kvm_main.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. DEFINE_SPINLOCK(kvm_lock);
  52. LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. struct dentry *kvm_debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. bool kvm_rebooting;
  61. static inline int valid_vcpu(int n)
  62. {
  63. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  64. }
  65. /*
  66. * Switches to specified vcpu, until a matching vcpu_put()
  67. */
  68. void vcpu_load(struct kvm_vcpu *vcpu)
  69. {
  70. int cpu;
  71. mutex_lock(&vcpu->mutex);
  72. cpu = get_cpu();
  73. preempt_notifier_register(&vcpu->preempt_notifier);
  74. kvm_arch_vcpu_load(vcpu, cpu);
  75. put_cpu();
  76. }
  77. void vcpu_put(struct kvm_vcpu *vcpu)
  78. {
  79. preempt_disable();
  80. kvm_arch_vcpu_put(vcpu);
  81. preempt_notifier_unregister(&vcpu->preempt_notifier);
  82. preempt_enable();
  83. mutex_unlock(&vcpu->mutex);
  84. }
  85. static void ack_flush(void *_completed)
  86. {
  87. }
  88. void kvm_flush_remote_tlbs(struct kvm *kvm)
  89. {
  90. int i, cpu;
  91. cpumask_t cpus;
  92. struct kvm_vcpu *vcpu;
  93. cpus_clear(cpus);
  94. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  95. vcpu = kvm->vcpus[i];
  96. if (!vcpu)
  97. continue;
  98. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  99. continue;
  100. cpu = vcpu->cpu;
  101. if (cpu != -1 && cpu != raw_smp_processor_id())
  102. cpu_set(cpu, cpus);
  103. }
  104. if (cpus_empty(cpus))
  105. return;
  106. ++kvm->stat.remote_tlb_flush;
  107. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  108. }
  109. void kvm_reload_remote_mmus(struct kvm *kvm)
  110. {
  111. int i, cpu;
  112. cpumask_t cpus;
  113. struct kvm_vcpu *vcpu;
  114. cpus_clear(cpus);
  115. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  116. vcpu = kvm->vcpus[i];
  117. if (!vcpu)
  118. continue;
  119. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  120. continue;
  121. cpu = vcpu->cpu;
  122. if (cpu != -1 && cpu != raw_smp_processor_id())
  123. cpu_set(cpu, cpus);
  124. }
  125. if (cpus_empty(cpus))
  126. return;
  127. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  128. }
  129. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  130. {
  131. struct page *page;
  132. int r;
  133. mutex_init(&vcpu->mutex);
  134. vcpu->cpu = -1;
  135. vcpu->kvm = kvm;
  136. vcpu->vcpu_id = id;
  137. init_waitqueue_head(&vcpu->wq);
  138. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  139. if (!page) {
  140. r = -ENOMEM;
  141. goto fail;
  142. }
  143. vcpu->run = page_address(page);
  144. r = kvm_arch_vcpu_init(vcpu);
  145. if (r < 0)
  146. goto fail_free_run;
  147. return 0;
  148. fail_free_run:
  149. free_page((unsigned long)vcpu->run);
  150. fail:
  151. return r;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  154. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  155. {
  156. kvm_arch_vcpu_uninit(vcpu);
  157. free_page((unsigned long)vcpu->run);
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  160. static struct kvm *kvm_create_vm(void)
  161. {
  162. struct kvm *kvm = kvm_arch_create_vm();
  163. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  164. struct page *page;
  165. #endif
  166. if (IS_ERR(kvm))
  167. goto out;
  168. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  169. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  170. if (!page) {
  171. kfree(kvm);
  172. return ERR_PTR(-ENOMEM);
  173. }
  174. kvm->coalesced_mmio_ring =
  175. (struct kvm_coalesced_mmio_ring *)page_address(page);
  176. #endif
  177. kvm->mm = current->mm;
  178. atomic_inc(&kvm->mm->mm_count);
  179. spin_lock_init(&kvm->mmu_lock);
  180. kvm_io_bus_init(&kvm->pio_bus);
  181. mutex_init(&kvm->lock);
  182. kvm_io_bus_init(&kvm->mmio_bus);
  183. init_rwsem(&kvm->slots_lock);
  184. atomic_set(&kvm->users_count, 1);
  185. spin_lock(&kvm_lock);
  186. list_add(&kvm->vm_list, &vm_list);
  187. spin_unlock(&kvm_lock);
  188. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  189. kvm_coalesced_mmio_init(kvm);
  190. #endif
  191. out:
  192. return kvm;
  193. }
  194. /*
  195. * Free any memory in @free but not in @dont.
  196. */
  197. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  198. struct kvm_memory_slot *dont)
  199. {
  200. if (!dont || free->rmap != dont->rmap)
  201. vfree(free->rmap);
  202. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  203. vfree(free->dirty_bitmap);
  204. if (!dont || free->lpage_info != dont->lpage_info)
  205. vfree(free->lpage_info);
  206. free->npages = 0;
  207. free->dirty_bitmap = NULL;
  208. free->rmap = NULL;
  209. free->lpage_info = NULL;
  210. }
  211. void kvm_free_physmem(struct kvm *kvm)
  212. {
  213. int i;
  214. for (i = 0; i < kvm->nmemslots; ++i)
  215. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  216. }
  217. static void kvm_destroy_vm(struct kvm *kvm)
  218. {
  219. struct mm_struct *mm = kvm->mm;
  220. spin_lock(&kvm_lock);
  221. list_del(&kvm->vm_list);
  222. spin_unlock(&kvm_lock);
  223. kvm_io_bus_destroy(&kvm->pio_bus);
  224. kvm_io_bus_destroy(&kvm->mmio_bus);
  225. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  226. if (kvm->coalesced_mmio_ring != NULL)
  227. free_page((unsigned long)kvm->coalesced_mmio_ring);
  228. #endif
  229. kvm_arch_destroy_vm(kvm);
  230. mmdrop(mm);
  231. }
  232. void kvm_get_kvm(struct kvm *kvm)
  233. {
  234. atomic_inc(&kvm->users_count);
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  237. void kvm_put_kvm(struct kvm *kvm)
  238. {
  239. if (atomic_dec_and_test(&kvm->users_count))
  240. kvm_destroy_vm(kvm);
  241. }
  242. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  243. static int kvm_vm_release(struct inode *inode, struct file *filp)
  244. {
  245. struct kvm *kvm = filp->private_data;
  246. kvm_put_kvm(kvm);
  247. return 0;
  248. }
  249. /*
  250. * Allocate some memory and give it an address in the guest physical address
  251. * space.
  252. *
  253. * Discontiguous memory is allowed, mostly for framebuffers.
  254. *
  255. * Must be called holding mmap_sem for write.
  256. */
  257. int __kvm_set_memory_region(struct kvm *kvm,
  258. struct kvm_userspace_memory_region *mem,
  259. int user_alloc)
  260. {
  261. int r;
  262. gfn_t base_gfn;
  263. unsigned long npages;
  264. unsigned long i;
  265. struct kvm_memory_slot *memslot;
  266. struct kvm_memory_slot old, new;
  267. r = -EINVAL;
  268. /* General sanity checks */
  269. if (mem->memory_size & (PAGE_SIZE - 1))
  270. goto out;
  271. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  272. goto out;
  273. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  274. goto out;
  275. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  276. goto out;
  277. memslot = &kvm->memslots[mem->slot];
  278. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  279. npages = mem->memory_size >> PAGE_SHIFT;
  280. if (!npages)
  281. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  282. new = old = *memslot;
  283. new.base_gfn = base_gfn;
  284. new.npages = npages;
  285. new.flags = mem->flags;
  286. /* Disallow changing a memory slot's size. */
  287. r = -EINVAL;
  288. if (npages && old.npages && npages != old.npages)
  289. goto out_free;
  290. /* Check for overlaps */
  291. r = -EEXIST;
  292. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  293. struct kvm_memory_slot *s = &kvm->memslots[i];
  294. if (s == memslot)
  295. continue;
  296. if (!((base_gfn + npages <= s->base_gfn) ||
  297. (base_gfn >= s->base_gfn + s->npages)))
  298. goto out_free;
  299. }
  300. /* Free page dirty bitmap if unneeded */
  301. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  302. new.dirty_bitmap = NULL;
  303. r = -ENOMEM;
  304. /* Allocate if a slot is being created */
  305. #ifndef CONFIG_S390
  306. if (npages && !new.rmap) {
  307. new.rmap = vmalloc(npages * sizeof(struct page *));
  308. if (!new.rmap)
  309. goto out_free;
  310. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  311. new.user_alloc = user_alloc;
  312. new.userspace_addr = mem->userspace_addr;
  313. }
  314. if (npages && !new.lpage_info) {
  315. int largepages = npages / KVM_PAGES_PER_HPAGE;
  316. if (npages % KVM_PAGES_PER_HPAGE)
  317. largepages++;
  318. if (base_gfn % KVM_PAGES_PER_HPAGE)
  319. largepages++;
  320. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  321. if (!new.lpage_info)
  322. goto out_free;
  323. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  324. if (base_gfn % KVM_PAGES_PER_HPAGE)
  325. new.lpage_info[0].write_count = 1;
  326. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  327. new.lpage_info[largepages-1].write_count = 1;
  328. }
  329. /* Allocate page dirty bitmap if needed */
  330. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  331. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  332. new.dirty_bitmap = vmalloc(dirty_bytes);
  333. if (!new.dirty_bitmap)
  334. goto out_free;
  335. memset(new.dirty_bitmap, 0, dirty_bytes);
  336. }
  337. #endif /* not defined CONFIG_S390 */
  338. if (mem->slot >= kvm->nmemslots)
  339. kvm->nmemslots = mem->slot + 1;
  340. *memslot = new;
  341. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  342. if (r) {
  343. *memslot = old;
  344. goto out_free;
  345. }
  346. kvm_free_physmem_slot(&old, &new);
  347. return 0;
  348. out_free:
  349. kvm_free_physmem_slot(&new, &old);
  350. out:
  351. return r;
  352. }
  353. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  354. int kvm_set_memory_region(struct kvm *kvm,
  355. struct kvm_userspace_memory_region *mem,
  356. int user_alloc)
  357. {
  358. int r;
  359. down_write(&kvm->slots_lock);
  360. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  361. up_write(&kvm->slots_lock);
  362. return r;
  363. }
  364. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  365. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  366. struct
  367. kvm_userspace_memory_region *mem,
  368. int user_alloc)
  369. {
  370. if (mem->slot >= KVM_MEMORY_SLOTS)
  371. return -EINVAL;
  372. return kvm_set_memory_region(kvm, mem, user_alloc);
  373. }
  374. int kvm_get_dirty_log(struct kvm *kvm,
  375. struct kvm_dirty_log *log, int *is_dirty)
  376. {
  377. struct kvm_memory_slot *memslot;
  378. int r, i;
  379. int n;
  380. unsigned long any = 0;
  381. r = -EINVAL;
  382. if (log->slot >= KVM_MEMORY_SLOTS)
  383. goto out;
  384. memslot = &kvm->memslots[log->slot];
  385. r = -ENOENT;
  386. if (!memslot->dirty_bitmap)
  387. goto out;
  388. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  389. for (i = 0; !any && i < n/sizeof(long); ++i)
  390. any = memslot->dirty_bitmap[i];
  391. r = -EFAULT;
  392. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  393. goto out;
  394. if (any)
  395. *is_dirty = 1;
  396. r = 0;
  397. out:
  398. return r;
  399. }
  400. int is_error_page(struct page *page)
  401. {
  402. return page == bad_page;
  403. }
  404. EXPORT_SYMBOL_GPL(is_error_page);
  405. int is_error_pfn(pfn_t pfn)
  406. {
  407. return pfn == bad_pfn;
  408. }
  409. EXPORT_SYMBOL_GPL(is_error_pfn);
  410. static inline unsigned long bad_hva(void)
  411. {
  412. return PAGE_OFFSET;
  413. }
  414. int kvm_is_error_hva(unsigned long addr)
  415. {
  416. return addr == bad_hva();
  417. }
  418. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  419. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  420. {
  421. int i;
  422. for (i = 0; i < kvm->nmemslots; ++i) {
  423. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  424. if (gfn >= memslot->base_gfn
  425. && gfn < memslot->base_gfn + memslot->npages)
  426. return memslot;
  427. }
  428. return NULL;
  429. }
  430. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  431. {
  432. gfn = unalias_gfn(kvm, gfn);
  433. return __gfn_to_memslot(kvm, gfn);
  434. }
  435. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  436. {
  437. int i;
  438. gfn = unalias_gfn(kvm, gfn);
  439. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  440. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  441. if (gfn >= memslot->base_gfn
  442. && gfn < memslot->base_gfn + memslot->npages)
  443. return 1;
  444. }
  445. return 0;
  446. }
  447. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  448. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  449. {
  450. struct kvm_memory_slot *slot;
  451. gfn = unalias_gfn(kvm, gfn);
  452. slot = __gfn_to_memslot(kvm, gfn);
  453. if (!slot)
  454. return bad_hva();
  455. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  456. }
  457. EXPORT_SYMBOL_GPL(gfn_to_hva);
  458. /*
  459. * Requires current->mm->mmap_sem to be held
  460. */
  461. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  462. {
  463. struct page *page[1];
  464. unsigned long addr;
  465. int npages;
  466. pfn_t pfn;
  467. might_sleep();
  468. addr = gfn_to_hva(kvm, gfn);
  469. if (kvm_is_error_hva(addr)) {
  470. get_page(bad_page);
  471. return page_to_pfn(bad_page);
  472. }
  473. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  474. NULL);
  475. if (unlikely(npages != 1)) {
  476. struct vm_area_struct *vma;
  477. vma = find_vma(current->mm, addr);
  478. if (vma == NULL || addr < vma->vm_start ||
  479. !(vma->vm_flags & VM_PFNMAP)) {
  480. get_page(bad_page);
  481. return page_to_pfn(bad_page);
  482. }
  483. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  484. BUG_ON(pfn_valid(pfn));
  485. } else
  486. pfn = page_to_pfn(page[0]);
  487. return pfn;
  488. }
  489. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  490. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  491. {
  492. pfn_t pfn;
  493. pfn = gfn_to_pfn(kvm, gfn);
  494. if (pfn_valid(pfn))
  495. return pfn_to_page(pfn);
  496. WARN_ON(!pfn_valid(pfn));
  497. get_page(bad_page);
  498. return bad_page;
  499. }
  500. EXPORT_SYMBOL_GPL(gfn_to_page);
  501. void kvm_release_page_clean(struct page *page)
  502. {
  503. kvm_release_pfn_clean(page_to_pfn(page));
  504. }
  505. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  506. void kvm_release_pfn_clean(pfn_t pfn)
  507. {
  508. if (pfn_valid(pfn))
  509. put_page(pfn_to_page(pfn));
  510. }
  511. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  512. void kvm_release_page_dirty(struct page *page)
  513. {
  514. kvm_release_pfn_dirty(page_to_pfn(page));
  515. }
  516. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  517. void kvm_release_pfn_dirty(pfn_t pfn)
  518. {
  519. kvm_set_pfn_dirty(pfn);
  520. kvm_release_pfn_clean(pfn);
  521. }
  522. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  523. void kvm_set_page_dirty(struct page *page)
  524. {
  525. kvm_set_pfn_dirty(page_to_pfn(page));
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  528. void kvm_set_pfn_dirty(pfn_t pfn)
  529. {
  530. if (pfn_valid(pfn)) {
  531. struct page *page = pfn_to_page(pfn);
  532. if (!PageReserved(page))
  533. SetPageDirty(page);
  534. }
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  537. void kvm_set_pfn_accessed(pfn_t pfn)
  538. {
  539. if (pfn_valid(pfn))
  540. mark_page_accessed(pfn_to_page(pfn));
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  543. void kvm_get_pfn(pfn_t pfn)
  544. {
  545. if (pfn_valid(pfn))
  546. get_page(pfn_to_page(pfn));
  547. }
  548. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  549. static int next_segment(unsigned long len, int offset)
  550. {
  551. if (len > PAGE_SIZE - offset)
  552. return PAGE_SIZE - offset;
  553. else
  554. return len;
  555. }
  556. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  557. int len)
  558. {
  559. int r;
  560. unsigned long addr;
  561. addr = gfn_to_hva(kvm, gfn);
  562. if (kvm_is_error_hva(addr))
  563. return -EFAULT;
  564. r = copy_from_user(data, (void __user *)addr + offset, len);
  565. if (r)
  566. return -EFAULT;
  567. return 0;
  568. }
  569. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  570. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  571. {
  572. gfn_t gfn = gpa >> PAGE_SHIFT;
  573. int seg;
  574. int offset = offset_in_page(gpa);
  575. int ret;
  576. while ((seg = next_segment(len, offset)) != 0) {
  577. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  578. if (ret < 0)
  579. return ret;
  580. offset = 0;
  581. len -= seg;
  582. data += seg;
  583. ++gfn;
  584. }
  585. return 0;
  586. }
  587. EXPORT_SYMBOL_GPL(kvm_read_guest);
  588. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  589. unsigned long len)
  590. {
  591. int r;
  592. unsigned long addr;
  593. gfn_t gfn = gpa >> PAGE_SHIFT;
  594. int offset = offset_in_page(gpa);
  595. addr = gfn_to_hva(kvm, gfn);
  596. if (kvm_is_error_hva(addr))
  597. return -EFAULT;
  598. pagefault_disable();
  599. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  600. pagefault_enable();
  601. if (r)
  602. return -EFAULT;
  603. return 0;
  604. }
  605. EXPORT_SYMBOL(kvm_read_guest_atomic);
  606. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  607. int offset, int len)
  608. {
  609. int r;
  610. unsigned long addr;
  611. addr = gfn_to_hva(kvm, gfn);
  612. if (kvm_is_error_hva(addr))
  613. return -EFAULT;
  614. r = copy_to_user((void __user *)addr + offset, data, len);
  615. if (r)
  616. return -EFAULT;
  617. mark_page_dirty(kvm, gfn);
  618. return 0;
  619. }
  620. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  621. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  622. unsigned long len)
  623. {
  624. gfn_t gfn = gpa >> PAGE_SHIFT;
  625. int seg;
  626. int offset = offset_in_page(gpa);
  627. int ret;
  628. while ((seg = next_segment(len, offset)) != 0) {
  629. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  630. if (ret < 0)
  631. return ret;
  632. offset = 0;
  633. len -= seg;
  634. data += seg;
  635. ++gfn;
  636. }
  637. return 0;
  638. }
  639. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  640. {
  641. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  644. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  645. {
  646. gfn_t gfn = gpa >> PAGE_SHIFT;
  647. int seg;
  648. int offset = offset_in_page(gpa);
  649. int ret;
  650. while ((seg = next_segment(len, offset)) != 0) {
  651. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  652. if (ret < 0)
  653. return ret;
  654. offset = 0;
  655. len -= seg;
  656. ++gfn;
  657. }
  658. return 0;
  659. }
  660. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  661. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  662. {
  663. struct kvm_memory_slot *memslot;
  664. gfn = unalias_gfn(kvm, gfn);
  665. memslot = __gfn_to_memslot(kvm, gfn);
  666. if (memslot && memslot->dirty_bitmap) {
  667. unsigned long rel_gfn = gfn - memslot->base_gfn;
  668. /* avoid RMW */
  669. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  670. set_bit(rel_gfn, memslot->dirty_bitmap);
  671. }
  672. }
  673. /*
  674. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  675. */
  676. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  677. {
  678. DEFINE_WAIT(wait);
  679. for (;;) {
  680. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  681. if (kvm_cpu_has_interrupt(vcpu))
  682. break;
  683. if (kvm_cpu_has_pending_timer(vcpu))
  684. break;
  685. if (kvm_arch_vcpu_runnable(vcpu))
  686. break;
  687. if (signal_pending(current))
  688. break;
  689. vcpu_put(vcpu);
  690. schedule();
  691. vcpu_load(vcpu);
  692. }
  693. finish_wait(&vcpu->wq, &wait);
  694. }
  695. void kvm_resched(struct kvm_vcpu *vcpu)
  696. {
  697. if (!need_resched())
  698. return;
  699. cond_resched();
  700. }
  701. EXPORT_SYMBOL_GPL(kvm_resched);
  702. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  703. {
  704. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  705. struct page *page;
  706. if (vmf->pgoff == 0)
  707. page = virt_to_page(vcpu->run);
  708. #ifdef CONFIG_X86
  709. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  710. page = virt_to_page(vcpu->arch.pio_data);
  711. #endif
  712. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  713. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  714. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  715. #endif
  716. else
  717. return VM_FAULT_SIGBUS;
  718. get_page(page);
  719. vmf->page = page;
  720. return 0;
  721. }
  722. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  723. .fault = kvm_vcpu_fault,
  724. };
  725. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  726. {
  727. vma->vm_ops = &kvm_vcpu_vm_ops;
  728. return 0;
  729. }
  730. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  731. {
  732. struct kvm_vcpu *vcpu = filp->private_data;
  733. kvm_put_kvm(vcpu->kvm);
  734. return 0;
  735. }
  736. static const struct file_operations kvm_vcpu_fops = {
  737. .release = kvm_vcpu_release,
  738. .unlocked_ioctl = kvm_vcpu_ioctl,
  739. .compat_ioctl = kvm_vcpu_ioctl,
  740. .mmap = kvm_vcpu_mmap,
  741. };
  742. /*
  743. * Allocates an inode for the vcpu.
  744. */
  745. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  746. {
  747. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu);
  748. if (fd < 0)
  749. kvm_put_kvm(vcpu->kvm);
  750. return fd;
  751. }
  752. /*
  753. * Creates some virtual cpus. Good luck creating more than one.
  754. */
  755. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  756. {
  757. int r;
  758. struct kvm_vcpu *vcpu;
  759. if (!valid_vcpu(n))
  760. return -EINVAL;
  761. vcpu = kvm_arch_vcpu_create(kvm, n);
  762. if (IS_ERR(vcpu))
  763. return PTR_ERR(vcpu);
  764. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  765. r = kvm_arch_vcpu_setup(vcpu);
  766. if (r)
  767. goto vcpu_destroy;
  768. mutex_lock(&kvm->lock);
  769. if (kvm->vcpus[n]) {
  770. r = -EEXIST;
  771. mutex_unlock(&kvm->lock);
  772. goto vcpu_destroy;
  773. }
  774. kvm->vcpus[n] = vcpu;
  775. mutex_unlock(&kvm->lock);
  776. /* Now it's all set up, let userspace reach it */
  777. kvm_get_kvm(kvm);
  778. r = create_vcpu_fd(vcpu);
  779. if (r < 0)
  780. goto unlink;
  781. return r;
  782. unlink:
  783. mutex_lock(&kvm->lock);
  784. kvm->vcpus[n] = NULL;
  785. mutex_unlock(&kvm->lock);
  786. vcpu_destroy:
  787. kvm_arch_vcpu_destroy(vcpu);
  788. return r;
  789. }
  790. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  791. {
  792. if (sigset) {
  793. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  794. vcpu->sigset_active = 1;
  795. vcpu->sigset = *sigset;
  796. } else
  797. vcpu->sigset_active = 0;
  798. return 0;
  799. }
  800. static long kvm_vcpu_ioctl(struct file *filp,
  801. unsigned int ioctl, unsigned long arg)
  802. {
  803. struct kvm_vcpu *vcpu = filp->private_data;
  804. void __user *argp = (void __user *)arg;
  805. int r;
  806. if (vcpu->kvm->mm != current->mm)
  807. return -EIO;
  808. switch (ioctl) {
  809. case KVM_RUN:
  810. r = -EINVAL;
  811. if (arg)
  812. goto out;
  813. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  814. break;
  815. case KVM_GET_REGS: {
  816. struct kvm_regs *kvm_regs;
  817. r = -ENOMEM;
  818. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  819. if (!kvm_regs)
  820. goto out;
  821. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  822. if (r)
  823. goto out_free1;
  824. r = -EFAULT;
  825. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  826. goto out_free1;
  827. r = 0;
  828. out_free1:
  829. kfree(kvm_regs);
  830. break;
  831. }
  832. case KVM_SET_REGS: {
  833. struct kvm_regs *kvm_regs;
  834. r = -ENOMEM;
  835. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  836. if (!kvm_regs)
  837. goto out;
  838. r = -EFAULT;
  839. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  840. goto out_free2;
  841. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  842. if (r)
  843. goto out_free2;
  844. r = 0;
  845. out_free2:
  846. kfree(kvm_regs);
  847. break;
  848. }
  849. case KVM_GET_SREGS: {
  850. struct kvm_sregs kvm_sregs;
  851. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  852. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  853. if (r)
  854. goto out;
  855. r = -EFAULT;
  856. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  857. goto out;
  858. r = 0;
  859. break;
  860. }
  861. case KVM_SET_SREGS: {
  862. struct kvm_sregs kvm_sregs;
  863. r = -EFAULT;
  864. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  865. goto out;
  866. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  867. if (r)
  868. goto out;
  869. r = 0;
  870. break;
  871. }
  872. case KVM_GET_MP_STATE: {
  873. struct kvm_mp_state mp_state;
  874. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  875. if (r)
  876. goto out;
  877. r = -EFAULT;
  878. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  879. goto out;
  880. r = 0;
  881. break;
  882. }
  883. case KVM_SET_MP_STATE: {
  884. struct kvm_mp_state mp_state;
  885. r = -EFAULT;
  886. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  887. goto out;
  888. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  889. if (r)
  890. goto out;
  891. r = 0;
  892. break;
  893. }
  894. case KVM_TRANSLATE: {
  895. struct kvm_translation tr;
  896. r = -EFAULT;
  897. if (copy_from_user(&tr, argp, sizeof tr))
  898. goto out;
  899. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  900. if (r)
  901. goto out;
  902. r = -EFAULT;
  903. if (copy_to_user(argp, &tr, sizeof tr))
  904. goto out;
  905. r = 0;
  906. break;
  907. }
  908. case KVM_DEBUG_GUEST: {
  909. struct kvm_debug_guest dbg;
  910. r = -EFAULT;
  911. if (copy_from_user(&dbg, argp, sizeof dbg))
  912. goto out;
  913. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  914. if (r)
  915. goto out;
  916. r = 0;
  917. break;
  918. }
  919. case KVM_SET_SIGNAL_MASK: {
  920. struct kvm_signal_mask __user *sigmask_arg = argp;
  921. struct kvm_signal_mask kvm_sigmask;
  922. sigset_t sigset, *p;
  923. p = NULL;
  924. if (argp) {
  925. r = -EFAULT;
  926. if (copy_from_user(&kvm_sigmask, argp,
  927. sizeof kvm_sigmask))
  928. goto out;
  929. r = -EINVAL;
  930. if (kvm_sigmask.len != sizeof sigset)
  931. goto out;
  932. r = -EFAULT;
  933. if (copy_from_user(&sigset, sigmask_arg->sigset,
  934. sizeof sigset))
  935. goto out;
  936. p = &sigset;
  937. }
  938. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  939. break;
  940. }
  941. case KVM_GET_FPU: {
  942. struct kvm_fpu fpu;
  943. memset(&fpu, 0, sizeof fpu);
  944. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  945. if (r)
  946. goto out;
  947. r = -EFAULT;
  948. if (copy_to_user(argp, &fpu, sizeof fpu))
  949. goto out;
  950. r = 0;
  951. break;
  952. }
  953. case KVM_SET_FPU: {
  954. struct kvm_fpu fpu;
  955. r = -EFAULT;
  956. if (copy_from_user(&fpu, argp, sizeof fpu))
  957. goto out;
  958. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  959. if (r)
  960. goto out;
  961. r = 0;
  962. break;
  963. }
  964. default:
  965. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  966. }
  967. out:
  968. return r;
  969. }
  970. static long kvm_vm_ioctl(struct file *filp,
  971. unsigned int ioctl, unsigned long arg)
  972. {
  973. struct kvm *kvm = filp->private_data;
  974. void __user *argp = (void __user *)arg;
  975. int r;
  976. if (kvm->mm != current->mm)
  977. return -EIO;
  978. switch (ioctl) {
  979. case KVM_CREATE_VCPU:
  980. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  981. if (r < 0)
  982. goto out;
  983. break;
  984. case KVM_SET_USER_MEMORY_REGION: {
  985. struct kvm_userspace_memory_region kvm_userspace_mem;
  986. r = -EFAULT;
  987. if (copy_from_user(&kvm_userspace_mem, argp,
  988. sizeof kvm_userspace_mem))
  989. goto out;
  990. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  991. if (r)
  992. goto out;
  993. break;
  994. }
  995. case KVM_GET_DIRTY_LOG: {
  996. struct kvm_dirty_log log;
  997. r = -EFAULT;
  998. if (copy_from_user(&log, argp, sizeof log))
  999. goto out;
  1000. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1001. if (r)
  1002. goto out;
  1003. break;
  1004. }
  1005. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1006. case KVM_REGISTER_COALESCED_MMIO: {
  1007. struct kvm_coalesced_mmio_zone zone;
  1008. r = -EFAULT;
  1009. if (copy_from_user(&zone, argp, sizeof zone))
  1010. goto out;
  1011. r = -ENXIO;
  1012. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1013. if (r)
  1014. goto out;
  1015. r = 0;
  1016. break;
  1017. }
  1018. case KVM_UNREGISTER_COALESCED_MMIO: {
  1019. struct kvm_coalesced_mmio_zone zone;
  1020. r = -EFAULT;
  1021. if (copy_from_user(&zone, argp, sizeof zone))
  1022. goto out;
  1023. r = -ENXIO;
  1024. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1025. if (r)
  1026. goto out;
  1027. r = 0;
  1028. break;
  1029. }
  1030. #endif
  1031. default:
  1032. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1033. }
  1034. out:
  1035. return r;
  1036. }
  1037. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1038. {
  1039. struct kvm *kvm = vma->vm_file->private_data;
  1040. struct page *page;
  1041. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  1042. return VM_FAULT_SIGBUS;
  1043. page = gfn_to_page(kvm, vmf->pgoff);
  1044. if (is_error_page(page)) {
  1045. kvm_release_page_clean(page);
  1046. return VM_FAULT_SIGBUS;
  1047. }
  1048. vmf->page = page;
  1049. return 0;
  1050. }
  1051. static struct vm_operations_struct kvm_vm_vm_ops = {
  1052. .fault = kvm_vm_fault,
  1053. };
  1054. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1055. {
  1056. vma->vm_ops = &kvm_vm_vm_ops;
  1057. return 0;
  1058. }
  1059. static const struct file_operations kvm_vm_fops = {
  1060. .release = kvm_vm_release,
  1061. .unlocked_ioctl = kvm_vm_ioctl,
  1062. .compat_ioctl = kvm_vm_ioctl,
  1063. .mmap = kvm_vm_mmap,
  1064. };
  1065. static int kvm_dev_ioctl_create_vm(void)
  1066. {
  1067. int fd;
  1068. struct kvm *kvm;
  1069. kvm = kvm_create_vm();
  1070. if (IS_ERR(kvm))
  1071. return PTR_ERR(kvm);
  1072. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm);
  1073. if (fd < 0)
  1074. kvm_put_kvm(kvm);
  1075. return fd;
  1076. }
  1077. static long kvm_dev_ioctl(struct file *filp,
  1078. unsigned int ioctl, unsigned long arg)
  1079. {
  1080. long r = -EINVAL;
  1081. switch (ioctl) {
  1082. case KVM_GET_API_VERSION:
  1083. r = -EINVAL;
  1084. if (arg)
  1085. goto out;
  1086. r = KVM_API_VERSION;
  1087. break;
  1088. case KVM_CREATE_VM:
  1089. r = -EINVAL;
  1090. if (arg)
  1091. goto out;
  1092. r = kvm_dev_ioctl_create_vm();
  1093. break;
  1094. case KVM_CHECK_EXTENSION:
  1095. r = kvm_dev_ioctl_check_extension(arg);
  1096. break;
  1097. case KVM_GET_VCPU_MMAP_SIZE:
  1098. r = -EINVAL;
  1099. if (arg)
  1100. goto out;
  1101. r = PAGE_SIZE; /* struct kvm_run */
  1102. #ifdef CONFIG_X86
  1103. r += PAGE_SIZE; /* pio data page */
  1104. #endif
  1105. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1106. r += PAGE_SIZE; /* coalesced mmio ring page */
  1107. #endif
  1108. break;
  1109. case KVM_TRACE_ENABLE:
  1110. case KVM_TRACE_PAUSE:
  1111. case KVM_TRACE_DISABLE:
  1112. r = kvm_trace_ioctl(ioctl, arg);
  1113. break;
  1114. default:
  1115. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1116. }
  1117. out:
  1118. return r;
  1119. }
  1120. static struct file_operations kvm_chardev_ops = {
  1121. .unlocked_ioctl = kvm_dev_ioctl,
  1122. .compat_ioctl = kvm_dev_ioctl,
  1123. };
  1124. static struct miscdevice kvm_dev = {
  1125. KVM_MINOR,
  1126. "kvm",
  1127. &kvm_chardev_ops,
  1128. };
  1129. static void hardware_enable(void *junk)
  1130. {
  1131. int cpu = raw_smp_processor_id();
  1132. if (cpu_isset(cpu, cpus_hardware_enabled))
  1133. return;
  1134. cpu_set(cpu, cpus_hardware_enabled);
  1135. kvm_arch_hardware_enable(NULL);
  1136. }
  1137. static void hardware_disable(void *junk)
  1138. {
  1139. int cpu = raw_smp_processor_id();
  1140. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1141. return;
  1142. cpu_clear(cpu, cpus_hardware_enabled);
  1143. kvm_arch_hardware_disable(NULL);
  1144. }
  1145. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1146. void *v)
  1147. {
  1148. int cpu = (long)v;
  1149. val &= ~CPU_TASKS_FROZEN;
  1150. switch (val) {
  1151. case CPU_DYING:
  1152. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1153. cpu);
  1154. hardware_disable(NULL);
  1155. break;
  1156. case CPU_UP_CANCELED:
  1157. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1158. cpu);
  1159. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1160. break;
  1161. case CPU_ONLINE:
  1162. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1163. cpu);
  1164. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1165. break;
  1166. }
  1167. return NOTIFY_OK;
  1168. }
  1169. asmlinkage void kvm_handle_fault_on_reboot(void)
  1170. {
  1171. if (kvm_rebooting)
  1172. /* spin while reset goes on */
  1173. while (true)
  1174. ;
  1175. /* Fault while not rebooting. We want the trace. */
  1176. BUG();
  1177. }
  1178. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1179. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1180. void *v)
  1181. {
  1182. if (val == SYS_RESTART) {
  1183. /*
  1184. * Some (well, at least mine) BIOSes hang on reboot if
  1185. * in vmx root mode.
  1186. */
  1187. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1188. kvm_rebooting = true;
  1189. on_each_cpu(hardware_disable, NULL, 1);
  1190. }
  1191. return NOTIFY_OK;
  1192. }
  1193. static struct notifier_block kvm_reboot_notifier = {
  1194. .notifier_call = kvm_reboot,
  1195. .priority = 0,
  1196. };
  1197. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1198. {
  1199. memset(bus, 0, sizeof(*bus));
  1200. }
  1201. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1202. {
  1203. int i;
  1204. for (i = 0; i < bus->dev_count; i++) {
  1205. struct kvm_io_device *pos = bus->devs[i];
  1206. kvm_iodevice_destructor(pos);
  1207. }
  1208. }
  1209. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1210. gpa_t addr, int len, int is_write)
  1211. {
  1212. int i;
  1213. for (i = 0; i < bus->dev_count; i++) {
  1214. struct kvm_io_device *pos = bus->devs[i];
  1215. if (pos->in_range(pos, addr, len, is_write))
  1216. return pos;
  1217. }
  1218. return NULL;
  1219. }
  1220. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1221. {
  1222. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1223. bus->devs[bus->dev_count++] = dev;
  1224. }
  1225. static struct notifier_block kvm_cpu_notifier = {
  1226. .notifier_call = kvm_cpu_hotplug,
  1227. .priority = 20, /* must be > scheduler priority */
  1228. };
  1229. static int vm_stat_get(void *_offset, u64 *val)
  1230. {
  1231. unsigned offset = (long)_offset;
  1232. struct kvm *kvm;
  1233. *val = 0;
  1234. spin_lock(&kvm_lock);
  1235. list_for_each_entry(kvm, &vm_list, vm_list)
  1236. *val += *(u32 *)((void *)kvm + offset);
  1237. spin_unlock(&kvm_lock);
  1238. return 0;
  1239. }
  1240. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1241. static int vcpu_stat_get(void *_offset, u64 *val)
  1242. {
  1243. unsigned offset = (long)_offset;
  1244. struct kvm *kvm;
  1245. struct kvm_vcpu *vcpu;
  1246. int i;
  1247. *val = 0;
  1248. spin_lock(&kvm_lock);
  1249. list_for_each_entry(kvm, &vm_list, vm_list)
  1250. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1251. vcpu = kvm->vcpus[i];
  1252. if (vcpu)
  1253. *val += *(u32 *)((void *)vcpu + offset);
  1254. }
  1255. spin_unlock(&kvm_lock);
  1256. return 0;
  1257. }
  1258. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1259. static struct file_operations *stat_fops[] = {
  1260. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1261. [KVM_STAT_VM] = &vm_stat_fops,
  1262. };
  1263. static void kvm_init_debug(void)
  1264. {
  1265. struct kvm_stats_debugfs_item *p;
  1266. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1267. for (p = debugfs_entries; p->name; ++p)
  1268. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1269. (void *)(long)p->offset,
  1270. stat_fops[p->kind]);
  1271. }
  1272. static void kvm_exit_debug(void)
  1273. {
  1274. struct kvm_stats_debugfs_item *p;
  1275. for (p = debugfs_entries; p->name; ++p)
  1276. debugfs_remove(p->dentry);
  1277. debugfs_remove(kvm_debugfs_dir);
  1278. }
  1279. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1280. {
  1281. hardware_disable(NULL);
  1282. return 0;
  1283. }
  1284. static int kvm_resume(struct sys_device *dev)
  1285. {
  1286. hardware_enable(NULL);
  1287. return 0;
  1288. }
  1289. static struct sysdev_class kvm_sysdev_class = {
  1290. .name = "kvm",
  1291. .suspend = kvm_suspend,
  1292. .resume = kvm_resume,
  1293. };
  1294. static struct sys_device kvm_sysdev = {
  1295. .id = 0,
  1296. .cls = &kvm_sysdev_class,
  1297. };
  1298. struct page *bad_page;
  1299. pfn_t bad_pfn;
  1300. static inline
  1301. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1302. {
  1303. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1304. }
  1305. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1306. {
  1307. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1308. kvm_arch_vcpu_load(vcpu, cpu);
  1309. }
  1310. static void kvm_sched_out(struct preempt_notifier *pn,
  1311. struct task_struct *next)
  1312. {
  1313. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1314. kvm_arch_vcpu_put(vcpu);
  1315. }
  1316. int kvm_init(void *opaque, unsigned int vcpu_size,
  1317. struct module *module)
  1318. {
  1319. int r;
  1320. int cpu;
  1321. kvm_init_debug();
  1322. r = kvm_arch_init(opaque);
  1323. if (r)
  1324. goto out_fail;
  1325. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1326. if (bad_page == NULL) {
  1327. r = -ENOMEM;
  1328. goto out;
  1329. }
  1330. bad_pfn = page_to_pfn(bad_page);
  1331. r = kvm_arch_hardware_setup();
  1332. if (r < 0)
  1333. goto out_free_0;
  1334. for_each_online_cpu(cpu) {
  1335. smp_call_function_single(cpu,
  1336. kvm_arch_check_processor_compat,
  1337. &r, 1);
  1338. if (r < 0)
  1339. goto out_free_1;
  1340. }
  1341. on_each_cpu(hardware_enable, NULL, 1);
  1342. r = register_cpu_notifier(&kvm_cpu_notifier);
  1343. if (r)
  1344. goto out_free_2;
  1345. register_reboot_notifier(&kvm_reboot_notifier);
  1346. r = sysdev_class_register(&kvm_sysdev_class);
  1347. if (r)
  1348. goto out_free_3;
  1349. r = sysdev_register(&kvm_sysdev);
  1350. if (r)
  1351. goto out_free_4;
  1352. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1353. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1354. __alignof__(struct kvm_vcpu),
  1355. 0, NULL);
  1356. if (!kvm_vcpu_cache) {
  1357. r = -ENOMEM;
  1358. goto out_free_5;
  1359. }
  1360. kvm_chardev_ops.owner = module;
  1361. r = misc_register(&kvm_dev);
  1362. if (r) {
  1363. printk(KERN_ERR "kvm: misc device register failed\n");
  1364. goto out_free;
  1365. }
  1366. kvm_preempt_ops.sched_in = kvm_sched_in;
  1367. kvm_preempt_ops.sched_out = kvm_sched_out;
  1368. return 0;
  1369. out_free:
  1370. kmem_cache_destroy(kvm_vcpu_cache);
  1371. out_free_5:
  1372. sysdev_unregister(&kvm_sysdev);
  1373. out_free_4:
  1374. sysdev_class_unregister(&kvm_sysdev_class);
  1375. out_free_3:
  1376. unregister_reboot_notifier(&kvm_reboot_notifier);
  1377. unregister_cpu_notifier(&kvm_cpu_notifier);
  1378. out_free_2:
  1379. on_each_cpu(hardware_disable, NULL, 1);
  1380. out_free_1:
  1381. kvm_arch_hardware_unsetup();
  1382. out_free_0:
  1383. __free_page(bad_page);
  1384. out:
  1385. kvm_arch_exit();
  1386. kvm_exit_debug();
  1387. out_fail:
  1388. return r;
  1389. }
  1390. EXPORT_SYMBOL_GPL(kvm_init);
  1391. void kvm_exit(void)
  1392. {
  1393. kvm_trace_cleanup();
  1394. misc_deregister(&kvm_dev);
  1395. kmem_cache_destroy(kvm_vcpu_cache);
  1396. sysdev_unregister(&kvm_sysdev);
  1397. sysdev_class_unregister(&kvm_sysdev_class);
  1398. unregister_reboot_notifier(&kvm_reboot_notifier);
  1399. unregister_cpu_notifier(&kvm_cpu_notifier);
  1400. on_each_cpu(hardware_disable, NULL, 1);
  1401. kvm_arch_hardware_unsetup();
  1402. kvm_arch_exit();
  1403. kvm_exit_debug();
  1404. __free_page(bad_page);
  1405. }
  1406. EXPORT_SYMBOL_GPL(kvm_exit);