uaccess_pt.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. /*
  2. * arch/s390/lib/uaccess_pt.c
  3. *
  4. * User access functions based on page table walks for enhanced
  5. * system layout without hardware support.
  6. *
  7. * Copyright IBM Corp. 2006
  8. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  9. */
  10. #include <linux/errno.h>
  11. #include <linux/hardirq.h>
  12. #include <linux/mm.h>
  13. #include <asm/uaccess.h>
  14. #include <asm/futex.h>
  15. #include "uaccess.h"
  16. static inline pte_t *follow_table(struct mm_struct *mm, unsigned long addr)
  17. {
  18. pgd_t *pgd;
  19. pud_t *pud;
  20. pmd_t *pmd;
  21. pgd = pgd_offset(mm, addr);
  22. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  23. return NULL;
  24. pud = pud_offset(pgd, addr);
  25. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  26. return NULL;
  27. pmd = pmd_offset(pud, addr);
  28. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  29. return NULL;
  30. return pte_offset_map(pmd, addr);
  31. }
  32. static int __handle_fault(struct mm_struct *mm, unsigned long address,
  33. int write_access)
  34. {
  35. struct vm_area_struct *vma;
  36. int ret = -EFAULT;
  37. int fault;
  38. if (in_atomic())
  39. return ret;
  40. down_read(&mm->mmap_sem);
  41. vma = find_vma(mm, address);
  42. if (unlikely(!vma))
  43. goto out;
  44. if (unlikely(vma->vm_start > address)) {
  45. if (!(vma->vm_flags & VM_GROWSDOWN))
  46. goto out;
  47. if (expand_stack(vma, address))
  48. goto out;
  49. }
  50. if (!write_access) {
  51. /* page not present, check vm flags */
  52. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  53. goto out;
  54. } else {
  55. if (!(vma->vm_flags & VM_WRITE))
  56. goto out;
  57. }
  58. survive:
  59. fault = handle_mm_fault(mm, vma, address, write_access);
  60. if (unlikely(fault & VM_FAULT_ERROR)) {
  61. if (fault & VM_FAULT_OOM)
  62. goto out_of_memory;
  63. else if (fault & VM_FAULT_SIGBUS)
  64. goto out_sigbus;
  65. BUG();
  66. }
  67. if (fault & VM_FAULT_MAJOR)
  68. current->maj_flt++;
  69. else
  70. current->min_flt++;
  71. ret = 0;
  72. out:
  73. up_read(&mm->mmap_sem);
  74. return ret;
  75. out_of_memory:
  76. up_read(&mm->mmap_sem);
  77. if (is_global_init(current)) {
  78. yield();
  79. down_read(&mm->mmap_sem);
  80. goto survive;
  81. }
  82. printk("VM: killing process %s\n", current->comm);
  83. return ret;
  84. out_sigbus:
  85. up_read(&mm->mmap_sem);
  86. current->thread.prot_addr = address;
  87. current->thread.trap_no = 0x11;
  88. force_sig(SIGBUS, current);
  89. return ret;
  90. }
  91. static size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  92. size_t n, int write_user)
  93. {
  94. struct mm_struct *mm = current->mm;
  95. unsigned long offset, pfn, done, size;
  96. pte_t *pte;
  97. void *from, *to;
  98. done = 0;
  99. retry:
  100. spin_lock(&mm->page_table_lock);
  101. do {
  102. pte = follow_table(mm, uaddr);
  103. if (!pte || !pte_present(*pte) ||
  104. (write_user && !pte_write(*pte)))
  105. goto fault;
  106. pfn = pte_pfn(*pte);
  107. offset = uaddr & (PAGE_SIZE - 1);
  108. size = min(n - done, PAGE_SIZE - offset);
  109. if (write_user) {
  110. to = (void *)((pfn << PAGE_SHIFT) + offset);
  111. from = kptr + done;
  112. } else {
  113. from = (void *)((pfn << PAGE_SHIFT) + offset);
  114. to = kptr + done;
  115. }
  116. memcpy(to, from, size);
  117. done += size;
  118. uaddr += size;
  119. } while (done < n);
  120. spin_unlock(&mm->page_table_lock);
  121. return n - done;
  122. fault:
  123. spin_unlock(&mm->page_table_lock);
  124. if (__handle_fault(mm, uaddr, write_user))
  125. return n - done;
  126. goto retry;
  127. }
  128. /*
  129. * Do DAT for user address by page table walk, return kernel address.
  130. * This function needs to be called with current->mm->page_table_lock held.
  131. */
  132. static unsigned long __dat_user_addr(unsigned long uaddr)
  133. {
  134. struct mm_struct *mm = current->mm;
  135. unsigned long pfn, ret;
  136. pte_t *pte;
  137. int rc;
  138. ret = 0;
  139. retry:
  140. pte = follow_table(mm, uaddr);
  141. if (!pte || !pte_present(*pte))
  142. goto fault;
  143. pfn = pte_pfn(*pte);
  144. ret = (pfn << PAGE_SHIFT) + (uaddr & (PAGE_SIZE - 1));
  145. out:
  146. return ret;
  147. fault:
  148. spin_unlock(&mm->page_table_lock);
  149. rc = __handle_fault(mm, uaddr, 0);
  150. spin_lock(&mm->page_table_lock);
  151. if (rc)
  152. goto out;
  153. goto retry;
  154. }
  155. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  156. {
  157. size_t rc;
  158. if (segment_eq(get_fs(), KERNEL_DS)) {
  159. memcpy(to, (void __kernel __force *) from, n);
  160. return 0;
  161. }
  162. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  163. if (unlikely(rc))
  164. memset(to + n - rc, 0, rc);
  165. return rc;
  166. }
  167. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  168. {
  169. if (segment_eq(get_fs(), KERNEL_DS)) {
  170. memcpy((void __kernel __force *) to, from, n);
  171. return 0;
  172. }
  173. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  174. }
  175. static size_t clear_user_pt(size_t n, void __user *to)
  176. {
  177. long done, size, ret;
  178. if (segment_eq(get_fs(), KERNEL_DS)) {
  179. memset((void __kernel __force *) to, 0, n);
  180. return 0;
  181. }
  182. done = 0;
  183. do {
  184. if (n - done > PAGE_SIZE)
  185. size = PAGE_SIZE;
  186. else
  187. size = n - done;
  188. ret = __user_copy_pt((unsigned long) to + done,
  189. &empty_zero_page, size, 1);
  190. done += size;
  191. if (ret)
  192. return ret + n - done;
  193. } while (done < n);
  194. return 0;
  195. }
  196. static size_t strnlen_user_pt(size_t count, const char __user *src)
  197. {
  198. char *addr;
  199. unsigned long uaddr = (unsigned long) src;
  200. struct mm_struct *mm = current->mm;
  201. unsigned long offset, pfn, done, len;
  202. pte_t *pte;
  203. size_t len_str;
  204. if (segment_eq(get_fs(), KERNEL_DS))
  205. return strnlen((const char __kernel __force *) src, count) + 1;
  206. done = 0;
  207. retry:
  208. spin_lock(&mm->page_table_lock);
  209. do {
  210. pte = follow_table(mm, uaddr);
  211. if (!pte || !pte_present(*pte))
  212. goto fault;
  213. pfn = pte_pfn(*pte);
  214. offset = uaddr & (PAGE_SIZE-1);
  215. addr = (char *)(pfn << PAGE_SHIFT) + offset;
  216. len = min(count - done, PAGE_SIZE - offset);
  217. len_str = strnlen(addr, len);
  218. done += len_str;
  219. uaddr += len_str;
  220. } while ((len_str == len) && (done < count));
  221. spin_unlock(&mm->page_table_lock);
  222. return done + 1;
  223. fault:
  224. spin_unlock(&mm->page_table_lock);
  225. if (__handle_fault(mm, uaddr, 0)) {
  226. return 0;
  227. }
  228. goto retry;
  229. }
  230. static size_t strncpy_from_user_pt(size_t count, const char __user *src,
  231. char *dst)
  232. {
  233. size_t n = strnlen_user_pt(count, src);
  234. if (!n)
  235. return -EFAULT;
  236. if (n > count)
  237. n = count;
  238. if (segment_eq(get_fs(), KERNEL_DS)) {
  239. memcpy(dst, (const char __kernel __force *) src, n);
  240. if (dst[n-1] == '\0')
  241. return n-1;
  242. else
  243. return n;
  244. }
  245. if (__user_copy_pt((unsigned long) src, dst, n, 0))
  246. return -EFAULT;
  247. if (dst[n-1] == '\0')
  248. return n-1;
  249. else
  250. return n;
  251. }
  252. static size_t copy_in_user_pt(size_t n, void __user *to,
  253. const void __user *from)
  254. {
  255. struct mm_struct *mm = current->mm;
  256. unsigned long offset_from, offset_to, offset_max, pfn_from, pfn_to,
  257. uaddr, done, size;
  258. unsigned long uaddr_from = (unsigned long) from;
  259. unsigned long uaddr_to = (unsigned long) to;
  260. pte_t *pte_from, *pte_to;
  261. int write_user;
  262. if (segment_eq(get_fs(), KERNEL_DS)) {
  263. memcpy((void __force *) to, (void __force *) from, n);
  264. return 0;
  265. }
  266. done = 0;
  267. retry:
  268. spin_lock(&mm->page_table_lock);
  269. do {
  270. pte_from = follow_table(mm, uaddr_from);
  271. if (!pte_from || !pte_present(*pte_from)) {
  272. uaddr = uaddr_from;
  273. write_user = 0;
  274. goto fault;
  275. }
  276. pte_to = follow_table(mm, uaddr_to);
  277. if (!pte_to || !pte_present(*pte_to) || !pte_write(*pte_to)) {
  278. uaddr = uaddr_to;
  279. write_user = 1;
  280. goto fault;
  281. }
  282. pfn_from = pte_pfn(*pte_from);
  283. pfn_to = pte_pfn(*pte_to);
  284. offset_from = uaddr_from & (PAGE_SIZE-1);
  285. offset_to = uaddr_from & (PAGE_SIZE-1);
  286. offset_max = max(offset_from, offset_to);
  287. size = min(n - done, PAGE_SIZE - offset_max);
  288. memcpy((void *)(pfn_to << PAGE_SHIFT) + offset_to,
  289. (void *)(pfn_from << PAGE_SHIFT) + offset_from, size);
  290. done += size;
  291. uaddr_from += size;
  292. uaddr_to += size;
  293. } while (done < n);
  294. spin_unlock(&mm->page_table_lock);
  295. return n - done;
  296. fault:
  297. spin_unlock(&mm->page_table_lock);
  298. if (__handle_fault(mm, uaddr, write_user))
  299. return n - done;
  300. goto retry;
  301. }
  302. #define __futex_atomic_op(insn, ret, oldval, newval, uaddr, oparg) \
  303. asm volatile("0: l %1,0(%6)\n" \
  304. "1: " insn \
  305. "2: cs %1,%2,0(%6)\n" \
  306. "3: jl 1b\n" \
  307. " lhi %0,0\n" \
  308. "4:\n" \
  309. EX_TABLE(0b,4b) EX_TABLE(2b,4b) EX_TABLE(3b,4b) \
  310. : "=d" (ret), "=&d" (oldval), "=&d" (newval), \
  311. "=m" (*uaddr) \
  312. : "0" (-EFAULT), "d" (oparg), "a" (uaddr), \
  313. "m" (*uaddr) : "cc" );
  314. static int __futex_atomic_op_pt(int op, int __user *uaddr, int oparg, int *old)
  315. {
  316. int oldval = 0, newval, ret;
  317. switch (op) {
  318. case FUTEX_OP_SET:
  319. __futex_atomic_op("lr %2,%5\n",
  320. ret, oldval, newval, uaddr, oparg);
  321. break;
  322. case FUTEX_OP_ADD:
  323. __futex_atomic_op("lr %2,%1\nar %2,%5\n",
  324. ret, oldval, newval, uaddr, oparg);
  325. break;
  326. case FUTEX_OP_OR:
  327. __futex_atomic_op("lr %2,%1\nor %2,%5\n",
  328. ret, oldval, newval, uaddr, oparg);
  329. break;
  330. case FUTEX_OP_ANDN:
  331. __futex_atomic_op("lr %2,%1\nnr %2,%5\n",
  332. ret, oldval, newval, uaddr, oparg);
  333. break;
  334. case FUTEX_OP_XOR:
  335. __futex_atomic_op("lr %2,%1\nxr %2,%5\n",
  336. ret, oldval, newval, uaddr, oparg);
  337. break;
  338. default:
  339. ret = -ENOSYS;
  340. }
  341. if (ret == 0)
  342. *old = oldval;
  343. return ret;
  344. }
  345. int futex_atomic_op_pt(int op, int __user *uaddr, int oparg, int *old)
  346. {
  347. int ret;
  348. if (segment_eq(get_fs(), KERNEL_DS))
  349. return __futex_atomic_op_pt(op, uaddr, oparg, old);
  350. spin_lock(&current->mm->page_table_lock);
  351. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  352. if (!uaddr) {
  353. spin_unlock(&current->mm->page_table_lock);
  354. return -EFAULT;
  355. }
  356. get_page(virt_to_page(uaddr));
  357. spin_unlock(&current->mm->page_table_lock);
  358. ret = __futex_atomic_op_pt(op, uaddr, oparg, old);
  359. put_page(virt_to_page(uaddr));
  360. return ret;
  361. }
  362. static int __futex_atomic_cmpxchg_pt(int __user *uaddr, int oldval, int newval)
  363. {
  364. int ret;
  365. asm volatile("0: cs %1,%4,0(%5)\n"
  366. "1: lr %0,%1\n"
  367. "2:\n"
  368. EX_TABLE(0b,2b) EX_TABLE(1b,2b)
  369. : "=d" (ret), "+d" (oldval), "=m" (*uaddr)
  370. : "0" (-EFAULT), "d" (newval), "a" (uaddr), "m" (*uaddr)
  371. : "cc", "memory" );
  372. return ret;
  373. }
  374. int futex_atomic_cmpxchg_pt(int __user *uaddr, int oldval, int newval)
  375. {
  376. int ret;
  377. if (segment_eq(get_fs(), KERNEL_DS))
  378. return __futex_atomic_cmpxchg_pt(uaddr, oldval, newval);
  379. spin_lock(&current->mm->page_table_lock);
  380. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  381. if (!uaddr) {
  382. spin_unlock(&current->mm->page_table_lock);
  383. return -EFAULT;
  384. }
  385. get_page(virt_to_page(uaddr));
  386. spin_unlock(&current->mm->page_table_lock);
  387. ret = __futex_atomic_cmpxchg_pt(uaddr, oldval, newval);
  388. put_page(virt_to_page(uaddr));
  389. return ret;
  390. }
  391. struct uaccess_ops uaccess_pt = {
  392. .copy_from_user = copy_from_user_pt,
  393. .copy_from_user_small = copy_from_user_pt,
  394. .copy_to_user = copy_to_user_pt,
  395. .copy_to_user_small = copy_to_user_pt,
  396. .copy_in_user = copy_in_user_pt,
  397. .clear_user = clear_user_pt,
  398. .strnlen_user = strnlen_user_pt,
  399. .strncpy_from_user = strncpy_from_user_pt,
  400. .futex_atomic_op = futex_atomic_op_pt,
  401. .futex_atomic_cmpxchg = futex_atomic_cmpxchg_pt,
  402. };