cleanup.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /* MTRR (Memory Type Range Register) cleanup
  2. Copyright (C) 2009 Yinghai Lu
  3. This library is free software; you can redistribute it and/or
  4. modify it under the terms of the GNU Library General Public
  5. License as published by the Free Software Foundation; either
  6. version 2 of the License, or (at your option) any later version.
  7. This library is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. Library General Public License for more details.
  11. You should have received a copy of the GNU Library General Public
  12. License along with this library; if not, write to the Free
  13. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/pci.h>
  18. #include <linux/smp.h>
  19. #include <linux/cpu.h>
  20. #include <linux/mutex.h>
  21. #include <linux/sort.h>
  22. #include <asm/e820.h>
  23. #include <asm/mtrr.h>
  24. #include <asm/uaccess.h>
  25. #include <asm/processor.h>
  26. #include <asm/msr.h>
  27. #include <asm/kvm_para.h>
  28. #include "mtrr.h"
  29. /* should be related to MTRR_VAR_RANGES nums */
  30. #define RANGE_NUM 256
  31. struct res_range {
  32. unsigned long start;
  33. unsigned long end;
  34. };
  35. static int __init
  36. add_range(struct res_range *range, int nr_range, unsigned long start,
  37. unsigned long end)
  38. {
  39. /* out of slots */
  40. if (nr_range >= RANGE_NUM)
  41. return nr_range;
  42. range[nr_range].start = start;
  43. range[nr_range].end = end;
  44. nr_range++;
  45. return nr_range;
  46. }
  47. static int __init
  48. add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
  49. unsigned long end)
  50. {
  51. int i;
  52. /* try to merge it with old one */
  53. for (i = 0; i < nr_range; i++) {
  54. unsigned long final_start, final_end;
  55. unsigned long common_start, common_end;
  56. if (!range[i].end)
  57. continue;
  58. common_start = max(range[i].start, start);
  59. common_end = min(range[i].end, end);
  60. if (common_start > common_end + 1)
  61. continue;
  62. final_start = min(range[i].start, start);
  63. final_end = max(range[i].end, end);
  64. range[i].start = final_start;
  65. range[i].end = final_end;
  66. return nr_range;
  67. }
  68. /* need to add that */
  69. return add_range(range, nr_range, start, end);
  70. }
  71. static void __init
  72. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  73. {
  74. int i, j;
  75. for (j = 0; j < RANGE_NUM; j++) {
  76. if (!range[j].end)
  77. continue;
  78. if (start <= range[j].start && end >= range[j].end) {
  79. range[j].start = 0;
  80. range[j].end = 0;
  81. continue;
  82. }
  83. if (start <= range[j].start && end < range[j].end &&
  84. range[j].start < end + 1) {
  85. range[j].start = end + 1;
  86. continue;
  87. }
  88. if (start > range[j].start && end >= range[j].end &&
  89. range[j].end > start - 1) {
  90. range[j].end = start - 1;
  91. continue;
  92. }
  93. if (start > range[j].start && end < range[j].end) {
  94. /* find the new spare */
  95. for (i = 0; i < RANGE_NUM; i++) {
  96. if (range[i].end == 0)
  97. break;
  98. }
  99. if (i < RANGE_NUM) {
  100. range[i].end = range[j].end;
  101. range[i].start = end + 1;
  102. } else {
  103. printk(KERN_ERR "run of slot in ranges\n");
  104. }
  105. range[j].end = start - 1;
  106. continue;
  107. }
  108. }
  109. }
  110. static int __init cmp_range(const void *x1, const void *x2)
  111. {
  112. const struct res_range *r1 = x1;
  113. const struct res_range *r2 = x2;
  114. long start1, start2;
  115. start1 = r1->start;
  116. start2 = r2->start;
  117. return start1 - start2;
  118. }
  119. struct var_mtrr_range_state {
  120. unsigned long base_pfn;
  121. unsigned long size_pfn;
  122. mtrr_type type;
  123. };
  124. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  125. static int __initdata debug_print;
  126. static int __init
  127. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  128. unsigned long extra_remove_base,
  129. unsigned long extra_remove_size)
  130. {
  131. unsigned long i, base, size;
  132. mtrr_type type;
  133. for (i = 0; i < num_var_ranges; i++) {
  134. type = range_state[i].type;
  135. if (type != MTRR_TYPE_WRBACK)
  136. continue;
  137. base = range_state[i].base_pfn;
  138. size = range_state[i].size_pfn;
  139. nr_range = add_range_with_merge(range, nr_range, base,
  140. base + size - 1);
  141. }
  142. if (debug_print) {
  143. printk(KERN_DEBUG "After WB checking\n");
  144. for (i = 0; i < nr_range; i++)
  145. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  146. range[i].start, range[i].end + 1);
  147. }
  148. /* take out UC ranges */
  149. for (i = 0; i < num_var_ranges; i++) {
  150. type = range_state[i].type;
  151. if (type != MTRR_TYPE_UNCACHABLE &&
  152. type != MTRR_TYPE_WRPROT)
  153. continue;
  154. size = range_state[i].size_pfn;
  155. if (!size)
  156. continue;
  157. base = range_state[i].base_pfn;
  158. if (base < (1<<(20-PAGE_SHIFT)) && mtrr_state.have_fixed &&
  159. (mtrr_state.enabled & 1)) {
  160. /* Var MTRR contains UC entry below 1M? Skip it: */
  161. printk(KERN_WARNING "WARNING: BIOS bug: VAR MTRR %d "
  162. "contains strange UC entry under 1M, check "
  163. "with your system vendor!\n", i);
  164. if (base + size <= (1<<(20-PAGE_SHIFT)))
  165. continue;
  166. size -= (1<<(20-PAGE_SHIFT)) - base;
  167. base = 1<<(20-PAGE_SHIFT);
  168. }
  169. subtract_range(range, base, base + size - 1);
  170. }
  171. if (extra_remove_size)
  172. subtract_range(range, extra_remove_base,
  173. extra_remove_base + extra_remove_size - 1);
  174. /* get new range num */
  175. nr_range = 0;
  176. for (i = 0; i < RANGE_NUM; i++) {
  177. if (!range[i].end)
  178. continue;
  179. nr_range++;
  180. }
  181. if (debug_print) {
  182. printk(KERN_DEBUG "After UC checking\n");
  183. for (i = 0; i < nr_range; i++)
  184. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  185. range[i].start, range[i].end + 1);
  186. }
  187. /* sort the ranges */
  188. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  189. if (debug_print) {
  190. printk(KERN_DEBUG "After sorting\n");
  191. for (i = 0; i < nr_range; i++)
  192. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  193. range[i].start, range[i].end + 1);
  194. }
  195. /* clear those is not used */
  196. for (i = nr_range; i < RANGE_NUM; i++)
  197. memset(&range[i], 0, sizeof(range[i]));
  198. return nr_range;
  199. }
  200. static struct res_range __initdata range[RANGE_NUM];
  201. static int __initdata nr_range;
  202. #ifdef CONFIG_MTRR_SANITIZER
  203. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  204. {
  205. unsigned long sum;
  206. int i;
  207. sum = 0;
  208. for (i = 0; i < nr_range; i++)
  209. sum += range[i].end + 1 - range[i].start;
  210. return sum;
  211. }
  212. static int enable_mtrr_cleanup __initdata =
  213. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  214. static int __init disable_mtrr_cleanup_setup(char *str)
  215. {
  216. enable_mtrr_cleanup = 0;
  217. return 0;
  218. }
  219. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  220. static int __init enable_mtrr_cleanup_setup(char *str)
  221. {
  222. enable_mtrr_cleanup = 1;
  223. return 0;
  224. }
  225. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  226. static int __init mtrr_cleanup_debug_setup(char *str)
  227. {
  228. debug_print = 1;
  229. return 0;
  230. }
  231. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  232. struct var_mtrr_state {
  233. unsigned long range_startk;
  234. unsigned long range_sizek;
  235. unsigned long chunk_sizek;
  236. unsigned long gran_sizek;
  237. unsigned int reg;
  238. };
  239. static void __init
  240. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  241. unsigned char type, unsigned int address_bits)
  242. {
  243. u32 base_lo, base_hi, mask_lo, mask_hi;
  244. u64 base, mask;
  245. if (!sizek) {
  246. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  247. return;
  248. }
  249. mask = (1ULL << address_bits) - 1;
  250. mask &= ~((((u64)sizek) << 10) - 1);
  251. base = ((u64)basek) << 10;
  252. base |= type;
  253. mask |= 0x800;
  254. base_lo = base & ((1ULL<<32) - 1);
  255. base_hi = base >> 32;
  256. mask_lo = mask & ((1ULL<<32) - 1);
  257. mask_hi = mask >> 32;
  258. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  259. }
  260. static void __init
  261. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  262. unsigned char type)
  263. {
  264. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  265. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  266. range_state[reg].type = type;
  267. }
  268. static void __init
  269. set_var_mtrr_all(unsigned int address_bits)
  270. {
  271. unsigned long basek, sizek;
  272. unsigned char type;
  273. unsigned int reg;
  274. for (reg = 0; reg < num_var_ranges; reg++) {
  275. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  276. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  277. type = range_state[reg].type;
  278. set_var_mtrr(reg, basek, sizek, type, address_bits);
  279. }
  280. }
  281. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  282. {
  283. char factor;
  284. unsigned long base = sizek;
  285. if (base & ((1<<10) - 1)) {
  286. /* not MB alignment */
  287. factor = 'K';
  288. } else if (base & ((1<<20) - 1)) {
  289. factor = 'M';
  290. base >>= 10;
  291. } else {
  292. factor = 'G';
  293. base >>= 20;
  294. }
  295. *factorp = factor;
  296. return base;
  297. }
  298. static unsigned int __init
  299. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  300. unsigned long range_sizek, unsigned char type)
  301. {
  302. if (!range_sizek || (reg >= num_var_ranges))
  303. return reg;
  304. while (range_sizek) {
  305. unsigned long max_align, align;
  306. unsigned long sizek;
  307. /* Compute the maximum size I can make a range */
  308. if (range_startk)
  309. max_align = ffs(range_startk) - 1;
  310. else
  311. max_align = 32;
  312. align = fls(range_sizek) - 1;
  313. if (align > max_align)
  314. align = max_align;
  315. sizek = 1 << align;
  316. if (debug_print) {
  317. char start_factor = 'K', size_factor = 'K';
  318. unsigned long start_base, size_base;
  319. start_base = to_size_factor(range_startk,
  320. &start_factor),
  321. size_base = to_size_factor(sizek, &size_factor),
  322. printk(KERN_DEBUG "Setting variable MTRR %d, "
  323. "base: %ld%cB, range: %ld%cB, type %s\n",
  324. reg, start_base, start_factor,
  325. size_base, size_factor,
  326. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  327. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")
  328. );
  329. }
  330. save_var_mtrr(reg++, range_startk, sizek, type);
  331. range_startk += sizek;
  332. range_sizek -= sizek;
  333. if (reg >= num_var_ranges)
  334. break;
  335. }
  336. return reg;
  337. }
  338. static unsigned __init
  339. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  340. unsigned long sizek)
  341. {
  342. unsigned long hole_basek, hole_sizek;
  343. unsigned long second_basek, second_sizek;
  344. unsigned long range0_basek, range0_sizek;
  345. unsigned long range_basek, range_sizek;
  346. unsigned long chunk_sizek;
  347. unsigned long gran_sizek;
  348. hole_basek = 0;
  349. hole_sizek = 0;
  350. second_basek = 0;
  351. second_sizek = 0;
  352. chunk_sizek = state->chunk_sizek;
  353. gran_sizek = state->gran_sizek;
  354. /* align with gran size, prevent small block used up MTRRs */
  355. range_basek = ALIGN(state->range_startk, gran_sizek);
  356. if ((range_basek > basek) && basek)
  357. return second_sizek;
  358. state->range_sizek -= (range_basek - state->range_startk);
  359. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  360. while (range_sizek > state->range_sizek) {
  361. range_sizek -= gran_sizek;
  362. if (!range_sizek)
  363. return 0;
  364. }
  365. state->range_sizek = range_sizek;
  366. /* try to append some small hole */
  367. range0_basek = state->range_startk;
  368. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  369. /* no increase */
  370. if (range0_sizek == state->range_sizek) {
  371. if (debug_print)
  372. printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
  373. range0_basek<<10,
  374. (range0_basek + state->range_sizek)<<10);
  375. state->reg = range_to_mtrr(state->reg, range0_basek,
  376. state->range_sizek, MTRR_TYPE_WRBACK);
  377. return 0;
  378. }
  379. /* only cut back, when it is not the last */
  380. if (sizek) {
  381. while (range0_basek + range0_sizek > (basek + sizek)) {
  382. if (range0_sizek >= chunk_sizek)
  383. range0_sizek -= chunk_sizek;
  384. else
  385. range0_sizek = 0;
  386. if (!range0_sizek)
  387. break;
  388. }
  389. }
  390. second_try:
  391. range_basek = range0_basek + range0_sizek;
  392. /* one hole in the middle */
  393. if (range_basek > basek && range_basek <= (basek + sizek))
  394. second_sizek = range_basek - basek;
  395. if (range0_sizek > state->range_sizek) {
  396. /* one hole in middle or at end */
  397. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  398. /* hole size should be less than half of range0 size */
  399. if (hole_sizek >= (range0_sizek >> 1) &&
  400. range0_sizek >= chunk_sizek) {
  401. range0_sizek -= chunk_sizek;
  402. second_sizek = 0;
  403. hole_sizek = 0;
  404. goto second_try;
  405. }
  406. }
  407. if (range0_sizek) {
  408. if (debug_print)
  409. printk(KERN_DEBUG "range0: %016lx - %016lx\n",
  410. range0_basek<<10,
  411. (range0_basek + range0_sizek)<<10);
  412. state->reg = range_to_mtrr(state->reg, range0_basek,
  413. range0_sizek, MTRR_TYPE_WRBACK);
  414. }
  415. if (range0_sizek < state->range_sizek) {
  416. /* need to handle left over */
  417. range_sizek = state->range_sizek - range0_sizek;
  418. if (debug_print)
  419. printk(KERN_DEBUG "range: %016lx - %016lx\n",
  420. range_basek<<10,
  421. (range_basek + range_sizek)<<10);
  422. state->reg = range_to_mtrr(state->reg, range_basek,
  423. range_sizek, MTRR_TYPE_WRBACK);
  424. }
  425. if (hole_sizek) {
  426. hole_basek = range_basek - hole_sizek - second_sizek;
  427. if (debug_print)
  428. printk(KERN_DEBUG "hole: %016lx - %016lx\n",
  429. hole_basek<<10,
  430. (hole_basek + hole_sizek)<<10);
  431. state->reg = range_to_mtrr(state->reg, hole_basek,
  432. hole_sizek, MTRR_TYPE_UNCACHABLE);
  433. }
  434. return second_sizek;
  435. }
  436. static void __init
  437. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  438. unsigned long size_pfn)
  439. {
  440. unsigned long basek, sizek;
  441. unsigned long second_sizek = 0;
  442. if (state->reg >= num_var_ranges)
  443. return;
  444. basek = base_pfn << (PAGE_SHIFT - 10);
  445. sizek = size_pfn << (PAGE_SHIFT - 10);
  446. /* See if I can merge with the last range */
  447. if ((basek <= 1024) ||
  448. (state->range_startk + state->range_sizek == basek)) {
  449. unsigned long endk = basek + sizek;
  450. state->range_sizek = endk - state->range_startk;
  451. return;
  452. }
  453. /* Write the range mtrrs */
  454. if (state->range_sizek != 0)
  455. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  456. /* Allocate an msr */
  457. state->range_startk = basek + second_sizek;
  458. state->range_sizek = sizek - second_sizek;
  459. }
  460. /* mininum size of mtrr block that can take hole */
  461. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  462. static int __init parse_mtrr_chunk_size_opt(char *p)
  463. {
  464. if (!p)
  465. return -EINVAL;
  466. mtrr_chunk_size = memparse(p, &p);
  467. return 0;
  468. }
  469. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  470. /* granity of mtrr of block */
  471. static u64 mtrr_gran_size __initdata;
  472. static int __init parse_mtrr_gran_size_opt(char *p)
  473. {
  474. if (!p)
  475. return -EINVAL;
  476. mtrr_gran_size = memparse(p, &p);
  477. return 0;
  478. }
  479. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  480. static int nr_mtrr_spare_reg __initdata =
  481. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  482. static int __init parse_mtrr_spare_reg(char *arg)
  483. {
  484. if (arg)
  485. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  486. return 0;
  487. }
  488. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  489. static int __init
  490. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  491. u64 chunk_size, u64 gran_size)
  492. {
  493. struct var_mtrr_state var_state;
  494. int i;
  495. int num_reg;
  496. var_state.range_startk = 0;
  497. var_state.range_sizek = 0;
  498. var_state.reg = 0;
  499. var_state.chunk_sizek = chunk_size >> 10;
  500. var_state.gran_sizek = gran_size >> 10;
  501. memset(range_state, 0, sizeof(range_state));
  502. /* Write the range etc */
  503. for (i = 0; i < nr_range; i++)
  504. set_var_mtrr_range(&var_state, range[i].start,
  505. range[i].end - range[i].start + 1);
  506. /* Write the last range */
  507. if (var_state.range_sizek != 0)
  508. range_to_mtrr_with_hole(&var_state, 0, 0);
  509. num_reg = var_state.reg;
  510. /* Clear out the extra MTRR's */
  511. while (var_state.reg < num_var_ranges) {
  512. save_var_mtrr(var_state.reg, 0, 0, 0);
  513. var_state.reg++;
  514. }
  515. return num_reg;
  516. }
  517. struct mtrr_cleanup_result {
  518. unsigned long gran_sizek;
  519. unsigned long chunk_sizek;
  520. unsigned long lose_cover_sizek;
  521. unsigned int num_reg;
  522. int bad;
  523. };
  524. /*
  525. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  526. * chunk size: gran_size, ..., 2G
  527. * so we need (1+16)*8
  528. */
  529. #define NUM_RESULT 136
  530. #define PSHIFT (PAGE_SHIFT - 10)
  531. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  532. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  533. static void __init print_out_mtrr_range_state(void)
  534. {
  535. int i;
  536. char start_factor = 'K', size_factor = 'K';
  537. unsigned long start_base, size_base;
  538. mtrr_type type;
  539. for (i = 0; i < num_var_ranges; i++) {
  540. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  541. if (!size_base)
  542. continue;
  543. size_base = to_size_factor(size_base, &size_factor),
  544. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  545. start_base = to_size_factor(start_base, &start_factor),
  546. type = range_state[i].type;
  547. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  548. i, start_base, start_factor,
  549. size_base, size_factor,
  550. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  551. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  552. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  553. );
  554. }
  555. }
  556. static int __init mtrr_need_cleanup(void)
  557. {
  558. int i;
  559. mtrr_type type;
  560. unsigned long size;
  561. /* extra one for all 0 */
  562. int num[MTRR_NUM_TYPES + 1];
  563. /* check entries number */
  564. memset(num, 0, sizeof(num));
  565. for (i = 0; i < num_var_ranges; i++) {
  566. type = range_state[i].type;
  567. size = range_state[i].size_pfn;
  568. if (type >= MTRR_NUM_TYPES)
  569. continue;
  570. if (!size)
  571. type = MTRR_NUM_TYPES;
  572. if (type == MTRR_TYPE_WRPROT)
  573. type = MTRR_TYPE_UNCACHABLE;
  574. num[type]++;
  575. }
  576. /* check if we got UC entries */
  577. if (!num[MTRR_TYPE_UNCACHABLE])
  578. return 0;
  579. /* check if we only had WB and UC */
  580. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  581. num_var_ranges - num[MTRR_NUM_TYPES])
  582. return 0;
  583. return 1;
  584. }
  585. static unsigned long __initdata range_sums;
  586. static void __init mtrr_calc_range_state(u64 chunk_size, u64 gran_size,
  587. unsigned long extra_remove_base,
  588. unsigned long extra_remove_size,
  589. int i)
  590. {
  591. int num_reg;
  592. static struct res_range range_new[RANGE_NUM];
  593. static int nr_range_new;
  594. unsigned long range_sums_new;
  595. /* convert ranges to var ranges state */
  596. num_reg = x86_setup_var_mtrrs(range, nr_range,
  597. chunk_size, gran_size);
  598. /* we got new setting in range_state, check it */
  599. memset(range_new, 0, sizeof(range_new));
  600. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  601. extra_remove_base, extra_remove_size);
  602. range_sums_new = sum_ranges(range_new, nr_range_new);
  603. result[i].chunk_sizek = chunk_size >> 10;
  604. result[i].gran_sizek = gran_size >> 10;
  605. result[i].num_reg = num_reg;
  606. if (range_sums < range_sums_new) {
  607. result[i].lose_cover_sizek =
  608. (range_sums_new - range_sums) << PSHIFT;
  609. result[i].bad = 1;
  610. } else
  611. result[i].lose_cover_sizek =
  612. (range_sums - range_sums_new) << PSHIFT;
  613. /* double check it */
  614. if (!result[i].bad && !result[i].lose_cover_sizek) {
  615. if (nr_range_new != nr_range ||
  616. memcmp(range, range_new, sizeof(range)))
  617. result[i].bad = 1;
  618. }
  619. if (!result[i].bad && (range_sums - range_sums_new <
  620. min_loss_pfn[num_reg])) {
  621. min_loss_pfn[num_reg] =
  622. range_sums - range_sums_new;
  623. }
  624. }
  625. static void __init mtrr_print_out_one_result(int i)
  626. {
  627. char gran_factor, chunk_factor, lose_factor;
  628. unsigned long gran_base, chunk_base, lose_base;
  629. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  630. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  631. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  632. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  633. result[i].bad ? "*BAD*" : " ",
  634. gran_base, gran_factor, chunk_base, chunk_factor);
  635. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  636. result[i].num_reg, result[i].bad ? "-" : "",
  637. lose_base, lose_factor);
  638. }
  639. static int __init mtrr_search_optimal_index(void)
  640. {
  641. int i;
  642. int num_reg_good;
  643. int index_good;
  644. if (nr_mtrr_spare_reg >= num_var_ranges)
  645. nr_mtrr_spare_reg = num_var_ranges - 1;
  646. num_reg_good = -1;
  647. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  648. if (!min_loss_pfn[i])
  649. num_reg_good = i;
  650. }
  651. index_good = -1;
  652. if (num_reg_good != -1) {
  653. for (i = 0; i < NUM_RESULT; i++) {
  654. if (!result[i].bad &&
  655. result[i].num_reg == num_reg_good &&
  656. !result[i].lose_cover_sizek) {
  657. index_good = i;
  658. break;
  659. }
  660. }
  661. }
  662. return index_good;
  663. }
  664. int __init mtrr_cleanup(unsigned address_bits)
  665. {
  666. unsigned long extra_remove_base, extra_remove_size;
  667. unsigned long base, size, def, dummy;
  668. mtrr_type type;
  669. u64 chunk_size, gran_size;
  670. int index_good;
  671. int i;
  672. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  673. return 0;
  674. rdmsr(MTRRdefType_MSR, def, dummy);
  675. def &= 0xff;
  676. if (def != MTRR_TYPE_UNCACHABLE)
  677. return 0;
  678. /* get it and store it aside */
  679. memset(range_state, 0, sizeof(range_state));
  680. for (i = 0; i < num_var_ranges; i++) {
  681. mtrr_if->get(i, &base, &size, &type);
  682. range_state[i].base_pfn = base;
  683. range_state[i].size_pfn = size;
  684. range_state[i].type = type;
  685. }
  686. /* check if we need handle it and can handle it */
  687. if (!mtrr_need_cleanup())
  688. return 0;
  689. /* print original var MTRRs at first, for debugging: */
  690. printk(KERN_DEBUG "original variable MTRRs\n");
  691. print_out_mtrr_range_state();
  692. memset(range, 0, sizeof(range));
  693. extra_remove_size = 0;
  694. extra_remove_base = 1 << (32 - PAGE_SHIFT);
  695. if (mtrr_tom2)
  696. extra_remove_size =
  697. (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
  698. nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
  699. extra_remove_size);
  700. /*
  701. * [0, 1M) should always be coverred by var mtrr with WB
  702. * and fixed mtrrs should take effective before var mtrr for it
  703. */
  704. nr_range = add_range_with_merge(range, nr_range, 0,
  705. (1ULL<<(20 - PAGE_SHIFT)) - 1);
  706. /* sort the ranges */
  707. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  708. range_sums = sum_ranges(range, nr_range);
  709. printk(KERN_INFO "total RAM coverred: %ldM\n",
  710. range_sums >> (20 - PAGE_SHIFT));
  711. if (mtrr_chunk_size && mtrr_gran_size) {
  712. i = 0;
  713. mtrr_calc_range_state(mtrr_chunk_size, mtrr_gran_size,
  714. extra_remove_base, extra_remove_size, i);
  715. mtrr_print_out_one_result(i);
  716. if (!result[i].bad) {
  717. set_var_mtrr_all(address_bits);
  718. printk(KERN_DEBUG "New variable MTRRs\n");
  719. print_out_mtrr_range_state();
  720. return 1;
  721. }
  722. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  723. "will find optimal one\n");
  724. }
  725. i = 0;
  726. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  727. memset(result, 0, sizeof(result));
  728. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  729. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  730. chunk_size <<= 1) {
  731. if (i >= NUM_RESULT)
  732. continue;
  733. mtrr_calc_range_state(chunk_size, gran_size,
  734. extra_remove_base, extra_remove_size, i);
  735. if (debug_print) {
  736. mtrr_print_out_one_result(i);
  737. printk(KERN_INFO "\n");
  738. }
  739. i++;
  740. }
  741. }
  742. /* try to find the optimal index */
  743. index_good = mtrr_search_optimal_index();
  744. if (index_good != -1) {
  745. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  746. i = index_good;
  747. mtrr_print_out_one_result(i);
  748. /* convert ranges to var ranges state */
  749. chunk_size = result[i].chunk_sizek;
  750. chunk_size <<= 10;
  751. gran_size = result[i].gran_sizek;
  752. gran_size <<= 10;
  753. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  754. set_var_mtrr_all(address_bits);
  755. printk(KERN_DEBUG "New variable MTRRs\n");
  756. print_out_mtrr_range_state();
  757. return 1;
  758. } else {
  759. /* print out all */
  760. for (i = 0; i < NUM_RESULT; i++)
  761. mtrr_print_out_one_result(i);
  762. }
  763. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  764. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  765. return 0;
  766. }
  767. #else
  768. int __init mtrr_cleanup(unsigned address_bits)
  769. {
  770. return 0;
  771. }
  772. #endif
  773. static int disable_mtrr_trim;
  774. static int __init disable_mtrr_trim_setup(char *str)
  775. {
  776. disable_mtrr_trim = 1;
  777. return 0;
  778. }
  779. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  780. /*
  781. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  782. * for memory >4GB. Check for that here.
  783. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  784. * apply to are wrong, but so far we don't know of any such case in the wild.
  785. */
  786. #define Tom2Enabled (1U << 21)
  787. #define Tom2ForceMemTypeWB (1U << 22)
  788. int __init amd_special_default_mtrr(void)
  789. {
  790. u32 l, h;
  791. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  792. return 0;
  793. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  794. return 0;
  795. /* In case some hypervisor doesn't pass SYSCFG through */
  796. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  797. return 0;
  798. /*
  799. * Memory between 4GB and top of mem is forced WB by this magic bit.
  800. * Reserved before K8RevF, but should be zero there.
  801. */
  802. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  803. (Tom2Enabled | Tom2ForceMemTypeWB))
  804. return 1;
  805. return 0;
  806. }
  807. static u64 __init real_trim_memory(unsigned long start_pfn,
  808. unsigned long limit_pfn)
  809. {
  810. u64 trim_start, trim_size;
  811. trim_start = start_pfn;
  812. trim_start <<= PAGE_SHIFT;
  813. trim_size = limit_pfn;
  814. trim_size <<= PAGE_SHIFT;
  815. trim_size -= trim_start;
  816. return e820_update_range(trim_start, trim_size, E820_RAM,
  817. E820_RESERVED);
  818. }
  819. /**
  820. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  821. * @end_pfn: ending page frame number
  822. *
  823. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  824. * memory configurations. This routine checks that the highest MTRR matches
  825. * the end of memory, to make sure the MTRRs having a write back type cover
  826. * all of the memory the kernel is intending to use. If not, it'll trim any
  827. * memory off the end by adjusting end_pfn, removing it from the kernel's
  828. * allocation pools, warning the user with an obnoxious message.
  829. */
  830. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  831. {
  832. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  833. mtrr_type type;
  834. u64 total_trim_size;
  835. /* extra one for all 0 */
  836. int num[MTRR_NUM_TYPES + 1];
  837. /*
  838. * Make sure we only trim uncachable memory on machines that
  839. * support the Intel MTRR architecture:
  840. */
  841. if (!is_cpu(INTEL) || disable_mtrr_trim)
  842. return 0;
  843. rdmsr(MTRRdefType_MSR, def, dummy);
  844. def &= 0xff;
  845. if (def != MTRR_TYPE_UNCACHABLE)
  846. return 0;
  847. /* get it and store it aside */
  848. memset(range_state, 0, sizeof(range_state));
  849. for (i = 0; i < num_var_ranges; i++) {
  850. mtrr_if->get(i, &base, &size, &type);
  851. range_state[i].base_pfn = base;
  852. range_state[i].size_pfn = size;
  853. range_state[i].type = type;
  854. }
  855. /* Find highest cached pfn */
  856. for (i = 0; i < num_var_ranges; i++) {
  857. type = range_state[i].type;
  858. if (type != MTRR_TYPE_WRBACK)
  859. continue;
  860. base = range_state[i].base_pfn;
  861. size = range_state[i].size_pfn;
  862. if (highest_pfn < base + size)
  863. highest_pfn = base + size;
  864. }
  865. /* kvm/qemu doesn't have mtrr set right, don't trim them all */
  866. if (!highest_pfn) {
  867. printk(KERN_INFO "CPU MTRRs all blank - virtualized system.\n");
  868. return 0;
  869. }
  870. /* check entries number */
  871. memset(num, 0, sizeof(num));
  872. for (i = 0; i < num_var_ranges; i++) {
  873. type = range_state[i].type;
  874. if (type >= MTRR_NUM_TYPES)
  875. continue;
  876. size = range_state[i].size_pfn;
  877. if (!size)
  878. type = MTRR_NUM_TYPES;
  879. num[type]++;
  880. }
  881. /* no entry for WB? */
  882. if (!num[MTRR_TYPE_WRBACK])
  883. return 0;
  884. /* check if we only had WB and UC */
  885. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  886. num_var_ranges - num[MTRR_NUM_TYPES])
  887. return 0;
  888. memset(range, 0, sizeof(range));
  889. nr_range = 0;
  890. if (mtrr_tom2) {
  891. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  892. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  893. if (highest_pfn < range[nr_range].end + 1)
  894. highest_pfn = range[nr_range].end + 1;
  895. nr_range++;
  896. }
  897. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  898. total_trim_size = 0;
  899. /* check the head */
  900. if (range[0].start)
  901. total_trim_size += real_trim_memory(0, range[0].start);
  902. /* check the holes */
  903. for (i = 0; i < nr_range - 1; i++) {
  904. if (range[i].end + 1 < range[i+1].start)
  905. total_trim_size += real_trim_memory(range[i].end + 1,
  906. range[i+1].start);
  907. }
  908. /* check the top */
  909. i = nr_range - 1;
  910. if (range[i].end + 1 < end_pfn)
  911. total_trim_size += real_trim_memory(range[i].end + 1,
  912. end_pfn);
  913. if (total_trim_size) {
  914. printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
  915. " all of memory, losing %lluMB of RAM.\n",
  916. total_trim_size >> 20);
  917. if (!changed_by_mtrr_cleanup)
  918. WARN_ON(1);
  919. printk(KERN_INFO "update e820 for mtrr\n");
  920. update_e820();
  921. return 1;
  922. }
  923. return 0;
  924. }