Kconfig 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. #
  2. # Generic algorithms support
  3. #
  4. config XOR_BLOCKS
  5. tristate
  6. #
  7. # async_tx api: hardware offloaded memory transfer/transform support
  8. #
  9. source "crypto/async_tx/Kconfig"
  10. #
  11. # Cryptographic API Configuration
  12. #
  13. menuconfig CRYPTO
  14. tristate "Cryptographic API"
  15. help
  16. This option provides the core Cryptographic API.
  17. if CRYPTO
  18. comment "Crypto core or helper"
  19. config CRYPTO_FIPS
  20. bool "FIPS 200 compliance"
  21. depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
  22. help
  23. This options enables the fips boot option which is
  24. required if you want to system to operate in a FIPS 200
  25. certification. You should say no unless you know what
  26. this is.
  27. config CRYPTO_ALGAPI
  28. tristate
  29. select CRYPTO_ALGAPI2
  30. help
  31. This option provides the API for cryptographic algorithms.
  32. config CRYPTO_ALGAPI2
  33. tristate
  34. config CRYPTO_AEAD
  35. tristate
  36. select CRYPTO_AEAD2
  37. select CRYPTO_ALGAPI
  38. config CRYPTO_AEAD2
  39. tristate
  40. select CRYPTO_ALGAPI2
  41. config CRYPTO_BLKCIPHER
  42. tristate
  43. select CRYPTO_BLKCIPHER2
  44. select CRYPTO_ALGAPI
  45. config CRYPTO_BLKCIPHER2
  46. tristate
  47. select CRYPTO_ALGAPI2
  48. select CRYPTO_RNG2
  49. select CRYPTO_WORKQUEUE
  50. config CRYPTO_HASH
  51. tristate
  52. select CRYPTO_HASH2
  53. select CRYPTO_ALGAPI
  54. config CRYPTO_HASH2
  55. tristate
  56. select CRYPTO_ALGAPI2
  57. config CRYPTO_RNG
  58. tristate
  59. select CRYPTO_RNG2
  60. select CRYPTO_ALGAPI
  61. config CRYPTO_RNG2
  62. tristate
  63. select CRYPTO_ALGAPI2
  64. config CRYPTO_PCOMP
  65. tristate
  66. select CRYPTO_PCOMP2
  67. select CRYPTO_ALGAPI
  68. config CRYPTO_PCOMP2
  69. tristate
  70. select CRYPTO_ALGAPI2
  71. config CRYPTO_MANAGER
  72. tristate "Cryptographic algorithm manager"
  73. select CRYPTO_MANAGER2
  74. help
  75. Create default cryptographic template instantiations such as
  76. cbc(aes).
  77. config CRYPTO_MANAGER2
  78. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  79. select CRYPTO_AEAD2
  80. select CRYPTO_HASH2
  81. select CRYPTO_BLKCIPHER2
  82. select CRYPTO_PCOMP2
  83. config CRYPTO_USER
  84. tristate "Userspace cryptographic algorithm configuration"
  85. depends on NET
  86. select CRYPTO_MANAGER
  87. help
  88. Userspace configuration for cryptographic instantiations such as
  89. cbc(aes).
  90. config CRYPTO_MANAGER_DISABLE_TESTS
  91. bool "Disable run-time self tests"
  92. default y
  93. depends on CRYPTO_MANAGER2
  94. help
  95. Disable run-time self tests that normally take place at
  96. algorithm registration.
  97. config CRYPTO_GF128MUL
  98. tristate "GF(2^128) multiplication functions"
  99. help
  100. Efficient table driven implementation of multiplications in the
  101. field GF(2^128). This is needed by some cypher modes. This
  102. option will be selected automatically if you select such a
  103. cipher mode. Only select this option by hand if you expect to load
  104. an external module that requires these functions.
  105. config CRYPTO_NULL
  106. tristate "Null algorithms"
  107. select CRYPTO_ALGAPI
  108. select CRYPTO_BLKCIPHER
  109. select CRYPTO_HASH
  110. help
  111. These are 'Null' algorithms, used by IPsec, which do nothing.
  112. config CRYPTO_PCRYPT
  113. tristate "Parallel crypto engine"
  114. depends on SMP
  115. select PADATA
  116. select CRYPTO_MANAGER
  117. select CRYPTO_AEAD
  118. help
  119. This converts an arbitrary crypto algorithm into a parallel
  120. algorithm that executes in kernel threads.
  121. config CRYPTO_WORKQUEUE
  122. tristate
  123. config CRYPTO_CRYPTD
  124. tristate "Software async crypto daemon"
  125. select CRYPTO_BLKCIPHER
  126. select CRYPTO_HASH
  127. select CRYPTO_MANAGER
  128. select CRYPTO_WORKQUEUE
  129. help
  130. This is a generic software asynchronous crypto daemon that
  131. converts an arbitrary synchronous software crypto algorithm
  132. into an asynchronous algorithm that executes in a kernel thread.
  133. config CRYPTO_AUTHENC
  134. tristate "Authenc support"
  135. select CRYPTO_AEAD
  136. select CRYPTO_BLKCIPHER
  137. select CRYPTO_MANAGER
  138. select CRYPTO_HASH
  139. help
  140. Authenc: Combined mode wrapper for IPsec.
  141. This is required for IPSec.
  142. config CRYPTO_TEST
  143. tristate "Testing module"
  144. depends on m
  145. select CRYPTO_MANAGER
  146. help
  147. Quick & dirty crypto test module.
  148. config CRYPTO_ABLK_HELPER_X86
  149. tristate
  150. depends on X86
  151. select CRYPTO_CRYPTD
  152. config CRYPTO_GLUE_HELPER_X86
  153. tristate
  154. depends on X86
  155. select CRYPTO_ALGAPI
  156. comment "Authenticated Encryption with Associated Data"
  157. config CRYPTO_CCM
  158. tristate "CCM support"
  159. select CRYPTO_CTR
  160. select CRYPTO_AEAD
  161. help
  162. Support for Counter with CBC MAC. Required for IPsec.
  163. config CRYPTO_GCM
  164. tristate "GCM/GMAC support"
  165. select CRYPTO_CTR
  166. select CRYPTO_AEAD
  167. select CRYPTO_GHASH
  168. select CRYPTO_NULL
  169. help
  170. Support for Galois/Counter Mode (GCM) and Galois Message
  171. Authentication Code (GMAC). Required for IPSec.
  172. config CRYPTO_SEQIV
  173. tristate "Sequence Number IV Generator"
  174. select CRYPTO_AEAD
  175. select CRYPTO_BLKCIPHER
  176. select CRYPTO_RNG
  177. help
  178. This IV generator generates an IV based on a sequence number by
  179. xoring it with a salt. This algorithm is mainly useful for CTR
  180. comment "Block modes"
  181. config CRYPTO_CBC
  182. tristate "CBC support"
  183. select CRYPTO_BLKCIPHER
  184. select CRYPTO_MANAGER
  185. help
  186. CBC: Cipher Block Chaining mode
  187. This block cipher algorithm is required for IPSec.
  188. config CRYPTO_CTR
  189. tristate "CTR support"
  190. select CRYPTO_BLKCIPHER
  191. select CRYPTO_SEQIV
  192. select CRYPTO_MANAGER
  193. help
  194. CTR: Counter mode
  195. This block cipher algorithm is required for IPSec.
  196. config CRYPTO_CTS
  197. tristate "CTS support"
  198. select CRYPTO_BLKCIPHER
  199. help
  200. CTS: Cipher Text Stealing
  201. This is the Cipher Text Stealing mode as described by
  202. Section 8 of rfc2040 and referenced by rfc3962.
  203. (rfc3962 includes errata information in its Appendix A)
  204. This mode is required for Kerberos gss mechanism support
  205. for AES encryption.
  206. config CRYPTO_ECB
  207. tristate "ECB support"
  208. select CRYPTO_BLKCIPHER
  209. select CRYPTO_MANAGER
  210. help
  211. ECB: Electronic CodeBook mode
  212. This is the simplest block cipher algorithm. It simply encrypts
  213. the input block by block.
  214. config CRYPTO_LRW
  215. tristate "LRW support"
  216. select CRYPTO_BLKCIPHER
  217. select CRYPTO_MANAGER
  218. select CRYPTO_GF128MUL
  219. help
  220. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  221. narrow block cipher mode for dm-crypt. Use it with cipher
  222. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  223. The first 128, 192 or 256 bits in the key are used for AES and the
  224. rest is used to tie each cipher block to its logical position.
  225. config CRYPTO_PCBC
  226. tristate "PCBC support"
  227. select CRYPTO_BLKCIPHER
  228. select CRYPTO_MANAGER
  229. help
  230. PCBC: Propagating Cipher Block Chaining mode
  231. This block cipher algorithm is required for RxRPC.
  232. config CRYPTO_XTS
  233. tristate "XTS support"
  234. select CRYPTO_BLKCIPHER
  235. select CRYPTO_MANAGER
  236. select CRYPTO_GF128MUL
  237. help
  238. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  239. key size 256, 384 or 512 bits. This implementation currently
  240. can't handle a sectorsize which is not a multiple of 16 bytes.
  241. comment "Hash modes"
  242. config CRYPTO_CMAC
  243. tristate "CMAC support"
  244. select CRYPTO_HASH
  245. select CRYPTO_MANAGER
  246. help
  247. Cipher-based Message Authentication Code (CMAC) specified by
  248. The National Institute of Standards and Technology (NIST).
  249. https://tools.ietf.org/html/rfc4493
  250. http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
  251. config CRYPTO_HMAC
  252. tristate "HMAC support"
  253. select CRYPTO_HASH
  254. select CRYPTO_MANAGER
  255. help
  256. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  257. This is required for IPSec.
  258. config CRYPTO_XCBC
  259. tristate "XCBC support"
  260. select CRYPTO_HASH
  261. select CRYPTO_MANAGER
  262. help
  263. XCBC: Keyed-Hashing with encryption algorithm
  264. http://www.ietf.org/rfc/rfc3566.txt
  265. http://csrc.nist.gov/encryption/modes/proposedmodes/
  266. xcbc-mac/xcbc-mac-spec.pdf
  267. config CRYPTO_VMAC
  268. tristate "VMAC support"
  269. select CRYPTO_HASH
  270. select CRYPTO_MANAGER
  271. help
  272. VMAC is a message authentication algorithm designed for
  273. very high speed on 64-bit architectures.
  274. See also:
  275. <http://fastcrypto.org/vmac>
  276. comment "Digest"
  277. config CRYPTO_CRC32C
  278. tristate "CRC32c CRC algorithm"
  279. select CRYPTO_HASH
  280. select CRC32
  281. help
  282. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  283. by iSCSI for header and data digests and by others.
  284. See Castagnoli93. Module will be crc32c.
  285. config CRYPTO_CRC32C_INTEL
  286. tristate "CRC32c INTEL hardware acceleration"
  287. depends on X86
  288. select CRYPTO_HASH
  289. help
  290. In Intel processor with SSE4.2 supported, the processor will
  291. support CRC32C implementation using hardware accelerated CRC32
  292. instruction. This option will create 'crc32c-intel' module,
  293. which will enable any routine to use the CRC32 instruction to
  294. gain performance compared with software implementation.
  295. Module will be crc32c-intel.
  296. config CRYPTO_CRC32C_SPARC64
  297. tristate "CRC32c CRC algorithm (SPARC64)"
  298. depends on SPARC64
  299. select CRYPTO_HASH
  300. select CRC32
  301. help
  302. CRC32c CRC algorithm implemented using sparc64 crypto instructions,
  303. when available.
  304. config CRYPTO_CRC32
  305. tristate "CRC32 CRC algorithm"
  306. select CRYPTO_HASH
  307. select CRC32
  308. help
  309. CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
  310. Shash crypto api wrappers to crc32_le function.
  311. config CRYPTO_CRC32_PCLMUL
  312. tristate "CRC32 PCLMULQDQ hardware acceleration"
  313. depends on X86
  314. select CRYPTO_HASH
  315. select CRC32
  316. help
  317. From Intel Westmere and AMD Bulldozer processor with SSE4.2
  318. and PCLMULQDQ supported, the processor will support
  319. CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
  320. instruction. This option will create 'crc32-plcmul' module,
  321. which will enable any routine to use the CRC-32-IEEE 802.3 checksum
  322. and gain better performance as compared with the table implementation.
  323. config CRYPTO_CRCT10DIF
  324. tristate "CRCT10DIF algorithm"
  325. select CRYPTO_HASH
  326. help
  327. CRC T10 Data Integrity Field computation is being cast as
  328. a crypto transform. This allows for faster crc t10 diff
  329. transforms to be used if they are available.
  330. config CRYPTO_CRCT10DIF_PCLMUL
  331. tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
  332. depends on X86 && 64BIT && CRC_T10DIF
  333. select CRYPTO_HASH
  334. help
  335. For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
  336. CRC T10 DIF PCLMULQDQ computation can be hardware
  337. accelerated PCLMULQDQ instruction. This option will create
  338. 'crct10dif-plcmul' module, which is faster when computing the
  339. crct10dif checksum as compared with the generic table implementation.
  340. config CRYPTO_GHASH
  341. tristate "GHASH digest algorithm"
  342. select CRYPTO_GF128MUL
  343. help
  344. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  345. config CRYPTO_MD4
  346. tristate "MD4 digest algorithm"
  347. select CRYPTO_HASH
  348. help
  349. MD4 message digest algorithm (RFC1320).
  350. config CRYPTO_MD5
  351. tristate "MD5 digest algorithm"
  352. select CRYPTO_HASH
  353. help
  354. MD5 message digest algorithm (RFC1321).
  355. config CRYPTO_MD5_SPARC64
  356. tristate "MD5 digest algorithm (SPARC64)"
  357. depends on SPARC64
  358. select CRYPTO_MD5
  359. select CRYPTO_HASH
  360. help
  361. MD5 message digest algorithm (RFC1321) implemented
  362. using sparc64 crypto instructions, when available.
  363. config CRYPTO_MICHAEL_MIC
  364. tristate "Michael MIC keyed digest algorithm"
  365. select CRYPTO_HASH
  366. help
  367. Michael MIC is used for message integrity protection in TKIP
  368. (IEEE 802.11i). This algorithm is required for TKIP, but it
  369. should not be used for other purposes because of the weakness
  370. of the algorithm.
  371. config CRYPTO_RMD128
  372. tristate "RIPEMD-128 digest algorithm"
  373. select CRYPTO_HASH
  374. help
  375. RIPEMD-128 (ISO/IEC 10118-3:2004).
  376. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  377. be used as a secure replacement for RIPEMD. For other use cases,
  378. RIPEMD-160 should be used.
  379. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  380. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  381. config CRYPTO_RMD160
  382. tristate "RIPEMD-160 digest algorithm"
  383. select CRYPTO_HASH
  384. help
  385. RIPEMD-160 (ISO/IEC 10118-3:2004).
  386. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  387. to be used as a secure replacement for the 128-bit hash functions
  388. MD4, MD5 and it's predecessor RIPEMD
  389. (not to be confused with RIPEMD-128).
  390. It's speed is comparable to SHA1 and there are no known attacks
  391. against RIPEMD-160.
  392. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  393. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  394. config CRYPTO_RMD256
  395. tristate "RIPEMD-256 digest algorithm"
  396. select CRYPTO_HASH
  397. help
  398. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  399. 256 bit hash. It is intended for applications that require
  400. longer hash-results, without needing a larger security level
  401. (than RIPEMD-128).
  402. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  403. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  404. config CRYPTO_RMD320
  405. tristate "RIPEMD-320 digest algorithm"
  406. select CRYPTO_HASH
  407. help
  408. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  409. 320 bit hash. It is intended for applications that require
  410. longer hash-results, without needing a larger security level
  411. (than RIPEMD-160).
  412. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  413. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  414. config CRYPTO_SHA1
  415. tristate "SHA1 digest algorithm"
  416. select CRYPTO_HASH
  417. help
  418. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  419. config CRYPTO_SHA1_SSSE3
  420. tristate "SHA1 digest algorithm (SSSE3/AVX)"
  421. depends on X86 && 64BIT
  422. select CRYPTO_SHA1
  423. select CRYPTO_HASH
  424. help
  425. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  426. using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
  427. Extensions (AVX), when available.
  428. config CRYPTO_SHA256_SSSE3
  429. tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
  430. depends on X86 && 64BIT
  431. select CRYPTO_SHA256
  432. select CRYPTO_HASH
  433. help
  434. SHA-256 secure hash standard (DFIPS 180-2) implemented
  435. using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
  436. Extensions version 1 (AVX1), or Advanced Vector Extensions
  437. version 2 (AVX2) instructions, when available.
  438. config CRYPTO_SHA512_SSSE3
  439. tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
  440. depends on X86 && 64BIT
  441. select CRYPTO_SHA512
  442. select CRYPTO_HASH
  443. help
  444. SHA-512 secure hash standard (DFIPS 180-2) implemented
  445. using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
  446. Extensions version 1 (AVX1), or Advanced Vector Extensions
  447. version 2 (AVX2) instructions, when available.
  448. config CRYPTO_SHA1_SPARC64
  449. tristate "SHA1 digest algorithm (SPARC64)"
  450. depends on SPARC64
  451. select CRYPTO_SHA1
  452. select CRYPTO_HASH
  453. help
  454. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  455. using sparc64 crypto instructions, when available.
  456. config CRYPTO_SHA1_ARM
  457. tristate "SHA1 digest algorithm (ARM-asm)"
  458. depends on ARM
  459. select CRYPTO_SHA1
  460. select CRYPTO_HASH
  461. help
  462. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  463. using optimized ARM assembler.
  464. config CRYPTO_SHA1_PPC
  465. tristate "SHA1 digest algorithm (powerpc)"
  466. depends on PPC
  467. help
  468. This is the powerpc hardware accelerated implementation of the
  469. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  470. config CRYPTO_SHA256
  471. tristate "SHA224 and SHA256 digest algorithm"
  472. select CRYPTO_HASH
  473. help
  474. SHA256 secure hash standard (DFIPS 180-2).
  475. This version of SHA implements a 256 bit hash with 128 bits of
  476. security against collision attacks.
  477. This code also includes SHA-224, a 224 bit hash with 112 bits
  478. of security against collision attacks.
  479. config CRYPTO_SHA256_SPARC64
  480. tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
  481. depends on SPARC64
  482. select CRYPTO_SHA256
  483. select CRYPTO_HASH
  484. help
  485. SHA-256 secure hash standard (DFIPS 180-2) implemented
  486. using sparc64 crypto instructions, when available.
  487. config CRYPTO_SHA512
  488. tristate "SHA384 and SHA512 digest algorithms"
  489. select CRYPTO_HASH
  490. help
  491. SHA512 secure hash standard (DFIPS 180-2).
  492. This version of SHA implements a 512 bit hash with 256 bits of
  493. security against collision attacks.
  494. This code also includes SHA-384, a 384 bit hash with 192 bits
  495. of security against collision attacks.
  496. config CRYPTO_SHA512_SPARC64
  497. tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
  498. depends on SPARC64
  499. select CRYPTO_SHA512
  500. select CRYPTO_HASH
  501. help
  502. SHA-512 secure hash standard (DFIPS 180-2) implemented
  503. using sparc64 crypto instructions, when available.
  504. config CRYPTO_TGR192
  505. tristate "Tiger digest algorithms"
  506. select CRYPTO_HASH
  507. help
  508. Tiger hash algorithm 192, 160 and 128-bit hashes
  509. Tiger is a hash function optimized for 64-bit processors while
  510. still having decent performance on 32-bit processors.
  511. Tiger was developed by Ross Anderson and Eli Biham.
  512. See also:
  513. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  514. config CRYPTO_WP512
  515. tristate "Whirlpool digest algorithms"
  516. select CRYPTO_HASH
  517. help
  518. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  519. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  520. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  521. See also:
  522. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  523. config CRYPTO_GHASH_CLMUL_NI_INTEL
  524. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  525. depends on X86 && 64BIT
  526. select CRYPTO_CRYPTD
  527. help
  528. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  529. The implementation is accelerated by CLMUL-NI of Intel.
  530. comment "Ciphers"
  531. config CRYPTO_AES
  532. tristate "AES cipher algorithms"
  533. select CRYPTO_ALGAPI
  534. help
  535. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  536. algorithm.
  537. Rijndael appears to be consistently a very good performer in
  538. both hardware and software across a wide range of computing
  539. environments regardless of its use in feedback or non-feedback
  540. modes. Its key setup time is excellent, and its key agility is
  541. good. Rijndael's very low memory requirements make it very well
  542. suited for restricted-space environments, in which it also
  543. demonstrates excellent performance. Rijndael's operations are
  544. among the easiest to defend against power and timing attacks.
  545. The AES specifies three key sizes: 128, 192 and 256 bits
  546. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  547. config CRYPTO_AES_586
  548. tristate "AES cipher algorithms (i586)"
  549. depends on (X86 || UML_X86) && !64BIT
  550. select CRYPTO_ALGAPI
  551. select CRYPTO_AES
  552. help
  553. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  554. algorithm.
  555. Rijndael appears to be consistently a very good performer in
  556. both hardware and software across a wide range of computing
  557. environments regardless of its use in feedback or non-feedback
  558. modes. Its key setup time is excellent, and its key agility is
  559. good. Rijndael's very low memory requirements make it very well
  560. suited for restricted-space environments, in which it also
  561. demonstrates excellent performance. Rijndael's operations are
  562. among the easiest to defend against power and timing attacks.
  563. The AES specifies three key sizes: 128, 192 and 256 bits
  564. See <http://csrc.nist.gov/encryption/aes/> for more information.
  565. config CRYPTO_AES_X86_64
  566. tristate "AES cipher algorithms (x86_64)"
  567. depends on (X86 || UML_X86) && 64BIT
  568. select CRYPTO_ALGAPI
  569. select CRYPTO_AES
  570. help
  571. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  572. algorithm.
  573. Rijndael appears to be consistently a very good performer in
  574. both hardware and software across a wide range of computing
  575. environments regardless of its use in feedback or non-feedback
  576. modes. Its key setup time is excellent, and its key agility is
  577. good. Rijndael's very low memory requirements make it very well
  578. suited for restricted-space environments, in which it also
  579. demonstrates excellent performance. Rijndael's operations are
  580. among the easiest to defend against power and timing attacks.
  581. The AES specifies three key sizes: 128, 192 and 256 bits
  582. See <http://csrc.nist.gov/encryption/aes/> for more information.
  583. config CRYPTO_AES_NI_INTEL
  584. tristate "AES cipher algorithms (AES-NI)"
  585. depends on X86
  586. select CRYPTO_AES_X86_64 if 64BIT
  587. select CRYPTO_AES_586 if !64BIT
  588. select CRYPTO_CRYPTD
  589. select CRYPTO_ABLK_HELPER_X86
  590. select CRYPTO_ALGAPI
  591. select CRYPTO_GLUE_HELPER_X86 if 64BIT
  592. select CRYPTO_LRW
  593. select CRYPTO_XTS
  594. help
  595. Use Intel AES-NI instructions for AES algorithm.
  596. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  597. algorithm.
  598. Rijndael appears to be consistently a very good performer in
  599. both hardware and software across a wide range of computing
  600. environments regardless of its use in feedback or non-feedback
  601. modes. Its key setup time is excellent, and its key agility is
  602. good. Rijndael's very low memory requirements make it very well
  603. suited for restricted-space environments, in which it also
  604. demonstrates excellent performance. Rijndael's operations are
  605. among the easiest to defend against power and timing attacks.
  606. The AES specifies three key sizes: 128, 192 and 256 bits
  607. See <http://csrc.nist.gov/encryption/aes/> for more information.
  608. In addition to AES cipher algorithm support, the acceleration
  609. for some popular block cipher mode is supported too, including
  610. ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
  611. acceleration for CTR.
  612. config CRYPTO_AES_SPARC64
  613. tristate "AES cipher algorithms (SPARC64)"
  614. depends on SPARC64
  615. select CRYPTO_CRYPTD
  616. select CRYPTO_ALGAPI
  617. help
  618. Use SPARC64 crypto opcodes for AES algorithm.
  619. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  620. algorithm.
  621. Rijndael appears to be consistently a very good performer in
  622. both hardware and software across a wide range of computing
  623. environments regardless of its use in feedback or non-feedback
  624. modes. Its key setup time is excellent, and its key agility is
  625. good. Rijndael's very low memory requirements make it very well
  626. suited for restricted-space environments, in which it also
  627. demonstrates excellent performance. Rijndael's operations are
  628. among the easiest to defend against power and timing attacks.
  629. The AES specifies three key sizes: 128, 192 and 256 bits
  630. See <http://csrc.nist.gov/encryption/aes/> for more information.
  631. In addition to AES cipher algorithm support, the acceleration
  632. for some popular block cipher mode is supported too, including
  633. ECB and CBC.
  634. config CRYPTO_AES_ARM
  635. tristate "AES cipher algorithms (ARM-asm)"
  636. depends on ARM
  637. select CRYPTO_ALGAPI
  638. select CRYPTO_AES
  639. help
  640. Use optimized AES assembler routines for ARM platforms.
  641. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  642. algorithm.
  643. Rijndael appears to be consistently a very good performer in
  644. both hardware and software across a wide range of computing
  645. environments regardless of its use in feedback or non-feedback
  646. modes. Its key setup time is excellent, and its key agility is
  647. good. Rijndael's very low memory requirements make it very well
  648. suited for restricted-space environments, in which it also
  649. demonstrates excellent performance. Rijndael's operations are
  650. among the easiest to defend against power and timing attacks.
  651. The AES specifies three key sizes: 128, 192 and 256 bits
  652. See <http://csrc.nist.gov/encryption/aes/> for more information.
  653. config CRYPTO_ANUBIS
  654. tristate "Anubis cipher algorithm"
  655. select CRYPTO_ALGAPI
  656. help
  657. Anubis cipher algorithm.
  658. Anubis is a variable key length cipher which can use keys from
  659. 128 bits to 320 bits in length. It was evaluated as a entrant
  660. in the NESSIE competition.
  661. See also:
  662. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  663. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  664. config CRYPTO_ARC4
  665. tristate "ARC4 cipher algorithm"
  666. select CRYPTO_BLKCIPHER
  667. help
  668. ARC4 cipher algorithm.
  669. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  670. bits in length. This algorithm is required for driver-based
  671. WEP, but it should not be for other purposes because of the
  672. weakness of the algorithm.
  673. config CRYPTO_BLOWFISH
  674. tristate "Blowfish cipher algorithm"
  675. select CRYPTO_ALGAPI
  676. select CRYPTO_BLOWFISH_COMMON
  677. help
  678. Blowfish cipher algorithm, by Bruce Schneier.
  679. This is a variable key length cipher which can use keys from 32
  680. bits to 448 bits in length. It's fast, simple and specifically
  681. designed for use on "large microprocessors".
  682. See also:
  683. <http://www.schneier.com/blowfish.html>
  684. config CRYPTO_BLOWFISH_COMMON
  685. tristate
  686. help
  687. Common parts of the Blowfish cipher algorithm shared by the
  688. generic c and the assembler implementations.
  689. See also:
  690. <http://www.schneier.com/blowfish.html>
  691. config CRYPTO_BLOWFISH_X86_64
  692. tristate "Blowfish cipher algorithm (x86_64)"
  693. depends on X86 && 64BIT
  694. select CRYPTO_ALGAPI
  695. select CRYPTO_BLOWFISH_COMMON
  696. help
  697. Blowfish cipher algorithm (x86_64), by Bruce Schneier.
  698. This is a variable key length cipher which can use keys from 32
  699. bits to 448 bits in length. It's fast, simple and specifically
  700. designed for use on "large microprocessors".
  701. See also:
  702. <http://www.schneier.com/blowfish.html>
  703. config CRYPTO_CAMELLIA
  704. tristate "Camellia cipher algorithms"
  705. depends on CRYPTO
  706. select CRYPTO_ALGAPI
  707. help
  708. Camellia cipher algorithms module.
  709. Camellia is a symmetric key block cipher developed jointly
  710. at NTT and Mitsubishi Electric Corporation.
  711. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  712. See also:
  713. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  714. config CRYPTO_CAMELLIA_X86_64
  715. tristate "Camellia cipher algorithm (x86_64)"
  716. depends on X86 && 64BIT
  717. depends on CRYPTO
  718. select CRYPTO_ALGAPI
  719. select CRYPTO_GLUE_HELPER_X86
  720. select CRYPTO_LRW
  721. select CRYPTO_XTS
  722. help
  723. Camellia cipher algorithm module (x86_64).
  724. Camellia is a symmetric key block cipher developed jointly
  725. at NTT and Mitsubishi Electric Corporation.
  726. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  727. See also:
  728. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  729. config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
  730. tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
  731. depends on X86 && 64BIT
  732. depends on CRYPTO
  733. select CRYPTO_ALGAPI
  734. select CRYPTO_CRYPTD
  735. select CRYPTO_ABLK_HELPER_X86
  736. select CRYPTO_GLUE_HELPER_X86
  737. select CRYPTO_CAMELLIA_X86_64
  738. select CRYPTO_LRW
  739. select CRYPTO_XTS
  740. help
  741. Camellia cipher algorithm module (x86_64/AES-NI/AVX).
  742. Camellia is a symmetric key block cipher developed jointly
  743. at NTT and Mitsubishi Electric Corporation.
  744. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  745. See also:
  746. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  747. config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
  748. tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
  749. depends on X86 && 64BIT
  750. depends on CRYPTO
  751. select CRYPTO_ALGAPI
  752. select CRYPTO_CRYPTD
  753. select CRYPTO_ABLK_HELPER_X86
  754. select CRYPTO_GLUE_HELPER_X86
  755. select CRYPTO_CAMELLIA_X86_64
  756. select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
  757. select CRYPTO_LRW
  758. select CRYPTO_XTS
  759. help
  760. Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
  761. Camellia is a symmetric key block cipher developed jointly
  762. at NTT and Mitsubishi Electric Corporation.
  763. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  764. See also:
  765. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  766. config CRYPTO_CAMELLIA_SPARC64
  767. tristate "Camellia cipher algorithm (SPARC64)"
  768. depends on SPARC64
  769. depends on CRYPTO
  770. select CRYPTO_ALGAPI
  771. help
  772. Camellia cipher algorithm module (SPARC64).
  773. Camellia is a symmetric key block cipher developed jointly
  774. at NTT and Mitsubishi Electric Corporation.
  775. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  776. See also:
  777. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  778. config CRYPTO_CAST_COMMON
  779. tristate
  780. help
  781. Common parts of the CAST cipher algorithms shared by the
  782. generic c and the assembler implementations.
  783. config CRYPTO_CAST5
  784. tristate "CAST5 (CAST-128) cipher algorithm"
  785. select CRYPTO_ALGAPI
  786. select CRYPTO_CAST_COMMON
  787. help
  788. The CAST5 encryption algorithm (synonymous with CAST-128) is
  789. described in RFC2144.
  790. config CRYPTO_CAST5_AVX_X86_64
  791. tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
  792. depends on X86 && 64BIT
  793. select CRYPTO_ALGAPI
  794. select CRYPTO_CRYPTD
  795. select CRYPTO_ABLK_HELPER_X86
  796. select CRYPTO_CAST_COMMON
  797. select CRYPTO_CAST5
  798. help
  799. The CAST5 encryption algorithm (synonymous with CAST-128) is
  800. described in RFC2144.
  801. This module provides the Cast5 cipher algorithm that processes
  802. sixteen blocks parallel using the AVX instruction set.
  803. config CRYPTO_CAST6
  804. tristate "CAST6 (CAST-256) cipher algorithm"
  805. select CRYPTO_ALGAPI
  806. select CRYPTO_CAST_COMMON
  807. help
  808. The CAST6 encryption algorithm (synonymous with CAST-256) is
  809. described in RFC2612.
  810. config CRYPTO_CAST6_AVX_X86_64
  811. tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
  812. depends on X86 && 64BIT
  813. select CRYPTO_ALGAPI
  814. select CRYPTO_CRYPTD
  815. select CRYPTO_ABLK_HELPER_X86
  816. select CRYPTO_GLUE_HELPER_X86
  817. select CRYPTO_CAST_COMMON
  818. select CRYPTO_CAST6
  819. select CRYPTO_LRW
  820. select CRYPTO_XTS
  821. help
  822. The CAST6 encryption algorithm (synonymous with CAST-256) is
  823. described in RFC2612.
  824. This module provides the Cast6 cipher algorithm that processes
  825. eight blocks parallel using the AVX instruction set.
  826. config CRYPTO_DES
  827. tristate "DES and Triple DES EDE cipher algorithms"
  828. select CRYPTO_ALGAPI
  829. help
  830. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  831. config CRYPTO_DES_SPARC64
  832. tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
  833. depends on SPARC64
  834. select CRYPTO_ALGAPI
  835. select CRYPTO_DES
  836. help
  837. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
  838. optimized using SPARC64 crypto opcodes.
  839. config CRYPTO_FCRYPT
  840. tristate "FCrypt cipher algorithm"
  841. select CRYPTO_ALGAPI
  842. select CRYPTO_BLKCIPHER
  843. help
  844. FCrypt algorithm used by RxRPC.
  845. config CRYPTO_KHAZAD
  846. tristate "Khazad cipher algorithm"
  847. select CRYPTO_ALGAPI
  848. help
  849. Khazad cipher algorithm.
  850. Khazad was a finalist in the initial NESSIE competition. It is
  851. an algorithm optimized for 64-bit processors with good performance
  852. on 32-bit processors. Khazad uses an 128 bit key size.
  853. See also:
  854. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  855. config CRYPTO_SALSA20
  856. tristate "Salsa20 stream cipher algorithm"
  857. select CRYPTO_BLKCIPHER
  858. help
  859. Salsa20 stream cipher algorithm.
  860. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  861. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  862. The Salsa20 stream cipher algorithm is designed by Daniel J.
  863. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  864. config CRYPTO_SALSA20_586
  865. tristate "Salsa20 stream cipher algorithm (i586)"
  866. depends on (X86 || UML_X86) && !64BIT
  867. select CRYPTO_BLKCIPHER
  868. help
  869. Salsa20 stream cipher algorithm.
  870. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  871. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  872. The Salsa20 stream cipher algorithm is designed by Daniel J.
  873. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  874. config CRYPTO_SALSA20_X86_64
  875. tristate "Salsa20 stream cipher algorithm (x86_64)"
  876. depends on (X86 || UML_X86) && 64BIT
  877. select CRYPTO_BLKCIPHER
  878. help
  879. Salsa20 stream cipher algorithm.
  880. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  881. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  882. The Salsa20 stream cipher algorithm is designed by Daniel J.
  883. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  884. config CRYPTO_SEED
  885. tristate "SEED cipher algorithm"
  886. select CRYPTO_ALGAPI
  887. help
  888. SEED cipher algorithm (RFC4269).
  889. SEED is a 128-bit symmetric key block cipher that has been
  890. developed by KISA (Korea Information Security Agency) as a
  891. national standard encryption algorithm of the Republic of Korea.
  892. It is a 16 round block cipher with the key size of 128 bit.
  893. See also:
  894. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  895. config CRYPTO_SERPENT
  896. tristate "Serpent cipher algorithm"
  897. select CRYPTO_ALGAPI
  898. help
  899. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  900. Keys are allowed to be from 0 to 256 bits in length, in steps
  901. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  902. variant of Serpent for compatibility with old kerneli.org code.
  903. See also:
  904. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  905. config CRYPTO_SERPENT_SSE2_X86_64
  906. tristate "Serpent cipher algorithm (x86_64/SSE2)"
  907. depends on X86 && 64BIT
  908. select CRYPTO_ALGAPI
  909. select CRYPTO_CRYPTD
  910. select CRYPTO_ABLK_HELPER_X86
  911. select CRYPTO_GLUE_HELPER_X86
  912. select CRYPTO_SERPENT
  913. select CRYPTO_LRW
  914. select CRYPTO_XTS
  915. help
  916. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  917. Keys are allowed to be from 0 to 256 bits in length, in steps
  918. of 8 bits.
  919. This module provides Serpent cipher algorithm that processes eigth
  920. blocks parallel using SSE2 instruction set.
  921. See also:
  922. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  923. config CRYPTO_SERPENT_SSE2_586
  924. tristate "Serpent cipher algorithm (i586/SSE2)"
  925. depends on X86 && !64BIT
  926. select CRYPTO_ALGAPI
  927. select CRYPTO_CRYPTD
  928. select CRYPTO_ABLK_HELPER_X86
  929. select CRYPTO_GLUE_HELPER_X86
  930. select CRYPTO_SERPENT
  931. select CRYPTO_LRW
  932. select CRYPTO_XTS
  933. help
  934. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  935. Keys are allowed to be from 0 to 256 bits in length, in steps
  936. of 8 bits.
  937. This module provides Serpent cipher algorithm that processes four
  938. blocks parallel using SSE2 instruction set.
  939. See also:
  940. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  941. config CRYPTO_SERPENT_AVX_X86_64
  942. tristate "Serpent cipher algorithm (x86_64/AVX)"
  943. depends on X86 && 64BIT
  944. select CRYPTO_ALGAPI
  945. select CRYPTO_CRYPTD
  946. select CRYPTO_ABLK_HELPER_X86
  947. select CRYPTO_GLUE_HELPER_X86
  948. select CRYPTO_SERPENT
  949. select CRYPTO_LRW
  950. select CRYPTO_XTS
  951. help
  952. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  953. Keys are allowed to be from 0 to 256 bits in length, in steps
  954. of 8 bits.
  955. This module provides the Serpent cipher algorithm that processes
  956. eight blocks parallel using the AVX instruction set.
  957. See also:
  958. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  959. config CRYPTO_SERPENT_AVX2_X86_64
  960. tristate "Serpent cipher algorithm (x86_64/AVX2)"
  961. depends on X86 && 64BIT
  962. select CRYPTO_ALGAPI
  963. select CRYPTO_CRYPTD
  964. select CRYPTO_ABLK_HELPER_X86
  965. select CRYPTO_GLUE_HELPER_X86
  966. select CRYPTO_SERPENT
  967. select CRYPTO_SERPENT_AVX_X86_64
  968. select CRYPTO_LRW
  969. select CRYPTO_XTS
  970. help
  971. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  972. Keys are allowed to be from 0 to 256 bits in length, in steps
  973. of 8 bits.
  974. This module provides Serpent cipher algorithm that processes 16
  975. blocks parallel using AVX2 instruction set.
  976. See also:
  977. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  978. config CRYPTO_TEA
  979. tristate "TEA, XTEA and XETA cipher algorithms"
  980. select CRYPTO_ALGAPI
  981. help
  982. TEA cipher algorithm.
  983. Tiny Encryption Algorithm is a simple cipher that uses
  984. many rounds for security. It is very fast and uses
  985. little memory.
  986. Xtendend Tiny Encryption Algorithm is a modification to
  987. the TEA algorithm to address a potential key weakness
  988. in the TEA algorithm.
  989. Xtendend Encryption Tiny Algorithm is a mis-implementation
  990. of the XTEA algorithm for compatibility purposes.
  991. config CRYPTO_TWOFISH
  992. tristate "Twofish cipher algorithm"
  993. select CRYPTO_ALGAPI
  994. select CRYPTO_TWOFISH_COMMON
  995. help
  996. Twofish cipher algorithm.
  997. Twofish was submitted as an AES (Advanced Encryption Standard)
  998. candidate cipher by researchers at CounterPane Systems. It is a
  999. 16 round block cipher supporting key sizes of 128, 192, and 256
  1000. bits.
  1001. See also:
  1002. <http://www.schneier.com/twofish.html>
  1003. config CRYPTO_TWOFISH_COMMON
  1004. tristate
  1005. help
  1006. Common parts of the Twofish cipher algorithm shared by the
  1007. generic c and the assembler implementations.
  1008. config CRYPTO_TWOFISH_586
  1009. tristate "Twofish cipher algorithms (i586)"
  1010. depends on (X86 || UML_X86) && !64BIT
  1011. select CRYPTO_ALGAPI
  1012. select CRYPTO_TWOFISH_COMMON
  1013. help
  1014. Twofish cipher algorithm.
  1015. Twofish was submitted as an AES (Advanced Encryption Standard)
  1016. candidate cipher by researchers at CounterPane Systems. It is a
  1017. 16 round block cipher supporting key sizes of 128, 192, and 256
  1018. bits.
  1019. See also:
  1020. <http://www.schneier.com/twofish.html>
  1021. config CRYPTO_TWOFISH_X86_64
  1022. tristate "Twofish cipher algorithm (x86_64)"
  1023. depends on (X86 || UML_X86) && 64BIT
  1024. select CRYPTO_ALGAPI
  1025. select CRYPTO_TWOFISH_COMMON
  1026. help
  1027. Twofish cipher algorithm (x86_64).
  1028. Twofish was submitted as an AES (Advanced Encryption Standard)
  1029. candidate cipher by researchers at CounterPane Systems. It is a
  1030. 16 round block cipher supporting key sizes of 128, 192, and 256
  1031. bits.
  1032. See also:
  1033. <http://www.schneier.com/twofish.html>
  1034. config CRYPTO_TWOFISH_X86_64_3WAY
  1035. tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
  1036. depends on X86 && 64BIT
  1037. select CRYPTO_ALGAPI
  1038. select CRYPTO_TWOFISH_COMMON
  1039. select CRYPTO_TWOFISH_X86_64
  1040. select CRYPTO_GLUE_HELPER_X86
  1041. select CRYPTO_LRW
  1042. select CRYPTO_XTS
  1043. help
  1044. Twofish cipher algorithm (x86_64, 3-way parallel).
  1045. Twofish was submitted as an AES (Advanced Encryption Standard)
  1046. candidate cipher by researchers at CounterPane Systems. It is a
  1047. 16 round block cipher supporting key sizes of 128, 192, and 256
  1048. bits.
  1049. This module provides Twofish cipher algorithm that processes three
  1050. blocks parallel, utilizing resources of out-of-order CPUs better.
  1051. See also:
  1052. <http://www.schneier.com/twofish.html>
  1053. config CRYPTO_TWOFISH_AVX_X86_64
  1054. tristate "Twofish cipher algorithm (x86_64/AVX)"
  1055. depends on X86 && 64BIT
  1056. select CRYPTO_ALGAPI
  1057. select CRYPTO_CRYPTD
  1058. select CRYPTO_ABLK_HELPER_X86
  1059. select CRYPTO_GLUE_HELPER_X86
  1060. select CRYPTO_TWOFISH_COMMON
  1061. select CRYPTO_TWOFISH_X86_64
  1062. select CRYPTO_TWOFISH_X86_64_3WAY
  1063. select CRYPTO_LRW
  1064. select CRYPTO_XTS
  1065. help
  1066. Twofish cipher algorithm (x86_64/AVX).
  1067. Twofish was submitted as an AES (Advanced Encryption Standard)
  1068. candidate cipher by researchers at CounterPane Systems. It is a
  1069. 16 round block cipher supporting key sizes of 128, 192, and 256
  1070. bits.
  1071. This module provides the Twofish cipher algorithm that processes
  1072. eight blocks parallel using the AVX Instruction Set.
  1073. See also:
  1074. <http://www.schneier.com/twofish.html>
  1075. comment "Compression"
  1076. config CRYPTO_DEFLATE
  1077. tristate "Deflate compression algorithm"
  1078. select CRYPTO_ALGAPI
  1079. select ZLIB_INFLATE
  1080. select ZLIB_DEFLATE
  1081. help
  1082. This is the Deflate algorithm (RFC1951), specified for use in
  1083. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  1084. You will most probably want this if using IPSec.
  1085. config CRYPTO_ZLIB
  1086. tristate "Zlib compression algorithm"
  1087. select CRYPTO_PCOMP
  1088. select ZLIB_INFLATE
  1089. select ZLIB_DEFLATE
  1090. select NLATTR
  1091. help
  1092. This is the zlib algorithm.
  1093. config CRYPTO_LZO
  1094. tristate "LZO compression algorithm"
  1095. select CRYPTO_ALGAPI
  1096. select LZO_COMPRESS
  1097. select LZO_DECOMPRESS
  1098. help
  1099. This is the LZO algorithm.
  1100. config CRYPTO_842
  1101. tristate "842 compression algorithm"
  1102. depends on CRYPTO_DEV_NX_COMPRESS
  1103. # 842 uses lzo if the hardware becomes unavailable
  1104. select LZO_COMPRESS
  1105. select LZO_DECOMPRESS
  1106. help
  1107. This is the 842 algorithm.
  1108. config CRYPTO_LZ4
  1109. tristate "LZ4 compression algorithm"
  1110. select CRYPTO_ALGAPI
  1111. select LZ4_COMPRESS
  1112. select LZ4_DECOMPRESS
  1113. help
  1114. This is the LZ4 algorithm.
  1115. config CRYPTO_LZ4HC
  1116. tristate "LZ4HC compression algorithm"
  1117. select CRYPTO_ALGAPI
  1118. select LZ4HC_COMPRESS
  1119. select LZ4_DECOMPRESS
  1120. help
  1121. This is the LZ4 high compression mode algorithm.
  1122. comment "Random Number Generation"
  1123. config CRYPTO_ANSI_CPRNG
  1124. tristate "Pseudo Random Number Generation for Cryptographic modules"
  1125. default m
  1126. select CRYPTO_AES
  1127. select CRYPTO_RNG
  1128. help
  1129. This option enables the generic pseudo random number generator
  1130. for cryptographic modules. Uses the Algorithm specified in
  1131. ANSI X9.31 A.2.4. Note that this option must be enabled if
  1132. CRYPTO_FIPS is selected
  1133. config CRYPTO_USER_API
  1134. tristate
  1135. config CRYPTO_USER_API_HASH
  1136. tristate "User-space interface for hash algorithms"
  1137. depends on NET
  1138. select CRYPTO_HASH
  1139. select CRYPTO_USER_API
  1140. help
  1141. This option enables the user-spaces interface for hash
  1142. algorithms.
  1143. config CRYPTO_USER_API_SKCIPHER
  1144. tristate "User-space interface for symmetric key cipher algorithms"
  1145. depends on NET
  1146. select CRYPTO_BLKCIPHER
  1147. select CRYPTO_USER_API
  1148. help
  1149. This option enables the user-spaces interface for symmetric
  1150. key cipher algorithms.
  1151. source "drivers/crypto/Kconfig"
  1152. source crypto/asymmetric_keys/Kconfig
  1153. endif # if CRYPTO