card interrupt spinlock (to protect structures and such)
  25. * 2 - Per SCQ scq spinlock
  26. * 3 - Per card resource spinlock (to access registers, etc.)
  27. *
  28. * These must NEVER be grabbed in reverse order.
  29. *
  30. */
  31. /* Header files */
  32. #include <linux/module.h>
  33. #include <linux/kernel.h>
  34. #include <linux/skbuff.h>
  35. #include <linux/atmdev.h>
  36. #include <linux/atm.h>
  37. #include <linux/pci.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/types.h>
  40. #include <linux/string.h>
  41. #include <linux/delay.h>
  42. #include <linux/init.h>
  43. #include <linux/sched.h>
  44. #include <linux/timer.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/bitops.h>
  47. #include <linux/slab.h>
  48. #include <linux/idr.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <linux/atomic.h>
  52. #include "nicstar.h"
  53. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  54. #include "suni.h"
  55. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  56. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  57. #include "idt77105.h"
  58. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  59. /* Additional code */
  60. #include "nicstarmac.c"
  61. /* Configurable parameters */
  62. #undef PHY_LOOPBACK
  63. #undef TX_DEBUG
  64. #undef RX_DEBUG
  65. #undef GENERAL_DEBUG
  66. #undef EXTRA_DEBUG
  67. #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know
  68. you're going to use only raw ATM */
  69. /* Do not touch these */
  70. #ifdef TX_DEBUG
  71. #define TXPRINTK(args...) printk(args)
  72. #else
  73. #define TXPRINTK(args...)
  74. #endif /* TX_DEBUG */
  75. #ifdef RX_DEBUG
  76. #define RXPRINTK(args...) printk(args)
  77. #else
  78. #define RXPRINTK(args...)
  79. #endif /* RX_DEBUG */
  80. #ifdef GENERAL_DEBUG
  81. #define PRINTK(args...) printk(args)
  82. #else
  83. #define PRINTK(args...)
  84. #endif /* GENERAL_DEBUG */
  85. #ifdef EXTRA_DEBUG
  86. #define XPRINTK(args...) printk(args)
  87. #else
  88. #define XPRINTK(args...)
  89. #endif /* EXTRA_DEBUG */
  90. /* Macros */
  91. #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
  92. #define NS_DELAY mdelay(1)
  93. #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
  94. #ifndef ATM_SKB
  95. #define ATM_SKB(s) (&(s)->atm)
  96. #endif
  97. #define scq_virt_to_bus(scq, p) \
  98. (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
  99. /* Function declarations */
  100. static u32 ns_read_sram(ns_dev * card, u32 sram_address);
  101. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  102. int count);
  103. static int ns_init_card(int i, struct pci_dev *pcidev);
  104. static void ns_init_card_error(ns_dev * card, int error);
  105. static scq_info *get_scq(ns_dev *card, int size, u32 scd);
  106. static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
  107. static void push_rxbufs(ns_dev *, struct sk_buff *);
  108. static irqreturn_t ns_irq_handler(int irq, void *dev_id);
  109. static int ns_open(struct atm_vcc *vcc);
  110. static void ns_close(struct atm_vcc *vcc);
  111. static void fill_tst(ns_dev * card, int n, vc_map * vc);
  112. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
  113. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  114. struct sk_buff *skb);
  115. static void process_tsq(ns_dev * card);
  116. static void drain_scq(ns_dev * card, scq_info * scq, int pos);
  117. static void process_rsq(ns_dev * card);
  118. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
  119. #ifdef NS_USE_DESTRUCTORS
  120. static void ns_sb_destructor(struct sk_buff *sb);
  121. static void ns_lb_destructor(struct sk_buff *lb);
  122. static void ns_hb_destructor(struct sk_buff *hb);
  123. #endif /* NS_USE_DESTRUCTORS */
  124. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
  125. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
  126. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
  127. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
  128. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
  129. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
  130. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
  131. #ifdef EXTRA_DEBUG
  132. static void which_list(ns_dev * card, struct sk_buff *skb);
  133. #endif
  134. static void ns_poll(unsigned long arg);
  135. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  136. unsigned long addr);
  137. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
  138. /* Global variables */
  139. static struct ns_dev *cards[NS_MAX_CARDS];
  140. static unsigned num_cards;
  141. static struct atmdev_ops atm_ops = {
  142. .open = ns_open,
  143. .close = ns_close,
  144. .ioctl = ns_ioctl,
  145. .send = ns_send,
  146. .phy_put = ns_phy_put,
  147. .phy_get = ns_phy_get,
  148. .proc_read = ns_proc_read,
  149. .owner = THIS_MODULE,
  150. };
  151. static struct timer_list ns_timer;
  152. static char *mac[NS_MAX_CARDS];
  153. module_param_array(mac, charp, NULL, 0);
  154. MODULE_LICENSE("GPL");
  155. /* Functions */
  156. static int nicstar_init_one(struct pci_dev *pcidev,
  157. const struct pci_device_id *ent)
  158. {
  159. static int index = -1;
  160. unsigned int error;
  161. index++;
  162. cards[index] = NULL;
  163. error = ns_init_card(index, pcidev);
  164. if (error) {
  165. cards[index--] = NULL; /* don't increment index */
  166. goto err_out;
  167. }
  168. return 0;
  169. err_out:
  170. return -ENODEV;
  171. }
  172. static void nicstar_remove_one(struct pci_dev *pcidev)
  173. {
  174. int i, j;
  175. ns_dev *card = pci_get_drvdata(pcidev);
  176. struct sk_buff *hb;
  177. struct sk_buff *iovb;
  178. struct sk_buff *lb;
  179. struct sk_buff *sb;
  180. i = card->index;
  181. if (cards[i] == NULL)
  182. return;
  183. if (card->atmdev->phy && card->atmdev->phy->stop)
  184. card->atmdev->phy->stop(card->atmdev);
  185. /* Stop everything */
  186. writel(0x00000000, card->membase + CFG);
  187. /* De-register device */
  188. atm_dev_deregister(card->atmdev);
  189. /* Disable PCI device */
  190. pci_disable_device(pcidev);
  191. /* Free up resources */
  192. j = 0;
  193. PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
  194. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
  195. dev_kfree_skb_any(hb);
  196. j++;
  197. }
  198. PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
  199. j = 0;
  200. PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
  201. card->iovpool.count);
  202. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
  203. dev_kfree_skb_any(iovb);
  204. j++;
  205. }
  206. PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
  207. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  208. dev_kfree_skb_any(lb);
  209. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  210. dev_kfree_skb_any(sb);
  211. free_scq(card, card->scq0, NULL);
  212. for (j = 0; j < NS_FRSCD_NUM; j++) {
  213. if (card->scd2vc[j] != NULL)
  214. free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
  215. }
  216. idr_destroy(&card->idr);
  217. pci_free_consistent(card->pcidev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  218. card->rsq.org, card->rsq.dma);
  219. pci_free_consistent(card->pcidev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  220. card->tsq.org, card->tsq.dma);
  221. free_irq(card->pcidev->irq, card);
  222. iounmap(card->membase);
  223. kfree(card);
  224. }
  225. static struct pci_device_id nicstar_pci_tbl[] = {
  226. { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
  227. {0,} /* terminate list */
  228. };
  229. MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
  230. static struct pci_driver nicstar_driver = {
  231. .name = "nicstar",
  232. .id_table = nicstar_pci_tbl,
  233. .probe = nicstar_init_one,
  234. .remove = nicstar_remove_one,
  235. };
  236. static int __init nicstar_init(void)
  237. {
  238. unsigned error = 0; /* Initialized to remove compile warning */
  239. XPRINTK("nicstar: nicstar_init() called.\n");
  240. error = pci_register_driver(&nicstar_driver);
  241. TXPRINTK("nicstar: TX debug enabled.\n");
  242. RXPRINTK("nicstar: RX debug enabled.\n");
  243. PRINTK("nicstar: General debug enabled.\n");
  244. #ifdef PHY_LOOPBACK
  245. printk("nicstar: using PHY loopback.\n");
  246. #endif /* PHY_LOOPBACK */
  247. XPRINTK("nicstar: nicstar_init() returned.\n");
  248. if (!error) {
  249. init_timer(&ns_timer);
  250. ns_timer.expires = jiffies + NS_POLL_PERIOD;
  251. ns_timer.data = 0UL;
  252. ns_timer.function = ns_poll;
  253. add_timer(&ns_timer);
  254. }
  255. return error;
  256. }
  257. static void __exit nicstar_cleanup(void)
  258. {
  259. XPRINTK("nicstar: nicstar_cleanup() called.\n");
  260. del_timer(&ns_timer);
  261. pci_unregister_driver(&nicstar_driver);
  262. XPRINTK("nicstar: nicstar_cleanup() returned.\n");
  263. }
  264. static u32 ns_read_sram(ns_dev * card, u32 sram_address)
  265. {
  266. unsigned long flags;
  267. u32 data;
  268. sram_address <<= 2;
  269. sram_address &= 0x0007FFFC; /* address must be dword aligned */
  270. sram_address |= 0x50000000; /* SRAM read command */
  271. spin_lock_irqsave(&card->res_lock, flags);
  272. while (CMD_BUSY(card)) ;
  273. writel(sram_address, card->membase + CMD);
  274. while (CMD_BUSY(card)) ;
  275. data = readl(card->membase + DR0);
  276. spin_unlock_irqrestore(&card->res_lock, flags);
  277. return data;
  278. }
  279. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  280. int count)
  281. {
  282. unsigned long flags;
  283. int i, c;
  284. count--; /* count range now is 0..3 instead of 1..4 */
  285. c = count;
  286. c <<= 2; /* to use increments of 4 */
  287. spin_lock_irqsave(&card->res_lock, flags);
  288. while (CMD_BUSY(card)) ;
  289. for (i = 0; i <= c; i += 4)
  290. writel(*(value++), card->membase + i);
  291. /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
  292. so card->membase + DR0 == card->membase */
  293. sram_address <<= 2;
  294. sram_address &= 0x0007FFFC;
  295. sram_address |= (0x40000000 | count);
  296. writel(sram_address, card->membase + CMD);
  297. spin_unlock_irqrestore(&card->res_lock, flags);
  298. }
  299. static int ns_init_card(int i, struct pci_dev *pcidev)
  300. {
  301. int j;
  302. struct ns_dev *card = NULL;
  303. unsigned char pci_latency;
  304. unsigned error;
  305. u32 data;
  306. u32 u32d[4];
  307. u32 ns_cfg_rctsize;
  308. int bcount;
  309. unsigned long membase;
  310. error = 0;
  311. if (pci_enable_device(pcidev)) {
  312. printk("nicstar%d: can't enable PCI device\n", i);
  313. error = 2;
  314. ns_init_card_error(card, error);
  315. return error;
  316. }
  317. if ((pci_set_dma_mask(pcidev, DMA_BIT_MASK(32)) != 0) ||
  318. (pci_set_consistent_dma_mask(pcidev, DMA_BIT_MASK(32)) != 0)) {
  319. printk(KERN_WARNING
  320. "nicstar%d: No suitable DMA available.\n", i);
  321. error = 2;
  322. ns_init_card_error(card, error);
  323. return error;
  324. }
  325. if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) {
  326. printk
  327. ("nicstar%d: can't allocate memory for device structure.\n",
  328. i);
  329. error = 2;
  330. ns_init_card_error(card, error);
  331. return error;
  332. }
  333. cards[i] = card;
  334. spin_lock_init(&card->int_lock);
  335. spin_lock_init(&card->res_lock);
  336. pci_set_drvdata(pcidev, card);
  337. card->index = i;
  338. card->atmdev = NULL;
  339. card->pcidev = pcidev;
  340. membase = pci_resource_start(pcidev, 1);
  341. card->membase = ioremap(membase, NS_IOREMAP_SIZE);
  342. if (!card->membase) {
  343. printk("nicstar%d: can't ioremap() membase.\n", i);
  344. error = 3;
  345. ns_init_card_error(card, error);
  346. return error;
  347. }
  348. PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
  349. pci_set_master(pcidev);
  350. if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
  351. printk("nicstar%d: can't read PCI latency timer.\n", i);
  352. error = 6;
  353. ns_init_card_error(card, error);
  354. return error;
  355. }
  356. #ifdef NS_PCI_LATENCY
  357. if (pci_latency < NS_PCI_LATENCY) {
  358. PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
  359. NS_PCI_LATENCY);
  360. for (j = 1; j < 4; j++) {
  361. if (pci_write_config_byte
  362. (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
  363. break;
  364. }
  365. if (j == 4) {
  366. printk
  367. ("nicstar%d: can't set PCI latency timer to %d.\n",
  368. i, NS_PCI_LATENCY);
  369. error = 7;
  370. ns_init_card_error(card, error);
  371. return error;
  372. }
  373. }
  374. #endif /* NS_PCI_LATENCY */
  375. /* Clear timer overflow */
  376. data = readl(card->membase + STAT);
  377. if (data & NS_STAT_TMROF)
  378. writel(NS_STAT_TMROF, card->membase + STAT);
  379. /* Software reset */
  380. writel(NS_CFG_SWRST, card->membase + CFG);
  381. NS_DELAY;
  382. writel(0x00000000, card->membase + CFG);
  383. /* PHY reset */
  384. writel(0x00000008, card->membase + GP);
  385. NS_DELAY;
  386. writel(0x00000001, card->membase + GP);
  387. NS_DELAY;
  388. while (CMD_BUSY(card)) ;
  389. writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
  390. NS_DELAY;
  391. /* Detect PHY type */
  392. while (CMD_BUSY(card)) ;
  393. writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
  394. while (CMD_BUSY(card)) ;
  395. data = readl(card->membase + DR0);
  396. switch (data) {
  397. case 0x00000009:
  398. printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
  399. card->max_pcr = ATM_25_PCR;
  400. while (CMD_BUSY(card)) ;
  401. writel(0x00000008, card->membase + DR0);
  402. writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
  403. /* Clear an eventual pending interrupt */
  404. writel(NS_STAT_SFBQF, card->membase + STAT);
  405. #ifdef PHY_LOOPBACK
  406. while (CMD_BUSY(card)) ;
  407. writel(0x00000022, card->membase + DR0);
  408. writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
  409. #endif /* PHY_LOOPBACK */
  410. break;
  411. case 0x00000030:
  412. case 0x00000031:
  413. printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
  414. card->max_pcr = ATM_OC3_PCR;
  415. #ifdef PHY_LOOPBACK
  416. while (CMD_BUSY(card)) ;
  417. writel(0x00000002, card->membase + DR0);
  418. writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
  419. #endif /* PHY_LOOPBACK */
  420. break;
  421. default:
  422. printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
  423. error = 8;
  424. ns_init_card_error(card, error);
  425. return error;
  426. }
  427. writel(0x00000000, card->membase + GP);
  428. /* Determine SRAM size */
  429. data = 0x76543210;
  430. ns_write_sram(card, 0x1C003, &data, 1);
  431. data = 0x89ABCDEF;
  432. ns_write_sram(card, 0x14003, &data, 1);
  433. if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
  434. ns_read_sram(card, 0x1C003) == 0x76543210)
  435. card->sram_size = 128;
  436. else
  437. card->sram_size = 32;
  438. PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
  439. card->rct_size = NS_MAX_RCTSIZE;
  440. #if (NS_MAX_RCTSIZE == 4096)
  441. if (card->sram_size == 128)
  442. printk
  443. ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
  444. i);
  445. #elif (NS_MAX_RCTSIZE == 16384)
  446. if (card->sram_size == 32) {
  447. printk
  448. ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
  449. i);
  450. card->rct_size = 4096;
  451. }
  452. #else
  453. #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
  454. #endif
  455. card->vpibits = NS_VPIBITS;
  456. if (card->rct_size == 4096)
  457. card->vcibits = 12 - NS_VPIBITS;
  458. else /* card->rct_size == 16384 */
  459. card->vcibits = 14 - NS_VPIBITS;
  460. /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
  461. if (mac[i] == NULL)
  462. nicstar_init_eprom(card->membase);
  463. /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
  464. writel(0x00000000, card->membase + VPM);
  465. /* Initialize TSQ */
  466. card->tsq.org = pci_alloc_consistent(card->pcidev,
  467. NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  468. &card->tsq.dma);
  469. if (card->tsq.org == NULL) {
  470. printk("nicstar%d: can't allocate TSQ.\n", i);
  471. error = 10;
  472. ns_init_card_error(card, error);
  473. return error;
  474. }
  475. card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
  476. card->tsq.next = card->tsq.base;
  477. card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
  478. for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
  479. ns_tsi_init(card->tsq.base + j);
  480. writel(0x00000000, card->membase + TSQH);
  481. writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
  482. PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
  483. /* Initialize RSQ */
  484. card->rsq.org = pci_alloc_consistent(card->pcidev,
  485. NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  486. &card->rsq.dma);
  487. if (card->rsq.org == NULL) {
  488. printk("nicstar%d: can't allocate RSQ.\n", i);
  489. error = 11;
  490. ns_init_card_error(card, error);
  491. return error;
  492. }
  493. card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
  494. card->rsq.next = card->rsq.base;
  495. card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
  496. for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
  497. ns_rsqe_init(card->rsq.base + j);
  498. writel(0x00000000, card->membase + RSQH);
  499. writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
  500. PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
  501. /* Initialize SCQ0, the only VBR SCQ used */
  502. card->scq1 = NULL;
  503. card->scq2 = NULL;
  504. card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
  505. if (card->scq0 == NULL) {
  506. printk("nicstar%d: can't get SCQ0.\n", i);
  507. error = 12;
  508. ns_init_card_error(card, error);
  509. return error;
  510. }
  511. u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
  512. u32d[1] = (u32) 0x00000000;
  513. u32d[2] = (u32) 0xffffffff;
  514. u32d[3] = (u32) 0x00000000;
  515. ns_write_sram(card, NS_VRSCD0, u32d, 4);
  516. ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
  517. ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
  518. card->scq0->scd = NS_VRSCD0;
  519. PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
  520. /* Initialize TSTs */
  521. card->tst_addr = NS_TST0;
  522. card->tst_free_entries = NS_TST_NUM_ENTRIES;
  523. data = NS_TST_OPCODE_VARIABLE;
  524. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  525. ns_write_sram(card, NS_TST0 + j, &data, 1);
  526. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
  527. ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
  528. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  529. ns_write_sram(card, NS_TST1 + j, &data, 1);
  530. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
  531. ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
  532. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  533. card->tste2vc[j] = NULL;
  534. writel(NS_TST0 << 2, card->membase + TSTB);
  535. /* Initialize RCT. AAL type is set on opening the VC. */
  536. #ifdef RCQ_SUPPORT
  537. u32d[0] = NS_RCTE_RAWCELLINTEN;
  538. #else
  539. u32d[0] = 0x00000000;
  540. #endif /* RCQ_SUPPORT */
  541. u32d[1] = 0x00000000;
  542. u32d[2] = 0x00000000;
  543. u32d[3] = 0xFFFFFFFF;
  544. for (j = 0; j < card->rct_size; j++)
  545. ns_write_sram(card, j * 4, u32d, 4);
  546. memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
  547. for (j = 0; j < NS_FRSCD_NUM; j++)
  548. card->scd2vc[j] = NULL;
  549. /* Initialize buffer levels */
  550. card->sbnr.min = MIN_SB;
  551. card->sbnr.init = NUM_SB;
  552. card->sbnr.max = MAX_SB;
  553. card->lbnr.min = MIN_LB;
  554. card->lbnr.init = NUM_LB;
  555. card->lbnr.max = MAX_LB;
  556. card->iovnr.min = MIN_IOVB;
  557. card->iovnr.init = NUM_IOVB;
  558. card->iovnr.max = MAX_IOVB;
  559. card->hbnr.min = MIN_HB;
  560. card->hbnr.init = NUM_HB;
  561. card->hbnr.max = MAX_HB;
  562. card->sm_handle = 0x00000000;
  563. card->sm_addr = 0x00000000;
  564. card->lg_handle = 0x00000000;
  565. card->lg_addr = 0x00000000;
  566. card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
  567. idr_init(&card->idr);
  568. /* Pre-allocate some huge buffers */
  569. skb_queue_head_init(&card->hbpool.queue);
  570. card->hbpool.count = 0;
  571. for (j = 0; j < NUM_HB; j++) {
  572. struct sk_buff *hb;
  573. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  574. if (hb == NULL) {
  575. printk
  576. ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
  577. i, j, NUM_HB);
  578. error = 13;
  579. ns_init_card_error(card, error);
  580. return error;
  581. }
  582. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  583. skb_queue_tail(&card->hbpool.queue, hb);
  584. card->hbpool.count++;
  585. }
  586. /* Allocate large buffers */
  587. skb_queue_head_init(&card->lbpool.queue);
  588. card->lbpool.count = 0; /* Not used */
  589. for (j = 0; j < NUM_LB; j++) {
  590. struct sk_buff *lb;
  591. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  592. if (lb == NULL) {
  593. printk
  594. ("nicstar%d: can't allocate %dth of %d large buffers.\n",
  595. i, j, NUM_LB);
  596. error = 14;
  597. ns_init_card_error(card, error);
  598. return error;
  599. }
  600. NS_PRV_BUFTYPE(lb) = BUF_LG;
  601. skb_queue_tail(&card->lbpool.queue, lb);
  602. skb_reserve(lb, NS_SMBUFSIZE);
  603. push_rxbufs(card, lb);
  604. /* Due to the implementation of push_rxbufs() this is 1, not 0 */
  605. if (j == 1) {
  606. card->rcbuf = lb;
  607. card->rawcell = (struct ns_rcqe *) lb->data;
  608. card->rawch = NS_PRV_DMA(lb);
  609. }
  610. }
  611. /* Test for strange behaviour which leads to crashes */
  612. if ((bcount =
  613. ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
  614. printk
  615. ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
  616. i, j, bcount);
  617. error = 14;
  618. ns_init_card_error(card, error);
  619. return error;
  620. }
  621. /* Allocate small buffers */
  622. skb_queue_head_init(&card->sbpool.queue);
  623. card->sbpool.count = 0; /* Not used */
  624. for (j = 0; j < NUM_SB; j++) {
  625. struct sk_buff *sb;
  626. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  627. if (sb == NULL) {
  628. printk
  629. ("nicstar%d: can't allocate %dth of %d small buffers.\n",
  630. i, j, NUM_SB);
  631. error = 15;
  632. ns_init_card_error(card, error);
  633. return error;
  634. }
  635. NS_PRV_BUFTYPE(sb) = BUF_SM;
  636. skb_queue_tail(&card->sbpool.queue, sb);
  637. skb_reserve(sb, NS_AAL0_HEADER);
  638. push_rxbufs(card, sb);
  639. }
  640. /* Test for strange behaviour which leads to crashes */
  641. if ((bcount =
  642. ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
  643. printk
  644. ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
  645. i, j, bcount);
  646. error = 15;
  647. ns_init_card_error(card, error);
  648. return error;
  649. }
  650. /* Allocate iovec buffers */
  651. skb_queue_head_init(&card->iovpool.queue);
  652. card->iovpool.count = 0;
  653. for (j = 0; j < NUM_IOVB; j++) {
  654. struct sk_buff *iovb;
  655. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  656. if (iovb == NULL) {
  657. printk
  658. ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
  659. i, j, NUM_IOVB);
  660. error = 16;
  661. ns_init_card_error(card, error);
  662. return error;
  663. }
  664. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  665. skb_queue_tail(&card->iovpool.queue, iovb);
  666. card->iovpool.count++;
  667. }
  668. /* Configure NICStAR */
  669. if (card->rct_size == 4096)
  670. ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
  671. else /* (card->rct_size == 16384) */
  672. ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
  673. card->efbie = 1;
  674. card->intcnt = 0;
  675. if (request_irq
  676. (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
  677. printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
  678. error = 9;
  679. ns_init_card_error(card, error);
  680. return error;
  681. }
  682. /* Register device */
  683. card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
  684. -1, NULL);
  685. if (card->atmdev == NULL) {
  686. printk("nicstar%d: can't register device.\n", i);
  687. error = 17;
  688. ns_init_card_error(card, error);
  689. return error;
  690. }
  691. if (mac[i] == NULL || mac_pton(mac[i], card->atmdev->esi)) {
  692. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
  693. card->atmdev->esi, 6);
  694. if (memcmp(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00", 6) ==
  695. 0) {
  696. nicstar_read_eprom(card->membase,
  697. NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
  698. card->atmdev->esi, 6);
  699. }
  700. }
  701. printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
  702. card->atmdev->dev_data = card;
  703. card->atmdev->ci_range.vpi_bits = card->vpibits;
  704. card->atmdev->ci_range.vci_bits = card->vcibits;
  705. card->atmdev->link_rate = card->max_pcr;
  706. card->atmdev->phy = NULL;
  707. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  708. if (card->max_pcr == ATM_OC3_PCR)
  709. suni_init(card->atmdev);
  710. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  711. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  712. if (card->max_pcr == ATM_25_PCR)
  713. idt77105_init(card->atmdev);
  714. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  715. if (card->atmdev->phy && card->atmdev->phy->start)
  716. card->atmdev->phy->start(card->atmdev);
  717. writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
  718. NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
  719. NS_CFG_PHYIE, card->membase + CFG);
  720. num_cards++;
  721. return error;
  722. }
  723. static void ns_init_card_error(ns_dev *card, int error)
  724. {
  725. if (error >= 17) {
  726. writel(0x00000000, card->membase + CFG);
  727. }
  728. if (error >= 16) {
  729. struct sk_buff *iovb;
  730. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  731. dev_kfree_skb_any(iovb);
  732. }
  733. if (error >= 15) {
  734. struct sk_buff *sb;
  735. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  736. dev_kfree_skb_any(sb);
  737. free_scq(card, card->scq0, NULL);
  738. }
  739. if (error >= 14) {
  740. struct sk_buff *lb;
  741. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  742. dev_kfree_skb_any(lb);
  743. }
  744. if (error >= 13) {
  745. struct sk_buff *hb;
  746. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  747. dev_kfree_skb_any(hb);
  748. }
  749. if (error >= 12) {
  750. kfree(card->rsq.org);
  751. }
  752. if (error >= 11) {
  753. kfree(card->tsq.org);
  754. }
  755. if (error >= 10) {
  756. free_irq(card->pcidev->irq, card);
  757. }
  758. if (error >= 4) {
  759. iounmap(card->membase);
  760. }
  761. if (error >= 3) {
  762. pci_disable_device(card->pcidev);
  763. kfree(card);
  764. }
  765. }
  766. static scq_info *get_scq(ns_dev *card, int size, u32 scd)
  767. {
  768. scq_info *scq;
  769. int i;
  770. if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
  771. return NULL;
  772. scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
  773. if (!scq)
  774. return NULL;
  775. scq->org = pci_alloc_consistent(card->pcidev, 2 * size, &scq->dma);
  776. if (!scq->org) {
  777. kfree(scq);
  778. return NULL;
  779. }
  780. scq->skb = kmalloc(sizeof(struct sk_buff *) *
  781. (size / NS_SCQE_SIZE), GFP_KERNEL);
  782. if (!scq->skb) {
  783. kfree(scq->org);
  784. kfree(scq);
  785. return NULL;
  786. }
  787. scq->num_entries = size / NS_SCQE_SIZE;
  788. scq->base = PTR_ALIGN(scq->org, size);
  789. scq->next = scq->base;
  790. scq->last = scq->base + (scq->num_entries - 1);
  791. scq->tail = scq->last;
  792. scq->scd = scd;
  793. scq->num_entries = size / NS_SCQE_SIZE;
  794. scq->tbd_count = 0;
  795. init_waitqueue_head(&scq->scqfull_waitq);
  796. scq->full = 0;
  797. spin_lock_init(&scq->lock);
  798. for (i = 0; i < scq->num_entries; i++)
  799. scq->skb[i] = NULL;
  800. return scq;
  801. }
  802. /* For variable rate SCQ vcc must be NULL */
  803. static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
  804. {
  805. int i;
  806. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  807. for (i = 0; i < scq->num_entries; i++) {
  808. if (scq->skb[i] != NULL) {
  809. vcc = ATM_SKB(scq->skb[i])->vcc;
  810. if (vcc->pop != NULL)
  811. vcc->pop(vcc, scq->skb[i]);
  812. else
  813. dev_kfree_skb_any(scq->skb[i]);
  814. }
  815. } else { /* vcc must be != NULL */
  816. if (vcc == NULL) {
  817. printk
  818. ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
  819. for (i = 0; i < scq->num_entries; i++)
  820. dev_kfree_skb_any(scq->skb[i]);
  821. } else
  822. for (i = 0; i < scq->num_entries; i++) {
  823. if (scq->skb[i] != NULL) {
  824. if (vcc->pop != NULL)
  825. vcc->pop(vcc, scq->skb[i]);
  826. else
  827. dev_kfree_skb_any(scq->skb[i]);
  828. }
  829. }
  830. }
  831. kfree(scq->skb);
  832. pci_free_consistent(card->pcidev,
  833. 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
  834. VBR_SCQSIZE : CBR_SCQSIZE),
  835. scq->org, scq->dma);
  836. kfree(scq);
  837. }
  838. /* The handles passed must be pointers to the sk_buff containing the small
  839. or large buffer(s) cast to u32. */
  840. static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
  841. {
  842. struct sk_buff *handle1, *handle2;
  843. int id1, id2;
  844. u32 addr1, addr2;
  845. u32 stat;
  846. unsigned long flags;
  847. /* *BARF* */
  848. handle2 = NULL;
  849. addr2 = 0;
  850. handle1 = skb;
  851. addr1 = pci_map_single(card->pcidev,
  852. skb->data,
  853. (NS_PRV_BUFTYPE(skb) == BUF_SM
  854. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  855. PCI_DMA_TODEVICE);
  856. NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
  857. #ifdef GENERAL_DEBUG
  858. if (!addr1)
  859. printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
  860. card->index);
  861. #endif /* GENERAL_DEBUG */
  862. stat = readl(card->membase + STAT);
  863. card->sbfqc = ns_stat_sfbqc_get(stat);
  864. card->lbfqc = ns_stat_lfbqc_get(stat);
  865. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  866. if (!addr2) {
  867. if (card->sm_addr) {
  868. addr2 = card->sm_addr;
  869. handle2 = card->sm_handle;
  870. card->sm_addr = 0x00000000;
  871. card->sm_handle = 0x00000000;
  872. } else { /* (!sm_addr) */
  873. card->sm_addr = addr1;
  874. card->sm_handle = handle1;
  875. }
  876. }
  877. } else { /* buf_type == BUF_LG */
  878. if (!addr2) {
  879. if (card->lg_addr) {
  880. addr2 = card->lg_addr;
  881. handle2 = card->lg_handle;
  882. card->lg_addr = 0x00000000;
  883. card->lg_handle = 0x00000000;
  884. } else { /* (!lg_addr) */
  885. card->lg_addr = addr1;
  886. card->lg_handle = handle1;
  887. }
  888. }
  889. }
  890. if (addr2) {
  891. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  892. if (card->sbfqc >= card->sbnr.max) {
  893. skb_unlink(handle1, &card->sbpool.queue);
  894. dev_kfree_skb_any(handle1);
  895. skb_unlink(handle2, &card->sbpool.queue);
  896. dev_kfree_skb_any(handle2);
  897. return;
  898. } else
  899. card->sbfqc += 2;
  900. } else { /* (buf_type == BUF_LG) */
  901. if (card->lbfqc >= card->lbnr.max) {
  902. skb_unlink(handle1, &card->lbpool.queue);
  903. dev_kfree_skb_any(handle1);
  904. skb_unlink(handle2, &card->lbpool.queue);
  905. dev_kfree_skb_any(handle2);
  906. return;
  907. } else
  908. card->lbfqc += 2;
  909. }
  910. id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
  911. if (id1 < 0)
  912. goto out;
  913. id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
  914. if (id2 < 0)
  915. goto out;
  916. spin_lock_irqsave(&card->res_lock, flags);
  917. while (CMD_BUSY(card)) ;
  918. writel(addr2, card->membase + DR3);
  919. writel(id2, card->membase + DR2);
  920. writel(addr1, card->membase + DR1);
  921. writel(id1, card->membase + DR0);
  922. writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
  923. card->membase + CMD);
  924. spin_unlock_irqrestore(&card->res_lock, flags);
  925. XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
  926. card->index,
  927. (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
  928. addr1, addr2);
  929. }
  930. if (!card->efbie && card->sbfqc >= card->sbnr.min &&
  931. card->lbfqc >= card->lbnr.min) {
  932. card->efbie = 1;
  933. writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
  934. card->membase + CFG);
  935. }
  936. out:
  937. return;
  938. }
  939. static irqreturn_t ns_irq_handler(int irq, void *dev_id)
  940. {
  941. u32 stat_r;
  942. ns_dev *card;
  943. struct atm_dev *dev;
  944. unsigned long flags;
  945. card = (ns_dev *) dev_id;
  946. dev = card->atmdev;
  947. card->intcnt++;
  948. PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
  949. spin_lock_irqsave(&card->int_lock, flags);
  950. stat_r = readl(card->membase + STAT);
  951. /* Transmit Status Indicator has been written to T. S. Queue */
  952. if (stat_r & NS_STAT_TSIF) {
  953. TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
  954. process_tsq(card);
  955. writel(NS_STAT_TSIF, card->membase + STAT);
  956. }
  957. /* Incomplete CS-PDU has been transmitted */
  958. if (stat_r & NS_STAT_TXICP) {
  959. writel(NS_STAT_TXICP, card->membase + STAT);
  960. TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
  961. card->index);
  962. }
  963. /* Transmit Status Queue 7/8 full */
  964. if (stat_r & NS_STAT_TSQF) {
  965. writel(NS_STAT_TSQF, card->membase + STAT);
  966. PRINTK("nicstar%d: TSQ full.\n", card->index);
  967. process_tsq(card);
  968. }
  969. /* Timer overflow */
  970. if (stat_r & NS_STAT_TMROF) {
  971. writel(NS_STAT_TMROF, card->membase + STAT);
  972. PRINTK("nicstar%d: Timer overflow.\n", card->index);
  973. }
  974. /* PHY device interrupt signal active */
  975. if (stat_r & NS_STAT_PHYI) {
  976. writel(NS_STAT_PHYI, card->membase + STAT);
  977. PRINTK("nicstar%d: PHY interrupt.\n", card->index);
  978. if (dev->phy && dev->phy->interrupt) {
  979. dev->phy->interrupt(dev);
  980. }
  981. }
  982. /* Small Buffer Queue is full */
  983. if (stat_r & NS_STAT_SFBQF) {
  984. writel(NS_STAT_SFBQF, card->membase + STAT);
  985. printk("nicstar%d: Small free buffer queue is full.\n",
  986. card->index);
  987. }
  988. /* Large Buffer Queue is full */
  989. if (stat_r & NS_STAT_LFBQF) {
  990. writel(NS_STAT_LFBQF, card->membase + STAT);
  991. printk("nicstar%d: Large free buffer queue is full.\n",
  992. card->index);
  993. }
  994. /* Receive Status Queue is full */
  995. if (stat_r & NS_STAT_RSQF) {
  996. writel(NS_STAT_RSQF, card->membase + STAT);
  997. printk("nicstar%d: RSQ full.\n", card->index);
  998. process_rsq(card);
  999. }
  1000. /* Complete CS-PDU received */
  1001. if (stat_r & NS_STAT_EOPDU) {
  1002. RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
  1003. process_rsq(card);
  1004. writel(NS_STAT_EOPDU, card->membase + STAT);
  1005. }
  1006. /* Raw cell received */
  1007. if (stat_r & NS_STAT_RAWCF) {
  1008. writel(NS_STAT_RAWCF, card->membase + STAT);
  1009. #ifndef RCQ_SUPPORT
  1010. printk("nicstar%d: Raw cell received and no support yet...\n",
  1011. card->index);
  1012. #endif /* RCQ_SUPPORT */
  1013. /* NOTE: the following procedure may keep a raw cell pending until the
  1014. next interrupt. As this preliminary support is only meant to
  1015. avoid buffer leakage, this is not an issue. */
  1016. while (readl(card->membase + RAWCT) != card->rawch) {
  1017. if (ns_rcqe_islast(card->rawcell)) {
  1018. struct sk_buff *oldbuf;
  1019. oldbuf = card->rcbuf;
  1020. card->rcbuf = idr_find(&card->idr,
  1021. ns_rcqe_nextbufhandle(card->rawcell));
  1022. card->rawch = NS_PRV_DMA(card->rcbuf);
  1023. card->rawcell = (struct ns_rcqe *)
  1024. card->rcbuf->data;
  1025. recycle_rx_buf(card, oldbuf);
  1026. } else {
  1027. card->rawch += NS_RCQE_SIZE;
  1028. card->rawcell++;
  1029. }
  1030. }
  1031. }
  1032. /* Small buffer queue is empty */
  1033. if (stat_r & NS_STAT_SFBQE) {
  1034. int i;
  1035. struct sk_buff *sb;
  1036. writel(NS_STAT_SFBQE, card->membase + STAT);
  1037. printk("nicstar%d: Small free buffer queue empty.\n",
  1038. card->index);
  1039. for (i = 0; i < card->sbnr.min; i++) {
  1040. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1041. if (sb == NULL) {
  1042. writel(readl(card->membase + CFG) &
  1043. ~NS_CFG_EFBIE, card->membase + CFG);
  1044. card->efbie = 0;
  1045. break;
  1046. }
  1047. NS_PRV_BUFTYPE(sb) = BUF_SM;
  1048. skb_queue_tail(&card->sbpool.queue, sb);
  1049. skb_reserve(sb, NS_AAL0_HEADER);
  1050. push_rxbufs(card, sb);
  1051. }
  1052. card->sbfqc = i;
  1053. process_rsq(card);
  1054. }
  1055. /* Large buffer queue empty */
  1056. if (stat_r & NS_STAT_LFBQE) {
  1057. int i;
  1058. struct sk_buff *lb;
  1059. writel(NS_STAT_LFBQE, card->membase + STAT);
  1060. printk("nicstar%d: Large free buffer queue empty.\n",
  1061. card->index);
  1062. for (i = 0; i < card->lbnr.min; i++) {
  1063. lb = dev_alloc_skb(NS_LGSKBSIZE);
  1064. if (lb == NULL) {
  1065. writel(readl(card->membase + CFG) &
  1066. ~NS_CFG_EFBIE, card->membase + CFG);
  1067. card->efbie = 0;
  1068. break;
  1069. }
  1070. NS_PRV_BUFTYPE(lb) = BUF_LG;
  1071. skb_queue_tail(&card->lbpool.queue, lb);
  1072. skb_reserve(lb, NS_SMBUFSIZE);
  1073. push_rxbufs(card, lb);
  1074. }
  1075. card->lbfqc = i;
  1076. process_rsq(card);
  1077. }
  1078. /* Receive Status Queue is 7/8 full */
  1079. if (stat_r & NS_STAT_RSQAF) {
  1080. writel(NS_STAT_RSQAF, card->membase + STAT);
  1081. RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
  1082. process_rsq(card);
  1083. }
  1084. spin_unlock_irqrestore(&card->int_lock, flags);
  1085. PRINTK("nicstar%d: end of interrupt service\n", card->index);
  1086. return IRQ_HANDLED;
  1087. }
  1088. static int ns_open(struct atm_vcc *vcc)
  1089. {
  1090. ns_dev *card;
  1091. vc_map *vc;
  1092. unsigned long tmpl, modl;
  1093. int tcr, tcra; /* target cell rate, and absolute value */
  1094. int n = 0; /* Number of entries in the TST. Initialized to remove
  1095. the compiler warning. */
  1096. u32 u32d[4];
  1097. int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
  1098. warning. How I wish compilers were clever enough to
  1099. tell which variables can truly be used
  1100. uninitialized... */
  1101. int inuse; /* tx or rx vc already in use by another vcc */
  1102. short vpi = vcc->vpi;
  1103. int vci = vcc->vci;
  1104. card = (ns_dev *) vcc->dev->dev_data;
  1105. PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
  1106. vci);
  1107. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1108. PRINTK("nicstar%d: unsupported AAL.\n", card->index);
  1109. return -EINVAL;
  1110. }
  1111. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1112. vcc->dev_data = vc;
  1113. inuse = 0;
  1114. if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
  1115. inuse = 1;
  1116. if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
  1117. inuse += 2;
  1118. if (inuse) {
  1119. printk("nicstar%d: %s vci already in use.\n", card->index,
  1120. inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
  1121. return -EINVAL;
  1122. }
  1123. set_bit(ATM_VF_ADDR, &vcc->flags);
  1124. /* NOTE: You are not allowed to modify an open connection's QOS. To change
  1125. that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
  1126. needed to do that. */
  1127. if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
  1128. scq_info *scq;
  1129. set_bit(ATM_VF_PARTIAL, &vcc->flags);
  1130. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1131. /* Check requested cell rate and availability of SCD */
  1132. if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
  1133. && vcc->qos.txtp.min_pcr == 0) {
  1134. PRINTK
  1135. ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
  1136. card->index);
  1137. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1138. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1139. return -EINVAL;
  1140. }
  1141. tcr = atm_pcr_goal(&(vcc->qos.txtp));
  1142. tcra = tcr >= 0 ? tcr : -tcr;
  1143. PRINTK("nicstar%d: target cell rate = %d.\n",
  1144. card->index, vcc->qos.txtp.max_pcr);
  1145. tmpl =
  1146. (unsigned long)tcra *(unsigned long)
  1147. NS_TST_NUM_ENTRIES;
  1148. modl = tmpl % card->max_pcr;
  1149. n = (int)(tmpl / card->max_pcr);
  1150. if (tcr > 0) {
  1151. if (modl > 0)
  1152. n++;
  1153. } else if (tcr == 0) {
  1154. if ((n =
  1155. (card->tst_free_entries -
  1156. NS_TST_RESERVED)) <= 0) {
  1157. PRINTK
  1158. ("nicstar%d: no CBR bandwidth free.\n",
  1159. card->index);
  1160. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1161. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1162. return -EINVAL;
  1163. }
  1164. }
  1165. if (n == 0) {
  1166. printk
  1167. ("nicstar%d: selected bandwidth < granularity.\n",
  1168. card->index);
  1169. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1170. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1171. return -EINVAL;
  1172. }
  1173. if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
  1174. PRINTK
  1175. ("nicstar%d: not enough free CBR bandwidth.\n",
  1176. card->index);
  1177. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1178. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1179. return -EINVAL;
  1180. } else
  1181. card->tst_free_entries -= n;
  1182. XPRINTK("nicstar%d: writing %d tst entries.\n",
  1183. card->index, n);
  1184. for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
  1185. if (card->scd2vc[frscdi] == NULL) {
  1186. card->scd2vc[frscdi] = vc;
  1187. break;
  1188. }
  1189. }
  1190. if (frscdi == NS_FRSCD_NUM) {
  1191. PRINTK
  1192. ("nicstar%d: no SCD available for CBR channel.\n",
  1193. card->index);
  1194. card->tst_free_entries += n;
  1195. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1196. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1197. return -EBUSY;
  1198. }
  1199. vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
  1200. scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
  1201. if (scq == NULL) {
  1202. PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
  1203. card->index);
  1204. card->scd2vc[frscdi] = NULL;
  1205. card->tst_free_entries += n;
  1206. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1207. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1208. return -ENOMEM;
  1209. }
  1210. vc->scq = scq;
  1211. u32d[0] = scq_virt_to_bus(scq, scq->base);
  1212. u32d[1] = (u32) 0x00000000;
  1213. u32d[2] = (u32) 0xffffffff;
  1214. u32d[3] = (u32) 0x00000000;
  1215. ns_write_sram(card, vc->cbr_scd, u32d, 4);
  1216. fill_tst(card, n, vc);
  1217. } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
  1218. vc->cbr_scd = 0x00000000;
  1219. vc->scq = card->scq0;
  1220. }
  1221. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1222. vc->tx = 1;
  1223. vc->tx_vcc = vcc;
  1224. vc->tbd_count = 0;
  1225. }
  1226. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1227. u32 status;
  1228. vc->rx = 1;
  1229. vc->rx_vcc = vcc;
  1230. vc->rx_iov = NULL;
  1231. /* Open the connection in hardware */
  1232. if (vcc->qos.aal == ATM_AAL5)
  1233. status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
  1234. else /* vcc->qos.aal == ATM_AAL0 */
  1235. status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
  1236. #ifdef RCQ_SUPPORT
  1237. status |= NS_RCTE_RAWCELLINTEN;
  1238. #endif /* RCQ_SUPPORT */
  1239. ns_write_sram(card,
  1240. NS_RCT +
  1241. (vpi << card->vcibits | vci) *
  1242. NS_RCT_ENTRY_SIZE, &status, 1);
  1243. }
  1244. }
  1245. set_bit(ATM_VF_READY, &vcc->flags);
  1246. return 0;
  1247. }
  1248. static void ns_close(struct atm_vcc *vcc)
  1249. {
  1250. vc_map *vc;
  1251. ns_dev *card;
  1252. u32 data;
  1253. int i;
  1254. vc = vcc->dev_data;
  1255. card = vcc->dev->dev_data;
  1256. PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
  1257. (int)vcc->vpi, vcc->vci);
  1258. clear_bit(ATM_VF_READY, &vcc->flags);
  1259. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1260. u32 addr;
  1261. unsigned long flags;
  1262. addr =
  1263. NS_RCT +
  1264. (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
  1265. spin_lock_irqsave(&card->res_lock, flags);
  1266. while (CMD_BUSY(card)) ;
  1267. writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
  1268. card->membase + CMD);
  1269. spin_unlock_irqrestore(&card->res_lock, flags);
  1270. vc->rx = 0;
  1271. if (vc->rx_iov != NULL) {
  1272. struct sk_buff *iovb;
  1273. u32 stat;
  1274. stat = readl(card->membase + STAT);
  1275. card->sbfqc = ns_stat_sfbqc_get(stat);
  1276. card->lbfqc = ns_stat_lfbqc_get(stat);
  1277. PRINTK
  1278. ("nicstar%d: closing a VC with pending rx buffers.\n",
  1279. card->index);
  1280. iovb = vc->rx_iov;
  1281. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1282. NS_PRV_IOVCNT(iovb));
  1283. NS_PRV_IOVCNT(iovb) = 0;
  1284. spin_lock_irqsave(&card->int_lock, flags);
  1285. recycle_iov_buf(card, iovb);
  1286. spin_unlock_irqrestore(&card->int_lock, flags);
  1287. vc->rx_iov = NULL;
  1288. }
  1289. }
  1290. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1291. vc->tx = 0;
  1292. }
  1293. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1294. unsigned long flags;
  1295. ns_scqe *scqep;
  1296. scq_info *scq;
  1297. scq = vc->scq;
  1298. for (;;) {
  1299. spin_lock_irqsave(&scq->lock, flags);
  1300. scqep = scq->next;
  1301. if (scqep == scq->base)
  1302. scqep = scq->last;
  1303. else
  1304. scqep--;
  1305. if (scqep == scq->tail) {
  1306. spin_unlock_irqrestore(&scq->lock, flags);
  1307. break;
  1308. }
  1309. /* If the last entry is not a TSR, place one in the SCQ in order to
  1310. be able to completely drain it and then close. */
  1311. if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
  1312. ns_scqe tsr;
  1313. u32 scdi, scqi;
  1314. u32 data;
  1315. int index;
  1316. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1317. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1318. scqi = scq->next - scq->base;
  1319. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1320. tsr.word_3 = 0x00000000;
  1321. tsr.word_4 = 0x00000000;
  1322. *scq->next = tsr;
  1323. index = (int)scqi;
  1324. scq->skb[index] = NULL;
  1325. if (scq->next == scq->last)
  1326. scq->next = scq->base;
  1327. else
  1328. scq->next++;
  1329. data = scq_virt_to_bus(scq, scq->next);
  1330. ns_write_sram(card, scq->scd, &data, 1);
  1331. }
  1332. spin_unlock_irqrestore(&scq->lock, flags);
  1333. schedule();
  1334. }
  1335. /* Free all TST entries */
  1336. data = NS_TST_OPCODE_VARIABLE;
  1337. for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
  1338. if (card->tste2vc[i] == vc) {
  1339. ns_write_sram(card, card->tst_addr + i, &data,
  1340. 1);
  1341. card->tste2vc[i] = NULL;
  1342. card->tst_free_entries++;
  1343. }
  1344. }
  1345. card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
  1346. free_scq(card, vc->scq, vcc);
  1347. }
  1348. /* remove all references to vcc before deleting it */
  1349. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1350. unsigned long flags;
  1351. scq_info *scq = card->scq0;
  1352. spin_lock_irqsave(&scq->lock, flags);
  1353. for (i = 0; i < scq->num_entries; i++) {
  1354. if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
  1355. ATM_SKB(scq->skb[i])->vcc = NULL;
  1356. atm_return(vcc, scq->skb[i]->truesize);
  1357. PRINTK
  1358. ("nicstar: deleted pending vcc mapping\n");
  1359. }
  1360. }
  1361. spin_unlock_irqrestore(&scq->lock, flags);
  1362. }
  1363. vcc->dev_data = NULL;
  1364. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1365. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1366. #ifdef RX_DEBUG
  1367. {
  1368. u32 stat, cfg;
  1369. stat = readl(card->membase + STAT);
  1370. cfg = readl(card->membase + CFG);
  1371. printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
  1372. printk
  1373. ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
  1374. card->tsq.base, card->tsq.next,
  1375. card->tsq.last, readl(card->membase + TSQT));
  1376. printk
  1377. ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
  1378. card->rsq.base, card->rsq.next,
  1379. card->rsq.last, readl(card->membase + RSQT));
  1380. printk("Empty free buffer queue interrupt %s \n",
  1381. card->efbie ? "enabled" : "disabled");
  1382. printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
  1383. ns_stat_sfbqc_get(stat), card->sbpool.count,
  1384. ns_stat_lfbqc_get(stat), card->lbpool.count);
  1385. printk("hbpool.count = %d iovpool.count = %d \n",
  1386. card->hbpool.count, card->iovpool.count);
  1387. }
  1388. #endif /* RX_DEBUG */
  1389. }
  1390. static void fill_tst(ns_dev * card, int n, vc_map * vc)
  1391. {
  1392. u32 new_tst;
  1393. unsigned long cl;
  1394. int e, r;
  1395. u32 data;
  1396. /* It would be very complicated to keep the two TSTs synchronized while
  1397. assuring that writes are only made to the inactive TST. So, for now I
  1398. will use only one TST. If problems occur, I will change this again */
  1399. new_tst = card->tst_addr;
  1400. /* Fill procedure */
  1401. for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
  1402. if (card->tste2vc[e] == NULL)
  1403. break;
  1404. }
  1405. if (e == NS_TST_NUM_ENTRIES) {
  1406. printk("nicstar%d: No free TST entries found. \n", card->index);
  1407. return;
  1408. }
  1409. r = n;
  1410. cl = NS_TST_NUM_ENTRIES;
  1411. data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
  1412. while (r > 0) {
  1413. if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
  1414. card->tste2vc[e] = vc;
  1415. ns_write_sram(card, new_tst + e, &data, 1);
  1416. cl -= NS_TST_NUM_ENTRIES;
  1417. r--;
  1418. }
  1419. if (++e == NS_TST_NUM_ENTRIES) {
  1420. e = 0;
  1421. }
  1422. cl += n;
  1423. }
  1424. /* End of fill procedure */
  1425. data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
  1426. ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
  1427. ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
  1428. card->tst_addr = new_tst;
  1429. }
  1430. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
  1431. {
  1432. ns_dev *card;
  1433. vc_map *vc;
  1434. scq_info *scq;
  1435. unsigned long buflen;
  1436. ns_scqe scqe;
  1437. u32 flags; /* TBD flags, not CPU flags */
  1438. card = vcc->dev->dev_data;
  1439. TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
  1440. if ((vc = (vc_map *) vcc->dev_data) == NULL) {
  1441. printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
  1442. card->index);
  1443. atomic_inc(&vcc->stats->tx_err);
  1444. dev_kfree_skb_any(skb);
  1445. return -EINVAL;
  1446. }
  1447. if (!vc->tx) {
  1448. printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
  1449. card->index);
  1450. atomic_inc(&vcc->stats->tx_err);
  1451. dev_kfree_skb_any(skb);
  1452. return -EINVAL;
  1453. }
  1454. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1455. printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
  1456. card->index);
  1457. atomic_inc(&vcc->stats->tx_err);
  1458. dev_kfree_skb_any(skb);
  1459. return -EINVAL;
  1460. }
  1461. if (skb_shinfo(skb)->nr_frags != 0) {
  1462. printk("nicstar%d: No scatter-gather yet.\n", card->index);
  1463. atomic_inc(&vcc->stats->tx_err);
  1464. dev_kfree_skb_any(skb);
  1465. return -EINVAL;
  1466. }
  1467. ATM_SKB(skb)->vcc = vcc;
  1468. NS_PRV_DMA(skb) = pci_map_single(card->pcidev, skb->data,
  1469. skb->len, PCI_DMA_TODEVICE);
  1470. if (vcc->qos.aal == ATM_AAL5) {
  1471. buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
  1472. flags = NS_TBD_AAL5;
  1473. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
  1474. scqe.word_3 = cpu_to_le32(skb->len);
  1475. scqe.word_4 =
  1476. ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
  1477. ATM_SKB(skb)->
  1478. atm_options & ATM_ATMOPT_CLP ? 1 : 0);
  1479. flags |= NS_TBD_EOPDU;
  1480. } else { /* (vcc->qos.aal == ATM_AAL0) */
  1481. buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
  1482. flags = NS_TBD_AAL0;
  1483. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
  1484. scqe.word_3 = cpu_to_le32(0x00000000);
  1485. if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
  1486. flags |= NS_TBD_EOPDU;
  1487. scqe.word_4 =
  1488. cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
  1489. /* Force the VPI/VCI to be the same as in VCC struct */
  1490. scqe.word_4 |=
  1491. cpu_to_le32((((u32) vcc->
  1492. vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
  1493. vci) <<
  1494. NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
  1495. }
  1496. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1497. scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
  1498. scq = ((vc_map *) vcc->dev_data)->scq;
  1499. } else {
  1500. scqe.word_1 =
  1501. ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
  1502. scq = card->scq0;
  1503. }
  1504. if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
  1505. atomic_inc(&vcc->stats->tx_err);
  1506. dev_kfree_skb_any(skb);
  1507. return -EIO;
  1508. }
  1509. atomic_inc(&vcc->stats->tx);
  1510. return 0;
  1511. }
  1512. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  1513. struct sk_buff *skb)
  1514. {
  1515. unsigned long flags;
  1516. ns_scqe tsr;
  1517. u32 scdi, scqi;
  1518. int scq_is_vbr;
  1519. u32 data;
  1520. int index;
  1521. spin_lock_irqsave(&scq->lock, flags);
  1522. while (scq->tail == scq->next) {
  1523. if (in_interrupt()) {
  1524. spin_unlock_irqrestore(&scq->lock, flags);
  1525. printk("nicstar%d: Error pushing TBD.\n", card->index);
  1526. return 1;
  1527. }
  1528. scq->full = 1;
  1529. spin_unlock_irqrestore(&scq->lock, flags);
  1530. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1531. SCQFULL_TIMEOUT);
  1532. spin_lock_irqsave(&scq->lock, flags);
  1533. if (scq->full) {
  1534. spin_unlock_irqrestore(&scq->lock, flags);
  1535. printk("nicstar%d: Timeout pushing TBD.\n",
  1536. card->index);
  1537. return 1;
  1538. }
  1539. }
  1540. *scq->next = *tbd;
  1541. index = (int)(scq->next - scq->base);
  1542. scq->skb[index] = skb;
  1543. XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
  1544. card->index, skb, index);
  1545. XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1546. card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
  1547. le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
  1548. scq->next);
  1549. if (scq->next == scq->last)
  1550. scq->next = scq->base;
  1551. else
  1552. scq->next++;
  1553. vc->tbd_count++;
  1554. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
  1555. scq->tbd_count++;
  1556. scq_is_vbr = 1;
  1557. } else
  1558. scq_is_vbr = 0;
  1559. if (vc->tbd_count >= MAX_TBD_PER_VC
  1560. || scq->tbd_count >= MAX_TBD_PER_SCQ) {
  1561. int has_run = 0;
  1562. while (scq->tail == scq->next) {
  1563. if (in_interrupt()) {
  1564. data = scq_virt_to_bus(scq, scq->next);
  1565. ns_write_sram(card, scq->scd, &data, 1);
  1566. spin_unlock_irqrestore(&scq->lock, flags);
  1567. printk("nicstar%d: Error pushing TSR.\n",
  1568. card->index);
  1569. return 0;
  1570. }
  1571. scq->full = 1;
  1572. if (has_run++)
  1573. break;
  1574. spin_unlock_irqrestore(&scq->lock, flags);
  1575. interruptible_sleep_on_timeout(&scq->scqfull_waitq,
  1576. SCQFULL_TIMEOUT);
  1577. spin_lock_irqsave(&scq->lock, flags);
  1578. }
  1579. if (!scq->full) {
  1580. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1581. if (scq_is_vbr)
  1582. scdi = NS_TSR_SCDISVBR;
  1583. else
  1584. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1585. scqi = scq->next - scq->base;
  1586. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1587. tsr.word_3 = 0x00000000;
  1588. tsr.word_4 = 0x00000000;
  1589. *scq->next = tsr;
  1590. index = (int)scqi;
  1591. scq->skb[index] = NULL;
  1592. XPRINTK
  1593. ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1594. card->index, le32_to_cpu(tsr.word_1),
  1595. le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
  1596. le32_to_cpu(tsr.word_4), scq->next);
  1597. if (scq->next == scq->last)
  1598. scq->next = scq->base;
  1599. else
  1600. scq->next++;
  1601. vc->tbd_count = 0;
  1602. scq->tbd_count = 0;
  1603. } else
  1604. PRINTK("nicstar%d: Timeout pushing TSR.\n",
  1605. card->index);
  1606. }
  1607. data = scq_virt_to_bus(scq, scq->next);
  1608. ns_write_sram(card, scq->scd, &data, 1);
  1609. spin_unlock_irqrestore(&scq->lock, flags);
  1610. return 0;
  1611. }
  1612. static void process_tsq(ns_dev * card)
  1613. {
  1614. u32 scdi;
  1615. scq_info *scq;
  1616. ns_tsi *previous = NULL, *one_ahead, *two_ahead;
  1617. int serviced_entries; /* flag indicating at least on entry was serviced */
  1618. serviced_entries = 0;
  1619. if (card->tsq.next == card->tsq.last)
  1620. one_ahead = card->tsq.base;
  1621. else
  1622. one_ahead = card->tsq.next + 1;
  1623. if (one_ahead == card->tsq.last)
  1624. two_ahead = card->tsq.base;
  1625. else
  1626. two_ahead = one_ahead + 1;
  1627. while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
  1628. !ns_tsi_isempty(two_ahead))
  1629. /* At most two empty, as stated in the 77201 errata */
  1630. {
  1631. serviced_entries = 1;
  1632. /* Skip the one or two possible empty entries */
  1633. while (ns_tsi_isempty(card->tsq.next)) {
  1634. if (card->tsq.next == card->tsq.last)
  1635. card->tsq.next = card->tsq.base;
  1636. else
  1637. card->tsq.next++;
  1638. }
  1639. if (!ns_tsi_tmrof(card->tsq.next)) {
  1640. scdi = ns_tsi_getscdindex(card->tsq.next);
  1641. if (scdi == NS_TSI_SCDISVBR)
  1642. scq = card->scq0;
  1643. else {
  1644. if (card->scd2vc[scdi] == NULL) {
  1645. printk
  1646. ("nicstar%d: could not find VC from SCD index.\n",
  1647. card->index);
  1648. ns_tsi_init(card->tsq.next);
  1649. return;
  1650. }
  1651. scq = card->scd2vc[scdi]->scq;
  1652. }
  1653. drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
  1654. scq->full = 0;
  1655. wake_up_interruptible(&(scq->scqfull_waitq));
  1656. }
  1657. ns_tsi_init(card->tsq.next);
  1658. previous = card->tsq.next;
  1659. if (card->tsq.next == card->tsq.last)
  1660. card->tsq.next = card->tsq.base;
  1661. else
  1662. card->tsq.next++;
  1663. if (card->tsq.next == card->tsq.last)
  1664. one_ahead = card->tsq.base;
  1665. else
  1666. one_ahead = card->tsq.next + 1;
  1667. if (one_ahead == card->tsq.last)
  1668. two_ahead = card->tsq.base;
  1669. else
  1670. two_ahead = one_ahead + 1;
  1671. }
  1672. if (serviced_entries)
  1673. writel(PTR_DIFF(previous, card->tsq.base),
  1674. card->membase + TSQH);
  1675. }
  1676. static void drain_scq(ns_dev * card, scq_info * scq, int pos)
  1677. {
  1678. struct atm_vcc *vcc;
  1679. struct sk_buff *skb;
  1680. int i;
  1681. unsigned long flags;
  1682. XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
  1683. card->index, scq, pos);
  1684. if (pos >= scq->num_entries) {
  1685. printk("nicstar%d: Bad index on drain_scq().\n", card->index);
  1686. return;
  1687. }
  1688. spin_lock_irqsave(&scq->lock, flags);
  1689. i = (int)(scq->tail - scq->base);
  1690. if (++i == scq->num_entries)
  1691. i = 0;
  1692. while (i != pos) {
  1693. skb = scq->skb[i];
  1694. XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
  1695. card->index, skb, i);
  1696. if (skb != NULL) {
  1697. pci_unmap_single(card->pcidev,
  1698. NS_PRV_DMA(skb),
  1699. skb->len,
  1700. PCI_DMA_TODEVICE);
  1701. vcc = ATM_SKB(skb)->vcc;
  1702. if (vcc && vcc->pop != NULL) {
  1703. vcc->pop(vcc, skb);
  1704. } else {
  1705. dev_kfree_skb_irq(skb);
  1706. }
  1707. scq->skb[i] = NULL;
  1708. }
  1709. if (++i == scq->num_entries)
  1710. i = 0;
  1711. }
  1712. scq->tail = scq->base + pos;
  1713. spin_unlock_irqrestore(&scq->lock, flags);
  1714. }
  1715. static void process_rsq(ns_dev * card)
  1716. {
  1717. ns_rsqe *previous;
  1718. if (!ns_rsqe_valid(card->rsq.next))
  1719. return;
  1720. do {
  1721. dequeue_rx(card, card->rsq.next);
  1722. ns_rsqe_init(card->rsq.next);
  1723. previous = card->rsq.next;
  1724. if (card->rsq.next == card->rsq.last)
  1725. card->rsq.next = card->rsq.base;
  1726. else
  1727. card->rsq.next++;
  1728. } while (ns_rsqe_valid(card->rsq.next));
  1729. writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
  1730. }
  1731. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
  1732. {
  1733. u32 vpi, vci;
  1734. vc_map *vc;
  1735. struct sk_buff *iovb;
  1736. struct iovec *iov;
  1737. struct atm_vcc *vcc;
  1738. struct sk_buff *skb;
  1739. unsigned short aal5_len;
  1740. int len;
  1741. u32 stat;
  1742. u32 id;
  1743. stat = readl(card->membase + STAT);
  1744. card->sbfqc = ns_stat_sfbqc_get(stat);
  1745. card->lbfqc = ns_stat_lfbqc_get(stat);
  1746. id = le32_to_cpu(rsqe->buffer_handle);
  1747. skb = idr_find(&card->idr, id);
  1748. if (!skb) {
  1749. RXPRINTK(KERN_ERR
  1750. "nicstar%d: idr_find() failed!\n", card->index);
  1751. return;
  1752. }
  1753. idr_remove(&card->idr, id);
  1754. pci_dma_sync_single_for_cpu(card->pcidev,
  1755. NS_PRV_DMA(skb),
  1756. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1757. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1758. PCI_DMA_FROMDEVICE);
  1759. pci_unmap_single(card->pcidev,
  1760. NS_PRV_DMA(skb),
  1761. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1762. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1763. PCI_DMA_FROMDEVICE);
  1764. vpi = ns_rsqe_vpi(rsqe);
  1765. vci = ns_rsqe_vci(rsqe);
  1766. if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
  1767. printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
  1768. card->index, vpi, vci);
  1769. recycle_rx_buf(card, skb);
  1770. return;
  1771. }
  1772. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1773. if (!vc->rx) {
  1774. RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
  1775. card->index, vpi, vci);
  1776. recycle_rx_buf(card, skb);
  1777. return;
  1778. }
  1779. vcc = vc->rx_vcc;
  1780. if (vcc->qos.aal == ATM_AAL0) {
  1781. struct sk_buff *sb;
  1782. unsigned char *cell;
  1783. int i;
  1784. cell = skb->data;
  1785. for (i = ns_rsqe_cellcount(rsqe); i; i--) {
  1786. if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) {
  1787. printk
  1788. ("nicstar%d: Can't allocate buffers for aal0.\n",
  1789. card->index);
  1790. atomic_add(i, &vcc->stats->rx_drop);
  1791. break;
  1792. }
  1793. if (!atm_charge(vcc, sb->truesize)) {
  1794. RXPRINTK
  1795. ("nicstar%d: atm_charge() dropped aal0 packets.\n",
  1796. card->index);
  1797. atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
  1798. dev_kfree_skb_any(sb);
  1799. break;
  1800. }
  1801. /* Rebuild the header */
  1802. *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
  1803. (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
  1804. if (i == 1 && ns_rsqe_eopdu(rsqe))
  1805. *((u32 *) sb->data) |= 0x00000002;
  1806. skb_put(sb, NS_AAL0_HEADER);
  1807. memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
  1808. skb_put(sb, ATM_CELL_PAYLOAD);
  1809. ATM_SKB(sb)->vcc = vcc;
  1810. __net_timestamp(sb);
  1811. vcc->push(vcc, sb);
  1812. atomic_inc(&vcc->stats->rx);
  1813. cell += ATM_CELL_PAYLOAD;
  1814. }
  1815. recycle_rx_buf(card, skb);
  1816. return;
  1817. }
  1818. /* To reach this point, the AAL layer can only be AAL5 */
  1819. if ((iovb = vc->rx_iov) == NULL) {
  1820. iovb = skb_dequeue(&(card->iovpool.queue));
  1821. if (iovb == NULL) { /* No buffers in the queue */
  1822. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
  1823. if (iovb == NULL) {
  1824. printk("nicstar%d: Out of iovec buffers.\n",
  1825. card->index);
  1826. atomic_inc(&vcc->stats->rx_drop);
  1827. recycle_rx_buf(card, skb);
  1828. return;
  1829. }
  1830. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1831. } else if (--card->iovpool.count < card->iovnr.min) {
  1832. struct sk_buff *new_iovb;
  1833. if ((new_iovb =
  1834. alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
  1835. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1836. skb_queue_tail(&card->iovpool.queue, new_iovb);
  1837. card->iovpool.count++;
  1838. }
  1839. }
  1840. vc->rx_iov = iovb;
  1841. NS_PRV_IOVCNT(iovb) = 0;
  1842. iovb->len = 0;
  1843. iovb->data = iovb->head;
  1844. skb_reset_tail_pointer(iovb);
  1845. /* IMPORTANT: a pointer to the sk_buff containing the small or large
  1846. buffer is stored as iovec base, NOT a pointer to the
  1847. small or large buffer itself. */
  1848. } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
  1849. printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
  1850. atomic_inc(&vcc->stats->rx_err);
  1851. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1852. NS_MAX_IOVECS);
  1853. NS_PRV_IOVCNT(iovb) = 0;
  1854. iovb->len = 0;
  1855. iovb->data = iovb->head;
  1856. skb_reset_tail_pointer(iovb);
  1857. }
  1858. iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
  1859. iov->iov_base = (void *)skb;
  1860. iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
  1861. iovb->len += iov->iov_len;
  1862. #ifdef EXTRA_DEBUG
  1863. if (NS_PRV_IOVCNT(iovb) == 1) {
  1864. if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
  1865. printk
  1866. ("nicstar%d: Expected a small buffer, and this is not one.\n",
  1867. card->index);
  1868. which_list(card, skb);
  1869. atomic_inc(&vcc->stats->rx_err);
  1870. recycle_rx_buf(card, skb);
  1871. vc->rx_iov = NULL;
  1872. recycle_iov_buf(card, iovb);
  1873. return;
  1874. }
  1875. } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
  1876. if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
  1877. printk
  1878. ("nicstar%d: Expected a large buffer, and this is not one.\n",
  1879. card->index);
  1880. which_list(card, skb);
  1881. atomic_inc(&vcc->stats->rx_err);
  1882. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1883. NS_PRV_IOVCNT(iovb));
  1884. vc->rx_iov = NULL;
  1885. recycle_iov_buf(card, iovb);
  1886. return;
  1887. }
  1888. }
  1889. #endif /* EXTRA_DEBUG */
  1890. if (ns_rsqe_eopdu(rsqe)) {
  1891. /* This works correctly regardless of the endianness of the host */
  1892. unsigned char *L1L2 = (unsigned char *)
  1893. (skb->data + iov->iov_len - 6);
  1894. aal5_len = L1L2[0] << 8 | L1L2[1];
  1895. len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
  1896. if (ns_rsqe_crcerr(rsqe) ||
  1897. len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
  1898. printk("nicstar%d: AAL5 CRC error", card->index);
  1899. if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1900. printk(" - PDU size mismatch.\n");
  1901. else
  1902. printk(".\n");
  1903. atomic_inc(&vcc->stats->rx_err);
  1904. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1905. NS_PRV_IOVCNT(iovb));
  1906. vc->rx_iov = NULL;
  1907. recycle_iov_buf(card, iovb);
  1908. return;
  1909. }
  1910. /* By this point we (hopefully) have a complete SDU without errors. */
  1911. if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
  1912. /* skb points to a small buffer */
  1913. if (!atm_charge(vcc, skb->truesize)) {
  1914. push_rxbufs(card, skb);
  1915. atomic_inc(&vcc->stats->rx_drop);
  1916. } else {
  1917. skb_put(skb, len);
  1918. dequeue_sm_buf(card, skb);
  1919. #ifdef NS_USE_DESTRUCTORS
  1920. skb->destructor = ns_sb_destructor;
  1921. #endif /* NS_USE_DESTRUCTORS */
  1922. ATM_SKB(skb)->vcc = vcc;
  1923. __net_timestamp(skb);
  1924. vcc->push(vcc, skb);
  1925. atomic_inc(&vcc->stats->rx);
  1926. }
  1927. } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
  1928. struct sk_buff *sb;
  1929. sb = (struct sk_buff *)(iov - 1)->iov_base;
  1930. /* skb points to a large buffer */
  1931. if (len <= NS_SMBUFSIZE) {
  1932. if (!atm_charge(vcc, sb->truesize)) {
  1933. push_rxbufs(card, sb);
  1934. atomic_inc(&vcc->stats->rx_drop);
  1935. } else {
  1936. skb_put(sb, len);
  1937. dequeue_sm_buf(card, sb);
  1938. #ifdef NS_USE_DESTRUCTORS
  1939. sb->destructor = ns_sb_destructor;
  1940. #endif /* NS_USE_DESTRUCTORS */
  1941. ATM_SKB(sb)->vcc = vcc;
  1942. __net_timestamp(sb);
  1943. vcc->push(vcc, sb);
  1944. atomic_inc(&vcc->stats->rx);
  1945. }
  1946. push_rxbufs(card, skb);
  1947. } else { /* len > NS_SMBUFSIZE, the usual case */
  1948. if (!atm_charge(vcc, skb->truesize)) {
  1949. push_rxbufs(card, skb);
  1950. atomic_inc(&vcc->stats->rx_drop);
  1951. } else {
  1952. dequeue_lg_buf(card, skb);
  1953. #ifdef NS_USE_DESTRUCTORS
  1954. skb->destructor = ns_lb_destructor;
  1955. #endif /* NS_USE_DESTRUCTORS */
  1956. skb_push(skb, NS_SMBUFSIZE);
  1957. skb_copy_from_linear_data(sb, skb->data,
  1958. NS_SMBUFSIZE);
  1959. skb_put(skb, len - NS_SMBUFSIZE);
  1960. ATM_SKB(skb)->vcc = vcc;
  1961. __net_timestamp(skb);
  1962. vcc->push(vcc, skb);
  1963. atomic_inc(&vcc->stats->rx);
  1964. }
  1965. push_rxbufs(card, sb);
  1966. }
  1967. } else { /* Must push a huge buffer */
  1968. struct sk_buff *hb, *sb, *lb;
  1969. int remaining, tocopy;
  1970. int j;
  1971. hb = skb_dequeue(&(card->hbpool.queue));
  1972. if (hb == NULL) { /* No buffers in the queue */
  1973. hb = dev_alloc_skb(NS_HBUFSIZE);
  1974. if (hb == NULL) {
  1975. printk
  1976. ("nicstar%d: Out of huge buffers.\n",
  1977. card->index);
  1978. atomic_inc(&vcc->stats->rx_drop);
  1979. recycle_iovec_rx_bufs(card,
  1980. (struct iovec *)
  1981. iovb->data,
  1982. NS_PRV_IOVCNT(iovb));
  1983. vc->rx_iov = NULL;
  1984. recycle_iov_buf(card, iovb);
  1985. return;
  1986. } else if (card->hbpool.count < card->hbnr.min) {
  1987. struct sk_buff *new_hb;
  1988. if ((new_hb =
  1989. dev_alloc_skb(NS_HBUFSIZE)) !=
  1990. NULL) {
  1991. skb_queue_tail(&card->hbpool.
  1992. queue, new_hb);
  1993. card->hbpool.count++;
  1994. }
  1995. }
  1996. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  1997. } else if (--card->hbpool.count < card->hbnr.min) {
  1998. struct sk_buff *new_hb;
  1999. if ((new_hb =
  2000. dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
  2001. NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
  2002. skb_queue_tail(&card->hbpool.queue,
  2003. new_hb);
  2004. card->hbpool.count++;
  2005. }
  2006. if (card->hbpool.count < card->hbnr.min) {
  2007. if ((new_hb =
  2008. dev_alloc_skb(NS_HBUFSIZE)) !=
  2009. NULL) {
  2010. NS_PRV_BUFTYPE(new_hb) =
  2011. BUF_NONE;
  2012. skb_queue_tail(&card->hbpool.
  2013. queue, new_hb);
  2014. card->hbpool.count++;
  2015. }
  2016. }
  2017. }
  2018. iov = (struct iovec *)iovb->data;
  2019. if (!atm_charge(vcc, hb->truesize)) {
  2020. recycle_iovec_rx_bufs(card, iov,
  2021. NS_PRV_IOVCNT(iovb));
  2022. if (card->hbpool.count < card->hbnr.max) {
  2023. skb_queue_tail(&card->hbpool.queue, hb);
  2024. card->hbpool.count++;
  2025. } else
  2026. dev_kfree_skb_any(hb);
  2027. atomic_inc(&vcc->stats->rx_drop);
  2028. } else {
  2029. /* Copy the small buffer to the huge buffer */
  2030. sb = (struct sk_buff *)iov->iov_base;
  2031. skb_copy_from_linear_data(sb, hb->data,
  2032. iov->iov_len);
  2033. skb_put(hb, iov->iov_len);
  2034. remaining = len - iov->iov_len;
  2035. iov++;
  2036. /* Free the small buffer */
  2037. push_rxbufs(card, sb);
  2038. /* Copy all large buffers to the huge buffer and free them */
  2039. for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
  2040. lb = (struct sk_buff *)iov->iov_base;
  2041. tocopy =
  2042. min_t(int, remaining, iov->iov_len);
  2043. skb_copy_from_linear_data(lb,
  2044. skb_tail_pointer
  2045. (hb), tocopy);
  2046. skb_put(hb, tocopy);
  2047. iov++;
  2048. remaining -= tocopy;
  2049. push_rxbufs(card, lb);
  2050. }
  2051. #ifdef EXTRA_DEBUG
  2052. if (remaining != 0 || hb->len != len)
  2053. printk
  2054. ("nicstar%d: Huge buffer len mismatch.\n",
  2055. card->index);
  2056. #endif /* EXTRA_DEBUG */
  2057. ATM_SKB(hb)->vcc = vcc;
  2058. #ifdef NS_USE_DESTRUCTORS
  2059. hb->destructor = ns_hb_destructor;
  2060. #endif /* NS_USE_DESTRUCTORS */
  2061. __net_timestamp(hb);
  2062. vcc->push(vcc, hb);
  2063. atomic_inc(&vcc->stats->rx);
  2064. }
  2065. }
  2066. vc->rx_iov = NULL;
  2067. recycle_iov_buf(card, iovb);
  2068. }
  2069. }
  2070. #ifdef NS_USE_DESTRUCTORS
  2071. static void ns_sb_destructor(struct sk_buff *sb)
  2072. {
  2073. ns_dev *card;
  2074. u32 stat;
  2075. card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data;
  2076. stat = readl(card->membase + STAT);
  2077. card->sbfqc = ns_stat_sfbqc_get(stat);
  2078. card->lbfqc = ns_stat_lfbqc_get(stat);
  2079. do {
  2080. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2081. if (sb == NULL)
  2082. break;
  2083. NS_PRV_BUFTYPE(sb) = BUF_SM;
  2084. skb_queue_tail(&card->sbpool.queue, sb);
  2085. skb_reserve(sb, NS_AAL0_HEADER);
  2086. push_rxbufs(card, sb);
  2087. } while (card->sbfqc < card->sbnr.min);
  2088. }
  2089. static void ns_lb_destructor(struct sk_buff *lb)
  2090. {
  2091. ns_dev *card;
  2092. u32 stat;
  2093. card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data;
  2094. stat = readl(card->membase + STAT);
  2095. card->sbfqc = ns_stat_sfbqc_get(stat);
  2096. card->lbfqc = ns_stat_lfbqc_get(stat);
  2097. do {
  2098. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2099. if (lb == NULL)
  2100. break;
  2101. NS_PRV_BUFTYPE(lb) = BUF_LG;
  2102. skb_queue_tail(&card->lbpool.queue, lb);
  2103. skb_reserve(lb, NS_SMBUFSIZE);
  2104. push_rxbufs(card, lb);
  2105. } while (card->lbfqc < card->lbnr.min);
  2106. }
  2107. static void ns_hb_destructor(struct sk_buff *hb)
  2108. {
  2109. ns_dev *card;
  2110. card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data;
  2111. while (card->hbpool.count < card->hbnr.init) {
  2112. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2113. if (hb == NULL)
  2114. break;
  2115. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  2116. skb_queue_tail(&card->hbpool.queue, hb);
  2117. card->hbpool.count++;
  2118. }
  2119. }
  2120. #endif /* NS_USE_DESTRUCTORS */
  2121. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
  2122. {
  2123. if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
  2124. printk("nicstar%d: What kind of rx buffer is this?\n",
  2125. card->index);
  2126. dev_kfree_skb_any(skb);
  2127. } else
  2128. push_rxbufs(card, skb);
  2129. }
  2130. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
  2131. {
  2132. while (count-- > 0)
  2133. recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
  2134. }
  2135. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
  2136. {
  2137. if (card->iovpool.count < card->iovnr.max) {
  2138. skb_queue_tail(&card->iovpool.queue, iovb);
  2139. card->iovpool.count++;
  2140. } else
  2141. dev_kfree_skb_any(iovb);
  2142. }
  2143. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
  2144. {
  2145. skb_unlink(sb, &card->sbpool.queue);
  2146. #ifdef NS_USE_DESTRUCTORS
  2147. if (card->sbfqc < card->sbnr.min)
  2148. #else
  2149. if (card->sbfqc < card->sbnr.init) {
  2150. struct sk_buff *new_sb;
  2151. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2152. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2153. skb_queue_tail(&card->sbpool.queue, new_sb);
  2154. skb_reserve(new_sb, NS_AAL0_HEADER);
  2155. push_rxbufs(card, new_sb);
  2156. }
  2157. }
  2158. if (card->sbfqc < card->sbnr.init)
  2159. #endif /* NS_USE_DESTRUCTORS */
  2160. {
  2161. struct sk_buff *new_sb;
  2162. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2163. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2164. skb_queue_tail(&card->sbpool.queue, new_sb);
  2165. skb_reserve(new_sb, NS_AAL0_HEADER);
  2166. push_rxbufs(card, new_sb);
  2167. }
  2168. }
  2169. }
  2170. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
  2171. {
  2172. skb_unlink(lb, &card->lbpool.queue);
  2173. #ifdef NS_USE_DESTRUCTORS
  2174. if (card->lbfqc < card->lbnr.min)
  2175. #else
  2176. if (card->lbfqc < card->lbnr.init) {
  2177. struct sk_buff *new_lb;
  2178. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2179. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2180. skb_queue_tail(&card->lbpool.queue, new_lb);
  2181. skb_reserve(new_lb, NS_SMBUFSIZE);
  2182. push_rxbufs(card, new_lb);
  2183. }
  2184. }
  2185. if (card->lbfqc < card->lbnr.init)
  2186. #endif /* NS_USE_DESTRUCTORS */
  2187. {
  2188. struct sk_buff *new_lb;
  2189. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2190. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2191. skb_queue_tail(&card->lbpool.queue, new_lb);
  2192. skb_reserve(new_lb, NS_SMBUFSIZE);
  2193. push_rxbufs(card, new_lb);
  2194. }
  2195. }
  2196. }
  2197. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
  2198. {
  2199. u32 stat;
  2200. ns_dev *card;
  2201. int left;
  2202. left = (int)*pos;
  2203. card = (ns_dev *) dev->dev_data;
  2204. stat = readl(card->membase + STAT);
  2205. if (!left--)
  2206. return sprintf(page, "Pool count min init max \n");
  2207. if (!left--)
  2208. return sprintf(page, "Small %5d %5d %5d %5d \n",
  2209. ns_stat_sfbqc_get(stat), card->sbnr.min,
  2210. card->sbnr.init, card->sbnr.max);
  2211. if (!left--)
  2212. return sprintf(page, "Large %5d %5d %5d %5d \n",
  2213. ns_stat_lfbqc_get(stat), card->lbnr.min,
  2214. card->lbnr.init, card->lbnr.max);
  2215. if (!left--)
  2216. return sprintf(page, "Huge %5d %5d %5d %5d \n",
  2217. card->hbpool.count, card->hbnr.min,
  2218. card->hbnr.init, card->hbnr.max);
  2219. if (!left--)
  2220. return sprintf(page, "Iovec %5d %5d %5d %5d \n",
  2221. card->iovpool.count, card->iovnr.min,
  2222. card->iovnr.init, card->iovnr.max);
  2223. if (!left--) {
  2224. int retval;
  2225. retval =
  2226. sprintf(page, "Interrupt counter: %u \n", card->intcnt);
  2227. card->intcnt = 0;
  2228. return retval;
  2229. }
  2230. #if 0
  2231. /* Dump 25.6 Mbps PHY registers */
  2232. /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
  2233. here just in case it's needed for debugging. */
  2234. if (card->max_pcr == ATM_25_PCR && !left--) {
  2235. u32 phy_regs[4];
  2236. u32 i;
  2237. for (i = 0; i < 4; i++) {
  2238. while (CMD_BUSY(card)) ;
  2239. writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
  2240. card->membase + CMD);
  2241. while (CMD_BUSY(card)) ;
  2242. phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
  2243. }
  2244. return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
  2245. phy_regs[0], phy_regs[1], phy_regs[2],
  2246. phy_regs[3]);
  2247. }
  2248. #endif /* 0 - Dump 25.6 Mbps PHY registers */
  2249. #if 0
  2250. /* Dump TST */
  2251. if (left-- < NS_TST_NUM_ENTRIES) {
  2252. if (card->tste2vc[left + 1] == NULL)
  2253. return sprintf(page, "%5d - VBR/UBR \n", left + 1);
  2254. else
  2255. return sprintf(page, "%5d - %d %d \n", left + 1,
  2256. card->tste2vc[left + 1]->tx_vcc->vpi,
  2257. card->tste2vc[left + 1]->tx_vcc->vci);
  2258. }
  2259. #endif /* 0 */
  2260. return 0;
  2261. }
  2262. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
  2263. {
  2264. ns_dev *card;
  2265. pool_levels pl;
  2266. long btype;
  2267. unsigned long flags;
  2268. card = dev->dev_data;
  2269. switch (cmd) {
  2270. case NS_GETPSTAT:
  2271. if (get_user
  2272. (pl.buftype, &((pool_levels __user *) arg)->buftype))
  2273. return -EFAULT;
  2274. switch (pl.buftype) {
  2275. case NS_BUFTYPE_SMALL:
  2276. pl.count =
  2277. ns_stat_sfbqc_get(readl(card->membase + STAT));
  2278. pl.level.min = card->sbnr.min;
  2279. pl.level.init = card->sbnr.init;
  2280. pl.level.max = card->sbnr.max;
  2281. break;
  2282. case NS_BUFTYPE_LARGE:
  2283. pl.count =
  2284. ns_stat_lfbqc_get(readl(card->membase + STAT));
  2285. pl.level.min = card->lbnr.min;
  2286. pl.level.init = card->lbnr.init;
  2287. pl.level.max = card->lbnr.max;
  2288. break;
  2289. case NS_BUFTYPE_HUGE:
  2290. pl.count = card->hbpool.count;
  2291. pl.level.min = card->hbnr.min;
  2292. pl.level.init = card->hbnr.init;
  2293. pl.level.max = card->hbnr.max;
  2294. break;
  2295. case NS_BUFTYPE_IOVEC:
  2296. pl.count = card->iovpool.count;
  2297. pl.level.min = card->iovnr.min;
  2298. pl.level.init = card->iovnr.init;
  2299. pl.level.max = card->iovnr.max;
  2300. break;
  2301. default:
  2302. return -ENOIOCTLCMD;
  2303. }
  2304. if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
  2305. return (sizeof(pl));
  2306. else
  2307. return -EFAULT;
  2308. case NS_SETBUFLEV:
  2309. if (!capable(CAP_NET_ADMIN))
  2310. return -EPERM;
  2311. if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
  2312. return -EFAULT;
  2313. if (pl.level.min >= pl.level.init
  2314. || pl.level.init >= pl.level.max)
  2315. return -EINVAL;
  2316. if (pl.level.min == 0)
  2317. return -EINVAL;
  2318. switch (pl.buftype) {
  2319. case NS_BUFTYPE_SMALL:
  2320. if (pl.level.max > TOP_SB)
  2321. return -EINVAL;
  2322. card->sbnr.min = pl.level.min;
  2323. card->sbnr.init = pl.level.init;
  2324. card->sbnr.max = pl.level.max;
  2325. break;
  2326. case NS_BUFTYPE_LARGE:
  2327. if (pl.level.max > TOP_LB)
  2328. return -EINVAL;
  2329. card->lbnr.min = pl.level.min;
  2330. card->lbnr.init = pl.level.init;
  2331. card->lbnr.max = pl.level.max;
  2332. break;
  2333. case NS_BUFTYPE_HUGE:
  2334. if (pl.level.max > TOP_HB)
  2335. return -EINVAL;
  2336. card->hbnr.min = pl.level.min;
  2337. card->hbnr.init = pl.level.init;
  2338. card->hbnr.max = pl.level.max;
  2339. break;
  2340. case NS_BUFTYPE_IOVEC:
  2341. if (pl.level.max > TOP_IOVB)
  2342. return -EINVAL;
  2343. card->iovnr.min = pl.level.min;
  2344. card->iovnr.init = pl.level.init;
  2345. card->iovnr.max = pl.level.max;
  2346. break;
  2347. default:
  2348. return -EINVAL;
  2349. }
  2350. return 0;
  2351. case NS_ADJBUFLEV:
  2352. if (!capable(CAP_NET_ADMIN))
  2353. return -EPERM;
  2354. btype = (long)arg; /* a long is the same size as a pointer or bigger */
  2355. switch (btype) {
  2356. case NS_BUFTYPE_SMALL:
  2357. while (card->sbfqc < card->sbnr.init) {
  2358. struct sk_buff *sb;
  2359. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2360. if (sb == NULL)
  2361. return -ENOMEM;
  2362. NS_PRV_BUFTYPE(sb) = BUF_SM;
  2363. skb_queue_tail(&card->sbpool.queue, sb);
  2364. skb_reserve(sb, NS_AAL0_HEADER);
  2365. push_rxbufs(card, sb);
  2366. }
  2367. break;
  2368. case NS_BUFTYPE_LARGE:
  2369. while (card->lbfqc < card->lbnr.init) {
  2370. struct sk_buff *lb;
  2371. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2372. if (lb == NULL)
  2373. return -ENOMEM;
  2374. NS_PRV_BUFTYPE(lb) = BUF_LG;
  2375. skb_queue_tail(&card->lbpool.queue, lb);
  2376. skb_reserve(lb, NS_SMBUFSIZE);
  2377. push_rxbufs(card, lb);
  2378. }
  2379. break;
  2380. case NS_BUFTYPE_HUGE:
  2381. while (card->hbpool.count > card->hbnr.init) {
  2382. struct sk_buff *hb;
  2383. spin_lock_irqsave(&card->int_lock, flags);
  2384. hb = skb_dequeue(&card->hbpool.queue);
  2385. card->hbpool.count--;
  2386. spin_unlock_irqrestore(&card->int_lock, flags);
  2387. if (hb == NULL)
  2388. printk
  2389. ("nicstar%d: huge buffer count inconsistent.\n",
  2390. card->index);
  2391. else
  2392. dev_kfree_skb_any(hb);
  2393. }
  2394. while (card->hbpool.count < card->hbnr.init) {
  2395. struct sk_buff *hb;
  2396. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2397. if (hb == NULL)
  2398. return -ENOMEM;
  2399. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  2400. spin_lock_irqsave(&card->int_lock, flags);
  2401. skb_queue_tail(&card->hbpool.queue, hb);
  2402. card->hbpool.count++;
  2403. spin_unlock_irqrestore(&card->int_lock, flags);
  2404. }
  2405. break;
  2406. case NS_BUFTYPE_IOVEC:
  2407. while (card->iovpool.count > card->iovnr.init) {
  2408. struct sk_buff *iovb;
  2409. spin_lock_irqsave(&card->int_lock, flags);
  2410. iovb = skb_dequeue(&card->iovpool.queue);
  2411. card->iovpool.count--;
  2412. spin_unlock_irqrestore(&card->int_lock, flags);
  2413. if (iovb == NULL)
  2414. printk
  2415. ("nicstar%d: iovec buffer count inconsistent.\n",
  2416. card->index);
  2417. else
  2418. dev_kfree_skb_any(iovb);
  2419. }
  2420. while (card->iovpool.count < card->iovnr.init) {
  2421. struct sk_buff *iovb;
  2422. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  2423. if (iovb == NULL)
  2424. return -ENOMEM;
  2425. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  2426. spin_lock_irqsave(&card->int_lock, flags);
  2427. skb_queue_tail(&card->iovpool.queue, iovb);
  2428. card->iovpool.count++;
  2429. spin_unlock_irqrestore(&card->int_lock, flags);
  2430. }
  2431. break;
  2432. default:
  2433. return -EINVAL;
  2434. }
  2435. return 0;
  2436. default:
  2437. if (dev->phy && dev->phy->ioctl) {
  2438. return dev->phy->ioctl(dev, cmd, arg);
  2439. } else {
  2440. printk("nicstar%d: %s == NULL \n", card->index,
  2441. dev->phy ? "dev->phy->ioctl" : "dev->phy");
  2442. return -ENOIOCTLCMD;
  2443. }
  2444. }
  2445. }
  2446. #ifdef EXTRA_DEBUG
  2447. static void which_list(ns_dev * card, struct sk_buff *skb)
  2448. {
  2449. printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
  2450. }
  2451. #endif /* EXTRA_DEBUG */
  2452. static void ns_poll(unsigned long arg)
  2453. {
  2454. int i;
  2455. ns_dev *card;
  2456. unsigned long flags;
  2457. u32 stat_r, stat_w;
  2458. PRINTK("nicstar: Entering ns_poll().\n");
  2459. for (i = 0; i < num_cards; i++) {
  2460. card = cards[i];
  2461. if (spin_is_locked(&card->int_lock)) {
  2462. /* Probably it isn't worth spinning */
  2463. continue;
  2464. }
  2465. spin_lock_irqsave(&card->int_lock, flags);
  2466. stat_w = 0;
  2467. stat_r = readl(card->membase + STAT);
  2468. if (stat_r & NS_STAT_TSIF)
  2469. stat_w |= NS_STAT_TSIF;
  2470. if (stat_r & NS_STAT_EOPDU)
  2471. stat_w |= NS_STAT_EOPDU;
  2472. process_tsq(card);
  2473. process_rsq(card);
  2474. writel(stat_w, card->membase + STAT);
  2475. spin_unlock_irqrestore(&card->int_lock, flags);
  2476. }
  2477. mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
  2478. PRINTK("nicstar: Leaving ns_poll().\n");
  2479. }
  2480. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  2481. unsigned long addr)
  2482. {
  2483. ns_dev *card;
  2484. unsigned long flags;
  2485. card = dev->dev_data;
  2486. spin_lock_irqsave(&card->res_lock, flags);
  2487. while (CMD_BUSY(card)) ;
  2488. writel((u32) value, card->membase + DR0);
  2489. writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2490. card->membase + CMD);
  2491. spin_unlock_irqrestore(&card->res_lock, flags);
  2492. }
  2493. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
  2494. {
  2495. ns_dev *card;
  2496. unsigned long flags;
  2497. u32 data;
  2498. card = dev->dev_data;
  2499. spin_lock_irqsave(&card->res_lock, flags);
  2500. while (CMD_BUSY(card)) ;
  2501. writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2502. card->membase + CMD);
  2503. while (CMD_BUSY(card)) ;
  2504. data = readl(card->membase + DR0) & 0x000000FF;
  2505. spin_unlock_irqrestore(&card->res_lock, flags);
  2506. return (unsigned char)data;
  2507. }
  2508. module_init(nicstar_init);
  2509. module_exit(nicstar_cleanup);