vectors.S 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*
  2. * arch/xtensa/kernel/vectors.S
  3. *
  4. * This file contains all exception vectors (user, kernel, and double),
  5. * as well as the window vectors (overflow and underflow), and the debug
  6. * vector. These are the primary vectors executed by the processor if an
  7. * exception occurs.
  8. *
  9. * This file is subject to the terms and conditions of the GNU General
  10. * Public License. See the file "COPYING" in the main directory of
  11. * this archive for more details.
  12. *
  13. * Copyright (C) 2005 - 2008 Tensilica, Inc.
  14. *
  15. * Chris Zankel <chris@zankel.net>
  16. *
  17. */
  18. /*
  19. * We use a two-level table approach. The user and kernel exception vectors
  20. * use a first-level dispatch table to dispatch the exception to a registered
  21. * fast handler or the default handler, if no fast handler was registered.
  22. * The default handler sets up a C-stack and dispatches the exception to a
  23. * registerd C handler in the second-level dispatch table.
  24. *
  25. * Fast handler entry condition:
  26. *
  27. * a0: trashed, original value saved on stack (PT_AREG0)
  28. * a1: a1
  29. * a2: new stack pointer, original value in depc
  30. * a3: dispatch table
  31. * depc: a2, original value saved on stack (PT_DEPC)
  32. * excsave_1: a3
  33. *
  34. * The value for PT_DEPC saved to stack also functions as a boolean to
  35. * indicate that the exception is either a double or a regular exception:
  36. *
  37. * PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
  38. * < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
  39. *
  40. * Note: Neither the kernel nor the user exception handler generate literals.
  41. *
  42. */
  43. #include <linux/linkage.h>
  44. #include <asm/ptrace.h>
  45. #include <asm/current.h>
  46. #include <asm/asm-offsets.h>
  47. #include <asm/pgtable.h>
  48. #include <asm/processor.h>
  49. #include <asm/page.h>
  50. #include <asm/thread_info.h>
  51. #include <asm/vectors.h>
  52. #define WINDOW_VECTORS_SIZE 0x180
  53. /*
  54. * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
  55. *
  56. * We get here when an exception occurred while we were in userland.
  57. * We switch to the kernel stack and jump to the first level handler
  58. * associated to the exception cause.
  59. *
  60. * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
  61. * decremented by PT_USER_SIZE.
  62. */
  63. .section .UserExceptionVector.text, "ax"
  64. ENTRY(_UserExceptionVector)
  65. xsr a3, excsave1 # save a3 and get dispatch table
  66. wsr a2, depc # save a2
  67. l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
  68. s32i a0, a2, PT_AREG0 # save a0 to ESF
  69. rsr a0, exccause # retrieve exception cause
  70. s32i a0, a2, PT_DEPC # mark it as a regular exception
  71. addx4 a0, a0, a3 # find entry in table
  72. l32i a0, a0, EXC_TABLE_FAST_USER # load handler
  73. xsr a3, excsave1 # restore a3 and dispatch table
  74. jx a0
  75. ENDPROC(_UserExceptionVector)
  76. /*
  77. * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
  78. *
  79. * We get this exception when we were already in kernel space.
  80. * We decrement the current stack pointer (kernel) by PT_SIZE and
  81. * jump to the first-level handler associated with the exception cause.
  82. *
  83. * Note: we need to preserve space for the spill region.
  84. */
  85. .section .KernelExceptionVector.text, "ax"
  86. ENTRY(_KernelExceptionVector)
  87. xsr a3, excsave1 # save a3, and get dispatch table
  88. wsr a2, depc # save a2
  89. addi a2, a1, -16-PT_SIZE # adjust stack pointer
  90. s32i a0, a2, PT_AREG0 # save a0 to ESF
  91. rsr a0, exccause # retrieve exception cause
  92. s32i a0, a2, PT_DEPC # mark it as a regular exception
  93. addx4 a0, a0, a3 # find entry in table
  94. l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
  95. xsr a3, excsave1 # restore a3 and dispatch table
  96. jx a0
  97. ENDPROC(_KernelExceptionVector)
  98. /*
  99. * Double exception vector (Exceptions with PS.EXCM == 1)
  100. * We get this exception when another exception occurs while were are
  101. * already in an exception, such as window overflow/underflow exception,
  102. * or 'expected' exceptions, for example memory exception when we were trying
  103. * to read data from an invalid address in user space.
  104. *
  105. * Note that this vector is never invoked for level-1 interrupts, because such
  106. * interrupts are disabled (masked) when PS.EXCM is set.
  107. *
  108. * We decode the exception and take the appropriate action. However, the
  109. * double exception vector is much more careful, because a lot more error
  110. * cases go through the double exception vector than through the user and
  111. * kernel exception vectors.
  112. *
  113. * Occasionally, the kernel expects a double exception to occur. This usually
  114. * happens when accessing user-space memory with the user's permissions
  115. * (l32e/s32e instructions). The kernel state, though, is not always suitable
  116. * for immediate transfer of control to handle_double, where "normal" exception
  117. * processing occurs. Also in kernel mode, TLB misses can occur if accessing
  118. * vmalloc memory, possibly requiring repair in a double exception handler.
  119. *
  120. * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
  121. * a boolean variable and a pointer to a fixup routine. If the variable
  122. * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
  123. * zero indicates to use the default kernel/user exception handler.
  124. * There is only one exception, when the value is identical to the exc_table
  125. * label, the kernel is in trouble. This mechanism is used to protect critical
  126. * sections, mainly when the handler writes to the stack to assert the stack
  127. * pointer is valid. Once the fixup/default handler leaves that area, the
  128. * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
  129. *
  130. * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
  131. * nonzero address of a fixup routine before it could cause a double exception
  132. * and reset it before it returns.
  133. *
  134. * Some other things to take care of when a fast exception handler doesn't
  135. * specify a particular fixup handler but wants to use the default handlers:
  136. *
  137. * - The original stack pointer (in a1) must not be modified. The fast
  138. * exception handler should only use a2 as the stack pointer.
  139. *
  140. * - If the fast handler manipulates the stack pointer (in a2), it has to
  141. * register a valid fixup handler and cannot use the default handlers.
  142. *
  143. * - The handler can use any other generic register from a3 to a15, but it
  144. * must save the content of these registers to stack (PT_AREG3...PT_AREGx)
  145. *
  146. * - These registers must be saved before a double exception can occur.
  147. *
  148. * - If we ever implement handling signals while in double exceptions, the
  149. * number of registers a fast handler has saved (excluding a0 and a1) must
  150. * be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
  151. *
  152. * The fixup handlers are special handlers:
  153. *
  154. * - Fixup entry conditions differ from regular exceptions:
  155. *
  156. * a0: DEPC
  157. * a1: a1
  158. * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
  159. * a3: exctable
  160. * depc: a0
  161. * excsave_1: a3
  162. *
  163. * - When the kernel enters the fixup handler, it still assumes it is in a
  164. * critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
  165. * The fixup handler, therefore, has to re-register itself as the fixup
  166. * handler before it returns from the double exception.
  167. *
  168. * - Fixup handler can share the same exception frame with the fast handler.
  169. * The kernel stack pointer is not changed when entering the fixup handler.
  170. *
  171. * - Fixup handlers can jump to the default kernel and user exception
  172. * handlers. Before it jumps, though, it has to setup a exception frame
  173. * on stack. Because the default handler resets the register fixup handler
  174. * the fixup handler must make sure that the default handler returns to
  175. * it instead of the exception address, so it can re-register itself as
  176. * the fixup handler.
  177. *
  178. * In case of a critical condition where the kernel cannot recover, we jump
  179. * to unrecoverable_exception with the following entry conditions.
  180. * All registers a0...a15 are unchanged from the last exception, except:
  181. *
  182. * a0: last address before we jumped to the unrecoverable_exception.
  183. * excsave_1: a0
  184. *
  185. *
  186. * See the handle_alloca_user and spill_registers routines for example clients.
  187. *
  188. * FIXME: Note: we currently don't allow signal handling coming from a double
  189. * exception, so the item markt with (*) is not required.
  190. */
  191. .section .DoubleExceptionVector.text, "ax"
  192. .begin literal_prefix .DoubleExceptionVector
  193. .globl _DoubleExceptionVector_WindowUnderflow
  194. .globl _DoubleExceptionVector_WindowOverflow
  195. ENTRY(_DoubleExceptionVector)
  196. xsr a3, excsave1
  197. s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
  198. /* Check for kernel double exception (usually fatal). */
  199. rsr a2, ps
  200. _bbci.l a2, PS_UM_BIT, .Lksp
  201. /* Check if we are currently handling a window exception. */
  202. /* Note: We don't need to indicate that we enter a critical section. */
  203. xsr a0, depc # get DEPC, save a0
  204. movi a2, WINDOW_VECTORS_VADDR
  205. _bltu a0, a2, .Lfixup
  206. addi a2, a2, WINDOW_VECTORS_SIZE
  207. _bgeu a0, a2, .Lfixup
  208. /* Window overflow/underflow exception. Get stack pointer. */
  209. l32i a2, a3, EXC_TABLE_KSTK
  210. /* Check for overflow/underflow exception, jump if overflow. */
  211. _bbci.l a0, 6, _DoubleExceptionVector_WindowOverflow
  212. /*
  213. * Restart window underflow exception.
  214. * Currently:
  215. * depc = orig a0,
  216. * a0 = orig DEPC,
  217. * a2 = new sp based on KSTK from exc_table
  218. * a3 = excsave_1
  219. * excsave_1 = orig a3
  220. *
  221. * We return to the instruction in user space that caused the window
  222. * underflow exception. Therefore, we change window base to the value
  223. * before we entered the window underflow exception and prepare the
  224. * registers to return as if we were coming from a regular exception
  225. * by changing depc (in a0).
  226. * Note: We can trash the current window frame (a0...a3) and depc!
  227. */
  228. _DoubleExceptionVector_WindowUnderflow:
  229. xsr a3, excsave1
  230. wsr a2, depc # save stack pointer temporarily
  231. rsr a0, ps
  232. extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
  233. wsr a0, windowbase
  234. rsync
  235. /* We are now in the previous window frame. Save registers again. */
  236. xsr a2, depc # save a2 and get stack pointer
  237. s32i a0, a2, PT_AREG0
  238. xsr a3, excsave1
  239. rsr a0, exccause
  240. s32i a0, a2, PT_DEPC # mark it as a regular exception
  241. addx4 a0, a0, a3
  242. xsr a3, excsave1
  243. l32i a0, a0, EXC_TABLE_FAST_USER
  244. jx a0
  245. /*
  246. * We only allow the ITLB miss exception if we are in kernel space.
  247. * All other exceptions are unexpected and thus unrecoverable!
  248. */
  249. #ifdef CONFIG_MMU
  250. .extern fast_second_level_miss_double_kernel
  251. .Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
  252. rsr a3, exccause
  253. beqi a3, EXCCAUSE_ITLB_MISS, 1f
  254. addi a3, a3, -EXCCAUSE_DTLB_MISS
  255. bnez a3, .Lunrecoverable
  256. 1: movi a3, fast_second_level_miss_double_kernel
  257. jx a3
  258. #else
  259. .equ .Lksp, .Lunrecoverable
  260. #endif
  261. /* Critical! We can't handle this situation. PANIC! */
  262. .extern unrecoverable_exception
  263. .Lunrecoverable_fixup:
  264. l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
  265. xsr a0, depc
  266. .Lunrecoverable:
  267. rsr a3, excsave1
  268. wsr a0, excsave1
  269. movi a0, unrecoverable_exception
  270. callx0 a0
  271. .Lfixup:/* Check for a fixup handler or if we were in a critical section. */
  272. /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
  273. /* Enter critical section. */
  274. l32i a2, a3, EXC_TABLE_FIXUP
  275. s32i a3, a3, EXC_TABLE_FIXUP
  276. beq a2, a3, .Lunrecoverable_fixup # critical section
  277. beqz a2, .Ldflt # no handler was registered
  278. /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
  279. jx a2
  280. .Ldflt: /* Get stack pointer. */
  281. l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
  282. addi a2, a2, -PT_USER_SIZE
  283. /* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
  284. s32i a0, a2, PT_DEPC
  285. l32i a0, a3, EXC_TABLE_DOUBLE_SAVE
  286. xsr a0, depc
  287. s32i a0, a2, PT_AREG0
  288. /* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
  289. rsr a0, exccause
  290. addx4 a0, a0, a3
  291. xsr a3, excsave1
  292. l32i a0, a0, EXC_TABLE_FAST_USER
  293. jx a0
  294. /*
  295. * Restart window OVERFLOW exception.
  296. * Currently:
  297. * depc = orig a0,
  298. * a0 = orig DEPC,
  299. * a2 = new sp based on KSTK from exc_table
  300. * a3 = EXCSAVE_1
  301. * excsave_1 = orig a3
  302. *
  303. * We return to the instruction in user space that caused the window
  304. * overflow exception. Therefore, we change window base to the value
  305. * before we entered the window overflow exception and prepare the
  306. * registers to return as if we were coming from a regular exception
  307. * by changing DEPC (in a0).
  308. *
  309. * NOTE: We CANNOT trash the current window frame (a0...a3), but we
  310. * can clobber depc.
  311. *
  312. * The tricky part here is that overflow8 and overflow12 handlers
  313. * save a0, then clobber a0. To restart the handler, we have to restore
  314. * a0 if the double exception was past the point where a0 was clobbered.
  315. *
  316. * To keep things simple, we take advantage of the fact all overflow
  317. * handlers save a0 in their very first instruction. If DEPC was past
  318. * that instruction, we can safely restore a0 from where it was saved
  319. * on the stack.
  320. *
  321. * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
  322. */
  323. _DoubleExceptionVector_WindowOverflow:
  324. extui a2, a0, 0, 6 # get offset into 64-byte vector handler
  325. beqz a2, 1f # if at start of vector, don't restore
  326. addi a0, a0, -128
  327. bbsi a0, 8, 1f # don't restore except for overflow 8 and 12
  328. bbsi a0, 7, 2f
  329. /*
  330. * Restore a0 as saved by _WindowOverflow8().
  331. *
  332. * FIXME: we really need a fixup handler for this L32E,
  333. * for the extremely unlikely case where the overflow handler's
  334. * reference thru a0 gets a hardware TLB refill that bumps out
  335. * the (distinct, aliasing) TLB entry that mapped its prior
  336. * references thru a9, and where our reference now thru a9
  337. * gets a 2nd-level miss exception (not hardware TLB refill).
  338. */
  339. l32e a2, a9, -16
  340. wsr a2, depc # replace the saved a0
  341. j 1f
  342. 2:
  343. /*
  344. * Restore a0 as saved by _WindowOverflow12().
  345. *
  346. * FIXME: we really need a fixup handler for this L32E,
  347. * for the extremely unlikely case where the overflow handler's
  348. * reference thru a0 gets a hardware TLB refill that bumps out
  349. * the (distinct, aliasing) TLB entry that mapped its prior
  350. * references thru a13, and where our reference now thru a13
  351. * gets a 2nd-level miss exception (not hardware TLB refill).
  352. */
  353. l32e a2, a13, -16
  354. wsr a2, depc # replace the saved a0
  355. 1:
  356. /*
  357. * Restore WindowBase while leaving all address registers restored.
  358. * We have to use ROTW for this, because WSR.WINDOWBASE requires
  359. * an address register (which would prevent restore).
  360. *
  361. * Window Base goes from 0 ... 7 (Module 8)
  362. * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
  363. */
  364. rsr a0, ps
  365. extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
  366. rsr a2, windowbase
  367. sub a0, a2, a0
  368. extui a0, a0, 0, 3
  369. l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
  370. xsr a3, excsave1
  371. beqi a0, 1, .L1pane
  372. beqi a0, 3, .L3pane
  373. rsr a0, depc
  374. rotw -2
  375. /*
  376. * We are now in the user code's original window frame.
  377. * Process the exception as a user exception as if it was
  378. * taken by the user code.
  379. *
  380. * This is similar to the user exception vector,
  381. * except that PT_DEPC isn't set to EXCCAUSE.
  382. */
  383. 1:
  384. xsr a3, excsave1
  385. wsr a2, depc
  386. l32i a2, a3, EXC_TABLE_KSTK
  387. s32i a0, a2, PT_AREG0
  388. rsr a0, exccause
  389. s32i a0, a2, PT_DEPC
  390. addx4 a0, a0, a3
  391. l32i a0, a0, EXC_TABLE_FAST_USER
  392. xsr a3, excsave1
  393. jx a0
  394. .L1pane:
  395. rsr a0, depc
  396. rotw -1
  397. j 1b
  398. .L3pane:
  399. rsr a0, depc
  400. rotw -3
  401. j 1b
  402. .end literal_prefix
  403. ENDPROC(_DoubleExceptionVector)
  404. /*
  405. * Debug interrupt vector
  406. *
  407. * There is not much space here, so simply jump to another handler.
  408. * EXCSAVE[DEBUGLEVEL] has been set to that handler.
  409. */
  410. .section .DebugInterruptVector.text, "ax"
  411. ENTRY(_DebugInterruptVector)
  412. xsr a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
  413. jx a0
  414. ENDPROC(_DebugInterruptVector)
  415. /*
  416. * Medium priority level interrupt vectors
  417. *
  418. * Each takes less than 16 (0x10) bytes, no literals, by placing
  419. * the extra 8 bytes that would otherwise be required in the window
  420. * vectors area where there is space. With relocatable vectors,
  421. * all vectors are within ~ 4 kB range of each other, so we can
  422. * simply jump (J) to another vector without having to use JX.
  423. *
  424. * common_exception code gets current IRQ level in PS.INTLEVEL
  425. * and preserves it for the IRQ handling time.
  426. */
  427. .macro irq_entry_level level
  428. .if XCHAL_EXCM_LEVEL >= \level
  429. .section .Level\level\()InterruptVector.text, "ax"
  430. ENTRY(_Level\level\()InterruptVector)
  431. wsr a0, excsave2
  432. rsr a0, epc\level
  433. wsr a0, epc1
  434. movi a0, EXCCAUSE_LEVEL1_INTERRUPT
  435. wsr a0, exccause
  436. rsr a0, eps\level
  437. # branch to user or kernel vector
  438. j _SimulateUserKernelVectorException
  439. .endif
  440. .endm
  441. irq_entry_level 2
  442. irq_entry_level 3
  443. irq_entry_level 4
  444. irq_entry_level 5
  445. irq_entry_level 6
  446. /* Window overflow and underflow handlers.
  447. * The handlers must be 64 bytes apart, first starting with the underflow
  448. * handlers underflow-4 to underflow-12, then the overflow handlers
  449. * overflow-4 to overflow-12.
  450. *
  451. * Note: We rerun the underflow handlers if we hit an exception, so
  452. * we try to access any page that would cause a page fault early.
  453. */
  454. #define ENTRY_ALIGN64(name) \
  455. .globl name; \
  456. .align 64; \
  457. name:
  458. .section .WindowVectors.text, "ax"
  459. /* 4-Register Window Overflow Vector (Handler) */
  460. ENTRY_ALIGN64(_WindowOverflow4)
  461. s32e a0, a5, -16
  462. s32e a1, a5, -12
  463. s32e a2, a5, -8
  464. s32e a3, a5, -4
  465. rfwo
  466. ENDPROC(_WindowOverflow4)
  467. #if XCHAL_EXCM_LEVEL >= 2
  468. /* Not a window vector - but a convenient location
  469. * (where we know there's space) for continuation of
  470. * medium priority interrupt dispatch code.
  471. * On entry here, a0 contains PS, and EPC2 contains saved a0:
  472. */
  473. .align 4
  474. _SimulateUserKernelVectorException:
  475. addi a0, a0, (1 << PS_EXCM_BIT)
  476. wsr a0, ps
  477. bbsi.l a0, PS_UM_BIT, 1f # branch if user mode
  478. rsr a0, excsave2 # restore a0
  479. j _KernelExceptionVector # simulate kernel vector exception
  480. 1: rsr a0, excsave2 # restore a0
  481. j _UserExceptionVector # simulate user vector exception
  482. #endif
  483. /* 4-Register Window Underflow Vector (Handler) */
  484. ENTRY_ALIGN64(_WindowUnderflow4)
  485. l32e a0, a5, -16
  486. l32e a1, a5, -12
  487. l32e a2, a5, -8
  488. l32e a3, a5, -4
  489. rfwu
  490. ENDPROC(_WindowUnderflow4)
  491. /* 8-Register Window Overflow Vector (Handler) */
  492. ENTRY_ALIGN64(_WindowOverflow8)
  493. s32e a0, a9, -16
  494. l32e a0, a1, -12
  495. s32e a2, a9, -8
  496. s32e a1, a9, -12
  497. s32e a3, a9, -4
  498. s32e a4, a0, -32
  499. s32e a5, a0, -28
  500. s32e a6, a0, -24
  501. s32e a7, a0, -20
  502. rfwo
  503. ENDPROC(_WindowOverflow8)
  504. /* 8-Register Window Underflow Vector (Handler) */
  505. ENTRY_ALIGN64(_WindowUnderflow8)
  506. l32e a1, a9, -12
  507. l32e a0, a9, -16
  508. l32e a7, a1, -12
  509. l32e a2, a9, -8
  510. l32e a4, a7, -32
  511. l32e a3, a9, -4
  512. l32e a5, a7, -28
  513. l32e a6, a7, -24
  514. l32e a7, a7, -20
  515. rfwu
  516. ENDPROC(_WindowUnderflow8)
  517. /* 12-Register Window Overflow Vector (Handler) */
  518. ENTRY_ALIGN64(_WindowOverflow12)
  519. s32e a0, a13, -16
  520. l32e a0, a1, -12
  521. s32e a1, a13, -12
  522. s32e a2, a13, -8
  523. s32e a3, a13, -4
  524. s32e a4, a0, -48
  525. s32e a5, a0, -44
  526. s32e a6, a0, -40
  527. s32e a7, a0, -36
  528. s32e a8, a0, -32
  529. s32e a9, a0, -28
  530. s32e a10, a0, -24
  531. s32e a11, a0, -20
  532. rfwo
  533. ENDPROC(_WindowOverflow12)
  534. /* 12-Register Window Underflow Vector (Handler) */
  535. ENTRY_ALIGN64(_WindowUnderflow12)
  536. l32e a1, a13, -12
  537. l32e a0, a13, -16
  538. l32e a11, a1, -12
  539. l32e a2, a13, -8
  540. l32e a4, a11, -48
  541. l32e a8, a11, -32
  542. l32e a3, a13, -4
  543. l32e a5, a11, -44
  544. l32e a6, a11, -40
  545. l32e a7, a11, -36
  546. l32e a9, a11, -28
  547. l32e a10, a11, -24
  548. l32e a11, a11, -20
  549. rfwu
  550. ENDPROC(_WindowUnderflow12)
  551. .text