init.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * Initialize MMU support.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/efi.h>
  11. #include <linux/elf.h>
  12. #include <linux/memblock.h>
  13. #include <linux/mm.h>
  14. #include <linux/mmzone.h>
  15. #include <linux/module.h>
  16. #include <linux/personality.h>
  17. #include <linux/reboot.h>
  18. #include <linux/slab.h>
  19. #include <linux/swap.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/bitops.h>
  22. #include <linux/kexec.h>
  23. #include <asm/dma.h>
  24. #include <asm/io.h>
  25. #include <asm/machvec.h>
  26. #include <asm/numa.h>
  27. #include <asm/patch.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/sal.h>
  30. #include <asm/sections.h>
  31. #include <asm/tlb.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/unistd.h>
  34. #include <asm/mca.h>
  35. #include <asm/paravirt.h>
  36. extern void ia64_tlb_init (void);
  37. unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  38. #ifdef CONFIG_VIRTUAL_MEM_MAP
  39. unsigned long VMALLOC_END = VMALLOC_END_INIT;
  40. EXPORT_SYMBOL(VMALLOC_END);
  41. struct page *vmem_map;
  42. EXPORT_SYMBOL(vmem_map);
  43. #endif
  44. struct page *zero_page_memmap_ptr; /* map entry for zero page */
  45. EXPORT_SYMBOL(zero_page_memmap_ptr);
  46. void
  47. __ia64_sync_icache_dcache (pte_t pte)
  48. {
  49. unsigned long addr;
  50. struct page *page;
  51. page = pte_page(pte);
  52. addr = (unsigned long) page_address(page);
  53. if (test_bit(PG_arch_1, &page->flags))
  54. return; /* i-cache is already coherent with d-cache */
  55. flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  56. set_bit(PG_arch_1, &page->flags); /* mark page as clean */
  57. }
  58. /*
  59. * Since DMA is i-cache coherent, any (complete) pages that were written via
  60. * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  61. * flush them when they get mapped into an executable vm-area.
  62. */
  63. void
  64. dma_mark_clean(void *addr, size_t size)
  65. {
  66. unsigned long pg_addr, end;
  67. pg_addr = PAGE_ALIGN((unsigned long) addr);
  68. end = (unsigned long) addr + size;
  69. while (pg_addr + PAGE_SIZE <= end) {
  70. struct page *page = virt_to_page(pg_addr);
  71. set_bit(PG_arch_1, &page->flags);
  72. pg_addr += PAGE_SIZE;
  73. }
  74. }
  75. inline void
  76. ia64_set_rbs_bot (void)
  77. {
  78. unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  79. if (stack_size > MAX_USER_STACK_SIZE)
  80. stack_size = MAX_USER_STACK_SIZE;
  81. current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  82. }
  83. /*
  84. * This performs some platform-dependent address space initialization.
  85. * On IA-64, we want to setup the VM area for the register backing
  86. * store (which grows upwards) and install the gateway page which is
  87. * used for signal trampolines, etc.
  88. */
  89. void
  90. ia64_init_addr_space (void)
  91. {
  92. struct vm_area_struct *vma;
  93. ia64_set_rbs_bot();
  94. /*
  95. * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
  96. * the problem. When the process attempts to write to the register backing store
  97. * for the first time, it will get a SEGFAULT in this case.
  98. */
  99. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  100. if (vma) {
  101. INIT_LIST_HEAD(&vma->anon_vma_chain);
  102. vma->vm_mm = current->mm;
  103. vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
  104. vma->vm_end = vma->vm_start + PAGE_SIZE;
  105. vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
  106. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  107. down_write(&current->mm->mmap_sem);
  108. if (insert_vm_struct(current->mm, vma)) {
  109. up_write(&current->mm->mmap_sem);
  110. kmem_cache_free(vm_area_cachep, vma);
  111. return;
  112. }
  113. up_write(&current->mm->mmap_sem);
  114. }
  115. /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
  116. if (!(current->personality & MMAP_PAGE_ZERO)) {
  117. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  118. if (vma) {
  119. INIT_LIST_HEAD(&vma->anon_vma_chain);
  120. vma->vm_mm = current->mm;
  121. vma->vm_end = PAGE_SIZE;
  122. vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
  123. vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
  124. VM_DONTEXPAND | VM_DONTDUMP;
  125. down_write(&current->mm->mmap_sem);
  126. if (insert_vm_struct(current->mm, vma)) {
  127. up_write(&current->mm->mmap_sem);
  128. kmem_cache_free(vm_area_cachep, vma);
  129. return;
  130. }
  131. up_write(&current->mm->mmap_sem);
  132. }
  133. }
  134. }
  135. void
  136. free_initmem (void)
  137. {
  138. free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
  139. -1, "unused kernel");
  140. }
  141. void __init
  142. free_initrd_mem (unsigned long start, unsigned long end)
  143. {
  144. /*
  145. * EFI uses 4KB pages while the kernel can use 4KB or bigger.
  146. * Thus EFI and the kernel may have different page sizes. It is
  147. * therefore possible to have the initrd share the same page as
  148. * the end of the kernel (given current setup).
  149. *
  150. * To avoid freeing/using the wrong page (kernel sized) we:
  151. * - align up the beginning of initrd
  152. * - align down the end of initrd
  153. *
  154. * | |
  155. * |=============| a000
  156. * | |
  157. * | |
  158. * | | 9000
  159. * |/////////////|
  160. * |/////////////|
  161. * |=============| 8000
  162. * |///INITRD////|
  163. * |/////////////|
  164. * |/////////////| 7000
  165. * | |
  166. * |KKKKKKKKKKKKK|
  167. * |=============| 6000
  168. * |KKKKKKKKKKKKK|
  169. * |KKKKKKKKKKKKK|
  170. * K=kernel using 8KB pages
  171. *
  172. * In this example, we must free page 8000 ONLY. So we must align up
  173. * initrd_start and keep initrd_end as is.
  174. */
  175. start = PAGE_ALIGN(start);
  176. end = end & PAGE_MASK;
  177. if (start < end)
  178. printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
  179. for (; start < end; start += PAGE_SIZE) {
  180. if (!virt_addr_valid(start))
  181. continue;
  182. free_reserved_page(virt_to_page(start));
  183. }
  184. }
  185. /*
  186. * This installs a clean page in the kernel's page table.
  187. */
  188. static struct page * __init
  189. put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
  190. {
  191. pgd_t *pgd;
  192. pud_t *pud;
  193. pmd_t *pmd;
  194. pte_t *pte;
  195. if (!PageReserved(page))
  196. printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
  197. page_address(page));
  198. pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
  199. {
  200. pud = pud_alloc(&init_mm, pgd, address);
  201. if (!pud)
  202. goto out;
  203. pmd = pmd_alloc(&init_mm, pud, address);
  204. if (!pmd)
  205. goto out;
  206. pte = pte_alloc_kernel(pmd, address);
  207. if (!pte)
  208. goto out;
  209. if (!pte_none(*pte))
  210. goto out;
  211. set_pte(pte, mk_pte(page, pgprot));
  212. }
  213. out:
  214. /* no need for flush_tlb */
  215. return page;
  216. }
  217. static void __init
  218. setup_gate (void)
  219. {
  220. void *gate_section;
  221. struct page *page;
  222. /*
  223. * Map the gate page twice: once read-only to export the ELF
  224. * headers etc. and once execute-only page to enable
  225. * privilege-promotion via "epc":
  226. */
  227. gate_section = paravirt_get_gate_section();
  228. page = virt_to_page(ia64_imva(gate_section));
  229. put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
  230. #ifdef HAVE_BUGGY_SEGREL
  231. page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
  232. put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
  233. #else
  234. put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
  235. /* Fill in the holes (if any) with read-only zero pages: */
  236. {
  237. unsigned long addr;
  238. for (addr = GATE_ADDR + PAGE_SIZE;
  239. addr < GATE_ADDR + PERCPU_PAGE_SIZE;
  240. addr += PAGE_SIZE)
  241. {
  242. put_kernel_page(ZERO_PAGE(0), addr,
  243. PAGE_READONLY);
  244. put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
  245. PAGE_READONLY);
  246. }
  247. }
  248. #endif
  249. ia64_patch_gate();
  250. }
  251. void ia64_mmu_init(void *my_cpu_data)
  252. {
  253. unsigned long pta, impl_va_bits;
  254. extern void tlb_init(void);
  255. #ifdef CONFIG_DISABLE_VHPT
  256. # define VHPT_ENABLE_BIT 0
  257. #else
  258. # define VHPT_ENABLE_BIT 1
  259. #endif
  260. /*
  261. * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
  262. * address space. The IA-64 architecture guarantees that at least 50 bits of
  263. * virtual address space are implemented but if we pick a large enough page size
  264. * (e.g., 64KB), the mapped address space is big enough that it will overlap with
  265. * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
  266. * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
  267. * problem in practice. Alternatively, we could truncate the top of the mapped
  268. * address space to not permit mappings that would overlap with the VMLPT.
  269. * --davidm 00/12/06
  270. */
  271. # define pte_bits 3
  272. # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
  273. /*
  274. * The virtual page table has to cover the entire implemented address space within
  275. * a region even though not all of this space may be mappable. The reason for
  276. * this is that the Access bit and Dirty bit fault handlers perform
  277. * non-speculative accesses to the virtual page table, so the address range of the
  278. * virtual page table itself needs to be covered by virtual page table.
  279. */
  280. # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
  281. # define POW2(n) (1ULL << (n))
  282. impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
  283. if (impl_va_bits < 51 || impl_va_bits > 61)
  284. panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
  285. /*
  286. * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
  287. * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
  288. * the test makes sure that our mapped space doesn't overlap the
  289. * unimplemented hole in the middle of the region.
  290. */
  291. if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
  292. (mapped_space_bits > impl_va_bits - 1))
  293. panic("Cannot build a big enough virtual-linear page table"
  294. " to cover mapped address space.\n"
  295. " Try using a smaller page size.\n");
  296. /* place the VMLPT at the end of each page-table mapped region: */
  297. pta = POW2(61) - POW2(vmlpt_bits);
  298. /*
  299. * Set the (virtually mapped linear) page table address. Bit
  300. * 8 selects between the short and long format, bits 2-7 the
  301. * size of the table, and bit 0 whether the VHPT walker is
  302. * enabled.
  303. */
  304. ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
  305. ia64_tlb_init();
  306. #ifdef CONFIG_HUGETLB_PAGE
  307. ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
  308. ia64_srlz_d();
  309. #endif
  310. }
  311. #ifdef CONFIG_VIRTUAL_MEM_MAP
  312. int vmemmap_find_next_valid_pfn(int node, int i)
  313. {
  314. unsigned long end_address, hole_next_pfn;
  315. unsigned long stop_address;
  316. pg_data_t *pgdat = NODE_DATA(node);
  317. end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
  318. end_address = PAGE_ALIGN(end_address);
  319. stop_address = (unsigned long) &vmem_map[
  320. pgdat->node_start_pfn + pgdat->node_spanned_pages];
  321. do {
  322. pgd_t *pgd;
  323. pud_t *pud;
  324. pmd_t *pmd;
  325. pte_t *pte;
  326. pgd = pgd_offset_k(end_address);
  327. if (pgd_none(*pgd)) {
  328. end_address += PGDIR_SIZE;
  329. continue;
  330. }
  331. pud = pud_offset(pgd, end_address);
  332. if (pud_none(*pud)) {
  333. end_address += PUD_SIZE;
  334. continue;
  335. }
  336. pmd = pmd_offset(pud, end_address);
  337. if (pmd_none(*pmd)) {
  338. end_address += PMD_SIZE;
  339. continue;
  340. }
  341. pte = pte_offset_kernel(pmd, end_address);
  342. retry_pte:
  343. if (pte_none(*pte)) {
  344. end_address += PAGE_SIZE;
  345. pte++;
  346. if ((end_address < stop_address) &&
  347. (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
  348. goto retry_pte;
  349. continue;
  350. }
  351. /* Found next valid vmem_map page */
  352. break;
  353. } while (end_address < stop_address);
  354. end_address = min(end_address, stop_address);
  355. end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
  356. hole_next_pfn = end_address / sizeof(struct page);
  357. return hole_next_pfn - pgdat->node_start_pfn;
  358. }
  359. int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
  360. {
  361. unsigned long address, start_page, end_page;
  362. struct page *map_start, *map_end;
  363. int node;
  364. pgd_t *pgd;
  365. pud_t *pud;
  366. pmd_t *pmd;
  367. pte_t *pte;
  368. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  369. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  370. start_page = (unsigned long) map_start & PAGE_MASK;
  371. end_page = PAGE_ALIGN((unsigned long) map_end);
  372. node = paddr_to_nid(__pa(start));
  373. for (address = start_page; address < end_page; address += PAGE_SIZE) {
  374. pgd = pgd_offset_k(address);
  375. if (pgd_none(*pgd))
  376. pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  377. pud = pud_offset(pgd, address);
  378. if (pud_none(*pud))
  379. pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  380. pmd = pmd_offset(pud, address);
  381. if (pmd_none(*pmd))
  382. pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  383. pte = pte_offset_kernel(pmd, address);
  384. if (pte_none(*pte))
  385. set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
  386. PAGE_KERNEL));
  387. }
  388. return 0;
  389. }
  390. struct memmap_init_callback_data {
  391. struct page *start;
  392. struct page *end;
  393. int nid;
  394. unsigned long zone;
  395. };
  396. static int __meminit
  397. virtual_memmap_init(u64 start, u64 end, void *arg)
  398. {
  399. struct memmap_init_callback_data *args;
  400. struct page *map_start, *map_end;
  401. args = (struct memmap_init_callback_data *) arg;
  402. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  403. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  404. if (map_start < args->start)
  405. map_start = args->start;
  406. if (map_end > args->end)
  407. map_end = args->end;
  408. /*
  409. * We have to initialize "out of bounds" struct page elements that fit completely
  410. * on the same pages that were allocated for the "in bounds" elements because they
  411. * may be referenced later (and found to be "reserved").
  412. */
  413. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
  414. map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
  415. / sizeof(struct page));
  416. if (map_start < map_end)
  417. memmap_init_zone((unsigned long)(map_end - map_start),
  418. args->nid, args->zone, page_to_pfn(map_start),
  419. MEMMAP_EARLY);
  420. return 0;
  421. }
  422. void __meminit
  423. memmap_init (unsigned long size, int nid, unsigned long zone,
  424. unsigned long start_pfn)
  425. {
  426. if (!vmem_map)
  427. memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
  428. else {
  429. struct page *start;
  430. struct memmap_init_callback_data args;
  431. start = pfn_to_page(start_pfn);
  432. args.start = start;
  433. args.end = start + size;
  434. args.nid = nid;
  435. args.zone = zone;
  436. efi_memmap_walk(virtual_memmap_init, &args);
  437. }
  438. }
  439. int
  440. ia64_pfn_valid (unsigned long pfn)
  441. {
  442. char byte;
  443. struct page *pg = pfn_to_page(pfn);
  444. return (__get_user(byte, (char __user *) pg) == 0)
  445. && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
  446. || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
  447. }
  448. EXPORT_SYMBOL(ia64_pfn_valid);
  449. int __init find_largest_hole(u64 start, u64 end, void *arg)
  450. {
  451. u64 *max_gap = arg;
  452. static u64 last_end = PAGE_OFFSET;
  453. /* NOTE: this algorithm assumes efi memmap table is ordered */
  454. if (*max_gap < (start - last_end))
  455. *max_gap = start - last_end;
  456. last_end = end;
  457. return 0;
  458. }
  459. #endif /* CONFIG_VIRTUAL_MEM_MAP */
  460. int __init register_active_ranges(u64 start, u64 len, int nid)
  461. {
  462. u64 end = start + len;
  463. #ifdef CONFIG_KEXEC
  464. if (start > crashk_res.start && start < crashk_res.end)
  465. start = crashk_res.end;
  466. if (end > crashk_res.start && end < crashk_res.end)
  467. end = crashk_res.start;
  468. #endif
  469. if (start < end)
  470. memblock_add_node(__pa(start), end - start, nid);
  471. return 0;
  472. }
  473. int
  474. find_max_min_low_pfn (u64 start, u64 end, void *arg)
  475. {
  476. unsigned long pfn_start, pfn_end;
  477. #ifdef CONFIG_FLATMEM
  478. pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
  479. pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
  480. #else
  481. pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
  482. pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
  483. #endif
  484. min_low_pfn = min(min_low_pfn, pfn_start);
  485. max_low_pfn = max(max_low_pfn, pfn_end);
  486. return 0;
  487. }
  488. /*
  489. * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
  490. * system call handler. When this option is in effect, all fsyscalls will end up bubbling
  491. * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
  492. * useful for performance testing, but conceivably could also come in handy for debugging
  493. * purposes.
  494. */
  495. static int nolwsys __initdata;
  496. static int __init
  497. nolwsys_setup (char *s)
  498. {
  499. nolwsys = 1;
  500. return 1;
  501. }
  502. __setup("nolwsys", nolwsys_setup);
  503. void __init
  504. mem_init (void)
  505. {
  506. int i;
  507. BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
  508. BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
  509. BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
  510. #ifdef CONFIG_PCI
  511. /*
  512. * This needs to be called _after_ the command line has been parsed but _before_
  513. * any drivers that may need the PCI DMA interface are initialized or bootmem has
  514. * been freed.
  515. */
  516. platform_dma_init();
  517. #endif
  518. #ifdef CONFIG_FLATMEM
  519. BUG_ON(!mem_map);
  520. #endif
  521. set_max_mapnr(max_low_pfn);
  522. high_memory = __va(max_low_pfn * PAGE_SIZE);
  523. free_all_bootmem();
  524. mem_init_print_info(NULL);
  525. /*
  526. * For fsyscall entrpoints with no light-weight handler, use the ordinary
  527. * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
  528. * code can tell them apart.
  529. */
  530. for (i = 0; i < NR_syscalls; ++i) {
  531. extern unsigned long sys_call_table[NR_syscalls];
  532. unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
  533. if (!fsyscall_table[i] || nolwsys)
  534. fsyscall_table[i] = sys_call_table[i] | 1;
  535. }
  536. setup_gate();
  537. }
  538. #ifdef CONFIG_MEMORY_HOTPLUG
  539. int arch_add_memory(int nid, u64 start, u64 size)
  540. {
  541. pg_data_t *pgdat;
  542. struct zone *zone;
  543. unsigned long start_pfn = start >> PAGE_SHIFT;
  544. unsigned long nr_pages = size >> PAGE_SHIFT;
  545. int ret;
  546. pgdat = NODE_DATA(nid);
  547. zone = pgdat->node_zones + ZONE_NORMAL;
  548. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  549. if (ret)
  550. printk("%s: Problem encountered in __add_pages() as ret=%d\n",
  551. __func__, ret);
  552. return ret;
  553. }
  554. #ifdef CONFIG_MEMORY_HOTREMOVE
  555. int arch_remove_memory(u64 start, u64 size)
  556. {
  557. unsigned long start_pfn = start >> PAGE_SHIFT;
  558. unsigned long nr_pages = size >> PAGE_SHIFT;
  559. struct zone *zone;
  560. int ret;
  561. zone = page_zone(pfn_to_page(start_pfn));
  562. ret = __remove_pages(zone, start_pfn, nr_pages);
  563. if (ret)
  564. pr_warn("%s: Problem encountered in __remove_pages() as"
  565. " ret=%d\n", __func__, ret);
  566. return ret;
  567. }
  568. #endif
  569. #endif
  570. /*
  571. * Even when CONFIG_IA32_SUPPORT is not enabled it is
  572. * useful to have the Linux/x86 domain registered to
  573. * avoid an attempted module load when emulators call
  574. * personality(PER_LINUX32). This saves several milliseconds
  575. * on each such call.
  576. */
  577. static struct exec_domain ia32_exec_domain;
  578. static int __init
  579. per_linux32_init(void)
  580. {
  581. ia32_exec_domain.name = "Linux/x86";
  582. ia32_exec_domain.handler = NULL;
  583. ia32_exec_domain.pers_low = PER_LINUX32;
  584. ia32_exec_domain.pers_high = PER_LINUX32;
  585. ia32_exec_domain.signal_map = default_exec_domain.signal_map;
  586. ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
  587. register_exec_domain(&ia32_exec_domain);
  588. return 0;
  589. }
  590. __initcall(per_linux32_init);