book3s_64_mmu_hv.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16. */
  17. #include <linux/types.h>
  18. #include <linux/string.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/highmem.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/srcu.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/file.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/kvm_ppc.h>
  31. #include <asm/kvm_book3s.h>
  32. #include <asm/mmu-hash64.h>
  33. #include <asm/hvcall.h>
  34. #include <asm/synch.h>
  35. #include <asm/ppc-opcode.h>
  36. #include <asm/cputable.h>
  37. #include "book3s_hv_cma.h"
  38. /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  39. #define MAX_LPID_970 63
  40. /* Power architecture requires HPT is at least 256kB */
  41. #define PPC_MIN_HPT_ORDER 18
  42. static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  43. long pte_index, unsigned long pteh,
  44. unsigned long ptel, unsigned long *pte_idx_ret);
  45. static void kvmppc_rmap_reset(struct kvm *kvm);
  46. long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  47. {
  48. unsigned long hpt;
  49. struct revmap_entry *rev;
  50. struct page *page = NULL;
  51. long order = KVM_DEFAULT_HPT_ORDER;
  52. if (htab_orderp) {
  53. order = *htab_orderp;
  54. if (order < PPC_MIN_HPT_ORDER)
  55. order = PPC_MIN_HPT_ORDER;
  56. }
  57. kvm->arch.hpt_cma_alloc = 0;
  58. /*
  59. * try first to allocate it from the kernel page allocator.
  60. * We keep the CMA reserved for failed allocation.
  61. */
  62. hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
  63. __GFP_NOWARN, order - PAGE_SHIFT);
  64. /* Next try to allocate from the preallocated pool */
  65. if (!hpt) {
  66. VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
  67. page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
  68. if (page) {
  69. hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  70. kvm->arch.hpt_cma_alloc = 1;
  71. } else
  72. --order;
  73. }
  74. /* Lastly try successively smaller sizes from the page allocator */
  75. while (!hpt && order > PPC_MIN_HPT_ORDER) {
  76. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  77. __GFP_NOWARN, order - PAGE_SHIFT);
  78. if (!hpt)
  79. --order;
  80. }
  81. if (!hpt)
  82. return -ENOMEM;
  83. kvm->arch.hpt_virt = hpt;
  84. kvm->arch.hpt_order = order;
  85. /* HPTEs are 2**4 bytes long */
  86. kvm->arch.hpt_npte = 1ul << (order - 4);
  87. /* 128 (2**7) bytes in each HPTEG */
  88. kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  89. /* Allocate reverse map array */
  90. rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  91. if (!rev) {
  92. pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  93. goto out_freehpt;
  94. }
  95. kvm->arch.revmap = rev;
  96. kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  97. pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  98. hpt, order, kvm->arch.lpid);
  99. if (htab_orderp)
  100. *htab_orderp = order;
  101. return 0;
  102. out_freehpt:
  103. if (kvm->arch.hpt_cma_alloc)
  104. kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
  105. else
  106. free_pages(hpt, order - PAGE_SHIFT);
  107. return -ENOMEM;
  108. }
  109. long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
  110. {
  111. long err = -EBUSY;
  112. long order;
  113. mutex_lock(&kvm->lock);
  114. if (kvm->arch.rma_setup_done) {
  115. kvm->arch.rma_setup_done = 0;
  116. /* order rma_setup_done vs. vcpus_running */
  117. smp_mb();
  118. if (atomic_read(&kvm->arch.vcpus_running)) {
  119. kvm->arch.rma_setup_done = 1;
  120. goto out;
  121. }
  122. }
  123. if (kvm->arch.hpt_virt) {
  124. order = kvm->arch.hpt_order;
  125. /* Set the entire HPT to 0, i.e. invalid HPTEs */
  126. memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
  127. /*
  128. * Reset all the reverse-mapping chains for all memslots
  129. */
  130. kvmppc_rmap_reset(kvm);
  131. /* Ensure that each vcpu will flush its TLB on next entry. */
  132. cpumask_setall(&kvm->arch.need_tlb_flush);
  133. *htab_orderp = order;
  134. err = 0;
  135. } else {
  136. err = kvmppc_alloc_hpt(kvm, htab_orderp);
  137. order = *htab_orderp;
  138. }
  139. out:
  140. mutex_unlock(&kvm->lock);
  141. return err;
  142. }
  143. void kvmppc_free_hpt(struct kvm *kvm)
  144. {
  145. kvmppc_free_lpid(kvm->arch.lpid);
  146. vfree(kvm->arch.revmap);
  147. if (kvm->arch.hpt_cma_alloc)
  148. kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
  149. 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
  150. else
  151. free_pages(kvm->arch.hpt_virt,
  152. kvm->arch.hpt_order - PAGE_SHIFT);
  153. }
  154. /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
  155. static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
  156. {
  157. return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
  158. }
  159. /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
  160. static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
  161. {
  162. return (pgsize == 0x10000) ? 0x1000 : 0;
  163. }
  164. void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
  165. unsigned long porder)
  166. {
  167. unsigned long i;
  168. unsigned long npages;
  169. unsigned long hp_v, hp_r;
  170. unsigned long addr, hash;
  171. unsigned long psize;
  172. unsigned long hp0, hp1;
  173. unsigned long idx_ret;
  174. long ret;
  175. struct kvm *kvm = vcpu->kvm;
  176. psize = 1ul << porder;
  177. npages = memslot->npages >> (porder - PAGE_SHIFT);
  178. /* VRMA can't be > 1TB */
  179. if (npages > 1ul << (40 - porder))
  180. npages = 1ul << (40 - porder);
  181. /* Can't use more than 1 HPTE per HPTEG */
  182. if (npages > kvm->arch.hpt_mask + 1)
  183. npages = kvm->arch.hpt_mask + 1;
  184. hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
  185. HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
  186. hp1 = hpte1_pgsize_encoding(psize) |
  187. HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
  188. for (i = 0; i < npages; ++i) {
  189. addr = i << porder;
  190. /* can't use hpt_hash since va > 64 bits */
  191. hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
  192. /*
  193. * We assume that the hash table is empty and no
  194. * vcpus are using it at this stage. Since we create
  195. * at most one HPTE per HPTEG, we just assume entry 7
  196. * is available and use it.
  197. */
  198. hash = (hash << 3) + 7;
  199. hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
  200. hp_r = hp1 | addr;
  201. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
  202. &idx_ret);
  203. if (ret != H_SUCCESS) {
  204. pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
  205. addr, ret);
  206. break;
  207. }
  208. }
  209. }
  210. int kvmppc_mmu_hv_init(void)
  211. {
  212. unsigned long host_lpid, rsvd_lpid;
  213. if (!cpu_has_feature(CPU_FTR_HVMODE))
  214. return -EINVAL;
  215. /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
  216. if (cpu_has_feature(CPU_FTR_ARCH_206)) {
  217. host_lpid = mfspr(SPRN_LPID); /* POWER7 */
  218. rsvd_lpid = LPID_RSVD;
  219. } else {
  220. host_lpid = 0; /* PPC970 */
  221. rsvd_lpid = MAX_LPID_970;
  222. }
  223. kvmppc_init_lpid(rsvd_lpid + 1);
  224. kvmppc_claim_lpid(host_lpid);
  225. /* rsvd_lpid is reserved for use in partition switching */
  226. kvmppc_claim_lpid(rsvd_lpid);
  227. return 0;
  228. }
  229. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  230. {
  231. }
  232. static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
  233. {
  234. kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
  235. }
  236. /*
  237. * This is called to get a reference to a guest page if there isn't
  238. * one already in the memslot->arch.slot_phys[] array.
  239. */
  240. static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
  241. struct kvm_memory_slot *memslot,
  242. unsigned long psize)
  243. {
  244. unsigned long start;
  245. long np, err;
  246. struct page *page, *hpage, *pages[1];
  247. unsigned long s, pgsize;
  248. unsigned long *physp;
  249. unsigned int is_io, got, pgorder;
  250. struct vm_area_struct *vma;
  251. unsigned long pfn, i, npages;
  252. physp = memslot->arch.slot_phys;
  253. if (!physp)
  254. return -EINVAL;
  255. if (physp[gfn - memslot->base_gfn])
  256. return 0;
  257. is_io = 0;
  258. got = 0;
  259. page = NULL;
  260. pgsize = psize;
  261. err = -EINVAL;
  262. start = gfn_to_hva_memslot(memslot, gfn);
  263. /* Instantiate and get the page we want access to */
  264. np = get_user_pages_fast(start, 1, 1, pages);
  265. if (np != 1) {
  266. /* Look up the vma for the page */
  267. down_read(&current->mm->mmap_sem);
  268. vma = find_vma(current->mm, start);
  269. if (!vma || vma->vm_start > start ||
  270. start + psize > vma->vm_end ||
  271. !(vma->vm_flags & VM_PFNMAP))
  272. goto up_err;
  273. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  274. pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  275. /* check alignment of pfn vs. requested page size */
  276. if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
  277. goto up_err;
  278. up_read(&current->mm->mmap_sem);
  279. } else {
  280. page = pages[0];
  281. got = KVMPPC_GOT_PAGE;
  282. /* See if this is a large page */
  283. s = PAGE_SIZE;
  284. if (PageHuge(page)) {
  285. hpage = compound_head(page);
  286. s <<= compound_order(hpage);
  287. /* Get the whole large page if slot alignment is ok */
  288. if (s > psize && slot_is_aligned(memslot, s) &&
  289. !(memslot->userspace_addr & (s - 1))) {
  290. start &= ~(s - 1);
  291. pgsize = s;
  292. get_page(hpage);
  293. put_page(page);
  294. page = hpage;
  295. }
  296. }
  297. if (s < psize)
  298. goto out;
  299. pfn = page_to_pfn(page);
  300. }
  301. npages = pgsize >> PAGE_SHIFT;
  302. pgorder = __ilog2(npages);
  303. physp += (gfn - memslot->base_gfn) & ~(npages - 1);
  304. spin_lock(&kvm->arch.slot_phys_lock);
  305. for (i = 0; i < npages; ++i) {
  306. if (!physp[i]) {
  307. physp[i] = ((pfn + i) << PAGE_SHIFT) +
  308. got + is_io + pgorder;
  309. got = 0;
  310. }
  311. }
  312. spin_unlock(&kvm->arch.slot_phys_lock);
  313. err = 0;
  314. out:
  315. if (got)
  316. put_page(page);
  317. return err;
  318. up_err:
  319. up_read(&current->mm->mmap_sem);
  320. return err;
  321. }
  322. long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  323. long pte_index, unsigned long pteh,
  324. unsigned long ptel, unsigned long *pte_idx_ret)
  325. {
  326. unsigned long psize, gpa, gfn;
  327. struct kvm_memory_slot *memslot;
  328. long ret;
  329. if (kvm->arch.using_mmu_notifiers)
  330. goto do_insert;
  331. psize = hpte_page_size(pteh, ptel);
  332. if (!psize)
  333. return H_PARAMETER;
  334. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  335. /* Find the memslot (if any) for this address */
  336. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  337. gfn = gpa >> PAGE_SHIFT;
  338. memslot = gfn_to_memslot(kvm, gfn);
  339. if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
  340. if (!slot_is_aligned(memslot, psize))
  341. return H_PARAMETER;
  342. if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
  343. return H_PARAMETER;
  344. }
  345. do_insert:
  346. /* Protect linux PTE lookup from page table destruction */
  347. rcu_read_lock_sched(); /* this disables preemption too */
  348. ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
  349. current->mm->pgd, false, pte_idx_ret);
  350. rcu_read_unlock_sched();
  351. if (ret == H_TOO_HARD) {
  352. /* this can't happen */
  353. pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
  354. ret = H_RESOURCE; /* or something */
  355. }
  356. return ret;
  357. }
  358. /*
  359. * We come here on a H_ENTER call from the guest when we are not
  360. * using mmu notifiers and we don't have the requested page pinned
  361. * already.
  362. */
  363. long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  364. long pte_index, unsigned long pteh,
  365. unsigned long ptel)
  366. {
  367. return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
  368. pteh, ptel, &vcpu->arch.gpr[4]);
  369. }
  370. static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
  371. gva_t eaddr)
  372. {
  373. u64 mask;
  374. int i;
  375. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  376. if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
  377. continue;
  378. if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
  379. mask = ESID_MASK_1T;
  380. else
  381. mask = ESID_MASK;
  382. if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
  383. return &vcpu->arch.slb[i];
  384. }
  385. return NULL;
  386. }
  387. static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
  388. unsigned long ea)
  389. {
  390. unsigned long ra_mask;
  391. ra_mask = hpte_page_size(v, r) - 1;
  392. return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
  393. }
  394. static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  395. struct kvmppc_pte *gpte, bool data)
  396. {
  397. struct kvm *kvm = vcpu->kvm;
  398. struct kvmppc_slb *slbe;
  399. unsigned long slb_v;
  400. unsigned long pp, key;
  401. unsigned long v, gr;
  402. unsigned long *hptep;
  403. int index;
  404. int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
  405. /* Get SLB entry */
  406. if (virtmode) {
  407. slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
  408. if (!slbe)
  409. return -EINVAL;
  410. slb_v = slbe->origv;
  411. } else {
  412. /* real mode access */
  413. slb_v = vcpu->kvm->arch.vrma_slb_v;
  414. }
  415. /* Find the HPTE in the hash table */
  416. index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
  417. HPTE_V_VALID | HPTE_V_ABSENT);
  418. if (index < 0)
  419. return -ENOENT;
  420. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  421. v = hptep[0] & ~HPTE_V_HVLOCK;
  422. gr = kvm->arch.revmap[index].guest_rpte;
  423. /* Unlock the HPTE */
  424. asm volatile("lwsync" : : : "memory");
  425. hptep[0] = v;
  426. gpte->eaddr = eaddr;
  427. gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
  428. /* Get PP bits and key for permission check */
  429. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  430. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  431. key &= slb_v;
  432. /* Calculate permissions */
  433. gpte->may_read = hpte_read_permission(pp, key);
  434. gpte->may_write = hpte_write_permission(pp, key);
  435. gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
  436. /* Storage key permission check for POWER7 */
  437. if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
  438. int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
  439. if (amrfield & 1)
  440. gpte->may_read = 0;
  441. if (amrfield & 2)
  442. gpte->may_write = 0;
  443. }
  444. /* Get the guest physical address */
  445. gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
  446. return 0;
  447. }
  448. /*
  449. * Quick test for whether an instruction is a load or a store.
  450. * If the instruction is a load or a store, then this will indicate
  451. * which it is, at least on server processors. (Embedded processors
  452. * have some external PID instructions that don't follow the rule
  453. * embodied here.) If the instruction isn't a load or store, then
  454. * this doesn't return anything useful.
  455. */
  456. static int instruction_is_store(unsigned int instr)
  457. {
  458. unsigned int mask;
  459. mask = 0x10000000;
  460. if ((instr & 0xfc000000) == 0x7c000000)
  461. mask = 0x100; /* major opcode 31 */
  462. return (instr & mask) != 0;
  463. }
  464. static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
  465. unsigned long gpa, gva_t ea, int is_store)
  466. {
  467. int ret;
  468. u32 last_inst;
  469. unsigned long srr0 = kvmppc_get_pc(vcpu);
  470. /* We try to load the last instruction. We don't let
  471. * emulate_instruction do it as it doesn't check what
  472. * kvmppc_ld returns.
  473. * If we fail, we just return to the guest and try executing it again.
  474. */
  475. if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
  476. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  477. if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
  478. return RESUME_GUEST;
  479. vcpu->arch.last_inst = last_inst;
  480. }
  481. /*
  482. * WARNING: We do not know for sure whether the instruction we just
  483. * read from memory is the same that caused the fault in the first
  484. * place. If the instruction we read is neither an load or a store,
  485. * then it can't access memory, so we don't need to worry about
  486. * enforcing access permissions. So, assuming it is a load or
  487. * store, we just check that its direction (load or store) is
  488. * consistent with the original fault, since that's what we
  489. * checked the access permissions against. If there is a mismatch
  490. * we just return and retry the instruction.
  491. */
  492. if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
  493. return RESUME_GUEST;
  494. /*
  495. * Emulated accesses are emulated by looking at the hash for
  496. * translation once, then performing the access later. The
  497. * translation could be invalidated in the meantime in which
  498. * point performing the subsequent memory access on the old
  499. * physical address could possibly be a security hole for the
  500. * guest (but not the host).
  501. *
  502. * This is less of an issue for MMIO stores since they aren't
  503. * globally visible. It could be an issue for MMIO loads to
  504. * a certain extent but we'll ignore it for now.
  505. */
  506. vcpu->arch.paddr_accessed = gpa;
  507. vcpu->arch.vaddr_accessed = ea;
  508. return kvmppc_emulate_mmio(run, vcpu);
  509. }
  510. int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  511. unsigned long ea, unsigned long dsisr)
  512. {
  513. struct kvm *kvm = vcpu->kvm;
  514. unsigned long *hptep, hpte[3], r;
  515. unsigned long mmu_seq, psize, pte_size;
  516. unsigned long gpa, gfn, hva, pfn;
  517. struct kvm_memory_slot *memslot;
  518. unsigned long *rmap;
  519. struct revmap_entry *rev;
  520. struct page *page, *pages[1];
  521. long index, ret, npages;
  522. unsigned long is_io;
  523. unsigned int writing, write_ok;
  524. struct vm_area_struct *vma;
  525. unsigned long rcbits;
  526. /*
  527. * Real-mode code has already searched the HPT and found the
  528. * entry we're interested in. Lock the entry and check that
  529. * it hasn't changed. If it has, just return and re-execute the
  530. * instruction.
  531. */
  532. if (ea != vcpu->arch.pgfault_addr)
  533. return RESUME_GUEST;
  534. index = vcpu->arch.pgfault_index;
  535. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  536. rev = &kvm->arch.revmap[index];
  537. preempt_disable();
  538. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  539. cpu_relax();
  540. hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
  541. hpte[1] = hptep[1];
  542. hpte[2] = r = rev->guest_rpte;
  543. asm volatile("lwsync" : : : "memory");
  544. hptep[0] = hpte[0];
  545. preempt_enable();
  546. if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
  547. hpte[1] != vcpu->arch.pgfault_hpte[1])
  548. return RESUME_GUEST;
  549. /* Translate the logical address and get the page */
  550. psize = hpte_page_size(hpte[0], r);
  551. gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
  552. gfn = gpa >> PAGE_SHIFT;
  553. memslot = gfn_to_memslot(kvm, gfn);
  554. /* No memslot means it's an emulated MMIO region */
  555. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  556. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  557. dsisr & DSISR_ISSTORE);
  558. if (!kvm->arch.using_mmu_notifiers)
  559. return -EFAULT; /* should never get here */
  560. /* used to check for invalidations in progress */
  561. mmu_seq = kvm->mmu_notifier_seq;
  562. smp_rmb();
  563. is_io = 0;
  564. pfn = 0;
  565. page = NULL;
  566. pte_size = PAGE_SIZE;
  567. writing = (dsisr & DSISR_ISSTORE) != 0;
  568. /* If writing != 0, then the HPTE must allow writing, if we get here */
  569. write_ok = writing;
  570. hva = gfn_to_hva_memslot(memslot, gfn);
  571. npages = get_user_pages_fast(hva, 1, writing, pages);
  572. if (npages < 1) {
  573. /* Check if it's an I/O mapping */
  574. down_read(&current->mm->mmap_sem);
  575. vma = find_vma(current->mm, hva);
  576. if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
  577. (vma->vm_flags & VM_PFNMAP)) {
  578. pfn = vma->vm_pgoff +
  579. ((hva - vma->vm_start) >> PAGE_SHIFT);
  580. pte_size = psize;
  581. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  582. write_ok = vma->vm_flags & VM_WRITE;
  583. }
  584. up_read(&current->mm->mmap_sem);
  585. if (!pfn)
  586. return -EFAULT;
  587. } else {
  588. page = pages[0];
  589. if (PageHuge(page)) {
  590. page = compound_head(page);
  591. pte_size <<= compound_order(page);
  592. }
  593. /* if the guest wants write access, see if that is OK */
  594. if (!writing && hpte_is_writable(r)) {
  595. unsigned int hugepage_shift;
  596. pte_t *ptep, pte;
  597. /*
  598. * We need to protect against page table destruction
  599. * while looking up and updating the pte.
  600. */
  601. rcu_read_lock_sched();
  602. ptep = find_linux_pte_or_hugepte(current->mm->pgd,
  603. hva, &hugepage_shift);
  604. if (ptep) {
  605. pte = kvmppc_read_update_linux_pte(ptep, 1,
  606. hugepage_shift);
  607. if (pte_write(pte))
  608. write_ok = 1;
  609. }
  610. rcu_read_unlock_sched();
  611. }
  612. pfn = page_to_pfn(page);
  613. }
  614. ret = -EFAULT;
  615. if (psize > pte_size)
  616. goto out_put;
  617. /* Check WIMG vs. the actual page we're accessing */
  618. if (!hpte_cache_flags_ok(r, is_io)) {
  619. if (is_io)
  620. return -EFAULT;
  621. /*
  622. * Allow guest to map emulated device memory as
  623. * uncacheable, but actually make it cacheable.
  624. */
  625. r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
  626. }
  627. /* Set the HPTE to point to pfn */
  628. r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
  629. if (hpte_is_writable(r) && !write_ok)
  630. r = hpte_make_readonly(r);
  631. ret = RESUME_GUEST;
  632. preempt_disable();
  633. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  634. cpu_relax();
  635. if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
  636. rev->guest_rpte != hpte[2])
  637. /* HPTE has been changed under us; let the guest retry */
  638. goto out_unlock;
  639. hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  640. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  641. lock_rmap(rmap);
  642. /* Check if we might have been invalidated; let the guest retry if so */
  643. ret = RESUME_GUEST;
  644. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  645. unlock_rmap(rmap);
  646. goto out_unlock;
  647. }
  648. /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
  649. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  650. r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  651. if (hptep[0] & HPTE_V_VALID) {
  652. /* HPTE was previously valid, so we need to invalidate it */
  653. unlock_rmap(rmap);
  654. hptep[0] |= HPTE_V_ABSENT;
  655. kvmppc_invalidate_hpte(kvm, hptep, index);
  656. /* don't lose previous R and C bits */
  657. r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
  658. } else {
  659. kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
  660. }
  661. hptep[1] = r;
  662. eieio();
  663. hptep[0] = hpte[0];
  664. asm volatile("ptesync" : : : "memory");
  665. preempt_enable();
  666. if (page && hpte_is_writable(r))
  667. SetPageDirty(page);
  668. out_put:
  669. if (page) {
  670. /*
  671. * We drop pages[0] here, not page because page might
  672. * have been set to the head page of a compound, but
  673. * we have to drop the reference on the correct tail
  674. * page to match the get inside gup()
  675. */
  676. put_page(pages[0]);
  677. }
  678. return ret;
  679. out_unlock:
  680. hptep[0] &= ~HPTE_V_HVLOCK;
  681. preempt_enable();
  682. goto out_put;
  683. }
  684. static void kvmppc_rmap_reset(struct kvm *kvm)
  685. {
  686. struct kvm_memslots *slots;
  687. struct kvm_memory_slot *memslot;
  688. int srcu_idx;
  689. srcu_idx = srcu_read_lock(&kvm->srcu);
  690. slots = kvm->memslots;
  691. kvm_for_each_memslot(memslot, slots) {
  692. /*
  693. * This assumes it is acceptable to lose reference and
  694. * change bits across a reset.
  695. */
  696. memset(memslot->arch.rmap, 0,
  697. memslot->npages * sizeof(*memslot->arch.rmap));
  698. }
  699. srcu_read_unlock(&kvm->srcu, srcu_idx);
  700. }
  701. static int kvm_handle_hva_range(struct kvm *kvm,
  702. unsigned long start,
  703. unsigned long end,
  704. int (*handler)(struct kvm *kvm,
  705. unsigned long *rmapp,
  706. unsigned long gfn))
  707. {
  708. int ret;
  709. int retval = 0;
  710. struct kvm_memslots *slots;
  711. struct kvm_memory_slot *memslot;
  712. slots = kvm_memslots(kvm);
  713. kvm_for_each_memslot(memslot, slots) {
  714. unsigned long hva_start, hva_end;
  715. gfn_t gfn, gfn_end;
  716. hva_start = max(start, memslot->userspace_addr);
  717. hva_end = min(end, memslot->userspace_addr +
  718. (memslot->npages << PAGE_SHIFT));
  719. if (hva_start >= hva_end)
  720. continue;
  721. /*
  722. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  723. * {gfn, gfn+1, ..., gfn_end-1}.
  724. */
  725. gfn = hva_to_gfn_memslot(hva_start, memslot);
  726. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  727. for (; gfn < gfn_end; ++gfn) {
  728. gfn_t gfn_offset = gfn - memslot->base_gfn;
  729. ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
  730. retval |= ret;
  731. }
  732. }
  733. return retval;
  734. }
  735. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  736. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  737. unsigned long gfn))
  738. {
  739. return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
  740. }
  741. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  742. unsigned long gfn)
  743. {
  744. struct revmap_entry *rev = kvm->arch.revmap;
  745. unsigned long h, i, j;
  746. unsigned long *hptep;
  747. unsigned long ptel, psize, rcbits;
  748. for (;;) {
  749. lock_rmap(rmapp);
  750. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  751. unlock_rmap(rmapp);
  752. break;
  753. }
  754. /*
  755. * To avoid an ABBA deadlock with the HPTE lock bit,
  756. * we can't spin on the HPTE lock while holding the
  757. * rmap chain lock.
  758. */
  759. i = *rmapp & KVMPPC_RMAP_INDEX;
  760. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  761. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  762. /* unlock rmap before spinning on the HPTE lock */
  763. unlock_rmap(rmapp);
  764. while (hptep[0] & HPTE_V_HVLOCK)
  765. cpu_relax();
  766. continue;
  767. }
  768. j = rev[i].forw;
  769. if (j == i) {
  770. /* chain is now empty */
  771. *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  772. } else {
  773. /* remove i from chain */
  774. h = rev[i].back;
  775. rev[h].forw = j;
  776. rev[j].back = h;
  777. rev[i].forw = rev[i].back = i;
  778. *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
  779. }
  780. /* Now check and modify the HPTE */
  781. ptel = rev[i].guest_rpte;
  782. psize = hpte_page_size(hptep[0], ptel);
  783. if ((hptep[0] & HPTE_V_VALID) &&
  784. hpte_rpn(ptel, psize) == gfn) {
  785. if (kvm->arch.using_mmu_notifiers)
  786. hptep[0] |= HPTE_V_ABSENT;
  787. kvmppc_invalidate_hpte(kvm, hptep, i);
  788. /* Harvest R and C */
  789. rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
  790. *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  791. if (rcbits & ~rev[i].guest_rpte) {
  792. rev[i].guest_rpte = ptel | rcbits;
  793. note_hpte_modification(kvm, &rev[i]);
  794. }
  795. }
  796. unlock_rmap(rmapp);
  797. hptep[0] &= ~HPTE_V_HVLOCK;
  798. }
  799. return 0;
  800. }
  801. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  802. {
  803. if (kvm->arch.using_mmu_notifiers)
  804. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  805. return 0;
  806. }
  807. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  808. {
  809. if (kvm->arch.using_mmu_notifiers)
  810. kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
  811. return 0;
  812. }
  813. void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
  814. {
  815. unsigned long *rmapp;
  816. unsigned long gfn;
  817. unsigned long n;
  818. rmapp = memslot->arch.rmap;
  819. gfn = memslot->base_gfn;
  820. for (n = memslot->npages; n; --n) {
  821. /*
  822. * Testing the present bit without locking is OK because
  823. * the memslot has been marked invalid already, and hence
  824. * no new HPTEs referencing this page can be created,
  825. * thus the present bit can't go from 0 to 1.
  826. */
  827. if (*rmapp & KVMPPC_RMAP_PRESENT)
  828. kvm_unmap_rmapp(kvm, rmapp, gfn);
  829. ++rmapp;
  830. ++gfn;
  831. }
  832. }
  833. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  834. unsigned long gfn)
  835. {
  836. struct revmap_entry *rev = kvm->arch.revmap;
  837. unsigned long head, i, j;
  838. unsigned long *hptep;
  839. int ret = 0;
  840. retry:
  841. lock_rmap(rmapp);
  842. if (*rmapp & KVMPPC_RMAP_REFERENCED) {
  843. *rmapp &= ~KVMPPC_RMAP_REFERENCED;
  844. ret = 1;
  845. }
  846. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  847. unlock_rmap(rmapp);
  848. return ret;
  849. }
  850. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  851. do {
  852. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  853. j = rev[i].forw;
  854. /* If this HPTE isn't referenced, ignore it */
  855. if (!(hptep[1] & HPTE_R_R))
  856. continue;
  857. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  858. /* unlock rmap before spinning on the HPTE lock */
  859. unlock_rmap(rmapp);
  860. while (hptep[0] & HPTE_V_HVLOCK)
  861. cpu_relax();
  862. goto retry;
  863. }
  864. /* Now check and modify the HPTE */
  865. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
  866. kvmppc_clear_ref_hpte(kvm, hptep, i);
  867. if (!(rev[i].guest_rpte & HPTE_R_R)) {
  868. rev[i].guest_rpte |= HPTE_R_R;
  869. note_hpte_modification(kvm, &rev[i]);
  870. }
  871. ret = 1;
  872. }
  873. hptep[0] &= ~HPTE_V_HVLOCK;
  874. } while ((i = j) != head);
  875. unlock_rmap(rmapp);
  876. return ret;
  877. }
  878. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  879. {
  880. if (!kvm->arch.using_mmu_notifiers)
  881. return 0;
  882. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  883. }
  884. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  885. unsigned long gfn)
  886. {
  887. struct revmap_entry *rev = kvm->arch.revmap;
  888. unsigned long head, i, j;
  889. unsigned long *hp;
  890. int ret = 1;
  891. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  892. return 1;
  893. lock_rmap(rmapp);
  894. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  895. goto out;
  896. if (*rmapp & KVMPPC_RMAP_PRESENT) {
  897. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  898. do {
  899. hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
  900. j = rev[i].forw;
  901. if (hp[1] & HPTE_R_R)
  902. goto out;
  903. } while ((i = j) != head);
  904. }
  905. ret = 0;
  906. out:
  907. unlock_rmap(rmapp);
  908. return ret;
  909. }
  910. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  911. {
  912. if (!kvm->arch.using_mmu_notifiers)
  913. return 0;
  914. return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
  915. }
  916. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  917. {
  918. if (!kvm->arch.using_mmu_notifiers)
  919. return;
  920. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  921. }
  922. static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  923. {
  924. struct revmap_entry *rev = kvm->arch.revmap;
  925. unsigned long head, i, j;
  926. unsigned long *hptep;
  927. int ret = 0;
  928. retry:
  929. lock_rmap(rmapp);
  930. if (*rmapp & KVMPPC_RMAP_CHANGED) {
  931. *rmapp &= ~KVMPPC_RMAP_CHANGED;
  932. ret = 1;
  933. }
  934. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  935. unlock_rmap(rmapp);
  936. return ret;
  937. }
  938. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  939. do {
  940. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  941. j = rev[i].forw;
  942. if (!(hptep[1] & HPTE_R_C))
  943. continue;
  944. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  945. /* unlock rmap before spinning on the HPTE lock */
  946. unlock_rmap(rmapp);
  947. while (hptep[0] & HPTE_V_HVLOCK)
  948. cpu_relax();
  949. goto retry;
  950. }
  951. /* Now check and modify the HPTE */
  952. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
  953. /* need to make it temporarily absent to clear C */
  954. hptep[0] |= HPTE_V_ABSENT;
  955. kvmppc_invalidate_hpte(kvm, hptep, i);
  956. hptep[1] &= ~HPTE_R_C;
  957. eieio();
  958. hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  959. if (!(rev[i].guest_rpte & HPTE_R_C)) {
  960. rev[i].guest_rpte |= HPTE_R_C;
  961. note_hpte_modification(kvm, &rev[i]);
  962. }
  963. ret = 1;
  964. }
  965. hptep[0] &= ~HPTE_V_HVLOCK;
  966. } while ((i = j) != head);
  967. unlock_rmap(rmapp);
  968. return ret;
  969. }
  970. static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
  971. struct kvm_memory_slot *memslot,
  972. unsigned long *map)
  973. {
  974. unsigned long gfn;
  975. if (!vpa->dirty || !vpa->pinned_addr)
  976. return;
  977. gfn = vpa->gpa >> PAGE_SHIFT;
  978. if (gfn < memslot->base_gfn ||
  979. gfn >= memslot->base_gfn + memslot->npages)
  980. return;
  981. vpa->dirty = false;
  982. if (map)
  983. __set_bit_le(gfn - memslot->base_gfn, map);
  984. }
  985. long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
  986. unsigned long *map)
  987. {
  988. unsigned long i;
  989. unsigned long *rmapp;
  990. struct kvm_vcpu *vcpu;
  991. preempt_disable();
  992. rmapp = memslot->arch.rmap;
  993. for (i = 0; i < memslot->npages; ++i) {
  994. if (kvm_test_clear_dirty(kvm, rmapp) && map)
  995. __set_bit_le(i, map);
  996. ++rmapp;
  997. }
  998. /* Harvest dirty bits from VPA and DTL updates */
  999. /* Note: we never modify the SLB shadow buffer areas */
  1000. kvm_for_each_vcpu(i, vcpu, kvm) {
  1001. spin_lock(&vcpu->arch.vpa_update_lock);
  1002. harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
  1003. harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
  1004. spin_unlock(&vcpu->arch.vpa_update_lock);
  1005. }
  1006. preempt_enable();
  1007. return 0;
  1008. }
  1009. void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
  1010. unsigned long *nb_ret)
  1011. {
  1012. struct kvm_memory_slot *memslot;
  1013. unsigned long gfn = gpa >> PAGE_SHIFT;
  1014. struct page *page, *pages[1];
  1015. int npages;
  1016. unsigned long hva, offset;
  1017. unsigned long pa;
  1018. unsigned long *physp;
  1019. int srcu_idx;
  1020. srcu_idx = srcu_read_lock(&kvm->srcu);
  1021. memslot = gfn_to_memslot(kvm, gfn);
  1022. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1023. goto err;
  1024. if (!kvm->arch.using_mmu_notifiers) {
  1025. physp = memslot->arch.slot_phys;
  1026. if (!physp)
  1027. goto err;
  1028. physp += gfn - memslot->base_gfn;
  1029. pa = *physp;
  1030. if (!pa) {
  1031. if (kvmppc_get_guest_page(kvm, gfn, memslot,
  1032. PAGE_SIZE) < 0)
  1033. goto err;
  1034. pa = *physp;
  1035. }
  1036. page = pfn_to_page(pa >> PAGE_SHIFT);
  1037. get_page(page);
  1038. } else {
  1039. hva = gfn_to_hva_memslot(memslot, gfn);
  1040. npages = get_user_pages_fast(hva, 1, 1, pages);
  1041. if (npages < 1)
  1042. goto err;
  1043. page = pages[0];
  1044. }
  1045. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1046. offset = gpa & (PAGE_SIZE - 1);
  1047. if (nb_ret)
  1048. *nb_ret = PAGE_SIZE - offset;
  1049. return page_address(page) + offset;
  1050. err:
  1051. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1052. return NULL;
  1053. }
  1054. void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
  1055. bool dirty)
  1056. {
  1057. struct page *page = virt_to_page(va);
  1058. struct kvm_memory_slot *memslot;
  1059. unsigned long gfn;
  1060. unsigned long *rmap;
  1061. int srcu_idx;
  1062. put_page(page);
  1063. if (!dirty || !kvm->arch.using_mmu_notifiers)
  1064. return;
  1065. /* We need to mark this page dirty in the rmap chain */
  1066. gfn = gpa >> PAGE_SHIFT;
  1067. srcu_idx = srcu_read_lock(&kvm->srcu);
  1068. memslot = gfn_to_memslot(kvm, gfn);
  1069. if (memslot) {
  1070. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  1071. lock_rmap(rmap);
  1072. *rmap |= KVMPPC_RMAP_CHANGED;
  1073. unlock_rmap(rmap);
  1074. }
  1075. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1076. }
  1077. /*
  1078. * Functions for reading and writing the hash table via reads and
  1079. * writes on a file descriptor.
  1080. *
  1081. * Reads return the guest view of the hash table, which has to be
  1082. * pieced together from the real hash table and the guest_rpte
  1083. * values in the revmap array.
  1084. *
  1085. * On writes, each HPTE written is considered in turn, and if it
  1086. * is valid, it is written to the HPT as if an H_ENTER with the
  1087. * exact flag set was done. When the invalid count is non-zero
  1088. * in the header written to the stream, the kernel will make
  1089. * sure that that many HPTEs are invalid, and invalidate them
  1090. * if not.
  1091. */
  1092. struct kvm_htab_ctx {
  1093. unsigned long index;
  1094. unsigned long flags;
  1095. struct kvm *kvm;
  1096. int first_pass;
  1097. };
  1098. #define HPTE_SIZE (2 * sizeof(unsigned long))
  1099. /*
  1100. * Returns 1 if this HPT entry has been modified or has pending
  1101. * R/C bit changes.
  1102. */
  1103. static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
  1104. {
  1105. unsigned long rcbits_unset;
  1106. if (revp->guest_rpte & HPTE_GR_MODIFIED)
  1107. return 1;
  1108. /* Also need to consider changes in reference and changed bits */
  1109. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1110. if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
  1111. return 1;
  1112. return 0;
  1113. }
  1114. static long record_hpte(unsigned long flags, unsigned long *hptp,
  1115. unsigned long *hpte, struct revmap_entry *revp,
  1116. int want_valid, int first_pass)
  1117. {
  1118. unsigned long v, r;
  1119. unsigned long rcbits_unset;
  1120. int ok = 1;
  1121. int valid, dirty;
  1122. /* Unmodified entries are uninteresting except on the first pass */
  1123. dirty = hpte_dirty(revp, hptp);
  1124. if (!first_pass && !dirty)
  1125. return 0;
  1126. valid = 0;
  1127. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  1128. valid = 1;
  1129. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
  1130. !(hptp[0] & HPTE_V_BOLTED))
  1131. valid = 0;
  1132. }
  1133. if (valid != want_valid)
  1134. return 0;
  1135. v = r = 0;
  1136. if (valid || dirty) {
  1137. /* lock the HPTE so it's stable and read it */
  1138. preempt_disable();
  1139. while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
  1140. cpu_relax();
  1141. v = hptp[0];
  1142. /* re-evaluate valid and dirty from synchronized HPTE value */
  1143. valid = !!(v & HPTE_V_VALID);
  1144. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1145. /* Harvest R and C into guest view if necessary */
  1146. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1147. if (valid && (rcbits_unset & hptp[1])) {
  1148. revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
  1149. HPTE_GR_MODIFIED;
  1150. dirty = 1;
  1151. }
  1152. if (v & HPTE_V_ABSENT) {
  1153. v &= ~HPTE_V_ABSENT;
  1154. v |= HPTE_V_VALID;
  1155. valid = 1;
  1156. }
  1157. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
  1158. valid = 0;
  1159. r = revp->guest_rpte;
  1160. /* only clear modified if this is the right sort of entry */
  1161. if (valid == want_valid && dirty) {
  1162. r &= ~HPTE_GR_MODIFIED;
  1163. revp->guest_rpte = r;
  1164. }
  1165. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  1166. hptp[0] &= ~HPTE_V_HVLOCK;
  1167. preempt_enable();
  1168. if (!(valid == want_valid && (first_pass || dirty)))
  1169. ok = 0;
  1170. }
  1171. hpte[0] = v;
  1172. hpte[1] = r;
  1173. return ok;
  1174. }
  1175. static ssize_t kvm_htab_read(struct file *file, char __user *buf,
  1176. size_t count, loff_t *ppos)
  1177. {
  1178. struct kvm_htab_ctx *ctx = file->private_data;
  1179. struct kvm *kvm = ctx->kvm;
  1180. struct kvm_get_htab_header hdr;
  1181. unsigned long *hptp;
  1182. struct revmap_entry *revp;
  1183. unsigned long i, nb, nw;
  1184. unsigned long __user *lbuf;
  1185. struct kvm_get_htab_header __user *hptr;
  1186. unsigned long flags;
  1187. int first_pass;
  1188. unsigned long hpte[2];
  1189. if (!access_ok(VERIFY_WRITE, buf, count))
  1190. return -EFAULT;
  1191. first_pass = ctx->first_pass;
  1192. flags = ctx->flags;
  1193. i = ctx->index;
  1194. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1195. revp = kvm->arch.revmap + i;
  1196. lbuf = (unsigned long __user *)buf;
  1197. nb = 0;
  1198. while (nb + sizeof(hdr) + HPTE_SIZE < count) {
  1199. /* Initialize header */
  1200. hptr = (struct kvm_get_htab_header __user *)buf;
  1201. hdr.n_valid = 0;
  1202. hdr.n_invalid = 0;
  1203. nw = nb;
  1204. nb += sizeof(hdr);
  1205. lbuf = (unsigned long __user *)(buf + sizeof(hdr));
  1206. /* Skip uninteresting entries, i.e. clean on not-first pass */
  1207. if (!first_pass) {
  1208. while (i < kvm->arch.hpt_npte &&
  1209. !hpte_dirty(revp, hptp)) {
  1210. ++i;
  1211. hptp += 2;
  1212. ++revp;
  1213. }
  1214. }
  1215. hdr.index = i;
  1216. /* Grab a series of valid entries */
  1217. while (i < kvm->arch.hpt_npte &&
  1218. hdr.n_valid < 0xffff &&
  1219. nb + HPTE_SIZE < count &&
  1220. record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
  1221. /* valid entry, write it out */
  1222. ++hdr.n_valid;
  1223. if (__put_user(hpte[0], lbuf) ||
  1224. __put_user(hpte[1], lbuf + 1))
  1225. return -EFAULT;
  1226. nb += HPTE_SIZE;
  1227. lbuf += 2;
  1228. ++i;
  1229. hptp += 2;
  1230. ++revp;
  1231. }
  1232. /* Now skip invalid entries while we can */
  1233. while (i < kvm->arch.hpt_npte &&
  1234. hdr.n_invalid < 0xffff &&
  1235. record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
  1236. /* found an invalid entry */
  1237. ++hdr.n_invalid;
  1238. ++i;
  1239. hptp += 2;
  1240. ++revp;
  1241. }
  1242. if (hdr.n_valid || hdr.n_invalid) {
  1243. /* write back the header */
  1244. if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
  1245. return -EFAULT;
  1246. nw = nb;
  1247. buf = (char __user *)lbuf;
  1248. } else {
  1249. nb = nw;
  1250. }
  1251. /* Check if we've wrapped around the hash table */
  1252. if (i >= kvm->arch.hpt_npte) {
  1253. i = 0;
  1254. ctx->first_pass = 0;
  1255. break;
  1256. }
  1257. }
  1258. ctx->index = i;
  1259. return nb;
  1260. }
  1261. static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
  1262. size_t count, loff_t *ppos)
  1263. {
  1264. struct kvm_htab_ctx *ctx = file->private_data;
  1265. struct kvm *kvm = ctx->kvm;
  1266. struct kvm_get_htab_header hdr;
  1267. unsigned long i, j;
  1268. unsigned long v, r;
  1269. unsigned long __user *lbuf;
  1270. unsigned long *hptp;
  1271. unsigned long tmp[2];
  1272. ssize_t nb;
  1273. long int err, ret;
  1274. int rma_setup;
  1275. if (!access_ok(VERIFY_READ, buf, count))
  1276. return -EFAULT;
  1277. /* lock out vcpus from running while we're doing this */
  1278. mutex_lock(&kvm->lock);
  1279. rma_setup = kvm->arch.rma_setup_done;
  1280. if (rma_setup) {
  1281. kvm->arch.rma_setup_done = 0; /* temporarily */
  1282. /* order rma_setup_done vs. vcpus_running */
  1283. smp_mb();
  1284. if (atomic_read(&kvm->arch.vcpus_running)) {
  1285. kvm->arch.rma_setup_done = 1;
  1286. mutex_unlock(&kvm->lock);
  1287. return -EBUSY;
  1288. }
  1289. }
  1290. err = 0;
  1291. for (nb = 0; nb + sizeof(hdr) <= count; ) {
  1292. err = -EFAULT;
  1293. if (__copy_from_user(&hdr, buf, sizeof(hdr)))
  1294. break;
  1295. err = 0;
  1296. if (nb + hdr.n_valid * HPTE_SIZE > count)
  1297. break;
  1298. nb += sizeof(hdr);
  1299. buf += sizeof(hdr);
  1300. err = -EINVAL;
  1301. i = hdr.index;
  1302. if (i >= kvm->arch.hpt_npte ||
  1303. i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
  1304. break;
  1305. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1306. lbuf = (unsigned long __user *)buf;
  1307. for (j = 0; j < hdr.n_valid; ++j) {
  1308. err = -EFAULT;
  1309. if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
  1310. goto out;
  1311. err = -EINVAL;
  1312. if (!(v & HPTE_V_VALID))
  1313. goto out;
  1314. lbuf += 2;
  1315. nb += HPTE_SIZE;
  1316. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1317. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1318. err = -EIO;
  1319. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
  1320. tmp);
  1321. if (ret != H_SUCCESS) {
  1322. pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
  1323. "r=%lx\n", ret, i, v, r);
  1324. goto out;
  1325. }
  1326. if (!rma_setup && is_vrma_hpte(v)) {
  1327. unsigned long psize = hpte_page_size(v, r);
  1328. unsigned long senc = slb_pgsize_encoding(psize);
  1329. unsigned long lpcr;
  1330. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1331. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1332. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1333. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1334. kvm->arch.lpcr = lpcr;
  1335. rma_setup = 1;
  1336. }
  1337. ++i;
  1338. hptp += 2;
  1339. }
  1340. for (j = 0; j < hdr.n_invalid; ++j) {
  1341. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1342. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1343. ++i;
  1344. hptp += 2;
  1345. }
  1346. err = 0;
  1347. }
  1348. out:
  1349. /* Order HPTE updates vs. rma_setup_done */
  1350. smp_wmb();
  1351. kvm->arch.rma_setup_done = rma_setup;
  1352. mutex_unlock(&kvm->lock);
  1353. if (err)
  1354. return err;
  1355. return nb;
  1356. }
  1357. static int kvm_htab_release(struct inode *inode, struct file *filp)
  1358. {
  1359. struct kvm_htab_ctx *ctx = filp->private_data;
  1360. filp->private_data = NULL;
  1361. if (!(ctx->flags & KVM_GET_HTAB_WRITE))
  1362. atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
  1363. kvm_put_kvm(ctx->kvm);
  1364. kfree(ctx);
  1365. return 0;
  1366. }
  1367. static const struct file_operations kvm_htab_fops = {
  1368. .read = kvm_htab_read,
  1369. .write = kvm_htab_write,
  1370. .llseek = default_llseek,
  1371. .release = kvm_htab_release,
  1372. };
  1373. int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
  1374. {
  1375. int ret;
  1376. struct kvm_htab_ctx *ctx;
  1377. int rwflag;
  1378. /* reject flags we don't recognize */
  1379. if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
  1380. return -EINVAL;
  1381. ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
  1382. if (!ctx)
  1383. return -ENOMEM;
  1384. kvm_get_kvm(kvm);
  1385. ctx->kvm = kvm;
  1386. ctx->index = ghf->start_index;
  1387. ctx->flags = ghf->flags;
  1388. ctx->first_pass = 1;
  1389. rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
  1390. ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
  1391. if (ret < 0) {
  1392. kvm_put_kvm(kvm);
  1393. return ret;
  1394. }
  1395. if (rwflag == O_RDONLY) {
  1396. mutex_lock(&kvm->slots_lock);
  1397. atomic_inc(&kvm->arch.hpte_mod_interest);
  1398. /* make sure kvmppc_do_h_enter etc. see the increment */
  1399. synchronize_srcu_expedited(&kvm->srcu);
  1400. mutex_unlock(&kvm->slots_lock);
  1401. }
  1402. return ret;
  1403. }
  1404. void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
  1405. {
  1406. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  1407. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1408. vcpu->arch.slb_nr = 32; /* POWER7 */
  1409. else
  1410. vcpu->arch.slb_nr = 64;
  1411. mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
  1412. mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
  1413. vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
  1414. }