intel_ringbuffer.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "i915_drv.h"
  32. #include "i915_drm.h"
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /*
  36. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  37. * over cache flushing.
  38. */
  39. struct pipe_control {
  40. struct drm_i915_gem_object *obj;
  41. volatile u32 *cpu_page;
  42. u32 gtt_offset;
  43. };
  44. static inline int ring_space(struct intel_ring_buffer *ring)
  45. {
  46. int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  47. if (space < 0)
  48. space += ring->size;
  49. return space;
  50. }
  51. static int
  52. render_ring_flush(struct intel_ring_buffer *ring,
  53. u32 invalidate_domains,
  54. u32 flush_domains)
  55. {
  56. struct drm_device *dev = ring->dev;
  57. u32 cmd;
  58. int ret;
  59. /*
  60. * read/write caches:
  61. *
  62. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  63. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  64. * also flushed at 2d versus 3d pipeline switches.
  65. *
  66. * read-only caches:
  67. *
  68. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  69. * MI_READ_FLUSH is set, and is always flushed on 965.
  70. *
  71. * I915_GEM_DOMAIN_COMMAND may not exist?
  72. *
  73. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  74. * invalidated when MI_EXE_FLUSH is set.
  75. *
  76. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  77. * invalidated with every MI_FLUSH.
  78. *
  79. * TLBs:
  80. *
  81. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  82. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  83. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  84. * are flushed at any MI_FLUSH.
  85. */
  86. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  87. if ((invalidate_domains|flush_domains) &
  88. I915_GEM_DOMAIN_RENDER)
  89. cmd &= ~MI_NO_WRITE_FLUSH;
  90. if (INTEL_INFO(dev)->gen < 4) {
  91. /*
  92. * On the 965, the sampler cache always gets flushed
  93. * and this bit is reserved.
  94. */
  95. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  96. cmd |= MI_READ_FLUSH;
  97. }
  98. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  99. cmd |= MI_EXE_FLUSH;
  100. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  101. (IS_G4X(dev) || IS_GEN5(dev)))
  102. cmd |= MI_INVALIDATE_ISP;
  103. ret = intel_ring_begin(ring, 2);
  104. if (ret)
  105. return ret;
  106. intel_ring_emit(ring, cmd);
  107. intel_ring_emit(ring, MI_NOOP);
  108. intel_ring_advance(ring);
  109. return 0;
  110. }
  111. /**
  112. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  113. * implementing two workarounds on gen6. From section 1.4.7.1
  114. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  115. *
  116. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  117. * produced by non-pipelined state commands), software needs to first
  118. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  119. * 0.
  120. *
  121. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  122. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  123. *
  124. * And the workaround for these two requires this workaround first:
  125. *
  126. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  127. * BEFORE the pipe-control with a post-sync op and no write-cache
  128. * flushes.
  129. *
  130. * And this last workaround is tricky because of the requirements on
  131. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  132. * volume 2 part 1:
  133. *
  134. * "1 of the following must also be set:
  135. * - Render Target Cache Flush Enable ([12] of DW1)
  136. * - Depth Cache Flush Enable ([0] of DW1)
  137. * - Stall at Pixel Scoreboard ([1] of DW1)
  138. * - Depth Stall ([13] of DW1)
  139. * - Post-Sync Operation ([13] of DW1)
  140. * - Notify Enable ([8] of DW1)"
  141. *
  142. * The cache flushes require the workaround flush that triggered this
  143. * one, so we can't use it. Depth stall would trigger the same.
  144. * Post-sync nonzero is what triggered this second workaround, so we
  145. * can't use that one either. Notify enable is IRQs, which aren't
  146. * really our business. That leaves only stall at scoreboard.
  147. */
  148. static int
  149. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  150. {
  151. struct pipe_control *pc = ring->private;
  152. u32 scratch_addr = pc->gtt_offset + 128;
  153. int ret;
  154. ret = intel_ring_begin(ring, 6);
  155. if (ret)
  156. return ret;
  157. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  158. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  159. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  160. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  161. intel_ring_emit(ring, 0); /* low dword */
  162. intel_ring_emit(ring, 0); /* high dword */
  163. intel_ring_emit(ring, MI_NOOP);
  164. intel_ring_advance(ring);
  165. ret = intel_ring_begin(ring, 6);
  166. if (ret)
  167. return ret;
  168. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  169. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0);
  172. intel_ring_emit(ring, 0);
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. return 0;
  176. }
  177. static int
  178. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  179. u32 invalidate_domains, u32 flush_domains)
  180. {
  181. u32 flags = 0;
  182. struct pipe_control *pc = ring->private;
  183. u32 scratch_addr = pc->gtt_offset + 128;
  184. int ret;
  185. /* Force SNB workarounds for PIPE_CONTROL flushes */
  186. intel_emit_post_sync_nonzero_flush(ring);
  187. /* Just flush everything. Experiments have shown that reducing the
  188. * number of bits based on the write domains has little performance
  189. * impact.
  190. */
  191. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  192. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  193. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  194. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  195. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  196. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  197. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  198. ret = intel_ring_begin(ring, 6);
  199. if (ret)
  200. return ret;
  201. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  202. intel_ring_emit(ring, flags);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  204. intel_ring_emit(ring, 0); /* lower dword */
  205. intel_ring_emit(ring, 0); /* uppwer dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. return 0;
  209. }
  210. static void ring_write_tail(struct intel_ring_buffer *ring,
  211. u32 value)
  212. {
  213. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  214. I915_WRITE_TAIL(ring, value);
  215. }
  216. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  217. {
  218. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  219. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  220. RING_ACTHD(ring->mmio_base) : ACTHD;
  221. return I915_READ(acthd_reg);
  222. }
  223. static int init_ring_common(struct intel_ring_buffer *ring)
  224. {
  225. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  226. struct drm_i915_gem_object *obj = ring->obj;
  227. u32 head;
  228. /* Stop the ring if it's running. */
  229. I915_WRITE_CTL(ring, 0);
  230. I915_WRITE_HEAD(ring, 0);
  231. ring->write_tail(ring, 0);
  232. /* Initialize the ring. */
  233. I915_WRITE_START(ring, obj->gtt_offset);
  234. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  235. /* G45 ring initialization fails to reset head to zero */
  236. if (head != 0) {
  237. DRM_DEBUG_KMS("%s head not reset to zero "
  238. "ctl %08x head %08x tail %08x start %08x\n",
  239. ring->name,
  240. I915_READ_CTL(ring),
  241. I915_READ_HEAD(ring),
  242. I915_READ_TAIL(ring),
  243. I915_READ_START(ring));
  244. I915_WRITE_HEAD(ring, 0);
  245. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  246. DRM_ERROR("failed to set %s head to zero "
  247. "ctl %08x head %08x tail %08x start %08x\n",
  248. ring->name,
  249. I915_READ_CTL(ring),
  250. I915_READ_HEAD(ring),
  251. I915_READ_TAIL(ring),
  252. I915_READ_START(ring));
  253. }
  254. }
  255. I915_WRITE_CTL(ring,
  256. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  257. | RING_VALID);
  258. /* If the head is still not zero, the ring is dead */
  259. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  260. I915_READ_START(ring) == obj->gtt_offset &&
  261. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  262. DRM_ERROR("%s initialization failed "
  263. "ctl %08x head %08x tail %08x start %08x\n",
  264. ring->name,
  265. I915_READ_CTL(ring),
  266. I915_READ_HEAD(ring),
  267. I915_READ_TAIL(ring),
  268. I915_READ_START(ring));
  269. return -EIO;
  270. }
  271. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  272. i915_kernel_lost_context(ring->dev);
  273. else {
  274. ring->head = I915_READ_HEAD(ring);
  275. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  276. ring->space = ring_space(ring);
  277. }
  278. return 0;
  279. }
  280. static int
  281. init_pipe_control(struct intel_ring_buffer *ring)
  282. {
  283. struct pipe_control *pc;
  284. struct drm_i915_gem_object *obj;
  285. int ret;
  286. if (ring->private)
  287. return 0;
  288. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  289. if (!pc)
  290. return -ENOMEM;
  291. obj = i915_gem_alloc_object(ring->dev, 4096);
  292. if (obj == NULL) {
  293. DRM_ERROR("Failed to allocate seqno page\n");
  294. ret = -ENOMEM;
  295. goto err;
  296. }
  297. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  298. ret = i915_gem_object_pin(obj, 4096, true);
  299. if (ret)
  300. goto err_unref;
  301. pc->gtt_offset = obj->gtt_offset;
  302. pc->cpu_page = kmap(obj->pages[0]);
  303. if (pc->cpu_page == NULL)
  304. goto err_unpin;
  305. pc->obj = obj;
  306. ring->private = pc;
  307. return 0;
  308. err_unpin:
  309. i915_gem_object_unpin(obj);
  310. err_unref:
  311. drm_gem_object_unreference(&obj->base);
  312. err:
  313. kfree(pc);
  314. return ret;
  315. }
  316. static void
  317. cleanup_pipe_control(struct intel_ring_buffer *ring)
  318. {
  319. struct pipe_control *pc = ring->private;
  320. struct drm_i915_gem_object *obj;
  321. if (!ring->private)
  322. return;
  323. obj = pc->obj;
  324. kunmap(obj->pages[0]);
  325. i915_gem_object_unpin(obj);
  326. drm_gem_object_unreference(&obj->base);
  327. kfree(pc);
  328. ring->private = NULL;
  329. }
  330. static int init_render_ring(struct intel_ring_buffer *ring)
  331. {
  332. struct drm_device *dev = ring->dev;
  333. struct drm_i915_private *dev_priv = dev->dev_private;
  334. int ret = init_ring_common(ring);
  335. if (INTEL_INFO(dev)->gen > 3) {
  336. int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
  337. I915_WRITE(MI_MODE, mode);
  338. if (IS_GEN7(dev))
  339. I915_WRITE(GFX_MODE_GEN7,
  340. GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  341. GFX_MODE_ENABLE(GFX_REPLAY_MODE));
  342. }
  343. if (INTEL_INFO(dev)->gen >= 5) {
  344. ret = init_pipe_control(ring);
  345. if (ret)
  346. return ret;
  347. }
  348. if (INTEL_INFO(dev)->gen >= 6) {
  349. I915_WRITE(INSTPM,
  350. INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
  351. }
  352. return ret;
  353. }
  354. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  355. {
  356. if (!ring->private)
  357. return;
  358. cleanup_pipe_control(ring);
  359. }
  360. static void
  361. update_mboxes(struct intel_ring_buffer *ring,
  362. u32 seqno,
  363. u32 mmio_offset)
  364. {
  365. intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
  366. MI_SEMAPHORE_GLOBAL_GTT |
  367. MI_SEMAPHORE_REGISTER |
  368. MI_SEMAPHORE_UPDATE);
  369. intel_ring_emit(ring, seqno);
  370. intel_ring_emit(ring, mmio_offset);
  371. }
  372. /**
  373. * gen6_add_request - Update the semaphore mailbox registers
  374. *
  375. * @ring - ring that is adding a request
  376. * @seqno - return seqno stuck into the ring
  377. *
  378. * Update the mailbox registers in the *other* rings with the current seqno.
  379. * This acts like a signal in the canonical semaphore.
  380. */
  381. static int
  382. gen6_add_request(struct intel_ring_buffer *ring,
  383. u32 *seqno)
  384. {
  385. u32 mbox1_reg;
  386. u32 mbox2_reg;
  387. int ret;
  388. ret = intel_ring_begin(ring, 10);
  389. if (ret)
  390. return ret;
  391. mbox1_reg = ring->signal_mbox[0];
  392. mbox2_reg = ring->signal_mbox[1];
  393. *seqno = i915_gem_next_request_seqno(ring);
  394. update_mboxes(ring, *seqno, mbox1_reg);
  395. update_mboxes(ring, *seqno, mbox2_reg);
  396. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  397. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  398. intel_ring_emit(ring, *seqno);
  399. intel_ring_emit(ring, MI_USER_INTERRUPT);
  400. intel_ring_advance(ring);
  401. return 0;
  402. }
  403. /**
  404. * intel_ring_sync - sync the waiter to the signaller on seqno
  405. *
  406. * @waiter - ring that is waiting
  407. * @signaller - ring which has, or will signal
  408. * @seqno - seqno which the waiter will block on
  409. */
  410. static int
  411. intel_ring_sync(struct intel_ring_buffer *waiter,
  412. struct intel_ring_buffer *signaller,
  413. int ring,
  414. u32 seqno)
  415. {
  416. int ret;
  417. u32 dw1 = MI_SEMAPHORE_MBOX |
  418. MI_SEMAPHORE_COMPARE |
  419. MI_SEMAPHORE_REGISTER;
  420. ret = intel_ring_begin(waiter, 4);
  421. if (ret)
  422. return ret;
  423. intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
  424. intel_ring_emit(waiter, seqno);
  425. intel_ring_emit(waiter, 0);
  426. intel_ring_emit(waiter, MI_NOOP);
  427. intel_ring_advance(waiter);
  428. return 0;
  429. }
  430. /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
  431. int
  432. render_ring_sync_to(struct intel_ring_buffer *waiter,
  433. struct intel_ring_buffer *signaller,
  434. u32 seqno)
  435. {
  436. WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
  437. return intel_ring_sync(waiter,
  438. signaller,
  439. RCS,
  440. seqno);
  441. }
  442. /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
  443. int
  444. gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
  445. struct intel_ring_buffer *signaller,
  446. u32 seqno)
  447. {
  448. WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
  449. return intel_ring_sync(waiter,
  450. signaller,
  451. VCS,
  452. seqno);
  453. }
  454. /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
  455. int
  456. gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
  457. struct intel_ring_buffer *signaller,
  458. u32 seqno)
  459. {
  460. WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
  461. return intel_ring_sync(waiter,
  462. signaller,
  463. BCS,
  464. seqno);
  465. }
  466. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  467. do { \
  468. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  469. PIPE_CONTROL_DEPTH_STALL); \
  470. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  471. intel_ring_emit(ring__, 0); \
  472. intel_ring_emit(ring__, 0); \
  473. } while (0)
  474. static int
  475. pc_render_add_request(struct intel_ring_buffer *ring,
  476. u32 *result)
  477. {
  478. u32 seqno = i915_gem_next_request_seqno(ring);
  479. struct pipe_control *pc = ring->private;
  480. u32 scratch_addr = pc->gtt_offset + 128;
  481. int ret;
  482. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  483. * incoherent with writes to memory, i.e. completely fubar,
  484. * so we need to use PIPE_NOTIFY instead.
  485. *
  486. * However, we also need to workaround the qword write
  487. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  488. * memory before requesting an interrupt.
  489. */
  490. ret = intel_ring_begin(ring, 32);
  491. if (ret)
  492. return ret;
  493. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  494. PIPE_CONTROL_WRITE_FLUSH |
  495. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  496. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  497. intel_ring_emit(ring, seqno);
  498. intel_ring_emit(ring, 0);
  499. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  500. scratch_addr += 128; /* write to separate cachelines */
  501. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  502. scratch_addr += 128;
  503. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  504. scratch_addr += 128;
  505. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  506. scratch_addr += 128;
  507. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  508. scratch_addr += 128;
  509. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  510. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  511. PIPE_CONTROL_WRITE_FLUSH |
  512. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  513. PIPE_CONTROL_NOTIFY);
  514. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  515. intel_ring_emit(ring, seqno);
  516. intel_ring_emit(ring, 0);
  517. intel_ring_advance(ring);
  518. *result = seqno;
  519. return 0;
  520. }
  521. static int
  522. render_ring_add_request(struct intel_ring_buffer *ring,
  523. u32 *result)
  524. {
  525. u32 seqno = i915_gem_next_request_seqno(ring);
  526. int ret;
  527. ret = intel_ring_begin(ring, 4);
  528. if (ret)
  529. return ret;
  530. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  531. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  532. intel_ring_emit(ring, seqno);
  533. intel_ring_emit(ring, MI_USER_INTERRUPT);
  534. intel_ring_advance(ring);
  535. *result = seqno;
  536. return 0;
  537. }
  538. static u32
  539. gen6_ring_get_seqno(struct intel_ring_buffer *ring)
  540. {
  541. struct drm_device *dev = ring->dev;
  542. /* Workaround to force correct ordering between irq and seqno writes on
  543. * ivb (and maybe also on snb) by reading from a CS register (like
  544. * ACTHD) before reading the status page. */
  545. if (IS_GEN6(dev) || IS_GEN7(dev))
  546. intel_ring_get_active_head(ring);
  547. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  548. }
  549. static u32
  550. ring_get_seqno(struct intel_ring_buffer *ring)
  551. {
  552. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  553. }
  554. static u32
  555. pc_render_get_seqno(struct intel_ring_buffer *ring)
  556. {
  557. struct pipe_control *pc = ring->private;
  558. return pc->cpu_page[0];
  559. }
  560. static void
  561. ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  562. {
  563. dev_priv->gt_irq_mask &= ~mask;
  564. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  565. POSTING_READ(GTIMR);
  566. }
  567. static void
  568. ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  569. {
  570. dev_priv->gt_irq_mask |= mask;
  571. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  572. POSTING_READ(GTIMR);
  573. }
  574. static void
  575. i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  576. {
  577. dev_priv->irq_mask &= ~mask;
  578. I915_WRITE(IMR, dev_priv->irq_mask);
  579. POSTING_READ(IMR);
  580. }
  581. static void
  582. i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  583. {
  584. dev_priv->irq_mask |= mask;
  585. I915_WRITE(IMR, dev_priv->irq_mask);
  586. POSTING_READ(IMR);
  587. }
  588. static bool
  589. render_ring_get_irq(struct intel_ring_buffer *ring)
  590. {
  591. struct drm_device *dev = ring->dev;
  592. drm_i915_private_t *dev_priv = dev->dev_private;
  593. if (!dev->irq_enabled)
  594. return false;
  595. spin_lock(&ring->irq_lock);
  596. if (ring->irq_refcount++ == 0) {
  597. if (INTEL_INFO(dev)->gen >= 5)
  598. ironlake_enable_irq(dev_priv,
  599. GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
  600. else
  601. i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
  602. }
  603. spin_unlock(&ring->irq_lock);
  604. return true;
  605. }
  606. static void
  607. render_ring_put_irq(struct intel_ring_buffer *ring)
  608. {
  609. struct drm_device *dev = ring->dev;
  610. drm_i915_private_t *dev_priv = dev->dev_private;
  611. spin_lock(&ring->irq_lock);
  612. if (--ring->irq_refcount == 0) {
  613. if (INTEL_INFO(dev)->gen >= 5)
  614. ironlake_disable_irq(dev_priv,
  615. GT_USER_INTERRUPT |
  616. GT_PIPE_NOTIFY);
  617. else
  618. i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
  619. }
  620. spin_unlock(&ring->irq_lock);
  621. }
  622. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  623. {
  624. struct drm_device *dev = ring->dev;
  625. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  626. u32 mmio = 0;
  627. /* The ring status page addresses are no longer next to the rest of
  628. * the ring registers as of gen7.
  629. */
  630. if (IS_GEN7(dev)) {
  631. switch (ring->id) {
  632. case RCS:
  633. mmio = RENDER_HWS_PGA_GEN7;
  634. break;
  635. case BCS:
  636. mmio = BLT_HWS_PGA_GEN7;
  637. break;
  638. case VCS:
  639. mmio = BSD_HWS_PGA_GEN7;
  640. break;
  641. }
  642. } else if (IS_GEN6(ring->dev)) {
  643. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  644. } else {
  645. mmio = RING_HWS_PGA(ring->mmio_base);
  646. }
  647. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  648. POSTING_READ(mmio);
  649. }
  650. static int
  651. bsd_ring_flush(struct intel_ring_buffer *ring,
  652. u32 invalidate_domains,
  653. u32 flush_domains)
  654. {
  655. int ret;
  656. ret = intel_ring_begin(ring, 2);
  657. if (ret)
  658. return ret;
  659. intel_ring_emit(ring, MI_FLUSH);
  660. intel_ring_emit(ring, MI_NOOP);
  661. intel_ring_advance(ring);
  662. return 0;
  663. }
  664. static int
  665. ring_add_request(struct intel_ring_buffer *ring,
  666. u32 *result)
  667. {
  668. u32 seqno;
  669. int ret;
  670. ret = intel_ring_begin(ring, 4);
  671. if (ret)
  672. return ret;
  673. seqno = i915_gem_next_request_seqno(ring);
  674. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  675. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  676. intel_ring_emit(ring, seqno);
  677. intel_ring_emit(ring, MI_USER_INTERRUPT);
  678. intel_ring_advance(ring);
  679. *result = seqno;
  680. return 0;
  681. }
  682. static bool
  683. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  684. {
  685. struct drm_device *dev = ring->dev;
  686. drm_i915_private_t *dev_priv = dev->dev_private;
  687. u32 mask = ring->irq_enable;
  688. if (!dev->irq_enabled)
  689. return false;
  690. /* It looks like we need to prevent the gt from suspending while waiting
  691. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  692. * blt/bsd rings on ivb. */
  693. gen6_gt_force_wake_get(dev_priv);
  694. spin_lock(&ring->irq_lock);
  695. if (ring->irq_refcount++ == 0) {
  696. ring->irq_mask &= ~mask;
  697. I915_WRITE_IMR(ring, ring->irq_mask);
  698. ironlake_enable_irq(dev_priv, mask);
  699. }
  700. spin_unlock(&ring->irq_lock);
  701. return true;
  702. }
  703. static void
  704. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  705. {
  706. struct drm_device *dev = ring->dev;
  707. drm_i915_private_t *dev_priv = dev->dev_private;
  708. u32 mask = ring->irq_enable;
  709. spin_lock(&ring->irq_lock);
  710. if (--ring->irq_refcount == 0) {
  711. ring->irq_mask |= mask;
  712. I915_WRITE_IMR(ring, ring->irq_mask);
  713. ironlake_disable_irq(dev_priv, mask);
  714. }
  715. spin_unlock(&ring->irq_lock);
  716. gen6_gt_force_wake_put(dev_priv);
  717. }
  718. static bool
  719. bsd_ring_get_irq(struct intel_ring_buffer *ring)
  720. {
  721. struct drm_device *dev = ring->dev;
  722. drm_i915_private_t *dev_priv = dev->dev_private;
  723. if (!dev->irq_enabled)
  724. return false;
  725. spin_lock(&ring->irq_lock);
  726. if (ring->irq_refcount++ == 0) {
  727. if (IS_G4X(dev))
  728. i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  729. else
  730. ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  731. }
  732. spin_unlock(&ring->irq_lock);
  733. return true;
  734. }
  735. static void
  736. bsd_ring_put_irq(struct intel_ring_buffer *ring)
  737. {
  738. struct drm_device *dev = ring->dev;
  739. drm_i915_private_t *dev_priv = dev->dev_private;
  740. spin_lock(&ring->irq_lock);
  741. if (--ring->irq_refcount == 0) {
  742. if (IS_G4X(dev))
  743. i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  744. else
  745. ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  746. }
  747. spin_unlock(&ring->irq_lock);
  748. }
  749. static int
  750. ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
  751. {
  752. int ret;
  753. ret = intel_ring_begin(ring, 2);
  754. if (ret)
  755. return ret;
  756. intel_ring_emit(ring,
  757. MI_BATCH_BUFFER_START | (2 << 6) |
  758. MI_BATCH_NON_SECURE_I965);
  759. intel_ring_emit(ring, offset);
  760. intel_ring_advance(ring);
  761. return 0;
  762. }
  763. static int
  764. render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  765. u32 offset, u32 len)
  766. {
  767. struct drm_device *dev = ring->dev;
  768. int ret;
  769. if (IS_I830(dev) || IS_845G(dev)) {
  770. ret = intel_ring_begin(ring, 4);
  771. if (ret)
  772. return ret;
  773. intel_ring_emit(ring, MI_BATCH_BUFFER);
  774. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  775. intel_ring_emit(ring, offset + len - 8);
  776. intel_ring_emit(ring, 0);
  777. } else {
  778. ret = intel_ring_begin(ring, 2);
  779. if (ret)
  780. return ret;
  781. if (INTEL_INFO(dev)->gen >= 4) {
  782. intel_ring_emit(ring,
  783. MI_BATCH_BUFFER_START | (2 << 6) |
  784. MI_BATCH_NON_SECURE_I965);
  785. intel_ring_emit(ring, offset);
  786. } else {
  787. intel_ring_emit(ring,
  788. MI_BATCH_BUFFER_START | (2 << 6));
  789. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  790. }
  791. }
  792. intel_ring_advance(ring);
  793. return 0;
  794. }
  795. static void cleanup_status_page(struct intel_ring_buffer *ring)
  796. {
  797. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  798. struct drm_i915_gem_object *obj;
  799. obj = ring->status_page.obj;
  800. if (obj == NULL)
  801. return;
  802. kunmap(obj->pages[0]);
  803. i915_gem_object_unpin(obj);
  804. drm_gem_object_unreference(&obj->base);
  805. ring->status_page.obj = NULL;
  806. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  807. }
  808. static int init_status_page(struct intel_ring_buffer *ring)
  809. {
  810. struct drm_device *dev = ring->dev;
  811. drm_i915_private_t *dev_priv = dev->dev_private;
  812. struct drm_i915_gem_object *obj;
  813. int ret;
  814. obj = i915_gem_alloc_object(dev, 4096);
  815. if (obj == NULL) {
  816. DRM_ERROR("Failed to allocate status page\n");
  817. ret = -ENOMEM;
  818. goto err;
  819. }
  820. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  821. ret = i915_gem_object_pin(obj, 4096, true);
  822. if (ret != 0) {
  823. goto err_unref;
  824. }
  825. ring->status_page.gfx_addr = obj->gtt_offset;
  826. ring->status_page.page_addr = kmap(obj->pages[0]);
  827. if (ring->status_page.page_addr == NULL) {
  828. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  829. goto err_unpin;
  830. }
  831. ring->status_page.obj = obj;
  832. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  833. intel_ring_setup_status_page(ring);
  834. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  835. ring->name, ring->status_page.gfx_addr);
  836. return 0;
  837. err_unpin:
  838. i915_gem_object_unpin(obj);
  839. err_unref:
  840. drm_gem_object_unreference(&obj->base);
  841. err:
  842. return ret;
  843. }
  844. int intel_init_ring_buffer(struct drm_device *dev,
  845. struct intel_ring_buffer *ring)
  846. {
  847. struct drm_i915_gem_object *obj;
  848. int ret;
  849. ring->dev = dev;
  850. INIT_LIST_HEAD(&ring->active_list);
  851. INIT_LIST_HEAD(&ring->request_list);
  852. INIT_LIST_HEAD(&ring->gpu_write_list);
  853. init_waitqueue_head(&ring->irq_queue);
  854. spin_lock_init(&ring->irq_lock);
  855. ring->irq_mask = ~0;
  856. if (I915_NEED_GFX_HWS(dev)) {
  857. ret = init_status_page(ring);
  858. if (ret)
  859. return ret;
  860. }
  861. obj = i915_gem_alloc_object(dev, ring->size);
  862. if (obj == NULL) {
  863. DRM_ERROR("Failed to allocate ringbuffer\n");
  864. ret = -ENOMEM;
  865. goto err_hws;
  866. }
  867. ring->obj = obj;
  868. ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
  869. if (ret)
  870. goto err_unref;
  871. ring->map.size = ring->size;
  872. ring->map.offset = dev->agp->base + obj->gtt_offset;
  873. ring->map.type = 0;
  874. ring->map.flags = 0;
  875. ring->map.mtrr = 0;
  876. drm_core_ioremap_wc(&ring->map, dev);
  877. if (ring->map.handle == NULL) {
  878. DRM_ERROR("Failed to map ringbuffer.\n");
  879. ret = -EINVAL;
  880. goto err_unpin;
  881. }
  882. ring->virtual_start = ring->map.handle;
  883. ret = ring->init(ring);
  884. if (ret)
  885. goto err_unmap;
  886. /* Workaround an erratum on the i830 which causes a hang if
  887. * the TAIL pointer points to within the last 2 cachelines
  888. * of the buffer.
  889. */
  890. ring->effective_size = ring->size;
  891. if (IS_I830(ring->dev))
  892. ring->effective_size -= 128;
  893. return 0;
  894. err_unmap:
  895. drm_core_ioremapfree(&ring->map, dev);
  896. err_unpin:
  897. i915_gem_object_unpin(obj);
  898. err_unref:
  899. drm_gem_object_unreference(&obj->base);
  900. ring->obj = NULL;
  901. err_hws:
  902. cleanup_status_page(ring);
  903. return ret;
  904. }
  905. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  906. {
  907. struct drm_i915_private *dev_priv;
  908. int ret;
  909. if (ring->obj == NULL)
  910. return;
  911. /* Disable the ring buffer. The ring must be idle at this point */
  912. dev_priv = ring->dev->dev_private;
  913. ret = intel_wait_ring_idle(ring);
  914. if (ret)
  915. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  916. ring->name, ret);
  917. I915_WRITE_CTL(ring, 0);
  918. drm_core_ioremapfree(&ring->map, ring->dev);
  919. i915_gem_object_unpin(ring->obj);
  920. drm_gem_object_unreference(&ring->obj->base);
  921. ring->obj = NULL;
  922. if (ring->cleanup)
  923. ring->cleanup(ring);
  924. cleanup_status_page(ring);
  925. }
  926. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  927. {
  928. unsigned int *virt;
  929. int rem = ring->size - ring->tail;
  930. if (ring->space < rem) {
  931. int ret = intel_wait_ring_buffer(ring, rem);
  932. if (ret)
  933. return ret;
  934. }
  935. virt = (unsigned int *)(ring->virtual_start + ring->tail);
  936. rem /= 8;
  937. while (rem--) {
  938. *virt++ = MI_NOOP;
  939. *virt++ = MI_NOOP;
  940. }
  941. ring->tail = 0;
  942. ring->space = ring_space(ring);
  943. return 0;
  944. }
  945. static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
  946. {
  947. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  948. bool was_interruptible;
  949. int ret;
  950. /* XXX As we have not yet audited all the paths to check that
  951. * they are ready for ERESTARTSYS from intel_ring_begin, do not
  952. * allow us to be interruptible by a signal.
  953. */
  954. was_interruptible = dev_priv->mm.interruptible;
  955. dev_priv->mm.interruptible = false;
  956. ret = i915_wait_request(ring, seqno, true);
  957. dev_priv->mm.interruptible = was_interruptible;
  958. return ret;
  959. }
  960. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  961. {
  962. struct drm_i915_gem_request *request;
  963. u32 seqno = 0;
  964. int ret;
  965. i915_gem_retire_requests_ring(ring);
  966. if (ring->last_retired_head != -1) {
  967. ring->head = ring->last_retired_head;
  968. ring->last_retired_head = -1;
  969. ring->space = ring_space(ring);
  970. if (ring->space >= n)
  971. return 0;
  972. }
  973. list_for_each_entry(request, &ring->request_list, list) {
  974. int space;
  975. if (request->tail == -1)
  976. continue;
  977. space = request->tail - (ring->tail + 8);
  978. if (space < 0)
  979. space += ring->size;
  980. if (space >= n) {
  981. seqno = request->seqno;
  982. break;
  983. }
  984. /* Consume this request in case we need more space than
  985. * is available and so need to prevent a race between
  986. * updating last_retired_head and direct reads of
  987. * I915_RING_HEAD. It also provides a nice sanity check.
  988. */
  989. request->tail = -1;
  990. }
  991. if (seqno == 0)
  992. return -ENOSPC;
  993. ret = intel_ring_wait_seqno(ring, seqno);
  994. if (ret)
  995. return ret;
  996. if (WARN_ON(ring->last_retired_head == -1))
  997. return -ENOSPC;
  998. ring->head = ring->last_retired_head;
  999. ring->last_retired_head = -1;
  1000. ring->space = ring_space(ring);
  1001. if (WARN_ON(ring->space < n))
  1002. return -ENOSPC;
  1003. return 0;
  1004. }
  1005. int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
  1006. {
  1007. struct drm_device *dev = ring->dev;
  1008. struct drm_i915_private *dev_priv = dev->dev_private;
  1009. unsigned long end;
  1010. int ret;
  1011. ret = intel_ring_wait_request(ring, n);
  1012. if (ret != -ENOSPC)
  1013. return ret;
  1014. trace_i915_ring_wait_begin(ring);
  1015. if (drm_core_check_feature(dev, DRIVER_GEM))
  1016. /* With GEM the hangcheck timer should kick us out of the loop,
  1017. * leaving it early runs the risk of corrupting GEM state (due
  1018. * to running on almost untested codepaths). But on resume
  1019. * timers don't work yet, so prevent a complete hang in that
  1020. * case by choosing an insanely large timeout. */
  1021. end = jiffies + 60 * HZ;
  1022. else
  1023. end = jiffies + 3 * HZ;
  1024. do {
  1025. ring->head = I915_READ_HEAD(ring);
  1026. ring->space = ring_space(ring);
  1027. if (ring->space >= n) {
  1028. trace_i915_ring_wait_end(ring);
  1029. return 0;
  1030. }
  1031. if (dev->primary->master) {
  1032. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1033. if (master_priv->sarea_priv)
  1034. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1035. }
  1036. msleep(1);
  1037. if (atomic_read(&dev_priv->mm.wedged))
  1038. return -EAGAIN;
  1039. } while (!time_after(jiffies, end));
  1040. trace_i915_ring_wait_end(ring);
  1041. return -EBUSY;
  1042. }
  1043. int intel_ring_begin(struct intel_ring_buffer *ring,
  1044. int num_dwords)
  1045. {
  1046. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1047. int n = 4*num_dwords;
  1048. int ret;
  1049. if (unlikely(atomic_read(&dev_priv->mm.wedged)))
  1050. return -EIO;
  1051. if (unlikely(ring->tail + n > ring->effective_size)) {
  1052. ret = intel_wrap_ring_buffer(ring);
  1053. if (unlikely(ret))
  1054. return ret;
  1055. }
  1056. if (unlikely(ring->space < n)) {
  1057. ret = intel_wait_ring_buffer(ring, n);
  1058. if (unlikely(ret))
  1059. return ret;
  1060. }
  1061. ring->space -= n;
  1062. return 0;
  1063. }
  1064. void intel_ring_advance(struct intel_ring_buffer *ring)
  1065. {
  1066. ring->tail &= ring->size - 1;
  1067. ring->write_tail(ring, ring->tail);
  1068. }
  1069. static const struct intel_ring_buffer render_ring = {
  1070. .name = "render ring",
  1071. .id = RCS,
  1072. .mmio_base = RENDER_RING_BASE,
  1073. .size = 32 * PAGE_SIZE,
  1074. .init = init_render_ring,
  1075. .write_tail = ring_write_tail,
  1076. .flush = render_ring_flush,
  1077. .add_request = render_ring_add_request,
  1078. .get_seqno = ring_get_seqno,
  1079. .irq_get = render_ring_get_irq,
  1080. .irq_put = render_ring_put_irq,
  1081. .dispatch_execbuffer = render_ring_dispatch_execbuffer,
  1082. .cleanup = render_ring_cleanup,
  1083. .sync_to = render_ring_sync_to,
  1084. .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID,
  1085. MI_SEMAPHORE_SYNC_RV,
  1086. MI_SEMAPHORE_SYNC_RB},
  1087. .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC},
  1088. };
  1089. /* ring buffer for bit-stream decoder */
  1090. static const struct intel_ring_buffer bsd_ring = {
  1091. .name = "bsd ring",
  1092. .id = VCS,
  1093. .mmio_base = BSD_RING_BASE,
  1094. .size = 32 * PAGE_SIZE,
  1095. .init = init_ring_common,
  1096. .write_tail = ring_write_tail,
  1097. .flush = bsd_ring_flush,
  1098. .add_request = ring_add_request,
  1099. .get_seqno = ring_get_seqno,
  1100. .irq_get = bsd_ring_get_irq,
  1101. .irq_put = bsd_ring_put_irq,
  1102. .dispatch_execbuffer = ring_dispatch_execbuffer,
  1103. };
  1104. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1105. u32 value)
  1106. {
  1107. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1108. /* Every tail move must follow the sequence below */
  1109. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1110. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1111. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
  1112. I915_WRITE(GEN6_BSD_RNCID, 0x0);
  1113. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1114. GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
  1115. 50))
  1116. DRM_ERROR("timed out waiting for IDLE Indicator\n");
  1117. I915_WRITE_TAIL(ring, value);
  1118. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1119. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1120. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
  1121. }
  1122. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1123. u32 invalidate, u32 flush)
  1124. {
  1125. uint32_t cmd;
  1126. int ret;
  1127. ret = intel_ring_begin(ring, 4);
  1128. if (ret)
  1129. return ret;
  1130. cmd = MI_FLUSH_DW;
  1131. if (invalidate & I915_GEM_GPU_DOMAINS)
  1132. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1133. intel_ring_emit(ring, cmd);
  1134. intel_ring_emit(ring, 0);
  1135. intel_ring_emit(ring, 0);
  1136. intel_ring_emit(ring, MI_NOOP);
  1137. intel_ring_advance(ring);
  1138. return 0;
  1139. }
  1140. static int
  1141. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1142. u32 offset, u32 len)
  1143. {
  1144. int ret;
  1145. ret = intel_ring_begin(ring, 2);
  1146. if (ret)
  1147. return ret;
  1148. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
  1149. /* bit0-7 is the length on GEN6+ */
  1150. intel_ring_emit(ring, offset);
  1151. intel_ring_advance(ring);
  1152. return 0;
  1153. }
  1154. /* ring buffer for Video Codec for Gen6+ */
  1155. static const struct intel_ring_buffer gen6_bsd_ring = {
  1156. .name = "gen6 bsd ring",
  1157. .id = VCS,
  1158. .mmio_base = GEN6_BSD_RING_BASE,
  1159. .size = 32 * PAGE_SIZE,
  1160. .init = init_ring_common,
  1161. .write_tail = gen6_bsd_ring_write_tail,
  1162. .flush = gen6_ring_flush,
  1163. .add_request = gen6_add_request,
  1164. .get_seqno = gen6_ring_get_seqno,
  1165. .irq_enable = GEN6_BSD_USER_INTERRUPT,
  1166. .irq_get = gen6_ring_get_irq,
  1167. .irq_put = gen6_ring_put_irq,
  1168. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1169. .sync_to = gen6_bsd_ring_sync_to,
  1170. .semaphore_register = {MI_SEMAPHORE_SYNC_VR,
  1171. MI_SEMAPHORE_SYNC_INVALID,
  1172. MI_SEMAPHORE_SYNC_VB},
  1173. .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC},
  1174. };
  1175. /* Blitter support (SandyBridge+) */
  1176. static int blt_ring_flush(struct intel_ring_buffer *ring,
  1177. u32 invalidate, u32 flush)
  1178. {
  1179. uint32_t cmd;
  1180. int ret;
  1181. ret = intel_ring_begin(ring, 4);
  1182. if (ret)
  1183. return ret;
  1184. cmd = MI_FLUSH_DW;
  1185. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1186. cmd |= MI_INVALIDATE_TLB;
  1187. intel_ring_emit(ring, cmd);
  1188. intel_ring_emit(ring, 0);
  1189. intel_ring_emit(ring, 0);
  1190. intel_ring_emit(ring, MI_NOOP);
  1191. intel_ring_advance(ring);
  1192. return 0;
  1193. }
  1194. static const struct intel_ring_buffer gen6_blt_ring = {
  1195. .name = "blt ring",
  1196. .id = BCS,
  1197. .mmio_base = BLT_RING_BASE,
  1198. .size = 32 * PAGE_SIZE,
  1199. .init = init_ring_common,
  1200. .write_tail = ring_write_tail,
  1201. .flush = blt_ring_flush,
  1202. .add_request = gen6_add_request,
  1203. .get_seqno = gen6_ring_get_seqno,
  1204. .irq_get = gen6_ring_get_irq,
  1205. .irq_put = gen6_ring_put_irq,
  1206. .irq_enable = GEN6_BLITTER_USER_INTERRUPT,
  1207. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1208. .sync_to = gen6_blt_ring_sync_to,
  1209. .semaphore_register = {MI_SEMAPHORE_SYNC_BR,
  1210. MI_SEMAPHORE_SYNC_BV,
  1211. MI_SEMAPHORE_SYNC_INVALID},
  1212. .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC},
  1213. };
  1214. int intel_init_render_ring_buffer(struct drm_device *dev)
  1215. {
  1216. drm_i915_private_t *dev_priv = dev->dev_private;
  1217. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1218. *ring = render_ring;
  1219. if (INTEL_INFO(dev)->gen >= 6) {
  1220. ring->add_request = gen6_add_request;
  1221. ring->flush = gen6_render_ring_flush;
  1222. ring->irq_get = gen6_ring_get_irq;
  1223. ring->irq_put = gen6_ring_put_irq;
  1224. ring->irq_enable = GT_USER_INTERRUPT;
  1225. ring->get_seqno = gen6_ring_get_seqno;
  1226. } else if (IS_GEN5(dev)) {
  1227. ring->add_request = pc_render_add_request;
  1228. ring->get_seqno = pc_render_get_seqno;
  1229. }
  1230. if (!I915_NEED_GFX_HWS(dev)) {
  1231. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1232. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1233. }
  1234. return intel_init_ring_buffer(dev, ring);
  1235. }
  1236. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1237. {
  1238. drm_i915_private_t *dev_priv = dev->dev_private;
  1239. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1240. *ring = render_ring;
  1241. if (INTEL_INFO(dev)->gen >= 6) {
  1242. ring->add_request = gen6_add_request;
  1243. ring->irq_get = gen6_ring_get_irq;
  1244. ring->irq_put = gen6_ring_put_irq;
  1245. ring->irq_enable = GT_USER_INTERRUPT;
  1246. } else if (IS_GEN5(dev)) {
  1247. ring->add_request = pc_render_add_request;
  1248. ring->get_seqno = pc_render_get_seqno;
  1249. }
  1250. if (!I915_NEED_GFX_HWS(dev))
  1251. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1252. ring->dev = dev;
  1253. INIT_LIST_HEAD(&ring->active_list);
  1254. INIT_LIST_HEAD(&ring->request_list);
  1255. INIT_LIST_HEAD(&ring->gpu_write_list);
  1256. ring->size = size;
  1257. ring->effective_size = ring->size;
  1258. if (IS_I830(ring->dev))
  1259. ring->effective_size -= 128;
  1260. ring->map.offset = start;
  1261. ring->map.size = size;
  1262. ring->map.type = 0;
  1263. ring->map.flags = 0;
  1264. ring->map.mtrr = 0;
  1265. drm_core_ioremap_wc(&ring->map, dev);
  1266. if (ring->map.handle == NULL) {
  1267. DRM_ERROR("can not ioremap virtual address for"
  1268. " ring buffer\n");
  1269. return -ENOMEM;
  1270. }
  1271. ring->virtual_start = (void __force __iomem *)ring->map.handle;
  1272. return 0;
  1273. }
  1274. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1275. {
  1276. drm_i915_private_t *dev_priv = dev->dev_private;
  1277. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1278. if (IS_GEN6(dev) || IS_GEN7(dev))
  1279. *ring = gen6_bsd_ring;
  1280. else
  1281. *ring = bsd_ring;
  1282. return intel_init_ring_buffer(dev, ring);
  1283. }
  1284. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1285. {
  1286. drm_i915_private_t *dev_priv = dev->dev_private;
  1287. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1288. *ring = gen6_blt_ring;
  1289. return intel_init_ring_buffer(dev, ring);
  1290. }