sched.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <asm/tlb.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __attribute__((weak)) sched_clock(void)
  70. {
  71. return (unsigned long long)jiffies * (1000000000 / HZ);
  72. }
  73. /*
  74. * Convert user-nice values [ -20 ... 0 ... 19 ]
  75. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  76. * and back.
  77. */
  78. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  79. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  80. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  81. /*
  82. * 'User priority' is the nice value converted to something we
  83. * can work with better when scaling various scheduler parameters,
  84. * it's a [ 0 ... 39 ] range.
  85. */
  86. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  87. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  88. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  89. /*
  90. * Some helpers for converting nanosecond timing to jiffy resolution
  91. */
  92. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  93. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  100. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. #ifdef CONFIG_SMP
  106. /*
  107. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  108. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  109. */
  110. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  111. {
  112. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  113. }
  114. /*
  115. * Each time a sched group cpu_power is changed,
  116. * we must compute its reciprocal value
  117. */
  118. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  119. {
  120. sg->__cpu_power += val;
  121. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  122. }
  123. #endif
  124. #define SCALE_PRIO(x, prio) \
  125. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  126. /*
  127. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  128. * to time slice values: [800ms ... 100ms ... 5ms]
  129. */
  130. static unsigned int static_prio_timeslice(int static_prio)
  131. {
  132. if (static_prio == NICE_TO_PRIO(19))
  133. return 1;
  134. if (static_prio < NICE_TO_PRIO(0))
  135. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  136. else
  137. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  138. }
  139. static inline int rt_policy(int policy)
  140. {
  141. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  142. return 1;
  143. return 0;
  144. }
  145. static inline int task_has_rt_policy(struct task_struct *p)
  146. {
  147. return rt_policy(p->policy);
  148. }
  149. /*
  150. * This is the priority-queue data structure of the RT scheduling class:
  151. */
  152. struct rt_prio_array {
  153. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  154. struct list_head queue[MAX_RT_PRIO];
  155. };
  156. struct load_stat {
  157. struct load_weight load;
  158. u64 load_update_start, load_update_last;
  159. unsigned long delta_fair, delta_exec, delta_stat;
  160. };
  161. /* CFS-related fields in a runqueue */
  162. struct cfs_rq {
  163. struct load_weight load;
  164. unsigned long nr_running;
  165. s64 fair_clock;
  166. u64 exec_clock;
  167. s64 wait_runtime;
  168. u64 sleeper_bonus;
  169. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  170. struct rb_root tasks_timeline;
  171. struct rb_node *rb_leftmost;
  172. struct rb_node *rb_load_balance_curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. /* 'curr' points to currently running entity on this cfs_rq.
  175. * It is set to NULL otherwise (i.e when none are currently running).
  176. */
  177. struct sched_entity *curr;
  178. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  179. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  180. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  181. * (like users, containers etc.)
  182. *
  183. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  184. * list is used during load balance.
  185. */
  186. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  187. #endif
  188. };
  189. /* Real-Time classes' related field in a runqueue: */
  190. struct rt_rq {
  191. struct rt_prio_array active;
  192. int rt_load_balance_idx;
  193. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  194. };
  195. /*
  196. * This is the main, per-CPU runqueue data structure.
  197. *
  198. * Locking rule: those places that want to lock multiple runqueues
  199. * (such as the load balancing or the thread migration code), lock
  200. * acquire operations must be ordered by ascending &runqueue.
  201. */
  202. struct rq {
  203. spinlock_t lock; /* runqueue lock */
  204. /*
  205. * nr_running and cpu_load should be in the same cacheline because
  206. * remote CPUs use both these fields when doing load calculation.
  207. */
  208. unsigned long nr_running;
  209. #define CPU_LOAD_IDX_MAX 5
  210. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  211. unsigned char idle_at_tick;
  212. #ifdef CONFIG_NO_HZ
  213. unsigned char in_nohz_recently;
  214. #endif
  215. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  216. unsigned long nr_load_updates;
  217. u64 nr_switches;
  218. struct cfs_rq cfs;
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  221. #endif
  222. struct rt_rq rt;
  223. /*
  224. * This is part of a global counter where only the total sum
  225. * over all CPUs matters. A task can increase this counter on
  226. * one CPU and if it got migrated afterwards it may decrease
  227. * it on another CPU. Always updated under the runqueue lock:
  228. */
  229. unsigned long nr_uninterruptible;
  230. struct task_struct *curr, *idle;
  231. unsigned long next_balance;
  232. struct mm_struct *prev_mm;
  233. u64 clock, prev_clock_raw;
  234. s64 clock_max_delta;
  235. unsigned int clock_warps, clock_overflows;
  236. unsigned int clock_unstable_events;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Update the per-runqueue clock, as finegrained as the platform can give
  281. * us, but without assuming monotonicity, etc.:
  282. */
  283. static void __update_rq_clock(struct rq *rq)
  284. {
  285. u64 prev_raw = rq->prev_clock_raw;
  286. u64 now = sched_clock();
  287. s64 delta = now - prev_raw;
  288. u64 clock = rq->clock;
  289. #ifdef CONFIG_SCHED_DEBUG
  290. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  291. #endif
  292. /*
  293. * Protect against sched_clock() occasionally going backwards:
  294. */
  295. if (unlikely(delta < 0)) {
  296. clock++;
  297. rq->clock_warps++;
  298. } else {
  299. /*
  300. * Catch too large forward jumps too:
  301. */
  302. if (unlikely(delta > 2*TICK_NSEC)) {
  303. clock++;
  304. rq->clock_overflows++;
  305. } else {
  306. if (unlikely(delta > rq->clock_max_delta))
  307. rq->clock_max_delta = delta;
  308. clock += delta;
  309. }
  310. }
  311. rq->prev_clock_raw = now;
  312. rq->clock = clock;
  313. }
  314. static void update_rq_clock(struct rq *rq)
  315. {
  316. if (likely(smp_processor_id() == cpu_of(rq)))
  317. __update_rq_clock(rq);
  318. }
  319. /*
  320. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  321. * See detach_destroy_domains: synchronize_sched for details.
  322. *
  323. * The domain tree of any CPU may only be accessed from within
  324. * preempt-disabled sections.
  325. */
  326. #define for_each_domain(cpu, __sd) \
  327. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  328. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  329. #define this_rq() (&__get_cpu_var(runqueues))
  330. #define task_rq(p) cpu_rq(task_cpu(p))
  331. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  332. /*
  333. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  334. * clock constructed from sched_clock():
  335. */
  336. unsigned long long cpu_clock(int cpu)
  337. {
  338. unsigned long long now;
  339. unsigned long flags;
  340. struct rq *rq;
  341. local_irq_save(flags);
  342. rq = cpu_rq(cpu);
  343. update_rq_clock(rq);
  344. now = rq->clock;
  345. local_irq_restore(flags);
  346. return now;
  347. }
  348. #ifdef CONFIG_FAIR_GROUP_SCHED
  349. /* Change a task's ->cfs_rq if it moves across CPUs */
  350. static inline void set_task_cfs_rq(struct task_struct *p)
  351. {
  352. p->se.cfs_rq = &task_rq(p)->cfs;
  353. }
  354. #else
  355. static inline void set_task_cfs_rq(struct task_struct *p)
  356. {
  357. }
  358. #endif
  359. #ifndef prepare_arch_switch
  360. # define prepare_arch_switch(next) do { } while (0)
  361. #endif
  362. #ifndef finish_arch_switch
  363. # define finish_arch_switch(prev) do { } while (0)
  364. #endif
  365. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  366. static inline int task_running(struct rq *rq, struct task_struct *p)
  367. {
  368. return rq->curr == p;
  369. }
  370. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  371. {
  372. }
  373. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  374. {
  375. #ifdef CONFIG_DEBUG_SPINLOCK
  376. /* this is a valid case when another task releases the spinlock */
  377. rq->lock.owner = current;
  378. #endif
  379. /*
  380. * If we are tracking spinlock dependencies then we have to
  381. * fix up the runqueue lock - which gets 'carried over' from
  382. * prev into current:
  383. */
  384. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  385. spin_unlock_irq(&rq->lock);
  386. }
  387. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  388. static inline int task_running(struct rq *rq, struct task_struct *p)
  389. {
  390. #ifdef CONFIG_SMP
  391. return p->oncpu;
  392. #else
  393. return rq->curr == p;
  394. #endif
  395. }
  396. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  397. {
  398. #ifdef CONFIG_SMP
  399. /*
  400. * We can optimise this out completely for !SMP, because the
  401. * SMP rebalancing from interrupt is the only thing that cares
  402. * here.
  403. */
  404. next->oncpu = 1;
  405. #endif
  406. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. spin_unlock_irq(&rq->lock);
  408. #else
  409. spin_unlock(&rq->lock);
  410. #endif
  411. }
  412. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  413. {
  414. #ifdef CONFIG_SMP
  415. /*
  416. * After ->oncpu is cleared, the task can be moved to a different CPU.
  417. * We must ensure this doesn't happen until the switch is completely
  418. * finished.
  419. */
  420. smp_wmb();
  421. prev->oncpu = 0;
  422. #endif
  423. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  424. local_irq_enable();
  425. #endif
  426. }
  427. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  428. /*
  429. * __task_rq_lock - lock the runqueue a given task resides on.
  430. * Must be called interrupts disabled.
  431. */
  432. static inline struct rq *__task_rq_lock(struct task_struct *p)
  433. __acquires(rq->lock)
  434. {
  435. struct rq *rq;
  436. repeat_lock_task:
  437. rq = task_rq(p);
  438. spin_lock(&rq->lock);
  439. if (unlikely(rq != task_rq(p))) {
  440. spin_unlock(&rq->lock);
  441. goto repeat_lock_task;
  442. }
  443. return rq;
  444. }
  445. /*
  446. * task_rq_lock - lock the runqueue a given task resides on and disable
  447. * interrupts. Note the ordering: we can safely lookup the task_rq without
  448. * explicitly disabling preemption.
  449. */
  450. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  451. __acquires(rq->lock)
  452. {
  453. struct rq *rq;
  454. repeat_lock_task:
  455. local_irq_save(*flags);
  456. rq = task_rq(p);
  457. spin_lock(&rq->lock);
  458. if (unlikely(rq != task_rq(p))) {
  459. spin_unlock_irqrestore(&rq->lock, *flags);
  460. goto repeat_lock_task;
  461. }
  462. return rq;
  463. }
  464. static inline void __task_rq_unlock(struct rq *rq)
  465. __releases(rq->lock)
  466. {
  467. spin_unlock(&rq->lock);
  468. }
  469. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  470. __releases(rq->lock)
  471. {
  472. spin_unlock_irqrestore(&rq->lock, *flags);
  473. }
  474. /*
  475. * this_rq_lock - lock this runqueue and disable interrupts.
  476. */
  477. static inline struct rq *this_rq_lock(void)
  478. __acquires(rq->lock)
  479. {
  480. struct rq *rq;
  481. local_irq_disable();
  482. rq = this_rq();
  483. spin_lock(&rq->lock);
  484. return rq;
  485. }
  486. /*
  487. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  488. */
  489. void sched_clock_unstable_event(void)
  490. {
  491. unsigned long flags;
  492. struct rq *rq;
  493. rq = task_rq_lock(current, &flags);
  494. rq->prev_clock_raw = sched_clock();
  495. rq->clock_unstable_events++;
  496. task_rq_unlock(rq, &flags);
  497. }
  498. /*
  499. * resched_task - mark a task 'to be rescheduled now'.
  500. *
  501. * On UP this means the setting of the need_resched flag, on SMP it
  502. * might also involve a cross-CPU call to trigger the scheduler on
  503. * the target CPU.
  504. */
  505. #ifdef CONFIG_SMP
  506. #ifndef tsk_is_polling
  507. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  508. #endif
  509. static void resched_task(struct task_struct *p)
  510. {
  511. int cpu;
  512. assert_spin_locked(&task_rq(p)->lock);
  513. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  514. return;
  515. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  516. cpu = task_cpu(p);
  517. if (cpu == smp_processor_id())
  518. return;
  519. /* NEED_RESCHED must be visible before we test polling */
  520. smp_mb();
  521. if (!tsk_is_polling(p))
  522. smp_send_reschedule(cpu);
  523. }
  524. static void resched_cpu(int cpu)
  525. {
  526. struct rq *rq = cpu_rq(cpu);
  527. unsigned long flags;
  528. if (!spin_trylock_irqsave(&rq->lock, flags))
  529. return;
  530. resched_task(cpu_curr(cpu));
  531. spin_unlock_irqrestore(&rq->lock, flags);
  532. }
  533. #else
  534. static inline void resched_task(struct task_struct *p)
  535. {
  536. assert_spin_locked(&task_rq(p)->lock);
  537. set_tsk_need_resched(p);
  538. }
  539. #endif
  540. static u64 div64_likely32(u64 divident, unsigned long divisor)
  541. {
  542. #if BITS_PER_LONG == 32
  543. if (likely(divident <= 0xffffffffULL))
  544. return (u32)divident / divisor;
  545. do_div(divident, divisor);
  546. return divident;
  547. #else
  548. return divident / divisor;
  549. #endif
  550. }
  551. #if BITS_PER_LONG == 32
  552. # define WMULT_CONST (~0UL)
  553. #else
  554. # define WMULT_CONST (1UL << 32)
  555. #endif
  556. #define WMULT_SHIFT 32
  557. static unsigned long
  558. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  559. struct load_weight *lw)
  560. {
  561. u64 tmp;
  562. if (unlikely(!lw->inv_weight))
  563. lw->inv_weight = WMULT_CONST / lw->weight;
  564. tmp = (u64)delta_exec * weight;
  565. /*
  566. * Check whether we'd overflow the 64-bit multiplication:
  567. */
  568. if (unlikely(tmp > WMULT_CONST)) {
  569. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  570. >> (WMULT_SHIFT/2);
  571. } else {
  572. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  573. }
  574. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  575. }
  576. static inline unsigned long
  577. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  578. {
  579. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  580. }
  581. static void update_load_add(struct load_weight *lw, unsigned long inc)
  582. {
  583. lw->weight += inc;
  584. lw->inv_weight = 0;
  585. }
  586. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  587. {
  588. lw->weight -= dec;
  589. lw->inv_weight = 0;
  590. }
  591. /*
  592. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  593. * of tasks with abnormal "nice" values across CPUs the contribution that
  594. * each task makes to its run queue's load is weighted according to its
  595. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  596. * scaled version of the new time slice allocation that they receive on time
  597. * slice expiry etc.
  598. */
  599. #define WEIGHT_IDLEPRIO 2
  600. #define WMULT_IDLEPRIO (1 << 31)
  601. /*
  602. * Nice levels are multiplicative, with a gentle 10% change for every
  603. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  604. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  605. * that remained on nice 0.
  606. *
  607. * The "10% effect" is relative and cumulative: from _any_ nice level,
  608. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  609. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  610. * If a task goes up by ~10% and another task goes down by ~10% then
  611. * the relative distance between them is ~25%.)
  612. */
  613. static const int prio_to_weight[40] = {
  614. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  615. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  616. /* 0 */ NICE_0_LOAD /* 1024 */,
  617. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  618. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  619. };
  620. /*
  621. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  622. *
  623. * In cases where the weight does not change often, we can use the
  624. * precalculated inverse to speed up arithmetics by turning divisions
  625. * into multiplications:
  626. */
  627. static const u32 prio_to_wmult[40] = {
  628. /* -20 */ 48356, 60446, 75558, 94446, 118058,
  629. /* -15 */ 147573, 184467, 230589, 288233, 360285,
  630. /* -10 */ 450347, 562979, 703746, 879575, 1099582,
  631. /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
  632. /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
  633. /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
  634. /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
  635. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  636. };
  637. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  638. /*
  639. * runqueue iterator, to support SMP load-balancing between different
  640. * scheduling classes, without having to expose their internal data
  641. * structures to the load-balancing proper:
  642. */
  643. struct rq_iterator {
  644. void *arg;
  645. struct task_struct *(*start)(void *);
  646. struct task_struct *(*next)(void *);
  647. };
  648. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  649. unsigned long max_nr_move, unsigned long max_load_move,
  650. struct sched_domain *sd, enum cpu_idle_type idle,
  651. int *all_pinned, unsigned long *load_moved,
  652. int *this_best_prio, struct rq_iterator *iterator);
  653. #include "sched_stats.h"
  654. #include "sched_rt.c"
  655. #include "sched_fair.c"
  656. #include "sched_idletask.c"
  657. #ifdef CONFIG_SCHED_DEBUG
  658. # include "sched_debug.c"
  659. #endif
  660. #define sched_class_highest (&rt_sched_class)
  661. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  662. {
  663. if (rq->curr != rq->idle && ls->load.weight) {
  664. ls->delta_exec += ls->delta_stat;
  665. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  666. ls->delta_stat = 0;
  667. }
  668. }
  669. /*
  670. * Update delta_exec, delta_fair fields for rq.
  671. *
  672. * delta_fair clock advances at a rate inversely proportional to
  673. * total load (rq->ls.load.weight) on the runqueue, while
  674. * delta_exec advances at the same rate as wall-clock (provided
  675. * cpu is not idle).
  676. *
  677. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  678. * runqueue over any given interval. This (smoothened) load is used
  679. * during load balance.
  680. *
  681. * This function is called /before/ updating rq->ls.load
  682. * and when switching tasks.
  683. */
  684. static void update_curr_load(struct rq *rq, u64 now)
  685. {
  686. struct load_stat *ls = &rq->ls;
  687. u64 start;
  688. start = ls->load_update_start;
  689. ls->load_update_start = rq->clock;
  690. ls->delta_stat += rq->clock - start;
  691. /*
  692. * Stagger updates to ls->delta_fair. Very frequent updates
  693. * can be expensive.
  694. */
  695. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  696. __update_curr_load(rq, ls);
  697. }
  698. static inline void
  699. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  700. {
  701. update_curr_load(rq, now);
  702. update_load_add(&rq->ls.load, p->se.load.weight);
  703. }
  704. static inline void
  705. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  706. {
  707. update_curr_load(rq, now);
  708. update_load_sub(&rq->ls.load, p->se.load.weight);
  709. }
  710. static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  711. {
  712. rq->nr_running++;
  713. inc_load(rq, p, now);
  714. }
  715. static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  716. {
  717. rq->nr_running--;
  718. dec_load(rq, p, now);
  719. }
  720. static void set_load_weight(struct task_struct *p)
  721. {
  722. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  723. p->se.wait_runtime = 0;
  724. if (task_has_rt_policy(p)) {
  725. p->se.load.weight = prio_to_weight[0] * 2;
  726. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  727. return;
  728. }
  729. /*
  730. * SCHED_IDLE tasks get minimal weight:
  731. */
  732. if (p->policy == SCHED_IDLE) {
  733. p->se.load.weight = WEIGHT_IDLEPRIO;
  734. p->se.load.inv_weight = WMULT_IDLEPRIO;
  735. return;
  736. }
  737. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  738. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  739. }
  740. static void
  741. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  742. {
  743. sched_info_queued(p);
  744. p->sched_class->enqueue_task(rq, p, wakeup);
  745. p->se.on_rq = 1;
  746. }
  747. static void
  748. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  749. {
  750. p->sched_class->dequeue_task(rq, p, sleep);
  751. p->se.on_rq = 0;
  752. }
  753. /*
  754. * __normal_prio - return the priority that is based on the static prio
  755. */
  756. static inline int __normal_prio(struct task_struct *p)
  757. {
  758. return p->static_prio;
  759. }
  760. /*
  761. * Calculate the expected normal priority: i.e. priority
  762. * without taking RT-inheritance into account. Might be
  763. * boosted by interactivity modifiers. Changes upon fork,
  764. * setprio syscalls, and whenever the interactivity
  765. * estimator recalculates.
  766. */
  767. static inline int normal_prio(struct task_struct *p)
  768. {
  769. int prio;
  770. if (task_has_rt_policy(p))
  771. prio = MAX_RT_PRIO-1 - p->rt_priority;
  772. else
  773. prio = __normal_prio(p);
  774. return prio;
  775. }
  776. /*
  777. * Calculate the current priority, i.e. the priority
  778. * taken into account by the scheduler. This value might
  779. * be boosted by RT tasks, or might be boosted by
  780. * interactivity modifiers. Will be RT if the task got
  781. * RT-boosted. If not then it returns p->normal_prio.
  782. */
  783. static int effective_prio(struct task_struct *p)
  784. {
  785. p->normal_prio = normal_prio(p);
  786. /*
  787. * If we are RT tasks or we were boosted to RT priority,
  788. * keep the priority unchanged. Otherwise, update priority
  789. * to the normal priority:
  790. */
  791. if (!rt_prio(p->prio))
  792. return p->normal_prio;
  793. return p->prio;
  794. }
  795. /*
  796. * activate_task - move a task to the runqueue.
  797. */
  798. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  799. {
  800. u64 now;
  801. update_rq_clock(rq);
  802. now = rq->clock;
  803. if (p->state == TASK_UNINTERRUPTIBLE)
  804. rq->nr_uninterruptible--;
  805. enqueue_task(rq, p, wakeup, now);
  806. inc_nr_running(p, rq, now);
  807. }
  808. /*
  809. * activate_idle_task - move idle task to the _front_ of runqueue.
  810. */
  811. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  812. {
  813. u64 now;
  814. update_rq_clock(rq);
  815. now = rq->clock;
  816. if (p->state == TASK_UNINTERRUPTIBLE)
  817. rq->nr_uninterruptible--;
  818. enqueue_task(rq, p, 0, now);
  819. inc_nr_running(p, rq, now);
  820. }
  821. /*
  822. * deactivate_task - remove a task from the runqueue.
  823. */
  824. static void
  825. deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  826. {
  827. if (p->state == TASK_UNINTERRUPTIBLE)
  828. rq->nr_uninterruptible++;
  829. dequeue_task(rq, p, sleep, now);
  830. dec_nr_running(p, rq, now);
  831. }
  832. /**
  833. * task_curr - is this task currently executing on a CPU?
  834. * @p: the task in question.
  835. */
  836. inline int task_curr(const struct task_struct *p)
  837. {
  838. return cpu_curr(task_cpu(p)) == p;
  839. }
  840. /* Used instead of source_load when we know the type == 0 */
  841. unsigned long weighted_cpuload(const int cpu)
  842. {
  843. return cpu_rq(cpu)->ls.load.weight;
  844. }
  845. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  846. {
  847. #ifdef CONFIG_SMP
  848. task_thread_info(p)->cpu = cpu;
  849. set_task_cfs_rq(p);
  850. #endif
  851. }
  852. #ifdef CONFIG_SMP
  853. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  854. {
  855. int old_cpu = task_cpu(p);
  856. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  857. u64 clock_offset, fair_clock_offset;
  858. clock_offset = old_rq->clock - new_rq->clock;
  859. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  860. if (p->se.wait_start_fair)
  861. p->se.wait_start_fair -= fair_clock_offset;
  862. if (p->se.sleep_start_fair)
  863. p->se.sleep_start_fair -= fair_clock_offset;
  864. #ifdef CONFIG_SCHEDSTATS
  865. if (p->se.wait_start)
  866. p->se.wait_start -= clock_offset;
  867. if (p->se.sleep_start)
  868. p->se.sleep_start -= clock_offset;
  869. if (p->se.block_start)
  870. p->se.block_start -= clock_offset;
  871. #endif
  872. __set_task_cpu(p, new_cpu);
  873. }
  874. struct migration_req {
  875. struct list_head list;
  876. struct task_struct *task;
  877. int dest_cpu;
  878. struct completion done;
  879. };
  880. /*
  881. * The task's runqueue lock must be held.
  882. * Returns true if you have to wait for migration thread.
  883. */
  884. static int
  885. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  886. {
  887. struct rq *rq = task_rq(p);
  888. /*
  889. * If the task is not on a runqueue (and not running), then
  890. * it is sufficient to simply update the task's cpu field.
  891. */
  892. if (!p->se.on_rq && !task_running(rq, p)) {
  893. set_task_cpu(p, dest_cpu);
  894. return 0;
  895. }
  896. init_completion(&req->done);
  897. req->task = p;
  898. req->dest_cpu = dest_cpu;
  899. list_add(&req->list, &rq->migration_queue);
  900. return 1;
  901. }
  902. /*
  903. * wait_task_inactive - wait for a thread to unschedule.
  904. *
  905. * The caller must ensure that the task *will* unschedule sometime soon,
  906. * else this function might spin for a *long* time. This function can't
  907. * be called with interrupts off, or it may introduce deadlock with
  908. * smp_call_function() if an IPI is sent by the same process we are
  909. * waiting to become inactive.
  910. */
  911. void wait_task_inactive(struct task_struct *p)
  912. {
  913. unsigned long flags;
  914. int running, on_rq;
  915. struct rq *rq;
  916. repeat:
  917. /*
  918. * We do the initial early heuristics without holding
  919. * any task-queue locks at all. We'll only try to get
  920. * the runqueue lock when things look like they will
  921. * work out!
  922. */
  923. rq = task_rq(p);
  924. /*
  925. * If the task is actively running on another CPU
  926. * still, just relax and busy-wait without holding
  927. * any locks.
  928. *
  929. * NOTE! Since we don't hold any locks, it's not
  930. * even sure that "rq" stays as the right runqueue!
  931. * But we don't care, since "task_running()" will
  932. * return false if the runqueue has changed and p
  933. * is actually now running somewhere else!
  934. */
  935. while (task_running(rq, p))
  936. cpu_relax();
  937. /*
  938. * Ok, time to look more closely! We need the rq
  939. * lock now, to be *sure*. If we're wrong, we'll
  940. * just go back and repeat.
  941. */
  942. rq = task_rq_lock(p, &flags);
  943. running = task_running(rq, p);
  944. on_rq = p->se.on_rq;
  945. task_rq_unlock(rq, &flags);
  946. /*
  947. * Was it really running after all now that we
  948. * checked with the proper locks actually held?
  949. *
  950. * Oops. Go back and try again..
  951. */
  952. if (unlikely(running)) {
  953. cpu_relax();
  954. goto repeat;
  955. }
  956. /*
  957. * It's not enough that it's not actively running,
  958. * it must be off the runqueue _entirely_, and not
  959. * preempted!
  960. *
  961. * So if it wa still runnable (but just not actively
  962. * running right now), it's preempted, and we should
  963. * yield - it could be a while.
  964. */
  965. if (unlikely(on_rq)) {
  966. yield();
  967. goto repeat;
  968. }
  969. /*
  970. * Ahh, all good. It wasn't running, and it wasn't
  971. * runnable, which means that it will never become
  972. * running in the future either. We're all done!
  973. */
  974. }
  975. /***
  976. * kick_process - kick a running thread to enter/exit the kernel
  977. * @p: the to-be-kicked thread
  978. *
  979. * Cause a process which is running on another CPU to enter
  980. * kernel-mode, without any delay. (to get signals handled.)
  981. *
  982. * NOTE: this function doesnt have to take the runqueue lock,
  983. * because all it wants to ensure is that the remote task enters
  984. * the kernel. If the IPI races and the task has been migrated
  985. * to another CPU then no harm is done and the purpose has been
  986. * achieved as well.
  987. */
  988. void kick_process(struct task_struct *p)
  989. {
  990. int cpu;
  991. preempt_disable();
  992. cpu = task_cpu(p);
  993. if ((cpu != smp_processor_id()) && task_curr(p))
  994. smp_send_reschedule(cpu);
  995. preempt_enable();
  996. }
  997. /*
  998. * Return a low guess at the load of a migration-source cpu weighted
  999. * according to the scheduling class and "nice" value.
  1000. *
  1001. * We want to under-estimate the load of migration sources, to
  1002. * balance conservatively.
  1003. */
  1004. static inline unsigned long source_load(int cpu, int type)
  1005. {
  1006. struct rq *rq = cpu_rq(cpu);
  1007. unsigned long total = weighted_cpuload(cpu);
  1008. if (type == 0)
  1009. return total;
  1010. return min(rq->cpu_load[type-1], total);
  1011. }
  1012. /*
  1013. * Return a high guess at the load of a migration-target cpu weighted
  1014. * according to the scheduling class and "nice" value.
  1015. */
  1016. static inline unsigned long target_load(int cpu, int type)
  1017. {
  1018. struct rq *rq = cpu_rq(cpu);
  1019. unsigned long total = weighted_cpuload(cpu);
  1020. if (type == 0)
  1021. return total;
  1022. return max(rq->cpu_load[type-1], total);
  1023. }
  1024. /*
  1025. * Return the average load per task on the cpu's run queue
  1026. */
  1027. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1028. {
  1029. struct rq *rq = cpu_rq(cpu);
  1030. unsigned long total = weighted_cpuload(cpu);
  1031. unsigned long n = rq->nr_running;
  1032. return n ? total / n : SCHED_LOAD_SCALE;
  1033. }
  1034. /*
  1035. * find_idlest_group finds and returns the least busy CPU group within the
  1036. * domain.
  1037. */
  1038. static struct sched_group *
  1039. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1040. {
  1041. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1042. unsigned long min_load = ULONG_MAX, this_load = 0;
  1043. int load_idx = sd->forkexec_idx;
  1044. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1045. do {
  1046. unsigned long load, avg_load;
  1047. int local_group;
  1048. int i;
  1049. /* Skip over this group if it has no CPUs allowed */
  1050. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1051. goto nextgroup;
  1052. local_group = cpu_isset(this_cpu, group->cpumask);
  1053. /* Tally up the load of all CPUs in the group */
  1054. avg_load = 0;
  1055. for_each_cpu_mask(i, group->cpumask) {
  1056. /* Bias balancing toward cpus of our domain */
  1057. if (local_group)
  1058. load = source_load(i, load_idx);
  1059. else
  1060. load = target_load(i, load_idx);
  1061. avg_load += load;
  1062. }
  1063. /* Adjust by relative CPU power of the group */
  1064. avg_load = sg_div_cpu_power(group,
  1065. avg_load * SCHED_LOAD_SCALE);
  1066. if (local_group) {
  1067. this_load = avg_load;
  1068. this = group;
  1069. } else if (avg_load < min_load) {
  1070. min_load = avg_load;
  1071. idlest = group;
  1072. }
  1073. nextgroup:
  1074. group = group->next;
  1075. } while (group != sd->groups);
  1076. if (!idlest || 100*this_load < imbalance*min_load)
  1077. return NULL;
  1078. return idlest;
  1079. }
  1080. /*
  1081. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1082. */
  1083. static int
  1084. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1085. {
  1086. cpumask_t tmp;
  1087. unsigned long load, min_load = ULONG_MAX;
  1088. int idlest = -1;
  1089. int i;
  1090. /* Traverse only the allowed CPUs */
  1091. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1092. for_each_cpu_mask(i, tmp) {
  1093. load = weighted_cpuload(i);
  1094. if (load < min_load || (load == min_load && i == this_cpu)) {
  1095. min_load = load;
  1096. idlest = i;
  1097. }
  1098. }
  1099. return idlest;
  1100. }
  1101. /*
  1102. * sched_balance_self: balance the current task (running on cpu) in domains
  1103. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1104. * SD_BALANCE_EXEC.
  1105. *
  1106. * Balance, ie. select the least loaded group.
  1107. *
  1108. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1109. *
  1110. * preempt must be disabled.
  1111. */
  1112. static int sched_balance_self(int cpu, int flag)
  1113. {
  1114. struct task_struct *t = current;
  1115. struct sched_domain *tmp, *sd = NULL;
  1116. for_each_domain(cpu, tmp) {
  1117. /*
  1118. * If power savings logic is enabled for a domain, stop there.
  1119. */
  1120. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1121. break;
  1122. if (tmp->flags & flag)
  1123. sd = tmp;
  1124. }
  1125. while (sd) {
  1126. cpumask_t span;
  1127. struct sched_group *group;
  1128. int new_cpu, weight;
  1129. if (!(sd->flags & flag)) {
  1130. sd = sd->child;
  1131. continue;
  1132. }
  1133. span = sd->span;
  1134. group = find_idlest_group(sd, t, cpu);
  1135. if (!group) {
  1136. sd = sd->child;
  1137. continue;
  1138. }
  1139. new_cpu = find_idlest_cpu(group, t, cpu);
  1140. if (new_cpu == -1 || new_cpu == cpu) {
  1141. /* Now try balancing at a lower domain level of cpu */
  1142. sd = sd->child;
  1143. continue;
  1144. }
  1145. /* Now try balancing at a lower domain level of new_cpu */
  1146. cpu = new_cpu;
  1147. sd = NULL;
  1148. weight = cpus_weight(span);
  1149. for_each_domain(cpu, tmp) {
  1150. if (weight <= cpus_weight(tmp->span))
  1151. break;
  1152. if (tmp->flags & flag)
  1153. sd = tmp;
  1154. }
  1155. /* while loop will break here if sd == NULL */
  1156. }
  1157. return cpu;
  1158. }
  1159. #endif /* CONFIG_SMP */
  1160. /*
  1161. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1162. * not idle and an idle cpu is available. The span of cpus to
  1163. * search starts with cpus closest then further out as needed,
  1164. * so we always favor a closer, idle cpu.
  1165. *
  1166. * Returns the CPU we should wake onto.
  1167. */
  1168. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1169. static int wake_idle(int cpu, struct task_struct *p)
  1170. {
  1171. cpumask_t tmp;
  1172. struct sched_domain *sd;
  1173. int i;
  1174. /*
  1175. * If it is idle, then it is the best cpu to run this task.
  1176. *
  1177. * This cpu is also the best, if it has more than one task already.
  1178. * Siblings must be also busy(in most cases) as they didn't already
  1179. * pickup the extra load from this cpu and hence we need not check
  1180. * sibling runqueue info. This will avoid the checks and cache miss
  1181. * penalities associated with that.
  1182. */
  1183. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1184. return cpu;
  1185. for_each_domain(cpu, sd) {
  1186. if (sd->flags & SD_WAKE_IDLE) {
  1187. cpus_and(tmp, sd->span, p->cpus_allowed);
  1188. for_each_cpu_mask(i, tmp) {
  1189. if (idle_cpu(i))
  1190. return i;
  1191. }
  1192. } else {
  1193. break;
  1194. }
  1195. }
  1196. return cpu;
  1197. }
  1198. #else
  1199. static inline int wake_idle(int cpu, struct task_struct *p)
  1200. {
  1201. return cpu;
  1202. }
  1203. #endif
  1204. /***
  1205. * try_to_wake_up - wake up a thread
  1206. * @p: the to-be-woken-up thread
  1207. * @state: the mask of task states that can be woken
  1208. * @sync: do a synchronous wakeup?
  1209. *
  1210. * Put it on the run-queue if it's not already there. The "current"
  1211. * thread is always on the run-queue (except when the actual
  1212. * re-schedule is in progress), and as such you're allowed to do
  1213. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1214. * runnable without the overhead of this.
  1215. *
  1216. * returns failure only if the task is already active.
  1217. */
  1218. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1219. {
  1220. int cpu, this_cpu, success = 0;
  1221. unsigned long flags;
  1222. long old_state;
  1223. struct rq *rq;
  1224. #ifdef CONFIG_SMP
  1225. struct sched_domain *sd, *this_sd = NULL;
  1226. unsigned long load, this_load;
  1227. int new_cpu;
  1228. #endif
  1229. rq = task_rq_lock(p, &flags);
  1230. old_state = p->state;
  1231. if (!(old_state & state))
  1232. goto out;
  1233. if (p->se.on_rq)
  1234. goto out_running;
  1235. cpu = task_cpu(p);
  1236. this_cpu = smp_processor_id();
  1237. #ifdef CONFIG_SMP
  1238. if (unlikely(task_running(rq, p)))
  1239. goto out_activate;
  1240. new_cpu = cpu;
  1241. schedstat_inc(rq, ttwu_cnt);
  1242. if (cpu == this_cpu) {
  1243. schedstat_inc(rq, ttwu_local);
  1244. goto out_set_cpu;
  1245. }
  1246. for_each_domain(this_cpu, sd) {
  1247. if (cpu_isset(cpu, sd->span)) {
  1248. schedstat_inc(sd, ttwu_wake_remote);
  1249. this_sd = sd;
  1250. break;
  1251. }
  1252. }
  1253. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1254. goto out_set_cpu;
  1255. /*
  1256. * Check for affine wakeup and passive balancing possibilities.
  1257. */
  1258. if (this_sd) {
  1259. int idx = this_sd->wake_idx;
  1260. unsigned int imbalance;
  1261. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1262. load = source_load(cpu, idx);
  1263. this_load = target_load(this_cpu, idx);
  1264. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1265. if (this_sd->flags & SD_WAKE_AFFINE) {
  1266. unsigned long tl = this_load;
  1267. unsigned long tl_per_task;
  1268. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1269. /*
  1270. * If sync wakeup then subtract the (maximum possible)
  1271. * effect of the currently running task from the load
  1272. * of the current CPU:
  1273. */
  1274. if (sync)
  1275. tl -= current->se.load.weight;
  1276. if ((tl <= load &&
  1277. tl + target_load(cpu, idx) <= tl_per_task) ||
  1278. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1279. /*
  1280. * This domain has SD_WAKE_AFFINE and
  1281. * p is cache cold in this domain, and
  1282. * there is no bad imbalance.
  1283. */
  1284. schedstat_inc(this_sd, ttwu_move_affine);
  1285. goto out_set_cpu;
  1286. }
  1287. }
  1288. /*
  1289. * Start passive balancing when half the imbalance_pct
  1290. * limit is reached.
  1291. */
  1292. if (this_sd->flags & SD_WAKE_BALANCE) {
  1293. if (imbalance*this_load <= 100*load) {
  1294. schedstat_inc(this_sd, ttwu_move_balance);
  1295. goto out_set_cpu;
  1296. }
  1297. }
  1298. }
  1299. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1300. out_set_cpu:
  1301. new_cpu = wake_idle(new_cpu, p);
  1302. if (new_cpu != cpu) {
  1303. set_task_cpu(p, new_cpu);
  1304. task_rq_unlock(rq, &flags);
  1305. /* might preempt at this point */
  1306. rq = task_rq_lock(p, &flags);
  1307. old_state = p->state;
  1308. if (!(old_state & state))
  1309. goto out;
  1310. if (p->se.on_rq)
  1311. goto out_running;
  1312. this_cpu = smp_processor_id();
  1313. cpu = task_cpu(p);
  1314. }
  1315. out_activate:
  1316. #endif /* CONFIG_SMP */
  1317. activate_task(rq, p, 1);
  1318. /*
  1319. * Sync wakeups (i.e. those types of wakeups where the waker
  1320. * has indicated that it will leave the CPU in short order)
  1321. * don't trigger a preemption, if the woken up task will run on
  1322. * this cpu. (in this case the 'I will reschedule' promise of
  1323. * the waker guarantees that the freshly woken up task is going
  1324. * to be considered on this CPU.)
  1325. */
  1326. if (!sync || cpu != this_cpu)
  1327. check_preempt_curr(rq, p);
  1328. success = 1;
  1329. out_running:
  1330. p->state = TASK_RUNNING;
  1331. out:
  1332. task_rq_unlock(rq, &flags);
  1333. return success;
  1334. }
  1335. int fastcall wake_up_process(struct task_struct *p)
  1336. {
  1337. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1338. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1339. }
  1340. EXPORT_SYMBOL(wake_up_process);
  1341. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1342. {
  1343. return try_to_wake_up(p, state, 0);
  1344. }
  1345. /*
  1346. * Perform scheduler related setup for a newly forked process p.
  1347. * p is forked by current.
  1348. *
  1349. * __sched_fork() is basic setup used by init_idle() too:
  1350. */
  1351. static void __sched_fork(struct task_struct *p)
  1352. {
  1353. p->se.wait_start_fair = 0;
  1354. p->se.exec_start = 0;
  1355. p->se.sum_exec_runtime = 0;
  1356. p->se.delta_exec = 0;
  1357. p->se.delta_fair_run = 0;
  1358. p->se.delta_fair_sleep = 0;
  1359. p->se.wait_runtime = 0;
  1360. p->se.sleep_start_fair = 0;
  1361. #ifdef CONFIG_SCHEDSTATS
  1362. p->se.wait_start = 0;
  1363. p->se.sum_wait_runtime = 0;
  1364. p->se.sum_sleep_runtime = 0;
  1365. p->se.sleep_start = 0;
  1366. p->se.block_start = 0;
  1367. p->se.sleep_max = 0;
  1368. p->se.block_max = 0;
  1369. p->se.exec_max = 0;
  1370. p->se.wait_max = 0;
  1371. p->se.wait_runtime_overruns = 0;
  1372. p->se.wait_runtime_underruns = 0;
  1373. #endif
  1374. INIT_LIST_HEAD(&p->run_list);
  1375. p->se.on_rq = 0;
  1376. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1377. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1378. #endif
  1379. /*
  1380. * We mark the process as running here, but have not actually
  1381. * inserted it onto the runqueue yet. This guarantees that
  1382. * nobody will actually run it, and a signal or other external
  1383. * event cannot wake it up and insert it on the runqueue either.
  1384. */
  1385. p->state = TASK_RUNNING;
  1386. }
  1387. /*
  1388. * fork()/clone()-time setup:
  1389. */
  1390. void sched_fork(struct task_struct *p, int clone_flags)
  1391. {
  1392. int cpu = get_cpu();
  1393. __sched_fork(p);
  1394. #ifdef CONFIG_SMP
  1395. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1396. #endif
  1397. __set_task_cpu(p, cpu);
  1398. /*
  1399. * Make sure we do not leak PI boosting priority to the child:
  1400. */
  1401. p->prio = current->normal_prio;
  1402. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1403. if (likely(sched_info_on()))
  1404. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1405. #endif
  1406. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1407. p->oncpu = 0;
  1408. #endif
  1409. #ifdef CONFIG_PREEMPT
  1410. /* Want to start with kernel preemption disabled. */
  1411. task_thread_info(p)->preempt_count = 1;
  1412. #endif
  1413. put_cpu();
  1414. }
  1415. /*
  1416. * After fork, child runs first. (default) If set to 0 then
  1417. * parent will (try to) run first.
  1418. */
  1419. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1420. /*
  1421. * wake_up_new_task - wake up a newly created task for the first time.
  1422. *
  1423. * This function will do some initial scheduler statistics housekeeping
  1424. * that must be done for every newly created context, then puts the task
  1425. * on the runqueue and wakes it.
  1426. */
  1427. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1428. {
  1429. unsigned long flags;
  1430. struct rq *rq;
  1431. int this_cpu;
  1432. u64 now;
  1433. rq = task_rq_lock(p, &flags);
  1434. BUG_ON(p->state != TASK_RUNNING);
  1435. this_cpu = smp_processor_id(); /* parent's CPU */
  1436. update_rq_clock(rq);
  1437. now = rq->clock;
  1438. p->prio = effective_prio(p);
  1439. if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
  1440. (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
  1441. !current->se.on_rq) {
  1442. activate_task(rq, p, 0);
  1443. } else {
  1444. /*
  1445. * Let the scheduling class do new task startup
  1446. * management (if any):
  1447. */
  1448. p->sched_class->task_new(rq, p, now);
  1449. inc_nr_running(p, rq, now);
  1450. }
  1451. check_preempt_curr(rq, p);
  1452. task_rq_unlock(rq, &flags);
  1453. }
  1454. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1455. /**
  1456. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1457. * @notifier: notifier struct to register
  1458. */
  1459. void preempt_notifier_register(struct preempt_notifier *notifier)
  1460. {
  1461. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1462. }
  1463. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1464. /**
  1465. * preempt_notifier_unregister - no longer interested in preemption notifications
  1466. * @notifier: notifier struct to unregister
  1467. *
  1468. * This is safe to call from within a preemption notifier.
  1469. */
  1470. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1471. {
  1472. hlist_del(&notifier->link);
  1473. }
  1474. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1475. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1476. {
  1477. struct preempt_notifier *notifier;
  1478. struct hlist_node *node;
  1479. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1480. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1481. }
  1482. static void
  1483. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1484. struct task_struct *next)
  1485. {
  1486. struct preempt_notifier *notifier;
  1487. struct hlist_node *node;
  1488. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1489. notifier->ops->sched_out(notifier, next);
  1490. }
  1491. #else
  1492. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1493. {
  1494. }
  1495. static void
  1496. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1497. struct task_struct *next)
  1498. {
  1499. }
  1500. #endif
  1501. /**
  1502. * prepare_task_switch - prepare to switch tasks
  1503. * @rq: the runqueue preparing to switch
  1504. * @prev: the current task that is being switched out
  1505. * @next: the task we are going to switch to.
  1506. *
  1507. * This is called with the rq lock held and interrupts off. It must
  1508. * be paired with a subsequent finish_task_switch after the context
  1509. * switch.
  1510. *
  1511. * prepare_task_switch sets up locking and calls architecture specific
  1512. * hooks.
  1513. */
  1514. static inline void
  1515. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1516. struct task_struct *next)
  1517. {
  1518. fire_sched_out_preempt_notifiers(prev, next);
  1519. prepare_lock_switch(rq, next);
  1520. prepare_arch_switch(next);
  1521. }
  1522. /**
  1523. * finish_task_switch - clean up after a task-switch
  1524. * @rq: runqueue associated with task-switch
  1525. * @prev: the thread we just switched away from.
  1526. *
  1527. * finish_task_switch must be called after the context switch, paired
  1528. * with a prepare_task_switch call before the context switch.
  1529. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1530. * and do any other architecture-specific cleanup actions.
  1531. *
  1532. * Note that we may have delayed dropping an mm in context_switch(). If
  1533. * so, we finish that here outside of the runqueue lock. (Doing it
  1534. * with the lock held can cause deadlocks; see schedule() for
  1535. * details.)
  1536. */
  1537. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1538. __releases(rq->lock)
  1539. {
  1540. struct mm_struct *mm = rq->prev_mm;
  1541. long prev_state;
  1542. rq->prev_mm = NULL;
  1543. /*
  1544. * A task struct has one reference for the use as "current".
  1545. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1546. * schedule one last time. The schedule call will never return, and
  1547. * the scheduled task must drop that reference.
  1548. * The test for TASK_DEAD must occur while the runqueue locks are
  1549. * still held, otherwise prev could be scheduled on another cpu, die
  1550. * there before we look at prev->state, and then the reference would
  1551. * be dropped twice.
  1552. * Manfred Spraul <manfred@colorfullife.com>
  1553. */
  1554. prev_state = prev->state;
  1555. finish_arch_switch(prev);
  1556. finish_lock_switch(rq, prev);
  1557. fire_sched_in_preempt_notifiers(current);
  1558. if (mm)
  1559. mmdrop(mm);
  1560. if (unlikely(prev_state == TASK_DEAD)) {
  1561. /*
  1562. * Remove function-return probe instances associated with this
  1563. * task and put them back on the free list.
  1564. */
  1565. kprobe_flush_task(prev);
  1566. put_task_struct(prev);
  1567. }
  1568. }
  1569. /**
  1570. * schedule_tail - first thing a freshly forked thread must call.
  1571. * @prev: the thread we just switched away from.
  1572. */
  1573. asmlinkage void schedule_tail(struct task_struct *prev)
  1574. __releases(rq->lock)
  1575. {
  1576. struct rq *rq = this_rq();
  1577. finish_task_switch(rq, prev);
  1578. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1579. /* In this case, finish_task_switch does not reenable preemption */
  1580. preempt_enable();
  1581. #endif
  1582. if (current->set_child_tid)
  1583. put_user(current->pid, current->set_child_tid);
  1584. }
  1585. /*
  1586. * context_switch - switch to the new MM and the new
  1587. * thread's register state.
  1588. */
  1589. static inline void
  1590. context_switch(struct rq *rq, struct task_struct *prev,
  1591. struct task_struct *next)
  1592. {
  1593. struct mm_struct *mm, *oldmm;
  1594. prepare_task_switch(rq, prev, next);
  1595. mm = next->mm;
  1596. oldmm = prev->active_mm;
  1597. /*
  1598. * For paravirt, this is coupled with an exit in switch_to to
  1599. * combine the page table reload and the switch backend into
  1600. * one hypercall.
  1601. */
  1602. arch_enter_lazy_cpu_mode();
  1603. if (unlikely(!mm)) {
  1604. next->active_mm = oldmm;
  1605. atomic_inc(&oldmm->mm_count);
  1606. enter_lazy_tlb(oldmm, next);
  1607. } else
  1608. switch_mm(oldmm, mm, next);
  1609. if (unlikely(!prev->mm)) {
  1610. prev->active_mm = NULL;
  1611. rq->prev_mm = oldmm;
  1612. }
  1613. /*
  1614. * Since the runqueue lock will be released by the next
  1615. * task (which is an invalid locking op but in the case
  1616. * of the scheduler it's an obvious special-case), so we
  1617. * do an early lockdep release here:
  1618. */
  1619. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1620. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1621. #endif
  1622. /* Here we just switch the register state and the stack. */
  1623. switch_to(prev, next, prev);
  1624. barrier();
  1625. /*
  1626. * this_rq must be evaluated again because prev may have moved
  1627. * CPUs since it called schedule(), thus the 'rq' on its stack
  1628. * frame will be invalid.
  1629. */
  1630. finish_task_switch(this_rq(), prev);
  1631. }
  1632. /*
  1633. * nr_running, nr_uninterruptible and nr_context_switches:
  1634. *
  1635. * externally visible scheduler statistics: current number of runnable
  1636. * threads, current number of uninterruptible-sleeping threads, total
  1637. * number of context switches performed since bootup.
  1638. */
  1639. unsigned long nr_running(void)
  1640. {
  1641. unsigned long i, sum = 0;
  1642. for_each_online_cpu(i)
  1643. sum += cpu_rq(i)->nr_running;
  1644. return sum;
  1645. }
  1646. unsigned long nr_uninterruptible(void)
  1647. {
  1648. unsigned long i, sum = 0;
  1649. for_each_possible_cpu(i)
  1650. sum += cpu_rq(i)->nr_uninterruptible;
  1651. /*
  1652. * Since we read the counters lockless, it might be slightly
  1653. * inaccurate. Do not allow it to go below zero though:
  1654. */
  1655. if (unlikely((long)sum < 0))
  1656. sum = 0;
  1657. return sum;
  1658. }
  1659. unsigned long long nr_context_switches(void)
  1660. {
  1661. int i;
  1662. unsigned long long sum = 0;
  1663. for_each_possible_cpu(i)
  1664. sum += cpu_rq(i)->nr_switches;
  1665. return sum;
  1666. }
  1667. unsigned long nr_iowait(void)
  1668. {
  1669. unsigned long i, sum = 0;
  1670. for_each_possible_cpu(i)
  1671. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1672. return sum;
  1673. }
  1674. unsigned long nr_active(void)
  1675. {
  1676. unsigned long i, running = 0, uninterruptible = 0;
  1677. for_each_online_cpu(i) {
  1678. running += cpu_rq(i)->nr_running;
  1679. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1680. }
  1681. if (unlikely((long)uninterruptible < 0))
  1682. uninterruptible = 0;
  1683. return running + uninterruptible;
  1684. }
  1685. /*
  1686. * Update rq->cpu_load[] statistics. This function is usually called every
  1687. * scheduler tick (TICK_NSEC).
  1688. */
  1689. static void update_cpu_load(struct rq *this_rq)
  1690. {
  1691. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1692. unsigned long total_load = this_rq->ls.load.weight;
  1693. unsigned long this_load = total_load;
  1694. struct load_stat *ls = &this_rq->ls;
  1695. u64 now;
  1696. int i, scale;
  1697. __update_rq_clock(this_rq);
  1698. now = this_rq->clock;
  1699. this_rq->nr_load_updates++;
  1700. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1701. goto do_avg;
  1702. /* Update delta_fair/delta_exec fields first */
  1703. update_curr_load(this_rq, now);
  1704. fair_delta64 = ls->delta_fair + 1;
  1705. ls->delta_fair = 0;
  1706. exec_delta64 = ls->delta_exec + 1;
  1707. ls->delta_exec = 0;
  1708. sample_interval64 = this_rq->clock - ls->load_update_last;
  1709. ls->load_update_last = this_rq->clock;
  1710. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1711. sample_interval64 = TICK_NSEC;
  1712. if (exec_delta64 > sample_interval64)
  1713. exec_delta64 = sample_interval64;
  1714. idle_delta64 = sample_interval64 - exec_delta64;
  1715. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1716. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1717. this_load = (unsigned long)tmp64;
  1718. do_avg:
  1719. /* Update our load: */
  1720. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1721. unsigned long old_load, new_load;
  1722. /* scale is effectively 1 << i now, and >> i divides by scale */
  1723. old_load = this_rq->cpu_load[i];
  1724. new_load = this_load;
  1725. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1726. }
  1727. }
  1728. #ifdef CONFIG_SMP
  1729. /*
  1730. * double_rq_lock - safely lock two runqueues
  1731. *
  1732. * Note this does not disable interrupts like task_rq_lock,
  1733. * you need to do so manually before calling.
  1734. */
  1735. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1736. __acquires(rq1->lock)
  1737. __acquires(rq2->lock)
  1738. {
  1739. BUG_ON(!irqs_disabled());
  1740. if (rq1 == rq2) {
  1741. spin_lock(&rq1->lock);
  1742. __acquire(rq2->lock); /* Fake it out ;) */
  1743. } else {
  1744. if (rq1 < rq2) {
  1745. spin_lock(&rq1->lock);
  1746. spin_lock(&rq2->lock);
  1747. } else {
  1748. spin_lock(&rq2->lock);
  1749. spin_lock(&rq1->lock);
  1750. }
  1751. }
  1752. }
  1753. /*
  1754. * double_rq_unlock - safely unlock two runqueues
  1755. *
  1756. * Note this does not restore interrupts like task_rq_unlock,
  1757. * you need to do so manually after calling.
  1758. */
  1759. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1760. __releases(rq1->lock)
  1761. __releases(rq2->lock)
  1762. {
  1763. spin_unlock(&rq1->lock);
  1764. if (rq1 != rq2)
  1765. spin_unlock(&rq2->lock);
  1766. else
  1767. __release(rq2->lock);
  1768. }
  1769. /*
  1770. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1771. */
  1772. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1773. __releases(this_rq->lock)
  1774. __acquires(busiest->lock)
  1775. __acquires(this_rq->lock)
  1776. {
  1777. if (unlikely(!irqs_disabled())) {
  1778. /* printk() doesn't work good under rq->lock */
  1779. spin_unlock(&this_rq->lock);
  1780. BUG_ON(1);
  1781. }
  1782. if (unlikely(!spin_trylock(&busiest->lock))) {
  1783. if (busiest < this_rq) {
  1784. spin_unlock(&this_rq->lock);
  1785. spin_lock(&busiest->lock);
  1786. spin_lock(&this_rq->lock);
  1787. } else
  1788. spin_lock(&busiest->lock);
  1789. }
  1790. }
  1791. /*
  1792. * If dest_cpu is allowed for this process, migrate the task to it.
  1793. * This is accomplished by forcing the cpu_allowed mask to only
  1794. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1795. * the cpu_allowed mask is restored.
  1796. */
  1797. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1798. {
  1799. struct migration_req req;
  1800. unsigned long flags;
  1801. struct rq *rq;
  1802. rq = task_rq_lock(p, &flags);
  1803. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1804. || unlikely(cpu_is_offline(dest_cpu)))
  1805. goto out;
  1806. /* force the process onto the specified CPU */
  1807. if (migrate_task(p, dest_cpu, &req)) {
  1808. /* Need to wait for migration thread (might exit: take ref). */
  1809. struct task_struct *mt = rq->migration_thread;
  1810. get_task_struct(mt);
  1811. task_rq_unlock(rq, &flags);
  1812. wake_up_process(mt);
  1813. put_task_struct(mt);
  1814. wait_for_completion(&req.done);
  1815. return;
  1816. }
  1817. out:
  1818. task_rq_unlock(rq, &flags);
  1819. }
  1820. /*
  1821. * sched_exec - execve() is a valuable balancing opportunity, because at
  1822. * this point the task has the smallest effective memory and cache footprint.
  1823. */
  1824. void sched_exec(void)
  1825. {
  1826. int new_cpu, this_cpu = get_cpu();
  1827. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1828. put_cpu();
  1829. if (new_cpu != this_cpu)
  1830. sched_migrate_task(current, new_cpu);
  1831. }
  1832. /*
  1833. * pull_task - move a task from a remote runqueue to the local runqueue.
  1834. * Both runqueues must be locked.
  1835. */
  1836. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1837. struct rq *this_rq, int this_cpu)
  1838. {
  1839. update_rq_clock(src_rq);
  1840. deactivate_task(src_rq, p, 0, src_rq->clock);
  1841. set_task_cpu(p, this_cpu);
  1842. activate_task(this_rq, p, 0);
  1843. /*
  1844. * Note that idle threads have a prio of MAX_PRIO, for this test
  1845. * to be always true for them.
  1846. */
  1847. check_preempt_curr(this_rq, p);
  1848. }
  1849. /*
  1850. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1851. */
  1852. static
  1853. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1854. struct sched_domain *sd, enum cpu_idle_type idle,
  1855. int *all_pinned)
  1856. {
  1857. /*
  1858. * We do not migrate tasks that are:
  1859. * 1) running (obviously), or
  1860. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1861. * 3) are cache-hot on their current CPU.
  1862. */
  1863. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1864. return 0;
  1865. *all_pinned = 0;
  1866. if (task_running(rq, p))
  1867. return 0;
  1868. /*
  1869. * Aggressive migration if too many balance attempts have failed:
  1870. */
  1871. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1872. return 1;
  1873. return 1;
  1874. }
  1875. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1876. unsigned long max_nr_move, unsigned long max_load_move,
  1877. struct sched_domain *sd, enum cpu_idle_type idle,
  1878. int *all_pinned, unsigned long *load_moved,
  1879. int *this_best_prio, struct rq_iterator *iterator)
  1880. {
  1881. int pulled = 0, pinned = 0, skip_for_load;
  1882. struct task_struct *p;
  1883. long rem_load_move = max_load_move;
  1884. if (max_nr_move == 0 || max_load_move == 0)
  1885. goto out;
  1886. pinned = 1;
  1887. /*
  1888. * Start the load-balancing iterator:
  1889. */
  1890. p = iterator->start(iterator->arg);
  1891. next:
  1892. if (!p)
  1893. goto out;
  1894. /*
  1895. * To help distribute high priority tasks accross CPUs we don't
  1896. * skip a task if it will be the highest priority task (i.e. smallest
  1897. * prio value) on its new queue regardless of its load weight
  1898. */
  1899. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1900. SCHED_LOAD_SCALE_FUZZ;
  1901. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1902. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1903. p = iterator->next(iterator->arg);
  1904. goto next;
  1905. }
  1906. pull_task(busiest, p, this_rq, this_cpu);
  1907. pulled++;
  1908. rem_load_move -= p->se.load.weight;
  1909. /*
  1910. * We only want to steal up to the prescribed number of tasks
  1911. * and the prescribed amount of weighted load.
  1912. */
  1913. if (pulled < max_nr_move && rem_load_move > 0) {
  1914. if (p->prio < *this_best_prio)
  1915. *this_best_prio = p->prio;
  1916. p = iterator->next(iterator->arg);
  1917. goto next;
  1918. }
  1919. out:
  1920. /*
  1921. * Right now, this is the only place pull_task() is called,
  1922. * so we can safely collect pull_task() stats here rather than
  1923. * inside pull_task().
  1924. */
  1925. schedstat_add(sd, lb_gained[idle], pulled);
  1926. if (all_pinned)
  1927. *all_pinned = pinned;
  1928. *load_moved = max_load_move - rem_load_move;
  1929. return pulled;
  1930. }
  1931. /*
  1932. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1933. * this_rq, as part of a balancing operation within domain "sd".
  1934. * Returns 1 if successful and 0 otherwise.
  1935. *
  1936. * Called with both runqueues locked.
  1937. */
  1938. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1939. unsigned long max_load_move,
  1940. struct sched_domain *sd, enum cpu_idle_type idle,
  1941. int *all_pinned)
  1942. {
  1943. struct sched_class *class = sched_class_highest;
  1944. unsigned long total_load_moved = 0;
  1945. int this_best_prio = this_rq->curr->prio;
  1946. do {
  1947. total_load_moved +=
  1948. class->load_balance(this_rq, this_cpu, busiest,
  1949. ULONG_MAX, max_load_move - total_load_moved,
  1950. sd, idle, all_pinned, &this_best_prio);
  1951. class = class->next;
  1952. } while (class && max_load_move > total_load_moved);
  1953. return total_load_moved > 0;
  1954. }
  1955. /*
  1956. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1957. * part of active balancing operations within "domain".
  1958. * Returns 1 if successful and 0 otherwise.
  1959. *
  1960. * Called with both runqueues locked.
  1961. */
  1962. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1963. struct sched_domain *sd, enum cpu_idle_type idle)
  1964. {
  1965. struct sched_class *class;
  1966. int this_best_prio = MAX_PRIO;
  1967. for (class = sched_class_highest; class; class = class->next)
  1968. if (class->load_balance(this_rq, this_cpu, busiest,
  1969. 1, ULONG_MAX, sd, idle, NULL,
  1970. &this_best_prio))
  1971. return 1;
  1972. return 0;
  1973. }
  1974. /*
  1975. * find_busiest_group finds and returns the busiest CPU group within the
  1976. * domain. It calculates and returns the amount of weighted load which
  1977. * should be moved to restore balance via the imbalance parameter.
  1978. */
  1979. static struct sched_group *
  1980. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1981. unsigned long *imbalance, enum cpu_idle_type idle,
  1982. int *sd_idle, cpumask_t *cpus, int *balance)
  1983. {
  1984. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1985. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1986. unsigned long max_pull;
  1987. unsigned long busiest_load_per_task, busiest_nr_running;
  1988. unsigned long this_load_per_task, this_nr_running;
  1989. int load_idx;
  1990. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1991. int power_savings_balance = 1;
  1992. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1993. unsigned long min_nr_running = ULONG_MAX;
  1994. struct sched_group *group_min = NULL, *group_leader = NULL;
  1995. #endif
  1996. max_load = this_load = total_load = total_pwr = 0;
  1997. busiest_load_per_task = busiest_nr_running = 0;
  1998. this_load_per_task = this_nr_running = 0;
  1999. if (idle == CPU_NOT_IDLE)
  2000. load_idx = sd->busy_idx;
  2001. else if (idle == CPU_NEWLY_IDLE)
  2002. load_idx = sd->newidle_idx;
  2003. else
  2004. load_idx = sd->idle_idx;
  2005. do {
  2006. unsigned long load, group_capacity;
  2007. int local_group;
  2008. int i;
  2009. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2010. unsigned long sum_nr_running, sum_weighted_load;
  2011. local_group = cpu_isset(this_cpu, group->cpumask);
  2012. if (local_group)
  2013. balance_cpu = first_cpu(group->cpumask);
  2014. /* Tally up the load of all CPUs in the group */
  2015. sum_weighted_load = sum_nr_running = avg_load = 0;
  2016. for_each_cpu_mask(i, group->cpumask) {
  2017. struct rq *rq;
  2018. if (!cpu_isset(i, *cpus))
  2019. continue;
  2020. rq = cpu_rq(i);
  2021. if (*sd_idle && rq->nr_running)
  2022. *sd_idle = 0;
  2023. /* Bias balancing toward cpus of our domain */
  2024. if (local_group) {
  2025. if (idle_cpu(i) && !first_idle_cpu) {
  2026. first_idle_cpu = 1;
  2027. balance_cpu = i;
  2028. }
  2029. load = target_load(i, load_idx);
  2030. } else
  2031. load = source_load(i, load_idx);
  2032. avg_load += load;
  2033. sum_nr_running += rq->nr_running;
  2034. sum_weighted_load += weighted_cpuload(i);
  2035. }
  2036. /*
  2037. * First idle cpu or the first cpu(busiest) in this sched group
  2038. * is eligible for doing load balancing at this and above
  2039. * domains. In the newly idle case, we will allow all the cpu's
  2040. * to do the newly idle load balance.
  2041. */
  2042. if (idle != CPU_NEWLY_IDLE && local_group &&
  2043. balance_cpu != this_cpu && balance) {
  2044. *balance = 0;
  2045. goto ret;
  2046. }
  2047. total_load += avg_load;
  2048. total_pwr += group->__cpu_power;
  2049. /* Adjust by relative CPU power of the group */
  2050. avg_load = sg_div_cpu_power(group,
  2051. avg_load * SCHED_LOAD_SCALE);
  2052. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2053. if (local_group) {
  2054. this_load = avg_load;
  2055. this = group;
  2056. this_nr_running = sum_nr_running;
  2057. this_load_per_task = sum_weighted_load;
  2058. } else if (avg_load > max_load &&
  2059. sum_nr_running > group_capacity) {
  2060. max_load = avg_load;
  2061. busiest = group;
  2062. busiest_nr_running = sum_nr_running;
  2063. busiest_load_per_task = sum_weighted_load;
  2064. }
  2065. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2066. /*
  2067. * Busy processors will not participate in power savings
  2068. * balance.
  2069. */
  2070. if (idle == CPU_NOT_IDLE ||
  2071. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2072. goto group_next;
  2073. /*
  2074. * If the local group is idle or completely loaded
  2075. * no need to do power savings balance at this domain
  2076. */
  2077. if (local_group && (this_nr_running >= group_capacity ||
  2078. !this_nr_running))
  2079. power_savings_balance = 0;
  2080. /*
  2081. * If a group is already running at full capacity or idle,
  2082. * don't include that group in power savings calculations
  2083. */
  2084. if (!power_savings_balance || sum_nr_running >= group_capacity
  2085. || !sum_nr_running)
  2086. goto group_next;
  2087. /*
  2088. * Calculate the group which has the least non-idle load.
  2089. * This is the group from where we need to pick up the load
  2090. * for saving power
  2091. */
  2092. if ((sum_nr_running < min_nr_running) ||
  2093. (sum_nr_running == min_nr_running &&
  2094. first_cpu(group->cpumask) <
  2095. first_cpu(group_min->cpumask))) {
  2096. group_min = group;
  2097. min_nr_running = sum_nr_running;
  2098. min_load_per_task = sum_weighted_load /
  2099. sum_nr_running;
  2100. }
  2101. /*
  2102. * Calculate the group which is almost near its
  2103. * capacity but still has some space to pick up some load
  2104. * from other group and save more power
  2105. */
  2106. if (sum_nr_running <= group_capacity - 1) {
  2107. if (sum_nr_running > leader_nr_running ||
  2108. (sum_nr_running == leader_nr_running &&
  2109. first_cpu(group->cpumask) >
  2110. first_cpu(group_leader->cpumask))) {
  2111. group_leader = group;
  2112. leader_nr_running = sum_nr_running;
  2113. }
  2114. }
  2115. group_next:
  2116. #endif
  2117. group = group->next;
  2118. } while (group != sd->groups);
  2119. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2120. goto out_balanced;
  2121. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2122. if (this_load >= avg_load ||
  2123. 100*max_load <= sd->imbalance_pct*this_load)
  2124. goto out_balanced;
  2125. busiest_load_per_task /= busiest_nr_running;
  2126. /*
  2127. * We're trying to get all the cpus to the average_load, so we don't
  2128. * want to push ourselves above the average load, nor do we wish to
  2129. * reduce the max loaded cpu below the average load, as either of these
  2130. * actions would just result in more rebalancing later, and ping-pong
  2131. * tasks around. Thus we look for the minimum possible imbalance.
  2132. * Negative imbalances (*we* are more loaded than anyone else) will
  2133. * be counted as no imbalance for these purposes -- we can't fix that
  2134. * by pulling tasks to us. Be careful of negative numbers as they'll
  2135. * appear as very large values with unsigned longs.
  2136. */
  2137. if (max_load <= busiest_load_per_task)
  2138. goto out_balanced;
  2139. /*
  2140. * In the presence of smp nice balancing, certain scenarios can have
  2141. * max load less than avg load(as we skip the groups at or below
  2142. * its cpu_power, while calculating max_load..)
  2143. */
  2144. if (max_load < avg_load) {
  2145. *imbalance = 0;
  2146. goto small_imbalance;
  2147. }
  2148. /* Don't want to pull so many tasks that a group would go idle */
  2149. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2150. /* How much load to actually move to equalise the imbalance */
  2151. *imbalance = min(max_pull * busiest->__cpu_power,
  2152. (avg_load - this_load) * this->__cpu_power)
  2153. / SCHED_LOAD_SCALE;
  2154. /*
  2155. * if *imbalance is less than the average load per runnable task
  2156. * there is no gaurantee that any tasks will be moved so we'll have
  2157. * a think about bumping its value to force at least one task to be
  2158. * moved
  2159. */
  2160. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2161. unsigned long tmp, pwr_now, pwr_move;
  2162. unsigned int imbn;
  2163. small_imbalance:
  2164. pwr_move = pwr_now = 0;
  2165. imbn = 2;
  2166. if (this_nr_running) {
  2167. this_load_per_task /= this_nr_running;
  2168. if (busiest_load_per_task > this_load_per_task)
  2169. imbn = 1;
  2170. } else
  2171. this_load_per_task = SCHED_LOAD_SCALE;
  2172. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2173. busiest_load_per_task * imbn) {
  2174. *imbalance = busiest_load_per_task;
  2175. return busiest;
  2176. }
  2177. /*
  2178. * OK, we don't have enough imbalance to justify moving tasks,
  2179. * however we may be able to increase total CPU power used by
  2180. * moving them.
  2181. */
  2182. pwr_now += busiest->__cpu_power *
  2183. min(busiest_load_per_task, max_load);
  2184. pwr_now += this->__cpu_power *
  2185. min(this_load_per_task, this_load);
  2186. pwr_now /= SCHED_LOAD_SCALE;
  2187. /* Amount of load we'd subtract */
  2188. tmp = sg_div_cpu_power(busiest,
  2189. busiest_load_per_task * SCHED_LOAD_SCALE);
  2190. if (max_load > tmp)
  2191. pwr_move += busiest->__cpu_power *
  2192. min(busiest_load_per_task, max_load - tmp);
  2193. /* Amount of load we'd add */
  2194. if (max_load * busiest->__cpu_power <
  2195. busiest_load_per_task * SCHED_LOAD_SCALE)
  2196. tmp = sg_div_cpu_power(this,
  2197. max_load * busiest->__cpu_power);
  2198. else
  2199. tmp = sg_div_cpu_power(this,
  2200. busiest_load_per_task * SCHED_LOAD_SCALE);
  2201. pwr_move += this->__cpu_power *
  2202. min(this_load_per_task, this_load + tmp);
  2203. pwr_move /= SCHED_LOAD_SCALE;
  2204. /* Move if we gain throughput */
  2205. if (pwr_move <= pwr_now)
  2206. goto out_balanced;
  2207. *imbalance = busiest_load_per_task;
  2208. }
  2209. return busiest;
  2210. out_balanced:
  2211. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2212. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2213. goto ret;
  2214. if (this == group_leader && group_leader != group_min) {
  2215. *imbalance = min_load_per_task;
  2216. return group_min;
  2217. }
  2218. #endif
  2219. ret:
  2220. *imbalance = 0;
  2221. return NULL;
  2222. }
  2223. /*
  2224. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2225. */
  2226. static struct rq *
  2227. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2228. unsigned long imbalance, cpumask_t *cpus)
  2229. {
  2230. struct rq *busiest = NULL, *rq;
  2231. unsigned long max_load = 0;
  2232. int i;
  2233. for_each_cpu_mask(i, group->cpumask) {
  2234. unsigned long wl;
  2235. if (!cpu_isset(i, *cpus))
  2236. continue;
  2237. rq = cpu_rq(i);
  2238. wl = weighted_cpuload(i);
  2239. if (rq->nr_running == 1 && wl > imbalance)
  2240. continue;
  2241. if (wl > max_load) {
  2242. max_load = wl;
  2243. busiest = rq;
  2244. }
  2245. }
  2246. return busiest;
  2247. }
  2248. /*
  2249. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2250. * so long as it is large enough.
  2251. */
  2252. #define MAX_PINNED_INTERVAL 512
  2253. /*
  2254. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2255. * tasks if there is an imbalance.
  2256. */
  2257. static int load_balance(int this_cpu, struct rq *this_rq,
  2258. struct sched_domain *sd, enum cpu_idle_type idle,
  2259. int *balance)
  2260. {
  2261. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2262. struct sched_group *group;
  2263. unsigned long imbalance;
  2264. struct rq *busiest;
  2265. cpumask_t cpus = CPU_MASK_ALL;
  2266. unsigned long flags;
  2267. /*
  2268. * When power savings policy is enabled for the parent domain, idle
  2269. * sibling can pick up load irrespective of busy siblings. In this case,
  2270. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2271. * portraying it as CPU_NOT_IDLE.
  2272. */
  2273. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2274. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2275. sd_idle = 1;
  2276. schedstat_inc(sd, lb_cnt[idle]);
  2277. redo:
  2278. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2279. &cpus, balance);
  2280. if (*balance == 0)
  2281. goto out_balanced;
  2282. if (!group) {
  2283. schedstat_inc(sd, lb_nobusyg[idle]);
  2284. goto out_balanced;
  2285. }
  2286. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2287. if (!busiest) {
  2288. schedstat_inc(sd, lb_nobusyq[idle]);
  2289. goto out_balanced;
  2290. }
  2291. BUG_ON(busiest == this_rq);
  2292. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2293. ld_moved = 0;
  2294. if (busiest->nr_running > 1) {
  2295. /*
  2296. * Attempt to move tasks. If find_busiest_group has found
  2297. * an imbalance but busiest->nr_running <= 1, the group is
  2298. * still unbalanced. ld_moved simply stays zero, so it is
  2299. * correctly treated as an imbalance.
  2300. */
  2301. local_irq_save(flags);
  2302. double_rq_lock(this_rq, busiest);
  2303. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2304. imbalance, sd, idle, &all_pinned);
  2305. double_rq_unlock(this_rq, busiest);
  2306. local_irq_restore(flags);
  2307. /*
  2308. * some other cpu did the load balance for us.
  2309. */
  2310. if (ld_moved && this_cpu != smp_processor_id())
  2311. resched_cpu(this_cpu);
  2312. /* All tasks on this runqueue were pinned by CPU affinity */
  2313. if (unlikely(all_pinned)) {
  2314. cpu_clear(cpu_of(busiest), cpus);
  2315. if (!cpus_empty(cpus))
  2316. goto redo;
  2317. goto out_balanced;
  2318. }
  2319. }
  2320. if (!ld_moved) {
  2321. schedstat_inc(sd, lb_failed[idle]);
  2322. sd->nr_balance_failed++;
  2323. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2324. spin_lock_irqsave(&busiest->lock, flags);
  2325. /* don't kick the migration_thread, if the curr
  2326. * task on busiest cpu can't be moved to this_cpu
  2327. */
  2328. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2329. spin_unlock_irqrestore(&busiest->lock, flags);
  2330. all_pinned = 1;
  2331. goto out_one_pinned;
  2332. }
  2333. if (!busiest->active_balance) {
  2334. busiest->active_balance = 1;
  2335. busiest->push_cpu = this_cpu;
  2336. active_balance = 1;
  2337. }
  2338. spin_unlock_irqrestore(&busiest->lock, flags);
  2339. if (active_balance)
  2340. wake_up_process(busiest->migration_thread);
  2341. /*
  2342. * We've kicked active balancing, reset the failure
  2343. * counter.
  2344. */
  2345. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2346. }
  2347. } else
  2348. sd->nr_balance_failed = 0;
  2349. if (likely(!active_balance)) {
  2350. /* We were unbalanced, so reset the balancing interval */
  2351. sd->balance_interval = sd->min_interval;
  2352. } else {
  2353. /*
  2354. * If we've begun active balancing, start to back off. This
  2355. * case may not be covered by the all_pinned logic if there
  2356. * is only 1 task on the busy runqueue (because we don't call
  2357. * move_tasks).
  2358. */
  2359. if (sd->balance_interval < sd->max_interval)
  2360. sd->balance_interval *= 2;
  2361. }
  2362. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2363. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2364. return -1;
  2365. return ld_moved;
  2366. out_balanced:
  2367. schedstat_inc(sd, lb_balanced[idle]);
  2368. sd->nr_balance_failed = 0;
  2369. out_one_pinned:
  2370. /* tune up the balancing interval */
  2371. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2372. (sd->balance_interval < sd->max_interval))
  2373. sd->balance_interval *= 2;
  2374. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2375. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2376. return -1;
  2377. return 0;
  2378. }
  2379. /*
  2380. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2381. * tasks if there is an imbalance.
  2382. *
  2383. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2384. * this_rq is locked.
  2385. */
  2386. static int
  2387. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2388. {
  2389. struct sched_group *group;
  2390. struct rq *busiest = NULL;
  2391. unsigned long imbalance;
  2392. int ld_moved = 0;
  2393. int sd_idle = 0;
  2394. int all_pinned = 0;
  2395. cpumask_t cpus = CPU_MASK_ALL;
  2396. /*
  2397. * When power savings policy is enabled for the parent domain, idle
  2398. * sibling can pick up load irrespective of busy siblings. In this case,
  2399. * let the state of idle sibling percolate up as IDLE, instead of
  2400. * portraying it as CPU_NOT_IDLE.
  2401. */
  2402. if (sd->flags & SD_SHARE_CPUPOWER &&
  2403. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2404. sd_idle = 1;
  2405. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2406. redo:
  2407. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2408. &sd_idle, &cpus, NULL);
  2409. if (!group) {
  2410. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2411. goto out_balanced;
  2412. }
  2413. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2414. &cpus);
  2415. if (!busiest) {
  2416. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2417. goto out_balanced;
  2418. }
  2419. BUG_ON(busiest == this_rq);
  2420. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2421. ld_moved = 0;
  2422. if (busiest->nr_running > 1) {
  2423. /* Attempt to move tasks */
  2424. double_lock_balance(this_rq, busiest);
  2425. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2426. imbalance, sd, CPU_NEWLY_IDLE,
  2427. &all_pinned);
  2428. spin_unlock(&busiest->lock);
  2429. if (unlikely(all_pinned)) {
  2430. cpu_clear(cpu_of(busiest), cpus);
  2431. if (!cpus_empty(cpus))
  2432. goto redo;
  2433. }
  2434. }
  2435. if (!ld_moved) {
  2436. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2437. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2438. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2439. return -1;
  2440. } else
  2441. sd->nr_balance_failed = 0;
  2442. return ld_moved;
  2443. out_balanced:
  2444. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2445. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2446. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2447. return -1;
  2448. sd->nr_balance_failed = 0;
  2449. return 0;
  2450. }
  2451. /*
  2452. * idle_balance is called by schedule() if this_cpu is about to become
  2453. * idle. Attempts to pull tasks from other CPUs.
  2454. */
  2455. static void idle_balance(int this_cpu, struct rq *this_rq)
  2456. {
  2457. struct sched_domain *sd;
  2458. int pulled_task = -1;
  2459. unsigned long next_balance = jiffies + HZ;
  2460. for_each_domain(this_cpu, sd) {
  2461. unsigned long interval;
  2462. if (!(sd->flags & SD_LOAD_BALANCE))
  2463. continue;
  2464. if (sd->flags & SD_BALANCE_NEWIDLE)
  2465. /* If we've pulled tasks over stop searching: */
  2466. pulled_task = load_balance_newidle(this_cpu,
  2467. this_rq, sd);
  2468. interval = msecs_to_jiffies(sd->balance_interval);
  2469. if (time_after(next_balance, sd->last_balance + interval))
  2470. next_balance = sd->last_balance + interval;
  2471. if (pulled_task)
  2472. break;
  2473. }
  2474. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2475. /*
  2476. * We are going idle. next_balance may be set based on
  2477. * a busy processor. So reset next_balance.
  2478. */
  2479. this_rq->next_balance = next_balance;
  2480. }
  2481. }
  2482. /*
  2483. * active_load_balance is run by migration threads. It pushes running tasks
  2484. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2485. * running on each physical CPU where possible, and avoids physical /
  2486. * logical imbalances.
  2487. *
  2488. * Called with busiest_rq locked.
  2489. */
  2490. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2491. {
  2492. int target_cpu = busiest_rq->push_cpu;
  2493. struct sched_domain *sd;
  2494. struct rq *target_rq;
  2495. /* Is there any task to move? */
  2496. if (busiest_rq->nr_running <= 1)
  2497. return;
  2498. target_rq = cpu_rq(target_cpu);
  2499. /*
  2500. * This condition is "impossible", if it occurs
  2501. * we need to fix it. Originally reported by
  2502. * Bjorn Helgaas on a 128-cpu setup.
  2503. */
  2504. BUG_ON(busiest_rq == target_rq);
  2505. /* move a task from busiest_rq to target_rq */
  2506. double_lock_balance(busiest_rq, target_rq);
  2507. /* Search for an sd spanning us and the target CPU. */
  2508. for_each_domain(target_cpu, sd) {
  2509. if ((sd->flags & SD_LOAD_BALANCE) &&
  2510. cpu_isset(busiest_cpu, sd->span))
  2511. break;
  2512. }
  2513. if (likely(sd)) {
  2514. schedstat_inc(sd, alb_cnt);
  2515. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2516. sd, CPU_IDLE))
  2517. schedstat_inc(sd, alb_pushed);
  2518. else
  2519. schedstat_inc(sd, alb_failed);
  2520. }
  2521. spin_unlock(&target_rq->lock);
  2522. }
  2523. #ifdef CONFIG_NO_HZ
  2524. static struct {
  2525. atomic_t load_balancer;
  2526. cpumask_t cpu_mask;
  2527. } nohz ____cacheline_aligned = {
  2528. .load_balancer = ATOMIC_INIT(-1),
  2529. .cpu_mask = CPU_MASK_NONE,
  2530. };
  2531. /*
  2532. * This routine will try to nominate the ilb (idle load balancing)
  2533. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2534. * load balancing on behalf of all those cpus. If all the cpus in the system
  2535. * go into this tickless mode, then there will be no ilb owner (as there is
  2536. * no need for one) and all the cpus will sleep till the next wakeup event
  2537. * arrives...
  2538. *
  2539. * For the ilb owner, tick is not stopped. And this tick will be used
  2540. * for idle load balancing. ilb owner will still be part of
  2541. * nohz.cpu_mask..
  2542. *
  2543. * While stopping the tick, this cpu will become the ilb owner if there
  2544. * is no other owner. And will be the owner till that cpu becomes busy
  2545. * or if all cpus in the system stop their ticks at which point
  2546. * there is no need for ilb owner.
  2547. *
  2548. * When the ilb owner becomes busy, it nominates another owner, during the
  2549. * next busy scheduler_tick()
  2550. */
  2551. int select_nohz_load_balancer(int stop_tick)
  2552. {
  2553. int cpu = smp_processor_id();
  2554. if (stop_tick) {
  2555. cpu_set(cpu, nohz.cpu_mask);
  2556. cpu_rq(cpu)->in_nohz_recently = 1;
  2557. /*
  2558. * If we are going offline and still the leader, give up!
  2559. */
  2560. if (cpu_is_offline(cpu) &&
  2561. atomic_read(&nohz.load_balancer) == cpu) {
  2562. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2563. BUG();
  2564. return 0;
  2565. }
  2566. /* time for ilb owner also to sleep */
  2567. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2568. if (atomic_read(&nohz.load_balancer) == cpu)
  2569. atomic_set(&nohz.load_balancer, -1);
  2570. return 0;
  2571. }
  2572. if (atomic_read(&nohz.load_balancer) == -1) {
  2573. /* make me the ilb owner */
  2574. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2575. return 1;
  2576. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2577. return 1;
  2578. } else {
  2579. if (!cpu_isset(cpu, nohz.cpu_mask))
  2580. return 0;
  2581. cpu_clear(cpu, nohz.cpu_mask);
  2582. if (atomic_read(&nohz.load_balancer) == cpu)
  2583. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2584. BUG();
  2585. }
  2586. return 0;
  2587. }
  2588. #endif
  2589. static DEFINE_SPINLOCK(balancing);
  2590. /*
  2591. * It checks each scheduling domain to see if it is due to be balanced,
  2592. * and initiates a balancing operation if so.
  2593. *
  2594. * Balancing parameters are set up in arch_init_sched_domains.
  2595. */
  2596. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2597. {
  2598. int balance = 1;
  2599. struct rq *rq = cpu_rq(cpu);
  2600. unsigned long interval;
  2601. struct sched_domain *sd;
  2602. /* Earliest time when we have to do rebalance again */
  2603. unsigned long next_balance = jiffies + 60*HZ;
  2604. for_each_domain(cpu, sd) {
  2605. if (!(sd->flags & SD_LOAD_BALANCE))
  2606. continue;
  2607. interval = sd->balance_interval;
  2608. if (idle != CPU_IDLE)
  2609. interval *= sd->busy_factor;
  2610. /* scale ms to jiffies */
  2611. interval = msecs_to_jiffies(interval);
  2612. if (unlikely(!interval))
  2613. interval = 1;
  2614. if (interval > HZ*NR_CPUS/10)
  2615. interval = HZ*NR_CPUS/10;
  2616. if (sd->flags & SD_SERIALIZE) {
  2617. if (!spin_trylock(&balancing))
  2618. goto out;
  2619. }
  2620. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2621. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2622. /*
  2623. * We've pulled tasks over so either we're no
  2624. * longer idle, or one of our SMT siblings is
  2625. * not idle.
  2626. */
  2627. idle = CPU_NOT_IDLE;
  2628. }
  2629. sd->last_balance = jiffies;
  2630. }
  2631. if (sd->flags & SD_SERIALIZE)
  2632. spin_unlock(&balancing);
  2633. out:
  2634. if (time_after(next_balance, sd->last_balance + interval))
  2635. next_balance = sd->last_balance + interval;
  2636. /*
  2637. * Stop the load balance at this level. There is another
  2638. * CPU in our sched group which is doing load balancing more
  2639. * actively.
  2640. */
  2641. if (!balance)
  2642. break;
  2643. }
  2644. rq->next_balance = next_balance;
  2645. }
  2646. /*
  2647. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2648. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2649. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2650. */
  2651. static void run_rebalance_domains(struct softirq_action *h)
  2652. {
  2653. int this_cpu = smp_processor_id();
  2654. struct rq *this_rq = cpu_rq(this_cpu);
  2655. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2656. CPU_IDLE : CPU_NOT_IDLE;
  2657. rebalance_domains(this_cpu, idle);
  2658. #ifdef CONFIG_NO_HZ
  2659. /*
  2660. * If this cpu is the owner for idle load balancing, then do the
  2661. * balancing on behalf of the other idle cpus whose ticks are
  2662. * stopped.
  2663. */
  2664. if (this_rq->idle_at_tick &&
  2665. atomic_read(&nohz.load_balancer) == this_cpu) {
  2666. cpumask_t cpus = nohz.cpu_mask;
  2667. struct rq *rq;
  2668. int balance_cpu;
  2669. cpu_clear(this_cpu, cpus);
  2670. for_each_cpu_mask(balance_cpu, cpus) {
  2671. /*
  2672. * If this cpu gets work to do, stop the load balancing
  2673. * work being done for other cpus. Next load
  2674. * balancing owner will pick it up.
  2675. */
  2676. if (need_resched())
  2677. break;
  2678. rebalance_domains(balance_cpu, SCHED_IDLE);
  2679. rq = cpu_rq(balance_cpu);
  2680. if (time_after(this_rq->next_balance, rq->next_balance))
  2681. this_rq->next_balance = rq->next_balance;
  2682. }
  2683. }
  2684. #endif
  2685. }
  2686. /*
  2687. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2688. *
  2689. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2690. * idle load balancing owner or decide to stop the periodic load balancing,
  2691. * if the whole system is idle.
  2692. */
  2693. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2694. {
  2695. #ifdef CONFIG_NO_HZ
  2696. /*
  2697. * If we were in the nohz mode recently and busy at the current
  2698. * scheduler tick, then check if we need to nominate new idle
  2699. * load balancer.
  2700. */
  2701. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2702. rq->in_nohz_recently = 0;
  2703. if (atomic_read(&nohz.load_balancer) == cpu) {
  2704. cpu_clear(cpu, nohz.cpu_mask);
  2705. atomic_set(&nohz.load_balancer, -1);
  2706. }
  2707. if (atomic_read(&nohz.load_balancer) == -1) {
  2708. /*
  2709. * simple selection for now: Nominate the
  2710. * first cpu in the nohz list to be the next
  2711. * ilb owner.
  2712. *
  2713. * TBD: Traverse the sched domains and nominate
  2714. * the nearest cpu in the nohz.cpu_mask.
  2715. */
  2716. int ilb = first_cpu(nohz.cpu_mask);
  2717. if (ilb != NR_CPUS)
  2718. resched_cpu(ilb);
  2719. }
  2720. }
  2721. /*
  2722. * If this cpu is idle and doing idle load balancing for all the
  2723. * cpus with ticks stopped, is it time for that to stop?
  2724. */
  2725. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2726. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2727. resched_cpu(cpu);
  2728. return;
  2729. }
  2730. /*
  2731. * If this cpu is idle and the idle load balancing is done by
  2732. * someone else, then no need raise the SCHED_SOFTIRQ
  2733. */
  2734. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2735. cpu_isset(cpu, nohz.cpu_mask))
  2736. return;
  2737. #endif
  2738. if (time_after_eq(jiffies, rq->next_balance))
  2739. raise_softirq(SCHED_SOFTIRQ);
  2740. }
  2741. #else /* CONFIG_SMP */
  2742. /*
  2743. * on UP we do not need to balance between CPUs:
  2744. */
  2745. static inline void idle_balance(int cpu, struct rq *rq)
  2746. {
  2747. }
  2748. /* Avoid "used but not defined" warning on UP */
  2749. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2750. unsigned long max_nr_move, unsigned long max_load_move,
  2751. struct sched_domain *sd, enum cpu_idle_type idle,
  2752. int *all_pinned, unsigned long *load_moved,
  2753. int *this_best_prio, struct rq_iterator *iterator)
  2754. {
  2755. *load_moved = 0;
  2756. return 0;
  2757. }
  2758. #endif
  2759. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2760. EXPORT_PER_CPU_SYMBOL(kstat);
  2761. /*
  2762. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2763. * that have not yet been banked in case the task is currently running.
  2764. */
  2765. unsigned long long task_sched_runtime(struct task_struct *p)
  2766. {
  2767. unsigned long flags;
  2768. u64 ns, delta_exec;
  2769. struct rq *rq;
  2770. rq = task_rq_lock(p, &flags);
  2771. ns = p->se.sum_exec_runtime;
  2772. if (rq->curr == p) {
  2773. update_rq_clock(rq);
  2774. delta_exec = rq->clock - p->se.exec_start;
  2775. if ((s64)delta_exec > 0)
  2776. ns += delta_exec;
  2777. }
  2778. task_rq_unlock(rq, &flags);
  2779. return ns;
  2780. }
  2781. /*
  2782. * Account user cpu time to a process.
  2783. * @p: the process that the cpu time gets accounted to
  2784. * @hardirq_offset: the offset to subtract from hardirq_count()
  2785. * @cputime: the cpu time spent in user space since the last update
  2786. */
  2787. void account_user_time(struct task_struct *p, cputime_t cputime)
  2788. {
  2789. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2790. cputime64_t tmp;
  2791. p->utime = cputime_add(p->utime, cputime);
  2792. /* Add user time to cpustat. */
  2793. tmp = cputime_to_cputime64(cputime);
  2794. if (TASK_NICE(p) > 0)
  2795. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2796. else
  2797. cpustat->user = cputime64_add(cpustat->user, tmp);
  2798. }
  2799. /*
  2800. * Account system cpu time to a process.
  2801. * @p: the process that the cpu time gets accounted to
  2802. * @hardirq_offset: the offset to subtract from hardirq_count()
  2803. * @cputime: the cpu time spent in kernel space since the last update
  2804. */
  2805. void account_system_time(struct task_struct *p, int hardirq_offset,
  2806. cputime_t cputime)
  2807. {
  2808. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2809. struct rq *rq = this_rq();
  2810. cputime64_t tmp;
  2811. p->stime = cputime_add(p->stime, cputime);
  2812. /* Add system time to cpustat. */
  2813. tmp = cputime_to_cputime64(cputime);
  2814. if (hardirq_count() - hardirq_offset)
  2815. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2816. else if (softirq_count())
  2817. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2818. else if (p != rq->idle)
  2819. cpustat->system = cputime64_add(cpustat->system, tmp);
  2820. else if (atomic_read(&rq->nr_iowait) > 0)
  2821. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2822. else
  2823. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2824. /* Account for system time used */
  2825. acct_update_integrals(p);
  2826. }
  2827. /*
  2828. * Account for involuntary wait time.
  2829. * @p: the process from which the cpu time has been stolen
  2830. * @steal: the cpu time spent in involuntary wait
  2831. */
  2832. void account_steal_time(struct task_struct *p, cputime_t steal)
  2833. {
  2834. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2835. cputime64_t tmp = cputime_to_cputime64(steal);
  2836. struct rq *rq = this_rq();
  2837. if (p == rq->idle) {
  2838. p->stime = cputime_add(p->stime, steal);
  2839. if (atomic_read(&rq->nr_iowait) > 0)
  2840. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2841. else
  2842. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2843. } else
  2844. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2845. }
  2846. /*
  2847. * This function gets called by the timer code, with HZ frequency.
  2848. * We call it with interrupts disabled.
  2849. *
  2850. * It also gets called by the fork code, when changing the parent's
  2851. * timeslices.
  2852. */
  2853. void scheduler_tick(void)
  2854. {
  2855. int cpu = smp_processor_id();
  2856. struct rq *rq = cpu_rq(cpu);
  2857. struct task_struct *curr = rq->curr;
  2858. spin_lock(&rq->lock);
  2859. update_cpu_load(rq);
  2860. if (curr != rq->idle) /* FIXME: needed? */
  2861. curr->sched_class->task_tick(rq, curr);
  2862. spin_unlock(&rq->lock);
  2863. #ifdef CONFIG_SMP
  2864. rq->idle_at_tick = idle_cpu(cpu);
  2865. trigger_load_balance(rq, cpu);
  2866. #endif
  2867. }
  2868. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2869. void fastcall add_preempt_count(int val)
  2870. {
  2871. /*
  2872. * Underflow?
  2873. */
  2874. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2875. return;
  2876. preempt_count() += val;
  2877. /*
  2878. * Spinlock count overflowing soon?
  2879. */
  2880. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2881. PREEMPT_MASK - 10);
  2882. }
  2883. EXPORT_SYMBOL(add_preempt_count);
  2884. void fastcall sub_preempt_count(int val)
  2885. {
  2886. /*
  2887. * Underflow?
  2888. */
  2889. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2890. return;
  2891. /*
  2892. * Is the spinlock portion underflowing?
  2893. */
  2894. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2895. !(preempt_count() & PREEMPT_MASK)))
  2896. return;
  2897. preempt_count() -= val;
  2898. }
  2899. EXPORT_SYMBOL(sub_preempt_count);
  2900. #endif
  2901. /*
  2902. * Print scheduling while atomic bug:
  2903. */
  2904. static noinline void __schedule_bug(struct task_struct *prev)
  2905. {
  2906. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2907. prev->comm, preempt_count(), prev->pid);
  2908. debug_show_held_locks(prev);
  2909. if (irqs_disabled())
  2910. print_irqtrace_events(prev);
  2911. dump_stack();
  2912. }
  2913. /*
  2914. * Various schedule()-time debugging checks and statistics:
  2915. */
  2916. static inline void schedule_debug(struct task_struct *prev)
  2917. {
  2918. /*
  2919. * Test if we are atomic. Since do_exit() needs to call into
  2920. * schedule() atomically, we ignore that path for now.
  2921. * Otherwise, whine if we are scheduling when we should not be.
  2922. */
  2923. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2924. __schedule_bug(prev);
  2925. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2926. schedstat_inc(this_rq(), sched_cnt);
  2927. }
  2928. /*
  2929. * Pick up the highest-prio task:
  2930. */
  2931. static inline struct task_struct *
  2932. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2933. {
  2934. struct sched_class *class;
  2935. struct task_struct *p;
  2936. /*
  2937. * Optimization: we know that if all tasks are in
  2938. * the fair class we can call that function directly:
  2939. */
  2940. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2941. p = fair_sched_class.pick_next_task(rq, now);
  2942. if (likely(p))
  2943. return p;
  2944. }
  2945. class = sched_class_highest;
  2946. for ( ; ; ) {
  2947. p = class->pick_next_task(rq, now);
  2948. if (p)
  2949. return p;
  2950. /*
  2951. * Will never be NULL as the idle class always
  2952. * returns a non-NULL p:
  2953. */
  2954. class = class->next;
  2955. }
  2956. }
  2957. /*
  2958. * schedule() is the main scheduler function.
  2959. */
  2960. asmlinkage void __sched schedule(void)
  2961. {
  2962. struct task_struct *prev, *next;
  2963. long *switch_count;
  2964. struct rq *rq;
  2965. u64 now;
  2966. int cpu;
  2967. need_resched:
  2968. preempt_disable();
  2969. cpu = smp_processor_id();
  2970. rq = cpu_rq(cpu);
  2971. rcu_qsctr_inc(cpu);
  2972. prev = rq->curr;
  2973. switch_count = &prev->nivcsw;
  2974. release_kernel_lock(prev);
  2975. need_resched_nonpreemptible:
  2976. schedule_debug(prev);
  2977. spin_lock_irq(&rq->lock);
  2978. clear_tsk_need_resched(prev);
  2979. __update_rq_clock(rq);
  2980. now = rq->clock;
  2981. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2982. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2983. unlikely(signal_pending(prev)))) {
  2984. prev->state = TASK_RUNNING;
  2985. } else {
  2986. deactivate_task(rq, prev, 1, now);
  2987. }
  2988. switch_count = &prev->nvcsw;
  2989. }
  2990. if (unlikely(!rq->nr_running))
  2991. idle_balance(cpu, rq);
  2992. prev->sched_class->put_prev_task(rq, prev, now);
  2993. next = pick_next_task(rq, prev, now);
  2994. sched_info_switch(prev, next);
  2995. if (likely(prev != next)) {
  2996. rq->nr_switches++;
  2997. rq->curr = next;
  2998. ++*switch_count;
  2999. context_switch(rq, prev, next); /* unlocks the rq */
  3000. } else
  3001. spin_unlock_irq(&rq->lock);
  3002. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3003. cpu = smp_processor_id();
  3004. rq = cpu_rq(cpu);
  3005. goto need_resched_nonpreemptible;
  3006. }
  3007. preempt_enable_no_resched();
  3008. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3009. goto need_resched;
  3010. }
  3011. EXPORT_SYMBOL(schedule);
  3012. #ifdef CONFIG_PREEMPT
  3013. /*
  3014. * this is the entry point to schedule() from in-kernel preemption
  3015. * off of preempt_enable. Kernel preemptions off return from interrupt
  3016. * occur there and call schedule directly.
  3017. */
  3018. asmlinkage void __sched preempt_schedule(void)
  3019. {
  3020. struct thread_info *ti = current_thread_info();
  3021. #ifdef CONFIG_PREEMPT_BKL
  3022. struct task_struct *task = current;
  3023. int saved_lock_depth;
  3024. #endif
  3025. /*
  3026. * If there is a non-zero preempt_count or interrupts are disabled,
  3027. * we do not want to preempt the current task. Just return..
  3028. */
  3029. if (likely(ti->preempt_count || irqs_disabled()))
  3030. return;
  3031. need_resched:
  3032. add_preempt_count(PREEMPT_ACTIVE);
  3033. /*
  3034. * We keep the big kernel semaphore locked, but we
  3035. * clear ->lock_depth so that schedule() doesnt
  3036. * auto-release the semaphore:
  3037. */
  3038. #ifdef CONFIG_PREEMPT_BKL
  3039. saved_lock_depth = task->lock_depth;
  3040. task->lock_depth = -1;
  3041. #endif
  3042. schedule();
  3043. #ifdef CONFIG_PREEMPT_BKL
  3044. task->lock_depth = saved_lock_depth;
  3045. #endif
  3046. sub_preempt_count(PREEMPT_ACTIVE);
  3047. /* we could miss a preemption opportunity between schedule and now */
  3048. barrier();
  3049. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3050. goto need_resched;
  3051. }
  3052. EXPORT_SYMBOL(preempt_schedule);
  3053. /*
  3054. * this is the entry point to schedule() from kernel preemption
  3055. * off of irq context.
  3056. * Note, that this is called and return with irqs disabled. This will
  3057. * protect us against recursive calling from irq.
  3058. */
  3059. asmlinkage void __sched preempt_schedule_irq(void)
  3060. {
  3061. struct thread_info *ti = current_thread_info();
  3062. #ifdef CONFIG_PREEMPT_BKL
  3063. struct task_struct *task = current;
  3064. int saved_lock_depth;
  3065. #endif
  3066. /* Catch callers which need to be fixed */
  3067. BUG_ON(ti->preempt_count || !irqs_disabled());
  3068. need_resched:
  3069. add_preempt_count(PREEMPT_ACTIVE);
  3070. /*
  3071. * We keep the big kernel semaphore locked, but we
  3072. * clear ->lock_depth so that schedule() doesnt
  3073. * auto-release the semaphore:
  3074. */
  3075. #ifdef CONFIG_PREEMPT_BKL
  3076. saved_lock_depth = task->lock_depth;
  3077. task->lock_depth = -1;
  3078. #endif
  3079. local_irq_enable();
  3080. schedule();
  3081. local_irq_disable();
  3082. #ifdef CONFIG_PREEMPT_BKL
  3083. task->lock_depth = saved_lock_depth;
  3084. #endif
  3085. sub_preempt_count(PREEMPT_ACTIVE);
  3086. /* we could miss a preemption opportunity between schedule and now */
  3087. barrier();
  3088. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3089. goto need_resched;
  3090. }
  3091. #endif /* CONFIG_PREEMPT */
  3092. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3093. void *key)
  3094. {
  3095. return try_to_wake_up(curr->private, mode, sync);
  3096. }
  3097. EXPORT_SYMBOL(default_wake_function);
  3098. /*
  3099. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3100. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3101. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3102. *
  3103. * There are circumstances in which we can try to wake a task which has already
  3104. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3105. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3106. */
  3107. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3108. int nr_exclusive, int sync, void *key)
  3109. {
  3110. struct list_head *tmp, *next;
  3111. list_for_each_safe(tmp, next, &q->task_list) {
  3112. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3113. unsigned flags = curr->flags;
  3114. if (curr->func(curr, mode, sync, key) &&
  3115. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3116. break;
  3117. }
  3118. }
  3119. /**
  3120. * __wake_up - wake up threads blocked on a waitqueue.
  3121. * @q: the waitqueue
  3122. * @mode: which threads
  3123. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3124. * @key: is directly passed to the wakeup function
  3125. */
  3126. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3127. int nr_exclusive, void *key)
  3128. {
  3129. unsigned long flags;
  3130. spin_lock_irqsave(&q->lock, flags);
  3131. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3132. spin_unlock_irqrestore(&q->lock, flags);
  3133. }
  3134. EXPORT_SYMBOL(__wake_up);
  3135. /*
  3136. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3137. */
  3138. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3139. {
  3140. __wake_up_common(q, mode, 1, 0, NULL);
  3141. }
  3142. /**
  3143. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3144. * @q: the waitqueue
  3145. * @mode: which threads
  3146. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3147. *
  3148. * The sync wakeup differs that the waker knows that it will schedule
  3149. * away soon, so while the target thread will be woken up, it will not
  3150. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3151. * with each other. This can prevent needless bouncing between CPUs.
  3152. *
  3153. * On UP it can prevent extra preemption.
  3154. */
  3155. void fastcall
  3156. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3157. {
  3158. unsigned long flags;
  3159. int sync = 1;
  3160. if (unlikely(!q))
  3161. return;
  3162. if (unlikely(!nr_exclusive))
  3163. sync = 0;
  3164. spin_lock_irqsave(&q->lock, flags);
  3165. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3166. spin_unlock_irqrestore(&q->lock, flags);
  3167. }
  3168. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3169. void fastcall complete(struct completion *x)
  3170. {
  3171. unsigned long flags;
  3172. spin_lock_irqsave(&x->wait.lock, flags);
  3173. x->done++;
  3174. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3175. 1, 0, NULL);
  3176. spin_unlock_irqrestore(&x->wait.lock, flags);
  3177. }
  3178. EXPORT_SYMBOL(complete);
  3179. void fastcall complete_all(struct completion *x)
  3180. {
  3181. unsigned long flags;
  3182. spin_lock_irqsave(&x->wait.lock, flags);
  3183. x->done += UINT_MAX/2;
  3184. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3185. 0, 0, NULL);
  3186. spin_unlock_irqrestore(&x->wait.lock, flags);
  3187. }
  3188. EXPORT_SYMBOL(complete_all);
  3189. void fastcall __sched wait_for_completion(struct completion *x)
  3190. {
  3191. might_sleep();
  3192. spin_lock_irq(&x->wait.lock);
  3193. if (!x->done) {
  3194. DECLARE_WAITQUEUE(wait, current);
  3195. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3196. __add_wait_queue_tail(&x->wait, &wait);
  3197. do {
  3198. __set_current_state(TASK_UNINTERRUPTIBLE);
  3199. spin_unlock_irq(&x->wait.lock);
  3200. schedule();
  3201. spin_lock_irq(&x->wait.lock);
  3202. } while (!x->done);
  3203. __remove_wait_queue(&x->wait, &wait);
  3204. }
  3205. x->done--;
  3206. spin_unlock_irq(&x->wait.lock);
  3207. }
  3208. EXPORT_SYMBOL(wait_for_completion);
  3209. unsigned long fastcall __sched
  3210. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3211. {
  3212. might_sleep();
  3213. spin_lock_irq(&x->wait.lock);
  3214. if (!x->done) {
  3215. DECLARE_WAITQUEUE(wait, current);
  3216. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3217. __add_wait_queue_tail(&x->wait, &wait);
  3218. do {
  3219. __set_current_state(TASK_UNINTERRUPTIBLE);
  3220. spin_unlock_irq(&x->wait.lock);
  3221. timeout = schedule_timeout(timeout);
  3222. spin_lock_irq(&x->wait.lock);
  3223. if (!timeout) {
  3224. __remove_wait_queue(&x->wait, &wait);
  3225. goto out;
  3226. }
  3227. } while (!x->done);
  3228. __remove_wait_queue(&x->wait, &wait);
  3229. }
  3230. x->done--;
  3231. out:
  3232. spin_unlock_irq(&x->wait.lock);
  3233. return timeout;
  3234. }
  3235. EXPORT_SYMBOL(wait_for_completion_timeout);
  3236. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3237. {
  3238. int ret = 0;
  3239. might_sleep();
  3240. spin_lock_irq(&x->wait.lock);
  3241. if (!x->done) {
  3242. DECLARE_WAITQUEUE(wait, current);
  3243. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3244. __add_wait_queue_tail(&x->wait, &wait);
  3245. do {
  3246. if (signal_pending(current)) {
  3247. ret = -ERESTARTSYS;
  3248. __remove_wait_queue(&x->wait, &wait);
  3249. goto out;
  3250. }
  3251. __set_current_state(TASK_INTERRUPTIBLE);
  3252. spin_unlock_irq(&x->wait.lock);
  3253. schedule();
  3254. spin_lock_irq(&x->wait.lock);
  3255. } while (!x->done);
  3256. __remove_wait_queue(&x->wait, &wait);
  3257. }
  3258. x->done--;
  3259. out:
  3260. spin_unlock_irq(&x->wait.lock);
  3261. return ret;
  3262. }
  3263. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3264. unsigned long fastcall __sched
  3265. wait_for_completion_interruptible_timeout(struct completion *x,
  3266. unsigned long timeout)
  3267. {
  3268. might_sleep();
  3269. spin_lock_irq(&x->wait.lock);
  3270. if (!x->done) {
  3271. DECLARE_WAITQUEUE(wait, current);
  3272. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3273. __add_wait_queue_tail(&x->wait, &wait);
  3274. do {
  3275. if (signal_pending(current)) {
  3276. timeout = -ERESTARTSYS;
  3277. __remove_wait_queue(&x->wait, &wait);
  3278. goto out;
  3279. }
  3280. __set_current_state(TASK_INTERRUPTIBLE);
  3281. spin_unlock_irq(&x->wait.lock);
  3282. timeout = schedule_timeout(timeout);
  3283. spin_lock_irq(&x->wait.lock);
  3284. if (!timeout) {
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. goto out;
  3287. }
  3288. } while (!x->done);
  3289. __remove_wait_queue(&x->wait, &wait);
  3290. }
  3291. x->done--;
  3292. out:
  3293. spin_unlock_irq(&x->wait.lock);
  3294. return timeout;
  3295. }
  3296. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3297. static inline void
  3298. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3299. {
  3300. spin_lock_irqsave(&q->lock, *flags);
  3301. __add_wait_queue(q, wait);
  3302. spin_unlock(&q->lock);
  3303. }
  3304. static inline void
  3305. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3306. {
  3307. spin_lock_irq(&q->lock);
  3308. __remove_wait_queue(q, wait);
  3309. spin_unlock_irqrestore(&q->lock, *flags);
  3310. }
  3311. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3312. {
  3313. unsigned long flags;
  3314. wait_queue_t wait;
  3315. init_waitqueue_entry(&wait, current);
  3316. current->state = TASK_INTERRUPTIBLE;
  3317. sleep_on_head(q, &wait, &flags);
  3318. schedule();
  3319. sleep_on_tail(q, &wait, &flags);
  3320. }
  3321. EXPORT_SYMBOL(interruptible_sleep_on);
  3322. long __sched
  3323. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3324. {
  3325. unsigned long flags;
  3326. wait_queue_t wait;
  3327. init_waitqueue_entry(&wait, current);
  3328. current->state = TASK_INTERRUPTIBLE;
  3329. sleep_on_head(q, &wait, &flags);
  3330. timeout = schedule_timeout(timeout);
  3331. sleep_on_tail(q, &wait, &flags);
  3332. return timeout;
  3333. }
  3334. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3335. void __sched sleep_on(wait_queue_head_t *q)
  3336. {
  3337. unsigned long flags;
  3338. wait_queue_t wait;
  3339. init_waitqueue_entry(&wait, current);
  3340. current->state = TASK_UNINTERRUPTIBLE;
  3341. sleep_on_head(q, &wait, &flags);
  3342. schedule();
  3343. sleep_on_tail(q, &wait, &flags);
  3344. }
  3345. EXPORT_SYMBOL(sleep_on);
  3346. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3347. {
  3348. unsigned long flags;
  3349. wait_queue_t wait;
  3350. init_waitqueue_entry(&wait, current);
  3351. current->state = TASK_UNINTERRUPTIBLE;
  3352. sleep_on_head(q, &wait, &flags);
  3353. timeout = schedule_timeout(timeout);
  3354. sleep_on_tail(q, &wait, &flags);
  3355. return timeout;
  3356. }
  3357. EXPORT_SYMBOL(sleep_on_timeout);
  3358. #ifdef CONFIG_RT_MUTEXES
  3359. /*
  3360. * rt_mutex_setprio - set the current priority of a task
  3361. * @p: task
  3362. * @prio: prio value (kernel-internal form)
  3363. *
  3364. * This function changes the 'effective' priority of a task. It does
  3365. * not touch ->normal_prio like __setscheduler().
  3366. *
  3367. * Used by the rt_mutex code to implement priority inheritance logic.
  3368. */
  3369. void rt_mutex_setprio(struct task_struct *p, int prio)
  3370. {
  3371. unsigned long flags;
  3372. int oldprio, on_rq;
  3373. struct rq *rq;
  3374. u64 now;
  3375. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3376. rq = task_rq_lock(p, &flags);
  3377. update_rq_clock(rq);
  3378. now = rq->clock;
  3379. oldprio = p->prio;
  3380. on_rq = p->se.on_rq;
  3381. if (on_rq)
  3382. dequeue_task(rq, p, 0, now);
  3383. if (rt_prio(prio))
  3384. p->sched_class = &rt_sched_class;
  3385. else
  3386. p->sched_class = &fair_sched_class;
  3387. p->prio = prio;
  3388. if (on_rq) {
  3389. enqueue_task(rq, p, 0, now);
  3390. /*
  3391. * Reschedule if we are currently running on this runqueue and
  3392. * our priority decreased, or if we are not currently running on
  3393. * this runqueue and our priority is higher than the current's
  3394. */
  3395. if (task_running(rq, p)) {
  3396. if (p->prio > oldprio)
  3397. resched_task(rq->curr);
  3398. } else {
  3399. check_preempt_curr(rq, p);
  3400. }
  3401. }
  3402. task_rq_unlock(rq, &flags);
  3403. }
  3404. #endif
  3405. void set_user_nice(struct task_struct *p, long nice)
  3406. {
  3407. int old_prio, delta, on_rq;
  3408. unsigned long flags;
  3409. struct rq *rq;
  3410. u64 now;
  3411. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3412. return;
  3413. /*
  3414. * We have to be careful, if called from sys_setpriority(),
  3415. * the task might be in the middle of scheduling on another CPU.
  3416. */
  3417. rq = task_rq_lock(p, &flags);
  3418. update_rq_clock(rq);
  3419. now = rq->clock;
  3420. /*
  3421. * The RT priorities are set via sched_setscheduler(), but we still
  3422. * allow the 'normal' nice value to be set - but as expected
  3423. * it wont have any effect on scheduling until the task is
  3424. * SCHED_FIFO/SCHED_RR:
  3425. */
  3426. if (task_has_rt_policy(p)) {
  3427. p->static_prio = NICE_TO_PRIO(nice);
  3428. goto out_unlock;
  3429. }
  3430. on_rq = p->se.on_rq;
  3431. if (on_rq) {
  3432. dequeue_task(rq, p, 0, now);
  3433. dec_load(rq, p, now);
  3434. }
  3435. p->static_prio = NICE_TO_PRIO(nice);
  3436. set_load_weight(p);
  3437. old_prio = p->prio;
  3438. p->prio = effective_prio(p);
  3439. delta = p->prio - old_prio;
  3440. if (on_rq) {
  3441. enqueue_task(rq, p, 0, now);
  3442. inc_load(rq, p, now);
  3443. /*
  3444. * If the task increased its priority or is running and
  3445. * lowered its priority, then reschedule its CPU:
  3446. */
  3447. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3448. resched_task(rq->curr);
  3449. }
  3450. out_unlock:
  3451. task_rq_unlock(rq, &flags);
  3452. }
  3453. EXPORT_SYMBOL(set_user_nice);
  3454. /*
  3455. * can_nice - check if a task can reduce its nice value
  3456. * @p: task
  3457. * @nice: nice value
  3458. */
  3459. int can_nice(const struct task_struct *p, const int nice)
  3460. {
  3461. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3462. int nice_rlim = 20 - nice;
  3463. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3464. capable(CAP_SYS_NICE));
  3465. }
  3466. #ifdef __ARCH_WANT_SYS_NICE
  3467. /*
  3468. * sys_nice - change the priority of the current process.
  3469. * @increment: priority increment
  3470. *
  3471. * sys_setpriority is a more generic, but much slower function that
  3472. * does similar things.
  3473. */
  3474. asmlinkage long sys_nice(int increment)
  3475. {
  3476. long nice, retval;
  3477. /*
  3478. * Setpriority might change our priority at the same moment.
  3479. * We don't have to worry. Conceptually one call occurs first
  3480. * and we have a single winner.
  3481. */
  3482. if (increment < -40)
  3483. increment = -40;
  3484. if (increment > 40)
  3485. increment = 40;
  3486. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3487. if (nice < -20)
  3488. nice = -20;
  3489. if (nice > 19)
  3490. nice = 19;
  3491. if (increment < 0 && !can_nice(current, nice))
  3492. return -EPERM;
  3493. retval = security_task_setnice(current, nice);
  3494. if (retval)
  3495. return retval;
  3496. set_user_nice(current, nice);
  3497. return 0;
  3498. }
  3499. #endif
  3500. /**
  3501. * task_prio - return the priority value of a given task.
  3502. * @p: the task in question.
  3503. *
  3504. * This is the priority value as seen by users in /proc.
  3505. * RT tasks are offset by -200. Normal tasks are centered
  3506. * around 0, value goes from -16 to +15.
  3507. */
  3508. int task_prio(const struct task_struct *p)
  3509. {
  3510. return p->prio - MAX_RT_PRIO;
  3511. }
  3512. /**
  3513. * task_nice - return the nice value of a given task.
  3514. * @p: the task in question.
  3515. */
  3516. int task_nice(const struct task_struct *p)
  3517. {
  3518. return TASK_NICE(p);
  3519. }
  3520. EXPORT_SYMBOL_GPL(task_nice);
  3521. /**
  3522. * idle_cpu - is a given cpu idle currently?
  3523. * @cpu: the processor in question.
  3524. */
  3525. int idle_cpu(int cpu)
  3526. {
  3527. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3528. }
  3529. /**
  3530. * idle_task - return the idle task for a given cpu.
  3531. * @cpu: the processor in question.
  3532. */
  3533. struct task_struct *idle_task(int cpu)
  3534. {
  3535. return cpu_rq(cpu)->idle;
  3536. }
  3537. /**
  3538. * find_process_by_pid - find a process with a matching PID value.
  3539. * @pid: the pid in question.
  3540. */
  3541. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3542. {
  3543. return pid ? find_task_by_pid(pid) : current;
  3544. }
  3545. /* Actually do priority change: must hold rq lock. */
  3546. static void
  3547. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3548. {
  3549. BUG_ON(p->se.on_rq);
  3550. p->policy = policy;
  3551. switch (p->policy) {
  3552. case SCHED_NORMAL:
  3553. case SCHED_BATCH:
  3554. case SCHED_IDLE:
  3555. p->sched_class = &fair_sched_class;
  3556. break;
  3557. case SCHED_FIFO:
  3558. case SCHED_RR:
  3559. p->sched_class = &rt_sched_class;
  3560. break;
  3561. }
  3562. p->rt_priority = prio;
  3563. p->normal_prio = normal_prio(p);
  3564. /* we are holding p->pi_lock already */
  3565. p->prio = rt_mutex_getprio(p);
  3566. set_load_weight(p);
  3567. }
  3568. /**
  3569. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3570. * @p: the task in question.
  3571. * @policy: new policy.
  3572. * @param: structure containing the new RT priority.
  3573. *
  3574. * NOTE that the task may be already dead.
  3575. */
  3576. int sched_setscheduler(struct task_struct *p, int policy,
  3577. struct sched_param *param)
  3578. {
  3579. int retval, oldprio, oldpolicy = -1, on_rq;
  3580. unsigned long flags;
  3581. struct rq *rq;
  3582. /* may grab non-irq protected spin_locks */
  3583. BUG_ON(in_interrupt());
  3584. recheck:
  3585. /* double check policy once rq lock held */
  3586. if (policy < 0)
  3587. policy = oldpolicy = p->policy;
  3588. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3589. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3590. policy != SCHED_IDLE)
  3591. return -EINVAL;
  3592. /*
  3593. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3594. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3595. * SCHED_BATCH and SCHED_IDLE is 0.
  3596. */
  3597. if (param->sched_priority < 0 ||
  3598. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3599. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3600. return -EINVAL;
  3601. if (rt_policy(policy) != (param->sched_priority != 0))
  3602. return -EINVAL;
  3603. /*
  3604. * Allow unprivileged RT tasks to decrease priority:
  3605. */
  3606. if (!capable(CAP_SYS_NICE)) {
  3607. if (rt_policy(policy)) {
  3608. unsigned long rlim_rtprio;
  3609. if (!lock_task_sighand(p, &flags))
  3610. return -ESRCH;
  3611. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3612. unlock_task_sighand(p, &flags);
  3613. /* can't set/change the rt policy */
  3614. if (policy != p->policy && !rlim_rtprio)
  3615. return -EPERM;
  3616. /* can't increase priority */
  3617. if (param->sched_priority > p->rt_priority &&
  3618. param->sched_priority > rlim_rtprio)
  3619. return -EPERM;
  3620. }
  3621. /*
  3622. * Like positive nice levels, dont allow tasks to
  3623. * move out of SCHED_IDLE either:
  3624. */
  3625. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3626. return -EPERM;
  3627. /* can't change other user's priorities */
  3628. if ((current->euid != p->euid) &&
  3629. (current->euid != p->uid))
  3630. return -EPERM;
  3631. }
  3632. retval = security_task_setscheduler(p, policy, param);
  3633. if (retval)
  3634. return retval;
  3635. /*
  3636. * make sure no PI-waiters arrive (or leave) while we are
  3637. * changing the priority of the task:
  3638. */
  3639. spin_lock_irqsave(&p->pi_lock, flags);
  3640. /*
  3641. * To be able to change p->policy safely, the apropriate
  3642. * runqueue lock must be held.
  3643. */
  3644. rq = __task_rq_lock(p);
  3645. /* recheck policy now with rq lock held */
  3646. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3647. policy = oldpolicy = -1;
  3648. __task_rq_unlock(rq);
  3649. spin_unlock_irqrestore(&p->pi_lock, flags);
  3650. goto recheck;
  3651. }
  3652. on_rq = p->se.on_rq;
  3653. if (on_rq) {
  3654. update_rq_clock(rq);
  3655. deactivate_task(rq, p, 0, rq->clock);
  3656. }
  3657. oldprio = p->prio;
  3658. __setscheduler(rq, p, policy, param->sched_priority);
  3659. if (on_rq) {
  3660. activate_task(rq, p, 0);
  3661. /*
  3662. * Reschedule if we are currently running on this runqueue and
  3663. * our priority decreased, or if we are not currently running on
  3664. * this runqueue and our priority is higher than the current's
  3665. */
  3666. if (task_running(rq, p)) {
  3667. if (p->prio > oldprio)
  3668. resched_task(rq->curr);
  3669. } else {
  3670. check_preempt_curr(rq, p);
  3671. }
  3672. }
  3673. __task_rq_unlock(rq);
  3674. spin_unlock_irqrestore(&p->pi_lock, flags);
  3675. rt_mutex_adjust_pi(p);
  3676. return 0;
  3677. }
  3678. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3679. static int
  3680. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3681. {
  3682. struct sched_param lparam;
  3683. struct task_struct *p;
  3684. int retval;
  3685. if (!param || pid < 0)
  3686. return -EINVAL;
  3687. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3688. return -EFAULT;
  3689. rcu_read_lock();
  3690. retval = -ESRCH;
  3691. p = find_process_by_pid(pid);
  3692. if (p != NULL)
  3693. retval = sched_setscheduler(p, policy, &lparam);
  3694. rcu_read_unlock();
  3695. return retval;
  3696. }
  3697. /**
  3698. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3699. * @pid: the pid in question.
  3700. * @policy: new policy.
  3701. * @param: structure containing the new RT priority.
  3702. */
  3703. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3704. struct sched_param __user *param)
  3705. {
  3706. /* negative values for policy are not valid */
  3707. if (policy < 0)
  3708. return -EINVAL;
  3709. return do_sched_setscheduler(pid, policy, param);
  3710. }
  3711. /**
  3712. * sys_sched_setparam - set/change the RT priority of a thread
  3713. * @pid: the pid in question.
  3714. * @param: structure containing the new RT priority.
  3715. */
  3716. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3717. {
  3718. return do_sched_setscheduler(pid, -1, param);
  3719. }
  3720. /**
  3721. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3722. * @pid: the pid in question.
  3723. */
  3724. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3725. {
  3726. struct task_struct *p;
  3727. int retval = -EINVAL;
  3728. if (pid < 0)
  3729. goto out_nounlock;
  3730. retval = -ESRCH;
  3731. read_lock(&tasklist_lock);
  3732. p = find_process_by_pid(pid);
  3733. if (p) {
  3734. retval = security_task_getscheduler(p);
  3735. if (!retval)
  3736. retval = p->policy;
  3737. }
  3738. read_unlock(&tasklist_lock);
  3739. out_nounlock:
  3740. return retval;
  3741. }
  3742. /**
  3743. * sys_sched_getscheduler - get the RT priority of a thread
  3744. * @pid: the pid in question.
  3745. * @param: structure containing the RT priority.
  3746. */
  3747. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3748. {
  3749. struct sched_param lp;
  3750. struct task_struct *p;
  3751. int retval = -EINVAL;
  3752. if (!param || pid < 0)
  3753. goto out_nounlock;
  3754. read_lock(&tasklist_lock);
  3755. p = find_process_by_pid(pid);
  3756. retval = -ESRCH;
  3757. if (!p)
  3758. goto out_unlock;
  3759. retval = security_task_getscheduler(p);
  3760. if (retval)
  3761. goto out_unlock;
  3762. lp.sched_priority = p->rt_priority;
  3763. read_unlock(&tasklist_lock);
  3764. /*
  3765. * This one might sleep, we cannot do it with a spinlock held ...
  3766. */
  3767. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3768. out_nounlock:
  3769. return retval;
  3770. out_unlock:
  3771. read_unlock(&tasklist_lock);
  3772. return retval;
  3773. }
  3774. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3775. {
  3776. cpumask_t cpus_allowed;
  3777. struct task_struct *p;
  3778. int retval;
  3779. mutex_lock(&sched_hotcpu_mutex);
  3780. read_lock(&tasklist_lock);
  3781. p = find_process_by_pid(pid);
  3782. if (!p) {
  3783. read_unlock(&tasklist_lock);
  3784. mutex_unlock(&sched_hotcpu_mutex);
  3785. return -ESRCH;
  3786. }
  3787. /*
  3788. * It is not safe to call set_cpus_allowed with the
  3789. * tasklist_lock held. We will bump the task_struct's
  3790. * usage count and then drop tasklist_lock.
  3791. */
  3792. get_task_struct(p);
  3793. read_unlock(&tasklist_lock);
  3794. retval = -EPERM;
  3795. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3796. !capable(CAP_SYS_NICE))
  3797. goto out_unlock;
  3798. retval = security_task_setscheduler(p, 0, NULL);
  3799. if (retval)
  3800. goto out_unlock;
  3801. cpus_allowed = cpuset_cpus_allowed(p);
  3802. cpus_and(new_mask, new_mask, cpus_allowed);
  3803. retval = set_cpus_allowed(p, new_mask);
  3804. out_unlock:
  3805. put_task_struct(p);
  3806. mutex_unlock(&sched_hotcpu_mutex);
  3807. return retval;
  3808. }
  3809. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3810. cpumask_t *new_mask)
  3811. {
  3812. if (len < sizeof(cpumask_t)) {
  3813. memset(new_mask, 0, sizeof(cpumask_t));
  3814. } else if (len > sizeof(cpumask_t)) {
  3815. len = sizeof(cpumask_t);
  3816. }
  3817. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3818. }
  3819. /**
  3820. * sys_sched_setaffinity - set the cpu affinity of a process
  3821. * @pid: pid of the process
  3822. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3823. * @user_mask_ptr: user-space pointer to the new cpu mask
  3824. */
  3825. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3826. unsigned long __user *user_mask_ptr)
  3827. {
  3828. cpumask_t new_mask;
  3829. int retval;
  3830. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3831. if (retval)
  3832. return retval;
  3833. return sched_setaffinity(pid, new_mask);
  3834. }
  3835. /*
  3836. * Represents all cpu's present in the system
  3837. * In systems capable of hotplug, this map could dynamically grow
  3838. * as new cpu's are detected in the system via any platform specific
  3839. * method, such as ACPI for e.g.
  3840. */
  3841. cpumask_t cpu_present_map __read_mostly;
  3842. EXPORT_SYMBOL(cpu_present_map);
  3843. #ifndef CONFIG_SMP
  3844. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3845. EXPORT_SYMBOL(cpu_online_map);
  3846. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3847. EXPORT_SYMBOL(cpu_possible_map);
  3848. #endif
  3849. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3850. {
  3851. struct task_struct *p;
  3852. int retval;
  3853. mutex_lock(&sched_hotcpu_mutex);
  3854. read_lock(&tasklist_lock);
  3855. retval = -ESRCH;
  3856. p = find_process_by_pid(pid);
  3857. if (!p)
  3858. goto out_unlock;
  3859. retval = security_task_getscheduler(p);
  3860. if (retval)
  3861. goto out_unlock;
  3862. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3863. out_unlock:
  3864. read_unlock(&tasklist_lock);
  3865. mutex_unlock(&sched_hotcpu_mutex);
  3866. return retval;
  3867. }
  3868. /**
  3869. * sys_sched_getaffinity - get the cpu affinity of a process
  3870. * @pid: pid of the process
  3871. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3872. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3873. */
  3874. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3875. unsigned long __user *user_mask_ptr)
  3876. {
  3877. int ret;
  3878. cpumask_t mask;
  3879. if (len < sizeof(cpumask_t))
  3880. return -EINVAL;
  3881. ret = sched_getaffinity(pid, &mask);
  3882. if (ret < 0)
  3883. return ret;
  3884. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3885. return -EFAULT;
  3886. return sizeof(cpumask_t);
  3887. }
  3888. /**
  3889. * sys_sched_yield - yield the current processor to other threads.
  3890. *
  3891. * This function yields the current CPU to other tasks. If there are no
  3892. * other threads running on this CPU then this function will return.
  3893. */
  3894. asmlinkage long sys_sched_yield(void)
  3895. {
  3896. struct rq *rq = this_rq_lock();
  3897. schedstat_inc(rq, yld_cnt);
  3898. if (unlikely(rq->nr_running == 1))
  3899. schedstat_inc(rq, yld_act_empty);
  3900. else
  3901. current->sched_class->yield_task(rq, current);
  3902. /*
  3903. * Since we are going to call schedule() anyway, there's
  3904. * no need to preempt or enable interrupts:
  3905. */
  3906. __release(rq->lock);
  3907. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3908. _raw_spin_unlock(&rq->lock);
  3909. preempt_enable_no_resched();
  3910. schedule();
  3911. return 0;
  3912. }
  3913. static void __cond_resched(void)
  3914. {
  3915. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3916. __might_sleep(__FILE__, __LINE__);
  3917. #endif
  3918. /*
  3919. * The BKS might be reacquired before we have dropped
  3920. * PREEMPT_ACTIVE, which could trigger a second
  3921. * cond_resched() call.
  3922. */
  3923. do {
  3924. add_preempt_count(PREEMPT_ACTIVE);
  3925. schedule();
  3926. sub_preempt_count(PREEMPT_ACTIVE);
  3927. } while (need_resched());
  3928. }
  3929. int __sched cond_resched(void)
  3930. {
  3931. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3932. system_state == SYSTEM_RUNNING) {
  3933. __cond_resched();
  3934. return 1;
  3935. }
  3936. return 0;
  3937. }
  3938. EXPORT_SYMBOL(cond_resched);
  3939. /*
  3940. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3941. * call schedule, and on return reacquire the lock.
  3942. *
  3943. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3944. * operations here to prevent schedule() from being called twice (once via
  3945. * spin_unlock(), once by hand).
  3946. */
  3947. int cond_resched_lock(spinlock_t *lock)
  3948. {
  3949. int ret = 0;
  3950. if (need_lockbreak(lock)) {
  3951. spin_unlock(lock);
  3952. cpu_relax();
  3953. ret = 1;
  3954. spin_lock(lock);
  3955. }
  3956. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3957. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3958. _raw_spin_unlock(lock);
  3959. preempt_enable_no_resched();
  3960. __cond_resched();
  3961. ret = 1;
  3962. spin_lock(lock);
  3963. }
  3964. return ret;
  3965. }
  3966. EXPORT_SYMBOL(cond_resched_lock);
  3967. int __sched cond_resched_softirq(void)
  3968. {
  3969. BUG_ON(!in_softirq());
  3970. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3971. local_bh_enable();
  3972. __cond_resched();
  3973. local_bh_disable();
  3974. return 1;
  3975. }
  3976. return 0;
  3977. }
  3978. EXPORT_SYMBOL(cond_resched_softirq);
  3979. /**
  3980. * yield - yield the current processor to other threads.
  3981. *
  3982. * This is a shortcut for kernel-space yielding - it marks the
  3983. * thread runnable and calls sys_sched_yield().
  3984. */
  3985. void __sched yield(void)
  3986. {
  3987. set_current_state(TASK_RUNNING);
  3988. sys_sched_yield();
  3989. }
  3990. EXPORT_SYMBOL(yield);
  3991. /*
  3992. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3993. * that process accounting knows that this is a task in IO wait state.
  3994. *
  3995. * But don't do that if it is a deliberate, throttling IO wait (this task
  3996. * has set its backing_dev_info: the queue against which it should throttle)
  3997. */
  3998. void __sched io_schedule(void)
  3999. {
  4000. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4001. delayacct_blkio_start();
  4002. atomic_inc(&rq->nr_iowait);
  4003. schedule();
  4004. atomic_dec(&rq->nr_iowait);
  4005. delayacct_blkio_end();
  4006. }
  4007. EXPORT_SYMBOL(io_schedule);
  4008. long __sched io_schedule_timeout(long timeout)
  4009. {
  4010. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4011. long ret;
  4012. delayacct_blkio_start();
  4013. atomic_inc(&rq->nr_iowait);
  4014. ret = schedule_timeout(timeout);
  4015. atomic_dec(&rq->nr_iowait);
  4016. delayacct_blkio_end();
  4017. return ret;
  4018. }
  4019. /**
  4020. * sys_sched_get_priority_max - return maximum RT priority.
  4021. * @policy: scheduling class.
  4022. *
  4023. * this syscall returns the maximum rt_priority that can be used
  4024. * by a given scheduling class.
  4025. */
  4026. asmlinkage long sys_sched_get_priority_max(int policy)
  4027. {
  4028. int ret = -EINVAL;
  4029. switch (policy) {
  4030. case SCHED_FIFO:
  4031. case SCHED_RR:
  4032. ret = MAX_USER_RT_PRIO-1;
  4033. break;
  4034. case SCHED_NORMAL:
  4035. case SCHED_BATCH:
  4036. case SCHED_IDLE:
  4037. ret = 0;
  4038. break;
  4039. }
  4040. return ret;
  4041. }
  4042. /**
  4043. * sys_sched_get_priority_min - return minimum RT priority.
  4044. * @policy: scheduling class.
  4045. *
  4046. * this syscall returns the minimum rt_priority that can be used
  4047. * by a given scheduling class.
  4048. */
  4049. asmlinkage long sys_sched_get_priority_min(int policy)
  4050. {
  4051. int ret = -EINVAL;
  4052. switch (policy) {
  4053. case SCHED_FIFO:
  4054. case SCHED_RR:
  4055. ret = 1;
  4056. break;
  4057. case SCHED_NORMAL:
  4058. case SCHED_BATCH:
  4059. case SCHED_IDLE:
  4060. ret = 0;
  4061. }
  4062. return ret;
  4063. }
  4064. /**
  4065. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4066. * @pid: pid of the process.
  4067. * @interval: userspace pointer to the timeslice value.
  4068. *
  4069. * this syscall writes the default timeslice value of a given process
  4070. * into the user-space timespec buffer. A value of '0' means infinity.
  4071. */
  4072. asmlinkage
  4073. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4074. {
  4075. struct task_struct *p;
  4076. int retval = -EINVAL;
  4077. struct timespec t;
  4078. if (pid < 0)
  4079. goto out_nounlock;
  4080. retval = -ESRCH;
  4081. read_lock(&tasklist_lock);
  4082. p = find_process_by_pid(pid);
  4083. if (!p)
  4084. goto out_unlock;
  4085. retval = security_task_getscheduler(p);
  4086. if (retval)
  4087. goto out_unlock;
  4088. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4089. 0 : static_prio_timeslice(p->static_prio), &t);
  4090. read_unlock(&tasklist_lock);
  4091. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4092. out_nounlock:
  4093. return retval;
  4094. out_unlock:
  4095. read_unlock(&tasklist_lock);
  4096. return retval;
  4097. }
  4098. static const char stat_nam[] = "RSDTtZX";
  4099. static void show_task(struct task_struct *p)
  4100. {
  4101. unsigned long free = 0;
  4102. unsigned state;
  4103. state = p->state ? __ffs(p->state) + 1 : 0;
  4104. printk("%-13.13s %c", p->comm,
  4105. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4106. #if BITS_PER_LONG == 32
  4107. if (state == TASK_RUNNING)
  4108. printk(" running ");
  4109. else
  4110. printk(" %08lx ", thread_saved_pc(p));
  4111. #else
  4112. if (state == TASK_RUNNING)
  4113. printk(" running task ");
  4114. else
  4115. printk(" %016lx ", thread_saved_pc(p));
  4116. #endif
  4117. #ifdef CONFIG_DEBUG_STACK_USAGE
  4118. {
  4119. unsigned long *n = end_of_stack(p);
  4120. while (!*n)
  4121. n++;
  4122. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4123. }
  4124. #endif
  4125. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4126. if (state != TASK_RUNNING)
  4127. show_stack(p, NULL);
  4128. }
  4129. void show_state_filter(unsigned long state_filter)
  4130. {
  4131. struct task_struct *g, *p;
  4132. #if BITS_PER_LONG == 32
  4133. printk(KERN_INFO
  4134. " task PC stack pid father\n");
  4135. #else
  4136. printk(KERN_INFO
  4137. " task PC stack pid father\n");
  4138. #endif
  4139. read_lock(&tasklist_lock);
  4140. do_each_thread(g, p) {
  4141. /*
  4142. * reset the NMI-timeout, listing all files on a slow
  4143. * console might take alot of time:
  4144. */
  4145. touch_nmi_watchdog();
  4146. if (!state_filter || (p->state & state_filter))
  4147. show_task(p);
  4148. } while_each_thread(g, p);
  4149. touch_all_softlockup_watchdogs();
  4150. #ifdef CONFIG_SCHED_DEBUG
  4151. sysrq_sched_debug_show();
  4152. #endif
  4153. read_unlock(&tasklist_lock);
  4154. /*
  4155. * Only show locks if all tasks are dumped:
  4156. */
  4157. if (state_filter == -1)
  4158. debug_show_all_locks();
  4159. }
  4160. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4161. {
  4162. idle->sched_class = &idle_sched_class;
  4163. }
  4164. /**
  4165. * init_idle - set up an idle thread for a given CPU
  4166. * @idle: task in question
  4167. * @cpu: cpu the idle task belongs to
  4168. *
  4169. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4170. * flag, to make booting more robust.
  4171. */
  4172. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4173. {
  4174. struct rq *rq = cpu_rq(cpu);
  4175. unsigned long flags;
  4176. __sched_fork(idle);
  4177. idle->se.exec_start = sched_clock();
  4178. idle->prio = idle->normal_prio = MAX_PRIO;
  4179. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4180. __set_task_cpu(idle, cpu);
  4181. spin_lock_irqsave(&rq->lock, flags);
  4182. rq->curr = rq->idle = idle;
  4183. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4184. idle->oncpu = 1;
  4185. #endif
  4186. spin_unlock_irqrestore(&rq->lock, flags);
  4187. /* Set the preempt count _outside_ the spinlocks! */
  4188. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4189. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4190. #else
  4191. task_thread_info(idle)->preempt_count = 0;
  4192. #endif
  4193. /*
  4194. * The idle tasks have their own, simple scheduling class:
  4195. */
  4196. idle->sched_class = &idle_sched_class;
  4197. }
  4198. /*
  4199. * In a system that switches off the HZ timer nohz_cpu_mask
  4200. * indicates which cpus entered this state. This is used
  4201. * in the rcu update to wait only for active cpus. For system
  4202. * which do not switch off the HZ timer nohz_cpu_mask should
  4203. * always be CPU_MASK_NONE.
  4204. */
  4205. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4206. /*
  4207. * Increase the granularity value when there are more CPUs,
  4208. * because with more CPUs the 'effective latency' as visible
  4209. * to users decreases. But the relationship is not linear,
  4210. * so pick a second-best guess by going with the log2 of the
  4211. * number of CPUs.
  4212. *
  4213. * This idea comes from the SD scheduler of Con Kolivas:
  4214. */
  4215. static inline void sched_init_granularity(void)
  4216. {
  4217. unsigned int factor = 1 + ilog2(num_online_cpus());
  4218. const unsigned long gran_limit = 100000000;
  4219. sysctl_sched_granularity *= factor;
  4220. if (sysctl_sched_granularity > gran_limit)
  4221. sysctl_sched_granularity = gran_limit;
  4222. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4223. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4224. }
  4225. #ifdef CONFIG_SMP
  4226. /*
  4227. * This is how migration works:
  4228. *
  4229. * 1) we queue a struct migration_req structure in the source CPU's
  4230. * runqueue and wake up that CPU's migration thread.
  4231. * 2) we down() the locked semaphore => thread blocks.
  4232. * 3) migration thread wakes up (implicitly it forces the migrated
  4233. * thread off the CPU)
  4234. * 4) it gets the migration request and checks whether the migrated
  4235. * task is still in the wrong runqueue.
  4236. * 5) if it's in the wrong runqueue then the migration thread removes
  4237. * it and puts it into the right queue.
  4238. * 6) migration thread up()s the semaphore.
  4239. * 7) we wake up and the migration is done.
  4240. */
  4241. /*
  4242. * Change a given task's CPU affinity. Migrate the thread to a
  4243. * proper CPU and schedule it away if the CPU it's executing on
  4244. * is removed from the allowed bitmask.
  4245. *
  4246. * NOTE: the caller must have a valid reference to the task, the
  4247. * task must not exit() & deallocate itself prematurely. The
  4248. * call is not atomic; no spinlocks may be held.
  4249. */
  4250. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4251. {
  4252. struct migration_req req;
  4253. unsigned long flags;
  4254. struct rq *rq;
  4255. int ret = 0;
  4256. rq = task_rq_lock(p, &flags);
  4257. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4258. ret = -EINVAL;
  4259. goto out;
  4260. }
  4261. p->cpus_allowed = new_mask;
  4262. /* Can the task run on the task's current CPU? If so, we're done */
  4263. if (cpu_isset(task_cpu(p), new_mask))
  4264. goto out;
  4265. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4266. /* Need help from migration thread: drop lock and wait. */
  4267. task_rq_unlock(rq, &flags);
  4268. wake_up_process(rq->migration_thread);
  4269. wait_for_completion(&req.done);
  4270. tlb_migrate_finish(p->mm);
  4271. return 0;
  4272. }
  4273. out:
  4274. task_rq_unlock(rq, &flags);
  4275. return ret;
  4276. }
  4277. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4278. /*
  4279. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4280. * this because either it can't run here any more (set_cpus_allowed()
  4281. * away from this CPU, or CPU going down), or because we're
  4282. * attempting to rebalance this task on exec (sched_exec).
  4283. *
  4284. * So we race with normal scheduler movements, but that's OK, as long
  4285. * as the task is no longer on this CPU.
  4286. *
  4287. * Returns non-zero if task was successfully migrated.
  4288. */
  4289. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4290. {
  4291. struct rq *rq_dest, *rq_src;
  4292. int ret = 0, on_rq;
  4293. if (unlikely(cpu_is_offline(dest_cpu)))
  4294. return ret;
  4295. rq_src = cpu_rq(src_cpu);
  4296. rq_dest = cpu_rq(dest_cpu);
  4297. double_rq_lock(rq_src, rq_dest);
  4298. /* Already moved. */
  4299. if (task_cpu(p) != src_cpu)
  4300. goto out;
  4301. /* Affinity changed (again). */
  4302. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4303. goto out;
  4304. on_rq = p->se.on_rq;
  4305. if (on_rq) {
  4306. update_rq_clock(rq_src);
  4307. deactivate_task(rq_src, p, 0, rq_src->clock);
  4308. }
  4309. set_task_cpu(p, dest_cpu);
  4310. if (on_rq) {
  4311. activate_task(rq_dest, p, 0);
  4312. check_preempt_curr(rq_dest, p);
  4313. }
  4314. ret = 1;
  4315. out:
  4316. double_rq_unlock(rq_src, rq_dest);
  4317. return ret;
  4318. }
  4319. /*
  4320. * migration_thread - this is a highprio system thread that performs
  4321. * thread migration by bumping thread off CPU then 'pushing' onto
  4322. * another runqueue.
  4323. */
  4324. static int migration_thread(void *data)
  4325. {
  4326. int cpu = (long)data;
  4327. struct rq *rq;
  4328. rq = cpu_rq(cpu);
  4329. BUG_ON(rq->migration_thread != current);
  4330. set_current_state(TASK_INTERRUPTIBLE);
  4331. while (!kthread_should_stop()) {
  4332. struct migration_req *req;
  4333. struct list_head *head;
  4334. spin_lock_irq(&rq->lock);
  4335. if (cpu_is_offline(cpu)) {
  4336. spin_unlock_irq(&rq->lock);
  4337. goto wait_to_die;
  4338. }
  4339. if (rq->active_balance) {
  4340. active_load_balance(rq, cpu);
  4341. rq->active_balance = 0;
  4342. }
  4343. head = &rq->migration_queue;
  4344. if (list_empty(head)) {
  4345. spin_unlock_irq(&rq->lock);
  4346. schedule();
  4347. set_current_state(TASK_INTERRUPTIBLE);
  4348. continue;
  4349. }
  4350. req = list_entry(head->next, struct migration_req, list);
  4351. list_del_init(head->next);
  4352. spin_unlock(&rq->lock);
  4353. __migrate_task(req->task, cpu, req->dest_cpu);
  4354. local_irq_enable();
  4355. complete(&req->done);
  4356. }
  4357. __set_current_state(TASK_RUNNING);
  4358. return 0;
  4359. wait_to_die:
  4360. /* Wait for kthread_stop */
  4361. set_current_state(TASK_INTERRUPTIBLE);
  4362. while (!kthread_should_stop()) {
  4363. schedule();
  4364. set_current_state(TASK_INTERRUPTIBLE);
  4365. }
  4366. __set_current_state(TASK_RUNNING);
  4367. return 0;
  4368. }
  4369. #ifdef CONFIG_HOTPLUG_CPU
  4370. /*
  4371. * Figure out where task on dead CPU should go, use force if neccessary.
  4372. * NOTE: interrupts should be disabled by the caller
  4373. */
  4374. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4375. {
  4376. unsigned long flags;
  4377. cpumask_t mask;
  4378. struct rq *rq;
  4379. int dest_cpu;
  4380. restart:
  4381. /* On same node? */
  4382. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4383. cpus_and(mask, mask, p->cpus_allowed);
  4384. dest_cpu = any_online_cpu(mask);
  4385. /* On any allowed CPU? */
  4386. if (dest_cpu == NR_CPUS)
  4387. dest_cpu = any_online_cpu(p->cpus_allowed);
  4388. /* No more Mr. Nice Guy. */
  4389. if (dest_cpu == NR_CPUS) {
  4390. rq = task_rq_lock(p, &flags);
  4391. cpus_setall(p->cpus_allowed);
  4392. dest_cpu = any_online_cpu(p->cpus_allowed);
  4393. task_rq_unlock(rq, &flags);
  4394. /*
  4395. * Don't tell them about moving exiting tasks or
  4396. * kernel threads (both mm NULL), since they never
  4397. * leave kernel.
  4398. */
  4399. if (p->mm && printk_ratelimit())
  4400. printk(KERN_INFO "process %d (%s) no "
  4401. "longer affine to cpu%d\n",
  4402. p->pid, p->comm, dead_cpu);
  4403. }
  4404. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4405. goto restart;
  4406. }
  4407. /*
  4408. * While a dead CPU has no uninterruptible tasks queued at this point,
  4409. * it might still have a nonzero ->nr_uninterruptible counter, because
  4410. * for performance reasons the counter is not stricly tracking tasks to
  4411. * their home CPUs. So we just add the counter to another CPU's counter,
  4412. * to keep the global sum constant after CPU-down:
  4413. */
  4414. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4415. {
  4416. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4417. unsigned long flags;
  4418. local_irq_save(flags);
  4419. double_rq_lock(rq_src, rq_dest);
  4420. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4421. rq_src->nr_uninterruptible = 0;
  4422. double_rq_unlock(rq_src, rq_dest);
  4423. local_irq_restore(flags);
  4424. }
  4425. /* Run through task list and migrate tasks from the dead cpu. */
  4426. static void migrate_live_tasks(int src_cpu)
  4427. {
  4428. struct task_struct *p, *t;
  4429. write_lock_irq(&tasklist_lock);
  4430. do_each_thread(t, p) {
  4431. if (p == current)
  4432. continue;
  4433. if (task_cpu(p) == src_cpu)
  4434. move_task_off_dead_cpu(src_cpu, p);
  4435. } while_each_thread(t, p);
  4436. write_unlock_irq(&tasklist_lock);
  4437. }
  4438. /*
  4439. * Schedules idle task to be the next runnable task on current CPU.
  4440. * It does so by boosting its priority to highest possible and adding it to
  4441. * the _front_ of the runqueue. Used by CPU offline code.
  4442. */
  4443. void sched_idle_next(void)
  4444. {
  4445. int this_cpu = smp_processor_id();
  4446. struct rq *rq = cpu_rq(this_cpu);
  4447. struct task_struct *p = rq->idle;
  4448. unsigned long flags;
  4449. /* cpu has to be offline */
  4450. BUG_ON(cpu_online(this_cpu));
  4451. /*
  4452. * Strictly not necessary since rest of the CPUs are stopped by now
  4453. * and interrupts disabled on the current cpu.
  4454. */
  4455. spin_lock_irqsave(&rq->lock, flags);
  4456. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4457. /* Add idle task to the _front_ of its priority queue: */
  4458. activate_idle_task(p, rq);
  4459. spin_unlock_irqrestore(&rq->lock, flags);
  4460. }
  4461. /*
  4462. * Ensures that the idle task is using init_mm right before its cpu goes
  4463. * offline.
  4464. */
  4465. void idle_task_exit(void)
  4466. {
  4467. struct mm_struct *mm = current->active_mm;
  4468. BUG_ON(cpu_online(smp_processor_id()));
  4469. if (mm != &init_mm)
  4470. switch_mm(mm, &init_mm, current);
  4471. mmdrop(mm);
  4472. }
  4473. /* called under rq->lock with disabled interrupts */
  4474. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4475. {
  4476. struct rq *rq = cpu_rq(dead_cpu);
  4477. /* Must be exiting, otherwise would be on tasklist. */
  4478. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4479. /* Cannot have done final schedule yet: would have vanished. */
  4480. BUG_ON(p->state == TASK_DEAD);
  4481. get_task_struct(p);
  4482. /*
  4483. * Drop lock around migration; if someone else moves it,
  4484. * that's OK. No task can be added to this CPU, so iteration is
  4485. * fine.
  4486. * NOTE: interrupts should be left disabled --dev@
  4487. */
  4488. spin_unlock(&rq->lock);
  4489. move_task_off_dead_cpu(dead_cpu, p);
  4490. spin_lock(&rq->lock);
  4491. put_task_struct(p);
  4492. }
  4493. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4494. static void migrate_dead_tasks(unsigned int dead_cpu)
  4495. {
  4496. struct rq *rq = cpu_rq(dead_cpu);
  4497. struct task_struct *next;
  4498. for ( ; ; ) {
  4499. if (!rq->nr_running)
  4500. break;
  4501. update_rq_clock(rq);
  4502. next = pick_next_task(rq, rq->curr, rq->clock);
  4503. if (!next)
  4504. break;
  4505. migrate_dead(dead_cpu, next);
  4506. }
  4507. }
  4508. #endif /* CONFIG_HOTPLUG_CPU */
  4509. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4510. static struct ctl_table sd_ctl_dir[] = {
  4511. {
  4512. .procname = "sched_domain",
  4513. .mode = 0755,
  4514. },
  4515. {0,},
  4516. };
  4517. static struct ctl_table sd_ctl_root[] = {
  4518. {
  4519. .procname = "kernel",
  4520. .mode = 0755,
  4521. .child = sd_ctl_dir,
  4522. },
  4523. {0,},
  4524. };
  4525. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4526. {
  4527. struct ctl_table *entry =
  4528. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4529. BUG_ON(!entry);
  4530. memset(entry, 0, n * sizeof(struct ctl_table));
  4531. return entry;
  4532. }
  4533. static void
  4534. set_table_entry(struct ctl_table *entry,
  4535. const char *procname, void *data, int maxlen,
  4536. mode_t mode, proc_handler *proc_handler)
  4537. {
  4538. entry->procname = procname;
  4539. entry->data = data;
  4540. entry->maxlen = maxlen;
  4541. entry->mode = mode;
  4542. entry->proc_handler = proc_handler;
  4543. }
  4544. static struct ctl_table *
  4545. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4546. {
  4547. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4548. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4549. sizeof(long), 0644, proc_doulongvec_minmax);
  4550. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4551. sizeof(long), 0644, proc_doulongvec_minmax);
  4552. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4553. sizeof(int), 0644, proc_dointvec_minmax);
  4554. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4555. sizeof(int), 0644, proc_dointvec_minmax);
  4556. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4557. sizeof(int), 0644, proc_dointvec_minmax);
  4558. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4559. sizeof(int), 0644, proc_dointvec_minmax);
  4560. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4561. sizeof(int), 0644, proc_dointvec_minmax);
  4562. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4563. sizeof(int), 0644, proc_dointvec_minmax);
  4564. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4565. sizeof(int), 0644, proc_dointvec_minmax);
  4566. set_table_entry(&table[10], "cache_nice_tries",
  4567. &sd->cache_nice_tries,
  4568. sizeof(int), 0644, proc_dointvec_minmax);
  4569. set_table_entry(&table[12], "flags", &sd->flags,
  4570. sizeof(int), 0644, proc_dointvec_minmax);
  4571. return table;
  4572. }
  4573. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4574. {
  4575. struct ctl_table *entry, *table;
  4576. struct sched_domain *sd;
  4577. int domain_num = 0, i;
  4578. char buf[32];
  4579. for_each_domain(cpu, sd)
  4580. domain_num++;
  4581. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4582. i = 0;
  4583. for_each_domain(cpu, sd) {
  4584. snprintf(buf, 32, "domain%d", i);
  4585. entry->procname = kstrdup(buf, GFP_KERNEL);
  4586. entry->mode = 0755;
  4587. entry->child = sd_alloc_ctl_domain_table(sd);
  4588. entry++;
  4589. i++;
  4590. }
  4591. return table;
  4592. }
  4593. static struct ctl_table_header *sd_sysctl_header;
  4594. static void init_sched_domain_sysctl(void)
  4595. {
  4596. int i, cpu_num = num_online_cpus();
  4597. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4598. char buf[32];
  4599. sd_ctl_dir[0].child = entry;
  4600. for (i = 0; i < cpu_num; i++, entry++) {
  4601. snprintf(buf, 32, "cpu%d", i);
  4602. entry->procname = kstrdup(buf, GFP_KERNEL);
  4603. entry->mode = 0755;
  4604. entry->child = sd_alloc_ctl_cpu_table(i);
  4605. }
  4606. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4607. }
  4608. #else
  4609. static void init_sched_domain_sysctl(void)
  4610. {
  4611. }
  4612. #endif
  4613. /*
  4614. * migration_call - callback that gets triggered when a CPU is added.
  4615. * Here we can start up the necessary migration thread for the new CPU.
  4616. */
  4617. static int __cpuinit
  4618. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4619. {
  4620. struct task_struct *p;
  4621. int cpu = (long)hcpu;
  4622. unsigned long flags;
  4623. struct rq *rq;
  4624. switch (action) {
  4625. case CPU_LOCK_ACQUIRE:
  4626. mutex_lock(&sched_hotcpu_mutex);
  4627. break;
  4628. case CPU_UP_PREPARE:
  4629. case CPU_UP_PREPARE_FROZEN:
  4630. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4631. if (IS_ERR(p))
  4632. return NOTIFY_BAD;
  4633. kthread_bind(p, cpu);
  4634. /* Must be high prio: stop_machine expects to yield to it. */
  4635. rq = task_rq_lock(p, &flags);
  4636. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4637. task_rq_unlock(rq, &flags);
  4638. cpu_rq(cpu)->migration_thread = p;
  4639. break;
  4640. case CPU_ONLINE:
  4641. case CPU_ONLINE_FROZEN:
  4642. /* Strictly unneccessary, as first user will wake it. */
  4643. wake_up_process(cpu_rq(cpu)->migration_thread);
  4644. break;
  4645. #ifdef CONFIG_HOTPLUG_CPU
  4646. case CPU_UP_CANCELED:
  4647. case CPU_UP_CANCELED_FROZEN:
  4648. if (!cpu_rq(cpu)->migration_thread)
  4649. break;
  4650. /* Unbind it from offline cpu so it can run. Fall thru. */
  4651. kthread_bind(cpu_rq(cpu)->migration_thread,
  4652. any_online_cpu(cpu_online_map));
  4653. kthread_stop(cpu_rq(cpu)->migration_thread);
  4654. cpu_rq(cpu)->migration_thread = NULL;
  4655. break;
  4656. case CPU_DEAD:
  4657. case CPU_DEAD_FROZEN:
  4658. migrate_live_tasks(cpu);
  4659. rq = cpu_rq(cpu);
  4660. kthread_stop(rq->migration_thread);
  4661. rq->migration_thread = NULL;
  4662. /* Idle task back to normal (off runqueue, low prio) */
  4663. rq = task_rq_lock(rq->idle, &flags);
  4664. update_rq_clock(rq);
  4665. deactivate_task(rq, rq->idle, 0, rq->clock);
  4666. rq->idle->static_prio = MAX_PRIO;
  4667. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4668. rq->idle->sched_class = &idle_sched_class;
  4669. migrate_dead_tasks(cpu);
  4670. task_rq_unlock(rq, &flags);
  4671. migrate_nr_uninterruptible(rq);
  4672. BUG_ON(rq->nr_running != 0);
  4673. /* No need to migrate the tasks: it was best-effort if
  4674. * they didn't take sched_hotcpu_mutex. Just wake up
  4675. * the requestors. */
  4676. spin_lock_irq(&rq->lock);
  4677. while (!list_empty(&rq->migration_queue)) {
  4678. struct migration_req *req;
  4679. req = list_entry(rq->migration_queue.next,
  4680. struct migration_req, list);
  4681. list_del_init(&req->list);
  4682. complete(&req->done);
  4683. }
  4684. spin_unlock_irq(&rq->lock);
  4685. break;
  4686. #endif
  4687. case CPU_LOCK_RELEASE:
  4688. mutex_unlock(&sched_hotcpu_mutex);
  4689. break;
  4690. }
  4691. return NOTIFY_OK;
  4692. }
  4693. /* Register at highest priority so that task migration (migrate_all_tasks)
  4694. * happens before everything else.
  4695. */
  4696. static struct notifier_block __cpuinitdata migration_notifier = {
  4697. .notifier_call = migration_call,
  4698. .priority = 10
  4699. };
  4700. int __init migration_init(void)
  4701. {
  4702. void *cpu = (void *)(long)smp_processor_id();
  4703. int err;
  4704. /* Start one for the boot CPU: */
  4705. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4706. BUG_ON(err == NOTIFY_BAD);
  4707. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4708. register_cpu_notifier(&migration_notifier);
  4709. return 0;
  4710. }
  4711. #endif
  4712. #ifdef CONFIG_SMP
  4713. /* Number of possible processor ids */
  4714. int nr_cpu_ids __read_mostly = NR_CPUS;
  4715. EXPORT_SYMBOL(nr_cpu_ids);
  4716. #undef SCHED_DOMAIN_DEBUG
  4717. #ifdef SCHED_DOMAIN_DEBUG
  4718. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4719. {
  4720. int level = 0;
  4721. if (!sd) {
  4722. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4723. return;
  4724. }
  4725. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4726. do {
  4727. int i;
  4728. char str[NR_CPUS];
  4729. struct sched_group *group = sd->groups;
  4730. cpumask_t groupmask;
  4731. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4732. cpus_clear(groupmask);
  4733. printk(KERN_DEBUG);
  4734. for (i = 0; i < level + 1; i++)
  4735. printk(" ");
  4736. printk("domain %d: ", level);
  4737. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4738. printk("does not load-balance\n");
  4739. if (sd->parent)
  4740. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4741. " has parent");
  4742. break;
  4743. }
  4744. printk("span %s\n", str);
  4745. if (!cpu_isset(cpu, sd->span))
  4746. printk(KERN_ERR "ERROR: domain->span does not contain "
  4747. "CPU%d\n", cpu);
  4748. if (!cpu_isset(cpu, group->cpumask))
  4749. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4750. " CPU%d\n", cpu);
  4751. printk(KERN_DEBUG);
  4752. for (i = 0; i < level + 2; i++)
  4753. printk(" ");
  4754. printk("groups:");
  4755. do {
  4756. if (!group) {
  4757. printk("\n");
  4758. printk(KERN_ERR "ERROR: group is NULL\n");
  4759. break;
  4760. }
  4761. if (!group->__cpu_power) {
  4762. printk("\n");
  4763. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4764. "set\n");
  4765. }
  4766. if (!cpus_weight(group->cpumask)) {
  4767. printk("\n");
  4768. printk(KERN_ERR "ERROR: empty group\n");
  4769. }
  4770. if (cpus_intersects(groupmask, group->cpumask)) {
  4771. printk("\n");
  4772. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4773. }
  4774. cpus_or(groupmask, groupmask, group->cpumask);
  4775. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4776. printk(" %s", str);
  4777. group = group->next;
  4778. } while (group != sd->groups);
  4779. printk("\n");
  4780. if (!cpus_equal(sd->span, groupmask))
  4781. printk(KERN_ERR "ERROR: groups don't span "
  4782. "domain->span\n");
  4783. level++;
  4784. sd = sd->parent;
  4785. if (!sd)
  4786. continue;
  4787. if (!cpus_subset(groupmask, sd->span))
  4788. printk(KERN_ERR "ERROR: parent span is not a superset "
  4789. "of domain->span\n");
  4790. } while (sd);
  4791. }
  4792. #else
  4793. # define sched_domain_debug(sd, cpu) do { } while (0)
  4794. #endif
  4795. static int sd_degenerate(struct sched_domain *sd)
  4796. {
  4797. if (cpus_weight(sd->span) == 1)
  4798. return 1;
  4799. /* Following flags need at least 2 groups */
  4800. if (sd->flags & (SD_LOAD_BALANCE |
  4801. SD_BALANCE_NEWIDLE |
  4802. SD_BALANCE_FORK |
  4803. SD_BALANCE_EXEC |
  4804. SD_SHARE_CPUPOWER |
  4805. SD_SHARE_PKG_RESOURCES)) {
  4806. if (sd->groups != sd->groups->next)
  4807. return 0;
  4808. }
  4809. /* Following flags don't use groups */
  4810. if (sd->flags & (SD_WAKE_IDLE |
  4811. SD_WAKE_AFFINE |
  4812. SD_WAKE_BALANCE))
  4813. return 0;
  4814. return 1;
  4815. }
  4816. static int
  4817. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4818. {
  4819. unsigned long cflags = sd->flags, pflags = parent->flags;
  4820. if (sd_degenerate(parent))
  4821. return 1;
  4822. if (!cpus_equal(sd->span, parent->span))
  4823. return 0;
  4824. /* Does parent contain flags not in child? */
  4825. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4826. if (cflags & SD_WAKE_AFFINE)
  4827. pflags &= ~SD_WAKE_BALANCE;
  4828. /* Flags needing groups don't count if only 1 group in parent */
  4829. if (parent->groups == parent->groups->next) {
  4830. pflags &= ~(SD_LOAD_BALANCE |
  4831. SD_BALANCE_NEWIDLE |
  4832. SD_BALANCE_FORK |
  4833. SD_BALANCE_EXEC |
  4834. SD_SHARE_CPUPOWER |
  4835. SD_SHARE_PKG_RESOURCES);
  4836. }
  4837. if (~cflags & pflags)
  4838. return 0;
  4839. return 1;
  4840. }
  4841. /*
  4842. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4843. * hold the hotplug lock.
  4844. */
  4845. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4846. {
  4847. struct rq *rq = cpu_rq(cpu);
  4848. struct sched_domain *tmp;
  4849. /* Remove the sched domains which do not contribute to scheduling. */
  4850. for (tmp = sd; tmp; tmp = tmp->parent) {
  4851. struct sched_domain *parent = tmp->parent;
  4852. if (!parent)
  4853. break;
  4854. if (sd_parent_degenerate(tmp, parent)) {
  4855. tmp->parent = parent->parent;
  4856. if (parent->parent)
  4857. parent->parent->child = tmp;
  4858. }
  4859. }
  4860. if (sd && sd_degenerate(sd)) {
  4861. sd = sd->parent;
  4862. if (sd)
  4863. sd->child = NULL;
  4864. }
  4865. sched_domain_debug(sd, cpu);
  4866. rcu_assign_pointer(rq->sd, sd);
  4867. }
  4868. /* cpus with isolated domains */
  4869. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4870. /* Setup the mask of cpus configured for isolated domains */
  4871. static int __init isolated_cpu_setup(char *str)
  4872. {
  4873. int ints[NR_CPUS], i;
  4874. str = get_options(str, ARRAY_SIZE(ints), ints);
  4875. cpus_clear(cpu_isolated_map);
  4876. for (i = 1; i <= ints[0]; i++)
  4877. if (ints[i] < NR_CPUS)
  4878. cpu_set(ints[i], cpu_isolated_map);
  4879. return 1;
  4880. }
  4881. __setup ("isolcpus=", isolated_cpu_setup);
  4882. /*
  4883. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4884. * to a function which identifies what group(along with sched group) a CPU
  4885. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4886. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4887. *
  4888. * init_sched_build_groups will build a circular linked list of the groups
  4889. * covered by the given span, and will set each group's ->cpumask correctly,
  4890. * and ->cpu_power to 0.
  4891. */
  4892. static void
  4893. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4894. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4895. struct sched_group **sg))
  4896. {
  4897. struct sched_group *first = NULL, *last = NULL;
  4898. cpumask_t covered = CPU_MASK_NONE;
  4899. int i;
  4900. for_each_cpu_mask(i, span) {
  4901. struct sched_group *sg;
  4902. int group = group_fn(i, cpu_map, &sg);
  4903. int j;
  4904. if (cpu_isset(i, covered))
  4905. continue;
  4906. sg->cpumask = CPU_MASK_NONE;
  4907. sg->__cpu_power = 0;
  4908. for_each_cpu_mask(j, span) {
  4909. if (group_fn(j, cpu_map, NULL) != group)
  4910. continue;
  4911. cpu_set(j, covered);
  4912. cpu_set(j, sg->cpumask);
  4913. }
  4914. if (!first)
  4915. first = sg;
  4916. if (last)
  4917. last->next = sg;
  4918. last = sg;
  4919. }
  4920. last->next = first;
  4921. }
  4922. #define SD_NODES_PER_DOMAIN 16
  4923. #ifdef CONFIG_NUMA
  4924. /**
  4925. * find_next_best_node - find the next node to include in a sched_domain
  4926. * @node: node whose sched_domain we're building
  4927. * @used_nodes: nodes already in the sched_domain
  4928. *
  4929. * Find the next node to include in a given scheduling domain. Simply
  4930. * finds the closest node not already in the @used_nodes map.
  4931. *
  4932. * Should use nodemask_t.
  4933. */
  4934. static int find_next_best_node(int node, unsigned long *used_nodes)
  4935. {
  4936. int i, n, val, min_val, best_node = 0;
  4937. min_val = INT_MAX;
  4938. for (i = 0; i < MAX_NUMNODES; i++) {
  4939. /* Start at @node */
  4940. n = (node + i) % MAX_NUMNODES;
  4941. if (!nr_cpus_node(n))
  4942. continue;
  4943. /* Skip already used nodes */
  4944. if (test_bit(n, used_nodes))
  4945. continue;
  4946. /* Simple min distance search */
  4947. val = node_distance(node, n);
  4948. if (val < min_val) {
  4949. min_val = val;
  4950. best_node = n;
  4951. }
  4952. }
  4953. set_bit(best_node, used_nodes);
  4954. return best_node;
  4955. }
  4956. /**
  4957. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4958. * @node: node whose cpumask we're constructing
  4959. * @size: number of nodes to include in this span
  4960. *
  4961. * Given a node, construct a good cpumask for its sched_domain to span. It
  4962. * should be one that prevents unnecessary balancing, but also spreads tasks
  4963. * out optimally.
  4964. */
  4965. static cpumask_t sched_domain_node_span(int node)
  4966. {
  4967. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4968. cpumask_t span, nodemask;
  4969. int i;
  4970. cpus_clear(span);
  4971. bitmap_zero(used_nodes, MAX_NUMNODES);
  4972. nodemask = node_to_cpumask(node);
  4973. cpus_or(span, span, nodemask);
  4974. set_bit(node, used_nodes);
  4975. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4976. int next_node = find_next_best_node(node, used_nodes);
  4977. nodemask = node_to_cpumask(next_node);
  4978. cpus_or(span, span, nodemask);
  4979. }
  4980. return span;
  4981. }
  4982. #endif
  4983. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4984. /*
  4985. * SMT sched-domains:
  4986. */
  4987. #ifdef CONFIG_SCHED_SMT
  4988. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4989. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4990. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4991. struct sched_group **sg)
  4992. {
  4993. if (sg)
  4994. *sg = &per_cpu(sched_group_cpus, cpu);
  4995. return cpu;
  4996. }
  4997. #endif
  4998. /*
  4999. * multi-core sched-domains:
  5000. */
  5001. #ifdef CONFIG_SCHED_MC
  5002. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5003. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5004. #endif
  5005. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5006. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5007. struct sched_group **sg)
  5008. {
  5009. int group;
  5010. cpumask_t mask = cpu_sibling_map[cpu];
  5011. cpus_and(mask, mask, *cpu_map);
  5012. group = first_cpu(mask);
  5013. if (sg)
  5014. *sg = &per_cpu(sched_group_core, group);
  5015. return group;
  5016. }
  5017. #elif defined(CONFIG_SCHED_MC)
  5018. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5019. struct sched_group **sg)
  5020. {
  5021. if (sg)
  5022. *sg = &per_cpu(sched_group_core, cpu);
  5023. return cpu;
  5024. }
  5025. #endif
  5026. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5027. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5028. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5029. struct sched_group **sg)
  5030. {
  5031. int group;
  5032. #ifdef CONFIG_SCHED_MC
  5033. cpumask_t mask = cpu_coregroup_map(cpu);
  5034. cpus_and(mask, mask, *cpu_map);
  5035. group = first_cpu(mask);
  5036. #elif defined(CONFIG_SCHED_SMT)
  5037. cpumask_t mask = cpu_sibling_map[cpu];
  5038. cpus_and(mask, mask, *cpu_map);
  5039. group = first_cpu(mask);
  5040. #else
  5041. group = cpu;
  5042. #endif
  5043. if (sg)
  5044. *sg = &per_cpu(sched_group_phys, group);
  5045. return group;
  5046. }
  5047. #ifdef CONFIG_NUMA
  5048. /*
  5049. * The init_sched_build_groups can't handle what we want to do with node
  5050. * groups, so roll our own. Now each node has its own list of groups which
  5051. * gets dynamically allocated.
  5052. */
  5053. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5054. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5055. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5056. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5057. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5058. struct sched_group **sg)
  5059. {
  5060. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5061. int group;
  5062. cpus_and(nodemask, nodemask, *cpu_map);
  5063. group = first_cpu(nodemask);
  5064. if (sg)
  5065. *sg = &per_cpu(sched_group_allnodes, group);
  5066. return group;
  5067. }
  5068. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5069. {
  5070. struct sched_group *sg = group_head;
  5071. int j;
  5072. if (!sg)
  5073. return;
  5074. next_sg:
  5075. for_each_cpu_mask(j, sg->cpumask) {
  5076. struct sched_domain *sd;
  5077. sd = &per_cpu(phys_domains, j);
  5078. if (j != first_cpu(sd->groups->cpumask)) {
  5079. /*
  5080. * Only add "power" once for each
  5081. * physical package.
  5082. */
  5083. continue;
  5084. }
  5085. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5086. }
  5087. sg = sg->next;
  5088. if (sg != group_head)
  5089. goto next_sg;
  5090. }
  5091. #endif
  5092. #ifdef CONFIG_NUMA
  5093. /* Free memory allocated for various sched_group structures */
  5094. static void free_sched_groups(const cpumask_t *cpu_map)
  5095. {
  5096. int cpu, i;
  5097. for_each_cpu_mask(cpu, *cpu_map) {
  5098. struct sched_group **sched_group_nodes
  5099. = sched_group_nodes_bycpu[cpu];
  5100. if (!sched_group_nodes)
  5101. continue;
  5102. for (i = 0; i < MAX_NUMNODES; i++) {
  5103. cpumask_t nodemask = node_to_cpumask(i);
  5104. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5105. cpus_and(nodemask, nodemask, *cpu_map);
  5106. if (cpus_empty(nodemask))
  5107. continue;
  5108. if (sg == NULL)
  5109. continue;
  5110. sg = sg->next;
  5111. next_sg:
  5112. oldsg = sg;
  5113. sg = sg->next;
  5114. kfree(oldsg);
  5115. if (oldsg != sched_group_nodes[i])
  5116. goto next_sg;
  5117. }
  5118. kfree(sched_group_nodes);
  5119. sched_group_nodes_bycpu[cpu] = NULL;
  5120. }
  5121. }
  5122. #else
  5123. static void free_sched_groups(const cpumask_t *cpu_map)
  5124. {
  5125. }
  5126. #endif
  5127. /*
  5128. * Initialize sched groups cpu_power.
  5129. *
  5130. * cpu_power indicates the capacity of sched group, which is used while
  5131. * distributing the load between different sched groups in a sched domain.
  5132. * Typically cpu_power for all the groups in a sched domain will be same unless
  5133. * there are asymmetries in the topology. If there are asymmetries, group
  5134. * having more cpu_power will pickup more load compared to the group having
  5135. * less cpu_power.
  5136. *
  5137. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5138. * the maximum number of tasks a group can handle in the presence of other idle
  5139. * or lightly loaded groups in the same sched domain.
  5140. */
  5141. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5142. {
  5143. struct sched_domain *child;
  5144. struct sched_group *group;
  5145. WARN_ON(!sd || !sd->groups);
  5146. if (cpu != first_cpu(sd->groups->cpumask))
  5147. return;
  5148. child = sd->child;
  5149. sd->groups->__cpu_power = 0;
  5150. /*
  5151. * For perf policy, if the groups in child domain share resources
  5152. * (for example cores sharing some portions of the cache hierarchy
  5153. * or SMT), then set this domain groups cpu_power such that each group
  5154. * can handle only one task, when there are other idle groups in the
  5155. * same sched domain.
  5156. */
  5157. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5158. (child->flags &
  5159. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5160. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5161. return;
  5162. }
  5163. /*
  5164. * add cpu_power of each child group to this groups cpu_power
  5165. */
  5166. group = child->groups;
  5167. do {
  5168. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5169. group = group->next;
  5170. } while (group != child->groups);
  5171. }
  5172. /*
  5173. * Build sched domains for a given set of cpus and attach the sched domains
  5174. * to the individual cpus
  5175. */
  5176. static int build_sched_domains(const cpumask_t *cpu_map)
  5177. {
  5178. int i;
  5179. #ifdef CONFIG_NUMA
  5180. struct sched_group **sched_group_nodes = NULL;
  5181. int sd_allnodes = 0;
  5182. /*
  5183. * Allocate the per-node list of sched groups
  5184. */
  5185. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5186. GFP_KERNEL);
  5187. if (!sched_group_nodes) {
  5188. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5189. return -ENOMEM;
  5190. }
  5191. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5192. #endif
  5193. /*
  5194. * Set up domains for cpus specified by the cpu_map.
  5195. */
  5196. for_each_cpu_mask(i, *cpu_map) {
  5197. struct sched_domain *sd = NULL, *p;
  5198. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5199. cpus_and(nodemask, nodemask, *cpu_map);
  5200. #ifdef CONFIG_NUMA
  5201. if (cpus_weight(*cpu_map) >
  5202. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5203. sd = &per_cpu(allnodes_domains, i);
  5204. *sd = SD_ALLNODES_INIT;
  5205. sd->span = *cpu_map;
  5206. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5207. p = sd;
  5208. sd_allnodes = 1;
  5209. } else
  5210. p = NULL;
  5211. sd = &per_cpu(node_domains, i);
  5212. *sd = SD_NODE_INIT;
  5213. sd->span = sched_domain_node_span(cpu_to_node(i));
  5214. sd->parent = p;
  5215. if (p)
  5216. p->child = sd;
  5217. cpus_and(sd->span, sd->span, *cpu_map);
  5218. #endif
  5219. p = sd;
  5220. sd = &per_cpu(phys_domains, i);
  5221. *sd = SD_CPU_INIT;
  5222. sd->span = nodemask;
  5223. sd->parent = p;
  5224. if (p)
  5225. p->child = sd;
  5226. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5227. #ifdef CONFIG_SCHED_MC
  5228. p = sd;
  5229. sd = &per_cpu(core_domains, i);
  5230. *sd = SD_MC_INIT;
  5231. sd->span = cpu_coregroup_map(i);
  5232. cpus_and(sd->span, sd->span, *cpu_map);
  5233. sd->parent = p;
  5234. p->child = sd;
  5235. cpu_to_core_group(i, cpu_map, &sd->groups);
  5236. #endif
  5237. #ifdef CONFIG_SCHED_SMT
  5238. p = sd;
  5239. sd = &per_cpu(cpu_domains, i);
  5240. *sd = SD_SIBLING_INIT;
  5241. sd->span = cpu_sibling_map[i];
  5242. cpus_and(sd->span, sd->span, *cpu_map);
  5243. sd->parent = p;
  5244. p->child = sd;
  5245. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5246. #endif
  5247. }
  5248. #ifdef CONFIG_SCHED_SMT
  5249. /* Set up CPU (sibling) groups */
  5250. for_each_cpu_mask(i, *cpu_map) {
  5251. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5252. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5253. if (i != first_cpu(this_sibling_map))
  5254. continue;
  5255. init_sched_build_groups(this_sibling_map, cpu_map,
  5256. &cpu_to_cpu_group);
  5257. }
  5258. #endif
  5259. #ifdef CONFIG_SCHED_MC
  5260. /* Set up multi-core groups */
  5261. for_each_cpu_mask(i, *cpu_map) {
  5262. cpumask_t this_core_map = cpu_coregroup_map(i);
  5263. cpus_and(this_core_map, this_core_map, *cpu_map);
  5264. if (i != first_cpu(this_core_map))
  5265. continue;
  5266. init_sched_build_groups(this_core_map, cpu_map,
  5267. &cpu_to_core_group);
  5268. }
  5269. #endif
  5270. /* Set up physical groups */
  5271. for (i = 0; i < MAX_NUMNODES; i++) {
  5272. cpumask_t nodemask = node_to_cpumask(i);
  5273. cpus_and(nodemask, nodemask, *cpu_map);
  5274. if (cpus_empty(nodemask))
  5275. continue;
  5276. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5277. }
  5278. #ifdef CONFIG_NUMA
  5279. /* Set up node groups */
  5280. if (sd_allnodes)
  5281. init_sched_build_groups(*cpu_map, cpu_map,
  5282. &cpu_to_allnodes_group);
  5283. for (i = 0; i < MAX_NUMNODES; i++) {
  5284. /* Set up node groups */
  5285. struct sched_group *sg, *prev;
  5286. cpumask_t nodemask = node_to_cpumask(i);
  5287. cpumask_t domainspan;
  5288. cpumask_t covered = CPU_MASK_NONE;
  5289. int j;
  5290. cpus_and(nodemask, nodemask, *cpu_map);
  5291. if (cpus_empty(nodemask)) {
  5292. sched_group_nodes[i] = NULL;
  5293. continue;
  5294. }
  5295. domainspan = sched_domain_node_span(i);
  5296. cpus_and(domainspan, domainspan, *cpu_map);
  5297. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5298. if (!sg) {
  5299. printk(KERN_WARNING "Can not alloc domain group for "
  5300. "node %d\n", i);
  5301. goto error;
  5302. }
  5303. sched_group_nodes[i] = sg;
  5304. for_each_cpu_mask(j, nodemask) {
  5305. struct sched_domain *sd;
  5306. sd = &per_cpu(node_domains, j);
  5307. sd->groups = sg;
  5308. }
  5309. sg->__cpu_power = 0;
  5310. sg->cpumask = nodemask;
  5311. sg->next = sg;
  5312. cpus_or(covered, covered, nodemask);
  5313. prev = sg;
  5314. for (j = 0; j < MAX_NUMNODES; j++) {
  5315. cpumask_t tmp, notcovered;
  5316. int n = (i + j) % MAX_NUMNODES;
  5317. cpus_complement(notcovered, covered);
  5318. cpus_and(tmp, notcovered, *cpu_map);
  5319. cpus_and(tmp, tmp, domainspan);
  5320. if (cpus_empty(tmp))
  5321. break;
  5322. nodemask = node_to_cpumask(n);
  5323. cpus_and(tmp, tmp, nodemask);
  5324. if (cpus_empty(tmp))
  5325. continue;
  5326. sg = kmalloc_node(sizeof(struct sched_group),
  5327. GFP_KERNEL, i);
  5328. if (!sg) {
  5329. printk(KERN_WARNING
  5330. "Can not alloc domain group for node %d\n", j);
  5331. goto error;
  5332. }
  5333. sg->__cpu_power = 0;
  5334. sg->cpumask = tmp;
  5335. sg->next = prev->next;
  5336. cpus_or(covered, covered, tmp);
  5337. prev->next = sg;
  5338. prev = sg;
  5339. }
  5340. }
  5341. #endif
  5342. /* Calculate CPU power for physical packages and nodes */
  5343. #ifdef CONFIG_SCHED_SMT
  5344. for_each_cpu_mask(i, *cpu_map) {
  5345. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5346. init_sched_groups_power(i, sd);
  5347. }
  5348. #endif
  5349. #ifdef CONFIG_SCHED_MC
  5350. for_each_cpu_mask(i, *cpu_map) {
  5351. struct sched_domain *sd = &per_cpu(core_domains, i);
  5352. init_sched_groups_power(i, sd);
  5353. }
  5354. #endif
  5355. for_each_cpu_mask(i, *cpu_map) {
  5356. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5357. init_sched_groups_power(i, sd);
  5358. }
  5359. #ifdef CONFIG_NUMA
  5360. for (i = 0; i < MAX_NUMNODES; i++)
  5361. init_numa_sched_groups_power(sched_group_nodes[i]);
  5362. if (sd_allnodes) {
  5363. struct sched_group *sg;
  5364. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5365. init_numa_sched_groups_power(sg);
  5366. }
  5367. #endif
  5368. /* Attach the domains */
  5369. for_each_cpu_mask(i, *cpu_map) {
  5370. struct sched_domain *sd;
  5371. #ifdef CONFIG_SCHED_SMT
  5372. sd = &per_cpu(cpu_domains, i);
  5373. #elif defined(CONFIG_SCHED_MC)
  5374. sd = &per_cpu(core_domains, i);
  5375. #else
  5376. sd = &per_cpu(phys_domains, i);
  5377. #endif
  5378. cpu_attach_domain(sd, i);
  5379. }
  5380. return 0;
  5381. #ifdef CONFIG_NUMA
  5382. error:
  5383. free_sched_groups(cpu_map);
  5384. return -ENOMEM;
  5385. #endif
  5386. }
  5387. /*
  5388. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5389. */
  5390. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5391. {
  5392. cpumask_t cpu_default_map;
  5393. int err;
  5394. /*
  5395. * Setup mask for cpus without special case scheduling requirements.
  5396. * For now this just excludes isolated cpus, but could be used to
  5397. * exclude other special cases in the future.
  5398. */
  5399. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5400. err = build_sched_domains(&cpu_default_map);
  5401. return err;
  5402. }
  5403. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5404. {
  5405. free_sched_groups(cpu_map);
  5406. }
  5407. /*
  5408. * Detach sched domains from a group of cpus specified in cpu_map
  5409. * These cpus will now be attached to the NULL domain
  5410. */
  5411. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5412. {
  5413. int i;
  5414. for_each_cpu_mask(i, *cpu_map)
  5415. cpu_attach_domain(NULL, i);
  5416. synchronize_sched();
  5417. arch_destroy_sched_domains(cpu_map);
  5418. }
  5419. /*
  5420. * Partition sched domains as specified by the cpumasks below.
  5421. * This attaches all cpus from the cpumasks to the NULL domain,
  5422. * waits for a RCU quiescent period, recalculates sched
  5423. * domain information and then attaches them back to the
  5424. * correct sched domains
  5425. * Call with hotplug lock held
  5426. */
  5427. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5428. {
  5429. cpumask_t change_map;
  5430. int err = 0;
  5431. cpus_and(*partition1, *partition1, cpu_online_map);
  5432. cpus_and(*partition2, *partition2, cpu_online_map);
  5433. cpus_or(change_map, *partition1, *partition2);
  5434. /* Detach sched domains from all of the affected cpus */
  5435. detach_destroy_domains(&change_map);
  5436. if (!cpus_empty(*partition1))
  5437. err = build_sched_domains(partition1);
  5438. if (!err && !cpus_empty(*partition2))
  5439. err = build_sched_domains(partition2);
  5440. return err;
  5441. }
  5442. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5443. int arch_reinit_sched_domains(void)
  5444. {
  5445. int err;
  5446. mutex_lock(&sched_hotcpu_mutex);
  5447. detach_destroy_domains(&cpu_online_map);
  5448. err = arch_init_sched_domains(&cpu_online_map);
  5449. mutex_unlock(&sched_hotcpu_mutex);
  5450. return err;
  5451. }
  5452. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5453. {
  5454. int ret;
  5455. if (buf[0] != '0' && buf[0] != '1')
  5456. return -EINVAL;
  5457. if (smt)
  5458. sched_smt_power_savings = (buf[0] == '1');
  5459. else
  5460. sched_mc_power_savings = (buf[0] == '1');
  5461. ret = arch_reinit_sched_domains();
  5462. return ret ? ret : count;
  5463. }
  5464. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5465. {
  5466. int err = 0;
  5467. #ifdef CONFIG_SCHED_SMT
  5468. if (smt_capable())
  5469. err = sysfs_create_file(&cls->kset.kobj,
  5470. &attr_sched_smt_power_savings.attr);
  5471. #endif
  5472. #ifdef CONFIG_SCHED_MC
  5473. if (!err && mc_capable())
  5474. err = sysfs_create_file(&cls->kset.kobj,
  5475. &attr_sched_mc_power_savings.attr);
  5476. #endif
  5477. return err;
  5478. }
  5479. #endif
  5480. #ifdef CONFIG_SCHED_MC
  5481. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5482. {
  5483. return sprintf(page, "%u\n", sched_mc_power_savings);
  5484. }
  5485. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5486. const char *buf, size_t count)
  5487. {
  5488. return sched_power_savings_store(buf, count, 0);
  5489. }
  5490. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5491. sched_mc_power_savings_store);
  5492. #endif
  5493. #ifdef CONFIG_SCHED_SMT
  5494. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5495. {
  5496. return sprintf(page, "%u\n", sched_smt_power_savings);
  5497. }
  5498. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5499. const char *buf, size_t count)
  5500. {
  5501. return sched_power_savings_store(buf, count, 1);
  5502. }
  5503. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5504. sched_smt_power_savings_store);
  5505. #endif
  5506. /*
  5507. * Force a reinitialization of the sched domains hierarchy. The domains
  5508. * and groups cannot be updated in place without racing with the balancing
  5509. * code, so we temporarily attach all running cpus to the NULL domain
  5510. * which will prevent rebalancing while the sched domains are recalculated.
  5511. */
  5512. static int update_sched_domains(struct notifier_block *nfb,
  5513. unsigned long action, void *hcpu)
  5514. {
  5515. switch (action) {
  5516. case CPU_UP_PREPARE:
  5517. case CPU_UP_PREPARE_FROZEN:
  5518. case CPU_DOWN_PREPARE:
  5519. case CPU_DOWN_PREPARE_FROZEN:
  5520. detach_destroy_domains(&cpu_online_map);
  5521. return NOTIFY_OK;
  5522. case CPU_UP_CANCELED:
  5523. case CPU_UP_CANCELED_FROZEN:
  5524. case CPU_DOWN_FAILED:
  5525. case CPU_DOWN_FAILED_FROZEN:
  5526. case CPU_ONLINE:
  5527. case CPU_ONLINE_FROZEN:
  5528. case CPU_DEAD:
  5529. case CPU_DEAD_FROZEN:
  5530. /*
  5531. * Fall through and re-initialise the domains.
  5532. */
  5533. break;
  5534. default:
  5535. return NOTIFY_DONE;
  5536. }
  5537. /* The hotplug lock is already held by cpu_up/cpu_down */
  5538. arch_init_sched_domains(&cpu_online_map);
  5539. return NOTIFY_OK;
  5540. }
  5541. void __init sched_init_smp(void)
  5542. {
  5543. cpumask_t non_isolated_cpus;
  5544. mutex_lock(&sched_hotcpu_mutex);
  5545. arch_init_sched_domains(&cpu_online_map);
  5546. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5547. if (cpus_empty(non_isolated_cpus))
  5548. cpu_set(smp_processor_id(), non_isolated_cpus);
  5549. mutex_unlock(&sched_hotcpu_mutex);
  5550. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5551. hotcpu_notifier(update_sched_domains, 0);
  5552. init_sched_domain_sysctl();
  5553. /* Move init over to a non-isolated CPU */
  5554. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5555. BUG();
  5556. sched_init_granularity();
  5557. }
  5558. #else
  5559. void __init sched_init_smp(void)
  5560. {
  5561. sched_init_granularity();
  5562. }
  5563. #endif /* CONFIG_SMP */
  5564. int in_sched_functions(unsigned long addr)
  5565. {
  5566. /* Linker adds these: start and end of __sched functions */
  5567. extern char __sched_text_start[], __sched_text_end[];
  5568. return in_lock_functions(addr) ||
  5569. (addr >= (unsigned long)__sched_text_start
  5570. && addr < (unsigned long)__sched_text_end);
  5571. }
  5572. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5573. {
  5574. cfs_rq->tasks_timeline = RB_ROOT;
  5575. cfs_rq->fair_clock = 1;
  5576. #ifdef CONFIG_FAIR_GROUP_SCHED
  5577. cfs_rq->rq = rq;
  5578. #endif
  5579. }
  5580. void __init sched_init(void)
  5581. {
  5582. u64 now = sched_clock();
  5583. int highest_cpu = 0;
  5584. int i, j;
  5585. /*
  5586. * Link up the scheduling class hierarchy:
  5587. */
  5588. rt_sched_class.next = &fair_sched_class;
  5589. fair_sched_class.next = &idle_sched_class;
  5590. idle_sched_class.next = NULL;
  5591. for_each_possible_cpu(i) {
  5592. struct rt_prio_array *array;
  5593. struct rq *rq;
  5594. rq = cpu_rq(i);
  5595. spin_lock_init(&rq->lock);
  5596. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5597. rq->nr_running = 0;
  5598. rq->clock = 1;
  5599. init_cfs_rq(&rq->cfs, rq);
  5600. #ifdef CONFIG_FAIR_GROUP_SCHED
  5601. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5602. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5603. #endif
  5604. rq->ls.load_update_last = now;
  5605. rq->ls.load_update_start = now;
  5606. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5607. rq->cpu_load[j] = 0;
  5608. #ifdef CONFIG_SMP
  5609. rq->sd = NULL;
  5610. rq->active_balance = 0;
  5611. rq->next_balance = jiffies;
  5612. rq->push_cpu = 0;
  5613. rq->cpu = i;
  5614. rq->migration_thread = NULL;
  5615. INIT_LIST_HEAD(&rq->migration_queue);
  5616. #endif
  5617. atomic_set(&rq->nr_iowait, 0);
  5618. array = &rq->rt.active;
  5619. for (j = 0; j < MAX_RT_PRIO; j++) {
  5620. INIT_LIST_HEAD(array->queue + j);
  5621. __clear_bit(j, array->bitmap);
  5622. }
  5623. highest_cpu = i;
  5624. /* delimiter for bitsearch: */
  5625. __set_bit(MAX_RT_PRIO, array->bitmap);
  5626. }
  5627. set_load_weight(&init_task);
  5628. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5629. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5630. #endif
  5631. #ifdef CONFIG_SMP
  5632. nr_cpu_ids = highest_cpu + 1;
  5633. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5634. #endif
  5635. #ifdef CONFIG_RT_MUTEXES
  5636. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5637. #endif
  5638. /*
  5639. * The boot idle thread does lazy MMU switching as well:
  5640. */
  5641. atomic_inc(&init_mm.mm_count);
  5642. enter_lazy_tlb(&init_mm, current);
  5643. /*
  5644. * Make us the idle thread. Technically, schedule() should not be
  5645. * called from this thread, however somewhere below it might be,
  5646. * but because we are the idle thread, we just pick up running again
  5647. * when this runqueue becomes "idle".
  5648. */
  5649. init_idle(current, smp_processor_id());
  5650. /*
  5651. * During early bootup we pretend to be a normal task:
  5652. */
  5653. current->sched_class = &fair_sched_class;
  5654. }
  5655. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5656. void __might_sleep(char *file, int line)
  5657. {
  5658. #ifdef in_atomic
  5659. static unsigned long prev_jiffy; /* ratelimiting */
  5660. if ((in_atomic() || irqs_disabled()) &&
  5661. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5662. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5663. return;
  5664. prev_jiffy = jiffies;
  5665. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5666. " context at %s:%d\n", file, line);
  5667. printk("in_atomic():%d, irqs_disabled():%d\n",
  5668. in_atomic(), irqs_disabled());
  5669. debug_show_held_locks(current);
  5670. if (irqs_disabled())
  5671. print_irqtrace_events(current);
  5672. dump_stack();
  5673. }
  5674. #endif
  5675. }
  5676. EXPORT_SYMBOL(__might_sleep);
  5677. #endif
  5678. #ifdef CONFIG_MAGIC_SYSRQ
  5679. void normalize_rt_tasks(void)
  5680. {
  5681. struct task_struct *g, *p;
  5682. unsigned long flags;
  5683. struct rq *rq;
  5684. int on_rq;
  5685. read_lock_irq(&tasklist_lock);
  5686. do_each_thread(g, p) {
  5687. p->se.fair_key = 0;
  5688. p->se.wait_runtime = 0;
  5689. p->se.exec_start = 0;
  5690. p->se.wait_start_fair = 0;
  5691. p->se.sleep_start_fair = 0;
  5692. #ifdef CONFIG_SCHEDSTATS
  5693. p->se.wait_start = 0;
  5694. p->se.sleep_start = 0;
  5695. p->se.block_start = 0;
  5696. #endif
  5697. task_rq(p)->cfs.fair_clock = 0;
  5698. task_rq(p)->clock = 0;
  5699. if (!rt_task(p)) {
  5700. /*
  5701. * Renice negative nice level userspace
  5702. * tasks back to 0:
  5703. */
  5704. if (TASK_NICE(p) < 0 && p->mm)
  5705. set_user_nice(p, 0);
  5706. continue;
  5707. }
  5708. spin_lock_irqsave(&p->pi_lock, flags);
  5709. rq = __task_rq_lock(p);
  5710. #ifdef CONFIG_SMP
  5711. /*
  5712. * Do not touch the migration thread:
  5713. */
  5714. if (p == rq->migration_thread)
  5715. goto out_unlock;
  5716. #endif
  5717. on_rq = p->se.on_rq;
  5718. if (on_rq) {
  5719. update_rq_clock(task_rq(p));
  5720. deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
  5721. }
  5722. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5723. if (on_rq) {
  5724. activate_task(task_rq(p), p, 0);
  5725. resched_task(rq->curr);
  5726. }
  5727. #ifdef CONFIG_SMP
  5728. out_unlock:
  5729. #endif
  5730. __task_rq_unlock(rq);
  5731. spin_unlock_irqrestore(&p->pi_lock, flags);
  5732. } while_each_thread(g, p);
  5733. read_unlock_irq(&tasklist_lock);
  5734. }
  5735. #endif /* CONFIG_MAGIC_SYSRQ */
  5736. #ifdef CONFIG_IA64
  5737. /*
  5738. * These functions are only useful for the IA64 MCA handling.
  5739. *
  5740. * They can only be called when the whole system has been
  5741. * stopped - every CPU needs to be quiescent, and no scheduling
  5742. * activity can take place. Using them for anything else would
  5743. * be a serious bug, and as a result, they aren't even visible
  5744. * under any other configuration.
  5745. */
  5746. /**
  5747. * curr_task - return the current task for a given cpu.
  5748. * @cpu: the processor in question.
  5749. *
  5750. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5751. */
  5752. struct task_struct *curr_task(int cpu)
  5753. {
  5754. return cpu_curr(cpu);
  5755. }
  5756. /**
  5757. * set_curr_task - set the current task for a given cpu.
  5758. * @cpu: the processor in question.
  5759. * @p: the task pointer to set.
  5760. *
  5761. * Description: This function must only be used when non-maskable interrupts
  5762. * are serviced on a separate stack. It allows the architecture to switch the
  5763. * notion of the current task on a cpu in a non-blocking manner. This function
  5764. * must be called with all CPU's synchronized, and interrupts disabled, the
  5765. * and caller must save the original value of the current task (see
  5766. * curr_task() above) and restore that value before reenabling interrupts and
  5767. * re-starting the system.
  5768. *
  5769. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5770. */
  5771. void set_curr_task(int cpu, struct task_struct *p)
  5772. {
  5773. cpu_curr(cpu) = p;
  5774. }
  5775. #endif