xfs_buf.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/gfp.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include "xfs_sb.h"
  37. #include "xfs_log.h"
  38. #include "xfs_ag.h"
  39. #include "xfs_mount.h"
  40. #include "xfs_trace.h"
  41. static kmem_zone_t *xfs_buf_zone;
  42. static struct workqueue_struct *xfslogd_workqueue;
  43. #ifdef XFS_BUF_LOCK_TRACKING
  44. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  45. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  46. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  47. #else
  48. # define XB_SET_OWNER(bp) do { } while (0)
  49. # define XB_CLEAR_OWNER(bp) do { } while (0)
  50. # define XB_GET_OWNER(bp) do { } while (0)
  51. #endif
  52. #define xb_to_gfp(flags) \
  53. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  54. static inline int
  55. xfs_buf_is_vmapped(
  56. struct xfs_buf *bp)
  57. {
  58. /*
  59. * Return true if the buffer is vmapped.
  60. *
  61. * The XBF_MAPPED flag is set if the buffer should be mapped, but the
  62. * code is clever enough to know it doesn't have to map a single page,
  63. * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
  64. */
  65. return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
  66. }
  67. static inline int
  68. xfs_buf_vmap_len(
  69. struct xfs_buf *bp)
  70. {
  71. return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  72. }
  73. /*
  74. * xfs_buf_lru_add - add a buffer to the LRU.
  75. *
  76. * The LRU takes a new reference to the buffer so that it will only be freed
  77. * once the shrinker takes the buffer off the LRU.
  78. */
  79. STATIC void
  80. xfs_buf_lru_add(
  81. struct xfs_buf *bp)
  82. {
  83. struct xfs_buftarg *btp = bp->b_target;
  84. spin_lock(&btp->bt_lru_lock);
  85. if (list_empty(&bp->b_lru)) {
  86. atomic_inc(&bp->b_hold);
  87. list_add_tail(&bp->b_lru, &btp->bt_lru);
  88. btp->bt_lru_nr++;
  89. }
  90. spin_unlock(&btp->bt_lru_lock);
  91. }
  92. /*
  93. * xfs_buf_lru_del - remove a buffer from the LRU
  94. *
  95. * The unlocked check is safe here because it only occurs when there are not
  96. * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
  97. * to optimise the shrinker removing the buffer from the LRU and calling
  98. * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
  99. * bt_lru_lock.
  100. */
  101. STATIC void
  102. xfs_buf_lru_del(
  103. struct xfs_buf *bp)
  104. {
  105. struct xfs_buftarg *btp = bp->b_target;
  106. if (list_empty(&bp->b_lru))
  107. return;
  108. spin_lock(&btp->bt_lru_lock);
  109. if (!list_empty(&bp->b_lru)) {
  110. list_del_init(&bp->b_lru);
  111. btp->bt_lru_nr--;
  112. }
  113. spin_unlock(&btp->bt_lru_lock);
  114. }
  115. /*
  116. * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  117. * b_lru_ref count so that the buffer is freed immediately when the buffer
  118. * reference count falls to zero. If the buffer is already on the LRU, we need
  119. * to remove the reference that LRU holds on the buffer.
  120. *
  121. * This prevents build-up of stale buffers on the LRU.
  122. */
  123. void
  124. xfs_buf_stale(
  125. struct xfs_buf *bp)
  126. {
  127. ASSERT(xfs_buf_islocked(bp));
  128. bp->b_flags |= XBF_STALE;
  129. /*
  130. * Clear the delwri status so that a delwri queue walker will not
  131. * flush this buffer to disk now that it is stale. The delwri queue has
  132. * a reference to the buffer, so this is safe to do.
  133. */
  134. bp->b_flags &= ~_XBF_DELWRI_Q;
  135. atomic_set(&(bp)->b_lru_ref, 0);
  136. if (!list_empty(&bp->b_lru)) {
  137. struct xfs_buftarg *btp = bp->b_target;
  138. spin_lock(&btp->bt_lru_lock);
  139. if (!list_empty(&bp->b_lru)) {
  140. list_del_init(&bp->b_lru);
  141. btp->bt_lru_nr--;
  142. atomic_dec(&bp->b_hold);
  143. }
  144. spin_unlock(&btp->bt_lru_lock);
  145. }
  146. ASSERT(atomic_read(&bp->b_hold) >= 1);
  147. }
  148. struct xfs_buf *
  149. xfs_buf_alloc(
  150. struct xfs_buftarg *target,
  151. xfs_daddr_t blkno,
  152. size_t numblks,
  153. xfs_buf_flags_t flags)
  154. {
  155. struct xfs_buf *bp;
  156. bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
  157. if (unlikely(!bp))
  158. return NULL;
  159. /*
  160. * We don't want certain flags to appear in b_flags.
  161. */
  162. flags &= ~(XBF_MAPPED|XBF_READ_AHEAD);
  163. atomic_set(&bp->b_hold, 1);
  164. atomic_set(&bp->b_lru_ref, 1);
  165. init_completion(&bp->b_iowait);
  166. INIT_LIST_HEAD(&bp->b_lru);
  167. INIT_LIST_HEAD(&bp->b_list);
  168. RB_CLEAR_NODE(&bp->b_rbnode);
  169. sema_init(&bp->b_sema, 0); /* held, no waiters */
  170. XB_SET_OWNER(bp);
  171. bp->b_target = target;
  172. /*
  173. * Set length and io_length to the same value initially.
  174. * I/O routines should use io_length, which will be the same in
  175. * most cases but may be reset (e.g. XFS recovery).
  176. */
  177. bp->b_length = numblks;
  178. bp->b_io_length = numblks;
  179. bp->b_flags = flags;
  180. /*
  181. * We do not set the block number here in the buffer because we have not
  182. * finished initialising the buffer. We insert the buffer into the cache
  183. * in this state, so this ensures that we are unable to do IO on a
  184. * buffer that hasn't been fully initialised.
  185. */
  186. bp->b_bn = XFS_BUF_DADDR_NULL;
  187. atomic_set(&bp->b_pin_count, 0);
  188. init_waitqueue_head(&bp->b_waiters);
  189. XFS_STATS_INC(xb_create);
  190. trace_xfs_buf_init(bp, _RET_IP_);
  191. return bp;
  192. }
  193. /*
  194. * Allocate a page array capable of holding a specified number
  195. * of pages, and point the page buf at it.
  196. */
  197. STATIC int
  198. _xfs_buf_get_pages(
  199. xfs_buf_t *bp,
  200. int page_count,
  201. xfs_buf_flags_t flags)
  202. {
  203. /* Make sure that we have a page list */
  204. if (bp->b_pages == NULL) {
  205. bp->b_page_count = page_count;
  206. if (page_count <= XB_PAGES) {
  207. bp->b_pages = bp->b_page_array;
  208. } else {
  209. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  210. page_count, KM_NOFS);
  211. if (bp->b_pages == NULL)
  212. return -ENOMEM;
  213. }
  214. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  215. }
  216. return 0;
  217. }
  218. /*
  219. * Frees b_pages if it was allocated.
  220. */
  221. STATIC void
  222. _xfs_buf_free_pages(
  223. xfs_buf_t *bp)
  224. {
  225. if (bp->b_pages != bp->b_page_array) {
  226. kmem_free(bp->b_pages);
  227. bp->b_pages = NULL;
  228. }
  229. }
  230. /*
  231. * Releases the specified buffer.
  232. *
  233. * The modification state of any associated pages is left unchanged.
  234. * The buffer most not be on any hash - use xfs_buf_rele instead for
  235. * hashed and refcounted buffers
  236. */
  237. void
  238. xfs_buf_free(
  239. xfs_buf_t *bp)
  240. {
  241. trace_xfs_buf_free(bp, _RET_IP_);
  242. ASSERT(list_empty(&bp->b_lru));
  243. if (bp->b_flags & _XBF_PAGES) {
  244. uint i;
  245. if (xfs_buf_is_vmapped(bp))
  246. vm_unmap_ram(bp->b_addr - bp->b_offset,
  247. bp->b_page_count);
  248. for (i = 0; i < bp->b_page_count; i++) {
  249. struct page *page = bp->b_pages[i];
  250. __free_page(page);
  251. }
  252. } else if (bp->b_flags & _XBF_KMEM)
  253. kmem_free(bp->b_addr);
  254. _xfs_buf_free_pages(bp);
  255. kmem_zone_free(xfs_buf_zone, bp);
  256. }
  257. /*
  258. * Allocates all the pages for buffer in question and builds it's page list.
  259. */
  260. STATIC int
  261. xfs_buf_allocate_memory(
  262. xfs_buf_t *bp,
  263. uint flags)
  264. {
  265. size_t size;
  266. size_t nbytes, offset;
  267. gfp_t gfp_mask = xb_to_gfp(flags);
  268. unsigned short page_count, i;
  269. xfs_off_t start, end;
  270. int error;
  271. /*
  272. * for buffers that are contained within a single page, just allocate
  273. * the memory from the heap - there's no need for the complexity of
  274. * page arrays to keep allocation down to order 0.
  275. */
  276. size = BBTOB(bp->b_length);
  277. if (size < PAGE_SIZE) {
  278. bp->b_addr = kmem_alloc(size, KM_NOFS);
  279. if (!bp->b_addr) {
  280. /* low memory - use alloc_page loop instead */
  281. goto use_alloc_page;
  282. }
  283. if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
  284. ((unsigned long)bp->b_addr & PAGE_MASK)) {
  285. /* b_addr spans two pages - use alloc_page instead */
  286. kmem_free(bp->b_addr);
  287. bp->b_addr = NULL;
  288. goto use_alloc_page;
  289. }
  290. bp->b_offset = offset_in_page(bp->b_addr);
  291. bp->b_pages = bp->b_page_array;
  292. bp->b_pages[0] = virt_to_page(bp->b_addr);
  293. bp->b_page_count = 1;
  294. bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
  295. return 0;
  296. }
  297. use_alloc_page:
  298. start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
  299. end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  300. page_count = end - start;
  301. error = _xfs_buf_get_pages(bp, page_count, flags);
  302. if (unlikely(error))
  303. return error;
  304. offset = bp->b_offset;
  305. bp->b_flags |= _XBF_PAGES;
  306. for (i = 0; i < bp->b_page_count; i++) {
  307. struct page *page;
  308. uint retries = 0;
  309. retry:
  310. page = alloc_page(gfp_mask);
  311. if (unlikely(page == NULL)) {
  312. if (flags & XBF_READ_AHEAD) {
  313. bp->b_page_count = i;
  314. error = ENOMEM;
  315. goto out_free_pages;
  316. }
  317. /*
  318. * This could deadlock.
  319. *
  320. * But until all the XFS lowlevel code is revamped to
  321. * handle buffer allocation failures we can't do much.
  322. */
  323. if (!(++retries % 100))
  324. xfs_err(NULL,
  325. "possible memory allocation deadlock in %s (mode:0x%x)",
  326. __func__, gfp_mask);
  327. XFS_STATS_INC(xb_page_retries);
  328. congestion_wait(BLK_RW_ASYNC, HZ/50);
  329. goto retry;
  330. }
  331. XFS_STATS_INC(xb_page_found);
  332. nbytes = min_t(size_t, size, PAGE_SIZE - offset);
  333. size -= nbytes;
  334. bp->b_pages[i] = page;
  335. offset = 0;
  336. }
  337. return 0;
  338. out_free_pages:
  339. for (i = 0; i < bp->b_page_count; i++)
  340. __free_page(bp->b_pages[i]);
  341. return error;
  342. }
  343. /*
  344. * Map buffer into kernel address-space if necessary.
  345. */
  346. STATIC int
  347. _xfs_buf_map_pages(
  348. xfs_buf_t *bp,
  349. uint flags)
  350. {
  351. ASSERT(bp->b_flags & _XBF_PAGES);
  352. if (bp->b_page_count == 1) {
  353. /* A single page buffer is always mappable */
  354. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  355. bp->b_flags |= XBF_MAPPED;
  356. } else if (flags & XBF_MAPPED) {
  357. int retried = 0;
  358. do {
  359. bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
  360. -1, PAGE_KERNEL);
  361. if (bp->b_addr)
  362. break;
  363. vm_unmap_aliases();
  364. } while (retried++ <= 1);
  365. if (!bp->b_addr)
  366. return -ENOMEM;
  367. bp->b_addr += bp->b_offset;
  368. bp->b_flags |= XBF_MAPPED;
  369. }
  370. return 0;
  371. }
  372. /*
  373. * Finding and Reading Buffers
  374. */
  375. /*
  376. * Look up, and creates if absent, a lockable buffer for
  377. * a given range of an inode. The buffer is returned
  378. * locked. No I/O is implied by this call.
  379. */
  380. xfs_buf_t *
  381. _xfs_buf_find(
  382. struct xfs_buftarg *btp,
  383. xfs_daddr_t blkno,
  384. size_t numblks,
  385. xfs_buf_flags_t flags,
  386. xfs_buf_t *new_bp)
  387. {
  388. size_t numbytes;
  389. struct xfs_perag *pag;
  390. struct rb_node **rbp;
  391. struct rb_node *parent;
  392. xfs_buf_t *bp;
  393. numbytes = BBTOB(numblks);
  394. /* Check for IOs smaller than the sector size / not sector aligned */
  395. ASSERT(!(numbytes < (1 << btp->bt_sshift)));
  396. ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
  397. /* get tree root */
  398. pag = xfs_perag_get(btp->bt_mount,
  399. xfs_daddr_to_agno(btp->bt_mount, blkno));
  400. /* walk tree */
  401. spin_lock(&pag->pag_buf_lock);
  402. rbp = &pag->pag_buf_tree.rb_node;
  403. parent = NULL;
  404. bp = NULL;
  405. while (*rbp) {
  406. parent = *rbp;
  407. bp = rb_entry(parent, struct xfs_buf, b_rbnode);
  408. if (blkno < bp->b_bn)
  409. rbp = &(*rbp)->rb_left;
  410. else if (blkno > bp->b_bn)
  411. rbp = &(*rbp)->rb_right;
  412. else {
  413. /*
  414. * found a block number match. If the range doesn't
  415. * match, the only way this is allowed is if the buffer
  416. * in the cache is stale and the transaction that made
  417. * it stale has not yet committed. i.e. we are
  418. * reallocating a busy extent. Skip this buffer and
  419. * continue searching to the right for an exact match.
  420. */
  421. if (bp->b_length != numblks) {
  422. ASSERT(bp->b_flags & XBF_STALE);
  423. rbp = &(*rbp)->rb_right;
  424. continue;
  425. }
  426. atomic_inc(&bp->b_hold);
  427. goto found;
  428. }
  429. }
  430. /* No match found */
  431. if (new_bp) {
  432. rb_link_node(&new_bp->b_rbnode, parent, rbp);
  433. rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
  434. /* the buffer keeps the perag reference until it is freed */
  435. new_bp->b_pag = pag;
  436. spin_unlock(&pag->pag_buf_lock);
  437. } else {
  438. XFS_STATS_INC(xb_miss_locked);
  439. spin_unlock(&pag->pag_buf_lock);
  440. xfs_perag_put(pag);
  441. }
  442. return new_bp;
  443. found:
  444. spin_unlock(&pag->pag_buf_lock);
  445. xfs_perag_put(pag);
  446. if (!xfs_buf_trylock(bp)) {
  447. if (flags & XBF_TRYLOCK) {
  448. xfs_buf_rele(bp);
  449. XFS_STATS_INC(xb_busy_locked);
  450. return NULL;
  451. }
  452. xfs_buf_lock(bp);
  453. XFS_STATS_INC(xb_get_locked_waited);
  454. }
  455. /*
  456. * if the buffer is stale, clear all the external state associated with
  457. * it. We need to keep flags such as how we allocated the buffer memory
  458. * intact here.
  459. */
  460. if (bp->b_flags & XBF_STALE) {
  461. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  462. bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
  463. }
  464. trace_xfs_buf_find(bp, flags, _RET_IP_);
  465. XFS_STATS_INC(xb_get_locked);
  466. return bp;
  467. }
  468. /*
  469. * Assembles a buffer covering the specified range. The code is optimised for
  470. * cache hits, as metadata intensive workloads will see 3 orders of magnitude
  471. * more hits than misses.
  472. */
  473. struct xfs_buf *
  474. xfs_buf_get(
  475. xfs_buftarg_t *target,
  476. xfs_daddr_t blkno,
  477. size_t numblks,
  478. xfs_buf_flags_t flags)
  479. {
  480. struct xfs_buf *bp;
  481. struct xfs_buf *new_bp;
  482. int error = 0;
  483. bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
  484. if (likely(bp))
  485. goto found;
  486. new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
  487. if (unlikely(!new_bp))
  488. return NULL;
  489. error = xfs_buf_allocate_memory(new_bp, flags);
  490. if (error) {
  491. kmem_zone_free(xfs_buf_zone, new_bp);
  492. return NULL;
  493. }
  494. bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
  495. if (!bp) {
  496. xfs_buf_free(new_bp);
  497. return NULL;
  498. }
  499. if (bp != new_bp)
  500. xfs_buf_free(new_bp);
  501. /*
  502. * Now we have a workable buffer, fill in the block number so
  503. * that we can do IO on it.
  504. */
  505. bp->b_bn = blkno;
  506. bp->b_io_length = bp->b_length;
  507. found:
  508. if (!(bp->b_flags & XBF_MAPPED)) {
  509. error = _xfs_buf_map_pages(bp, flags);
  510. if (unlikely(error)) {
  511. xfs_warn(target->bt_mount,
  512. "%s: failed to map pages\n", __func__);
  513. xfs_buf_relse(bp);
  514. return NULL;
  515. }
  516. }
  517. XFS_STATS_INC(xb_get);
  518. trace_xfs_buf_get(bp, flags, _RET_IP_);
  519. return bp;
  520. }
  521. STATIC int
  522. _xfs_buf_read(
  523. xfs_buf_t *bp,
  524. xfs_buf_flags_t flags)
  525. {
  526. ASSERT(!(flags & XBF_WRITE));
  527. ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
  528. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
  529. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
  530. xfs_buf_iorequest(bp);
  531. if (flags & XBF_ASYNC)
  532. return 0;
  533. return xfs_buf_iowait(bp);
  534. }
  535. xfs_buf_t *
  536. xfs_buf_read(
  537. xfs_buftarg_t *target,
  538. xfs_daddr_t blkno,
  539. size_t numblks,
  540. xfs_buf_flags_t flags)
  541. {
  542. xfs_buf_t *bp;
  543. flags |= XBF_READ;
  544. bp = xfs_buf_get(target, blkno, numblks, flags);
  545. if (bp) {
  546. trace_xfs_buf_read(bp, flags, _RET_IP_);
  547. if (!XFS_BUF_ISDONE(bp)) {
  548. XFS_STATS_INC(xb_get_read);
  549. _xfs_buf_read(bp, flags);
  550. } else if (flags & XBF_ASYNC) {
  551. /*
  552. * Read ahead call which is already satisfied,
  553. * drop the buffer
  554. */
  555. xfs_buf_relse(bp);
  556. return NULL;
  557. } else {
  558. /* We do not want read in the flags */
  559. bp->b_flags &= ~XBF_READ;
  560. }
  561. }
  562. return bp;
  563. }
  564. /*
  565. * If we are not low on memory then do the readahead in a deadlock
  566. * safe manner.
  567. */
  568. void
  569. xfs_buf_readahead(
  570. xfs_buftarg_t *target,
  571. xfs_daddr_t blkno,
  572. size_t numblks)
  573. {
  574. if (bdi_read_congested(target->bt_bdi))
  575. return;
  576. xfs_buf_read(target, blkno, numblks,
  577. XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
  578. }
  579. /*
  580. * Read an uncached buffer from disk. Allocates and returns a locked
  581. * buffer containing the disk contents or nothing.
  582. */
  583. struct xfs_buf *
  584. xfs_buf_read_uncached(
  585. struct xfs_buftarg *target,
  586. xfs_daddr_t daddr,
  587. size_t numblks,
  588. int flags)
  589. {
  590. xfs_buf_t *bp;
  591. int error;
  592. bp = xfs_buf_get_uncached(target, numblks, flags);
  593. if (!bp)
  594. return NULL;
  595. /* set up the buffer for a read IO */
  596. XFS_BUF_SET_ADDR(bp, daddr);
  597. XFS_BUF_READ(bp);
  598. xfsbdstrat(target->bt_mount, bp);
  599. error = xfs_buf_iowait(bp);
  600. if (error) {
  601. xfs_buf_relse(bp);
  602. return NULL;
  603. }
  604. return bp;
  605. }
  606. /*
  607. * Return a buffer allocated as an empty buffer and associated to external
  608. * memory via xfs_buf_associate_memory() back to it's empty state.
  609. */
  610. void
  611. xfs_buf_set_empty(
  612. struct xfs_buf *bp,
  613. size_t numblks)
  614. {
  615. if (bp->b_pages)
  616. _xfs_buf_free_pages(bp);
  617. bp->b_pages = NULL;
  618. bp->b_page_count = 0;
  619. bp->b_addr = NULL;
  620. bp->b_length = numblks;
  621. bp->b_io_length = numblks;
  622. bp->b_bn = XFS_BUF_DADDR_NULL;
  623. bp->b_flags &= ~XBF_MAPPED;
  624. }
  625. static inline struct page *
  626. mem_to_page(
  627. void *addr)
  628. {
  629. if ((!is_vmalloc_addr(addr))) {
  630. return virt_to_page(addr);
  631. } else {
  632. return vmalloc_to_page(addr);
  633. }
  634. }
  635. int
  636. xfs_buf_associate_memory(
  637. xfs_buf_t *bp,
  638. void *mem,
  639. size_t len)
  640. {
  641. int rval;
  642. int i = 0;
  643. unsigned long pageaddr;
  644. unsigned long offset;
  645. size_t buflen;
  646. int page_count;
  647. pageaddr = (unsigned long)mem & PAGE_MASK;
  648. offset = (unsigned long)mem - pageaddr;
  649. buflen = PAGE_ALIGN(len + offset);
  650. page_count = buflen >> PAGE_SHIFT;
  651. /* Free any previous set of page pointers */
  652. if (bp->b_pages)
  653. _xfs_buf_free_pages(bp);
  654. bp->b_pages = NULL;
  655. bp->b_addr = mem;
  656. rval = _xfs_buf_get_pages(bp, page_count, 0);
  657. if (rval)
  658. return rval;
  659. bp->b_offset = offset;
  660. for (i = 0; i < bp->b_page_count; i++) {
  661. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  662. pageaddr += PAGE_SIZE;
  663. }
  664. bp->b_io_length = BTOBB(len);
  665. bp->b_length = BTOBB(buflen);
  666. bp->b_flags |= XBF_MAPPED;
  667. return 0;
  668. }
  669. xfs_buf_t *
  670. xfs_buf_get_uncached(
  671. struct xfs_buftarg *target,
  672. size_t numblks,
  673. int flags)
  674. {
  675. unsigned long page_count;
  676. int error, i;
  677. xfs_buf_t *bp;
  678. bp = xfs_buf_alloc(target, 0, numblks, 0);
  679. if (unlikely(bp == NULL))
  680. goto fail;
  681. page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
  682. error = _xfs_buf_get_pages(bp, page_count, 0);
  683. if (error)
  684. goto fail_free_buf;
  685. for (i = 0; i < page_count; i++) {
  686. bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
  687. if (!bp->b_pages[i])
  688. goto fail_free_mem;
  689. }
  690. bp->b_flags |= _XBF_PAGES;
  691. error = _xfs_buf_map_pages(bp, XBF_MAPPED);
  692. if (unlikely(error)) {
  693. xfs_warn(target->bt_mount,
  694. "%s: failed to map pages\n", __func__);
  695. goto fail_free_mem;
  696. }
  697. trace_xfs_buf_get_uncached(bp, _RET_IP_);
  698. return bp;
  699. fail_free_mem:
  700. while (--i >= 0)
  701. __free_page(bp->b_pages[i]);
  702. _xfs_buf_free_pages(bp);
  703. fail_free_buf:
  704. kmem_zone_free(xfs_buf_zone, bp);
  705. fail:
  706. return NULL;
  707. }
  708. /*
  709. * Increment reference count on buffer, to hold the buffer concurrently
  710. * with another thread which may release (free) the buffer asynchronously.
  711. * Must hold the buffer already to call this function.
  712. */
  713. void
  714. xfs_buf_hold(
  715. xfs_buf_t *bp)
  716. {
  717. trace_xfs_buf_hold(bp, _RET_IP_);
  718. atomic_inc(&bp->b_hold);
  719. }
  720. /*
  721. * Releases a hold on the specified buffer. If the
  722. * the hold count is 1, calls xfs_buf_free.
  723. */
  724. void
  725. xfs_buf_rele(
  726. xfs_buf_t *bp)
  727. {
  728. struct xfs_perag *pag = bp->b_pag;
  729. trace_xfs_buf_rele(bp, _RET_IP_);
  730. if (!pag) {
  731. ASSERT(list_empty(&bp->b_lru));
  732. ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
  733. if (atomic_dec_and_test(&bp->b_hold))
  734. xfs_buf_free(bp);
  735. return;
  736. }
  737. ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
  738. ASSERT(atomic_read(&bp->b_hold) > 0);
  739. if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
  740. if (!(bp->b_flags & XBF_STALE) &&
  741. atomic_read(&bp->b_lru_ref)) {
  742. xfs_buf_lru_add(bp);
  743. spin_unlock(&pag->pag_buf_lock);
  744. } else {
  745. xfs_buf_lru_del(bp);
  746. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  747. rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
  748. spin_unlock(&pag->pag_buf_lock);
  749. xfs_perag_put(pag);
  750. xfs_buf_free(bp);
  751. }
  752. }
  753. }
  754. /*
  755. * Lock a buffer object, if it is not already locked.
  756. *
  757. * If we come across a stale, pinned, locked buffer, we know that we are
  758. * being asked to lock a buffer that has been reallocated. Because it is
  759. * pinned, we know that the log has not been pushed to disk and hence it
  760. * will still be locked. Rather than continuing to have trylock attempts
  761. * fail until someone else pushes the log, push it ourselves before
  762. * returning. This means that the xfsaild will not get stuck trying
  763. * to push on stale inode buffers.
  764. */
  765. int
  766. xfs_buf_trylock(
  767. struct xfs_buf *bp)
  768. {
  769. int locked;
  770. locked = down_trylock(&bp->b_sema) == 0;
  771. if (locked)
  772. XB_SET_OWNER(bp);
  773. else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  774. xfs_log_force(bp->b_target->bt_mount, 0);
  775. trace_xfs_buf_trylock(bp, _RET_IP_);
  776. return locked;
  777. }
  778. /*
  779. * Lock a buffer object.
  780. *
  781. * If we come across a stale, pinned, locked buffer, we know that we
  782. * are being asked to lock a buffer that has been reallocated. Because
  783. * it is pinned, we know that the log has not been pushed to disk and
  784. * hence it will still be locked. Rather than sleeping until someone
  785. * else pushes the log, push it ourselves before trying to get the lock.
  786. */
  787. void
  788. xfs_buf_lock(
  789. struct xfs_buf *bp)
  790. {
  791. trace_xfs_buf_lock(bp, _RET_IP_);
  792. if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  793. xfs_log_force(bp->b_target->bt_mount, 0);
  794. down(&bp->b_sema);
  795. XB_SET_OWNER(bp);
  796. trace_xfs_buf_lock_done(bp, _RET_IP_);
  797. }
  798. void
  799. xfs_buf_unlock(
  800. struct xfs_buf *bp)
  801. {
  802. XB_CLEAR_OWNER(bp);
  803. up(&bp->b_sema);
  804. trace_xfs_buf_unlock(bp, _RET_IP_);
  805. }
  806. STATIC void
  807. xfs_buf_wait_unpin(
  808. xfs_buf_t *bp)
  809. {
  810. DECLARE_WAITQUEUE (wait, current);
  811. if (atomic_read(&bp->b_pin_count) == 0)
  812. return;
  813. add_wait_queue(&bp->b_waiters, &wait);
  814. for (;;) {
  815. set_current_state(TASK_UNINTERRUPTIBLE);
  816. if (atomic_read(&bp->b_pin_count) == 0)
  817. break;
  818. io_schedule();
  819. }
  820. remove_wait_queue(&bp->b_waiters, &wait);
  821. set_current_state(TASK_RUNNING);
  822. }
  823. /*
  824. * Buffer Utility Routines
  825. */
  826. STATIC void
  827. xfs_buf_iodone_work(
  828. struct work_struct *work)
  829. {
  830. xfs_buf_t *bp =
  831. container_of(work, xfs_buf_t, b_iodone_work);
  832. if (bp->b_iodone)
  833. (*(bp->b_iodone))(bp);
  834. else if (bp->b_flags & XBF_ASYNC)
  835. xfs_buf_relse(bp);
  836. }
  837. void
  838. xfs_buf_ioend(
  839. xfs_buf_t *bp,
  840. int schedule)
  841. {
  842. trace_xfs_buf_iodone(bp, _RET_IP_);
  843. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  844. if (bp->b_error == 0)
  845. bp->b_flags |= XBF_DONE;
  846. if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
  847. if (schedule) {
  848. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  849. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  850. } else {
  851. xfs_buf_iodone_work(&bp->b_iodone_work);
  852. }
  853. } else {
  854. complete(&bp->b_iowait);
  855. }
  856. }
  857. void
  858. xfs_buf_ioerror(
  859. xfs_buf_t *bp,
  860. int error)
  861. {
  862. ASSERT(error >= 0 && error <= 0xffff);
  863. bp->b_error = (unsigned short)error;
  864. trace_xfs_buf_ioerror(bp, error, _RET_IP_);
  865. }
  866. void
  867. xfs_buf_ioerror_alert(
  868. struct xfs_buf *bp,
  869. const char *func)
  870. {
  871. xfs_alert(bp->b_target->bt_mount,
  872. "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
  873. (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
  874. }
  875. int
  876. xfs_bwrite(
  877. struct xfs_buf *bp)
  878. {
  879. int error;
  880. ASSERT(xfs_buf_islocked(bp));
  881. bp->b_flags |= XBF_WRITE;
  882. bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
  883. xfs_bdstrat_cb(bp);
  884. error = xfs_buf_iowait(bp);
  885. if (error) {
  886. xfs_force_shutdown(bp->b_target->bt_mount,
  887. SHUTDOWN_META_IO_ERROR);
  888. }
  889. return error;
  890. }
  891. /*
  892. * Called when we want to stop a buffer from getting written or read.
  893. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
  894. * so that the proper iodone callbacks get called.
  895. */
  896. STATIC int
  897. xfs_bioerror(
  898. xfs_buf_t *bp)
  899. {
  900. #ifdef XFSERRORDEBUG
  901. ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
  902. #endif
  903. /*
  904. * No need to wait until the buffer is unpinned, we aren't flushing it.
  905. */
  906. xfs_buf_ioerror(bp, EIO);
  907. /*
  908. * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
  909. */
  910. XFS_BUF_UNREAD(bp);
  911. XFS_BUF_UNDONE(bp);
  912. xfs_buf_stale(bp);
  913. xfs_buf_ioend(bp, 0);
  914. return EIO;
  915. }
  916. /*
  917. * Same as xfs_bioerror, except that we are releasing the buffer
  918. * here ourselves, and avoiding the xfs_buf_ioend call.
  919. * This is meant for userdata errors; metadata bufs come with
  920. * iodone functions attached, so that we can track down errors.
  921. */
  922. STATIC int
  923. xfs_bioerror_relse(
  924. struct xfs_buf *bp)
  925. {
  926. int64_t fl = bp->b_flags;
  927. /*
  928. * No need to wait until the buffer is unpinned.
  929. * We aren't flushing it.
  930. *
  931. * chunkhold expects B_DONE to be set, whether
  932. * we actually finish the I/O or not. We don't want to
  933. * change that interface.
  934. */
  935. XFS_BUF_UNREAD(bp);
  936. XFS_BUF_DONE(bp);
  937. xfs_buf_stale(bp);
  938. bp->b_iodone = NULL;
  939. if (!(fl & XBF_ASYNC)) {
  940. /*
  941. * Mark b_error and B_ERROR _both_.
  942. * Lot's of chunkcache code assumes that.
  943. * There's no reason to mark error for
  944. * ASYNC buffers.
  945. */
  946. xfs_buf_ioerror(bp, EIO);
  947. complete(&bp->b_iowait);
  948. } else {
  949. xfs_buf_relse(bp);
  950. }
  951. return EIO;
  952. }
  953. /*
  954. * All xfs metadata buffers except log state machine buffers
  955. * get this attached as their b_bdstrat callback function.
  956. * This is so that we can catch a buffer
  957. * after prematurely unpinning it to forcibly shutdown the filesystem.
  958. */
  959. int
  960. xfs_bdstrat_cb(
  961. struct xfs_buf *bp)
  962. {
  963. if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  964. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  965. /*
  966. * Metadata write that didn't get logged but
  967. * written delayed anyway. These aren't associated
  968. * with a transaction, and can be ignored.
  969. */
  970. if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
  971. return xfs_bioerror_relse(bp);
  972. else
  973. return xfs_bioerror(bp);
  974. }
  975. xfs_buf_iorequest(bp);
  976. return 0;
  977. }
  978. /*
  979. * Wrapper around bdstrat so that we can stop data from going to disk in case
  980. * we are shutting down the filesystem. Typically user data goes thru this
  981. * path; one of the exceptions is the superblock.
  982. */
  983. void
  984. xfsbdstrat(
  985. struct xfs_mount *mp,
  986. struct xfs_buf *bp)
  987. {
  988. if (XFS_FORCED_SHUTDOWN(mp)) {
  989. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  990. xfs_bioerror_relse(bp);
  991. return;
  992. }
  993. xfs_buf_iorequest(bp);
  994. }
  995. STATIC void
  996. _xfs_buf_ioend(
  997. xfs_buf_t *bp,
  998. int schedule)
  999. {
  1000. if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
  1001. xfs_buf_ioend(bp, schedule);
  1002. }
  1003. STATIC void
  1004. xfs_buf_bio_end_io(
  1005. struct bio *bio,
  1006. int error)
  1007. {
  1008. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  1009. xfs_buf_ioerror(bp, -error);
  1010. if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
  1011. invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
  1012. _xfs_buf_ioend(bp, 1);
  1013. bio_put(bio);
  1014. }
  1015. STATIC void
  1016. _xfs_buf_ioapply(
  1017. xfs_buf_t *bp)
  1018. {
  1019. int rw, map_i, total_nr_pages, nr_pages;
  1020. struct bio *bio;
  1021. int offset = bp->b_offset;
  1022. int size = BBTOB(bp->b_io_length);
  1023. sector_t sector = bp->b_bn;
  1024. total_nr_pages = bp->b_page_count;
  1025. map_i = 0;
  1026. if (bp->b_flags & XBF_WRITE) {
  1027. if (bp->b_flags & XBF_SYNCIO)
  1028. rw = WRITE_SYNC;
  1029. else
  1030. rw = WRITE;
  1031. if (bp->b_flags & XBF_FUA)
  1032. rw |= REQ_FUA;
  1033. if (bp->b_flags & XBF_FLUSH)
  1034. rw |= REQ_FLUSH;
  1035. } else if (bp->b_flags & XBF_READ_AHEAD) {
  1036. rw = READA;
  1037. } else {
  1038. rw = READ;
  1039. }
  1040. /* we only use the buffer cache for meta-data */
  1041. rw |= REQ_META;
  1042. next_chunk:
  1043. atomic_inc(&bp->b_io_remaining);
  1044. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1045. if (nr_pages > total_nr_pages)
  1046. nr_pages = total_nr_pages;
  1047. bio = bio_alloc(GFP_NOIO, nr_pages);
  1048. bio->bi_bdev = bp->b_target->bt_bdev;
  1049. bio->bi_sector = sector;
  1050. bio->bi_end_io = xfs_buf_bio_end_io;
  1051. bio->bi_private = bp;
  1052. for (; size && nr_pages; nr_pages--, map_i++) {
  1053. int rbytes, nbytes = PAGE_SIZE - offset;
  1054. if (nbytes > size)
  1055. nbytes = size;
  1056. rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
  1057. if (rbytes < nbytes)
  1058. break;
  1059. offset = 0;
  1060. sector += BTOBB(nbytes);
  1061. size -= nbytes;
  1062. total_nr_pages--;
  1063. }
  1064. if (likely(bio->bi_size)) {
  1065. if (xfs_buf_is_vmapped(bp)) {
  1066. flush_kernel_vmap_range(bp->b_addr,
  1067. xfs_buf_vmap_len(bp));
  1068. }
  1069. submit_bio(rw, bio);
  1070. if (size)
  1071. goto next_chunk;
  1072. } else {
  1073. xfs_buf_ioerror(bp, EIO);
  1074. bio_put(bio);
  1075. }
  1076. }
  1077. void
  1078. xfs_buf_iorequest(
  1079. xfs_buf_t *bp)
  1080. {
  1081. trace_xfs_buf_iorequest(bp, _RET_IP_);
  1082. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  1083. if (bp->b_flags & XBF_WRITE)
  1084. xfs_buf_wait_unpin(bp);
  1085. xfs_buf_hold(bp);
  1086. /* Set the count to 1 initially, this will stop an I/O
  1087. * completion callout which happens before we have started
  1088. * all the I/O from calling xfs_buf_ioend too early.
  1089. */
  1090. atomic_set(&bp->b_io_remaining, 1);
  1091. _xfs_buf_ioapply(bp);
  1092. _xfs_buf_ioend(bp, 0);
  1093. xfs_buf_rele(bp);
  1094. }
  1095. /*
  1096. * Waits for I/O to complete on the buffer supplied. It returns immediately if
  1097. * no I/O is pending or there is already a pending error on the buffer. It
  1098. * returns the I/O error code, if any, or 0 if there was no error.
  1099. */
  1100. int
  1101. xfs_buf_iowait(
  1102. xfs_buf_t *bp)
  1103. {
  1104. trace_xfs_buf_iowait(bp, _RET_IP_);
  1105. if (!bp->b_error)
  1106. wait_for_completion(&bp->b_iowait);
  1107. trace_xfs_buf_iowait_done(bp, _RET_IP_);
  1108. return bp->b_error;
  1109. }
  1110. xfs_caddr_t
  1111. xfs_buf_offset(
  1112. xfs_buf_t *bp,
  1113. size_t offset)
  1114. {
  1115. struct page *page;
  1116. if (bp->b_flags & XBF_MAPPED)
  1117. return bp->b_addr + offset;
  1118. offset += bp->b_offset;
  1119. page = bp->b_pages[offset >> PAGE_SHIFT];
  1120. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
  1121. }
  1122. /*
  1123. * Move data into or out of a buffer.
  1124. */
  1125. void
  1126. xfs_buf_iomove(
  1127. xfs_buf_t *bp, /* buffer to process */
  1128. size_t boff, /* starting buffer offset */
  1129. size_t bsize, /* length to copy */
  1130. void *data, /* data address */
  1131. xfs_buf_rw_t mode) /* read/write/zero flag */
  1132. {
  1133. size_t bend;
  1134. bend = boff + bsize;
  1135. while (boff < bend) {
  1136. struct page *page;
  1137. int page_index, page_offset, csize;
  1138. page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
  1139. page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
  1140. page = bp->b_pages[page_index];
  1141. csize = min_t(size_t, PAGE_SIZE - page_offset,
  1142. BBTOB(bp->b_io_length) - boff);
  1143. ASSERT((csize + page_offset) <= PAGE_SIZE);
  1144. switch (mode) {
  1145. case XBRW_ZERO:
  1146. memset(page_address(page) + page_offset, 0, csize);
  1147. break;
  1148. case XBRW_READ:
  1149. memcpy(data, page_address(page) + page_offset, csize);
  1150. break;
  1151. case XBRW_WRITE:
  1152. memcpy(page_address(page) + page_offset, data, csize);
  1153. }
  1154. boff += csize;
  1155. data += csize;
  1156. }
  1157. }
  1158. /*
  1159. * Handling of buffer targets (buftargs).
  1160. */
  1161. /*
  1162. * Wait for any bufs with callbacks that have been submitted but have not yet
  1163. * returned. These buffers will have an elevated hold count, so wait on those
  1164. * while freeing all the buffers only held by the LRU.
  1165. */
  1166. void
  1167. xfs_wait_buftarg(
  1168. struct xfs_buftarg *btp)
  1169. {
  1170. struct xfs_buf *bp;
  1171. restart:
  1172. spin_lock(&btp->bt_lru_lock);
  1173. while (!list_empty(&btp->bt_lru)) {
  1174. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1175. if (atomic_read(&bp->b_hold) > 1) {
  1176. spin_unlock(&btp->bt_lru_lock);
  1177. delay(100);
  1178. goto restart;
  1179. }
  1180. /*
  1181. * clear the LRU reference count so the buffer doesn't get
  1182. * ignored in xfs_buf_rele().
  1183. */
  1184. atomic_set(&bp->b_lru_ref, 0);
  1185. spin_unlock(&btp->bt_lru_lock);
  1186. xfs_buf_rele(bp);
  1187. spin_lock(&btp->bt_lru_lock);
  1188. }
  1189. spin_unlock(&btp->bt_lru_lock);
  1190. }
  1191. int
  1192. xfs_buftarg_shrink(
  1193. struct shrinker *shrink,
  1194. struct shrink_control *sc)
  1195. {
  1196. struct xfs_buftarg *btp = container_of(shrink,
  1197. struct xfs_buftarg, bt_shrinker);
  1198. struct xfs_buf *bp;
  1199. int nr_to_scan = sc->nr_to_scan;
  1200. LIST_HEAD(dispose);
  1201. if (!nr_to_scan)
  1202. return btp->bt_lru_nr;
  1203. spin_lock(&btp->bt_lru_lock);
  1204. while (!list_empty(&btp->bt_lru)) {
  1205. if (nr_to_scan-- <= 0)
  1206. break;
  1207. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1208. /*
  1209. * Decrement the b_lru_ref count unless the value is already
  1210. * zero. If the value is already zero, we need to reclaim the
  1211. * buffer, otherwise it gets another trip through the LRU.
  1212. */
  1213. if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
  1214. list_move_tail(&bp->b_lru, &btp->bt_lru);
  1215. continue;
  1216. }
  1217. /*
  1218. * remove the buffer from the LRU now to avoid needing another
  1219. * lock round trip inside xfs_buf_rele().
  1220. */
  1221. list_move(&bp->b_lru, &dispose);
  1222. btp->bt_lru_nr--;
  1223. }
  1224. spin_unlock(&btp->bt_lru_lock);
  1225. while (!list_empty(&dispose)) {
  1226. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1227. list_del_init(&bp->b_lru);
  1228. xfs_buf_rele(bp);
  1229. }
  1230. return btp->bt_lru_nr;
  1231. }
  1232. void
  1233. xfs_free_buftarg(
  1234. struct xfs_mount *mp,
  1235. struct xfs_buftarg *btp)
  1236. {
  1237. unregister_shrinker(&btp->bt_shrinker);
  1238. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1239. xfs_blkdev_issue_flush(btp);
  1240. kmem_free(btp);
  1241. }
  1242. STATIC int
  1243. xfs_setsize_buftarg_flags(
  1244. xfs_buftarg_t *btp,
  1245. unsigned int blocksize,
  1246. unsigned int sectorsize,
  1247. int verbose)
  1248. {
  1249. btp->bt_bsize = blocksize;
  1250. btp->bt_sshift = ffs(sectorsize) - 1;
  1251. btp->bt_smask = sectorsize - 1;
  1252. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1253. char name[BDEVNAME_SIZE];
  1254. bdevname(btp->bt_bdev, name);
  1255. xfs_warn(btp->bt_mount,
  1256. "Cannot set_blocksize to %u on device %s\n",
  1257. sectorsize, name);
  1258. return EINVAL;
  1259. }
  1260. return 0;
  1261. }
  1262. /*
  1263. * When allocating the initial buffer target we have not yet
  1264. * read in the superblock, so don't know what sized sectors
  1265. * are being used is at this early stage. Play safe.
  1266. */
  1267. STATIC int
  1268. xfs_setsize_buftarg_early(
  1269. xfs_buftarg_t *btp,
  1270. struct block_device *bdev)
  1271. {
  1272. return xfs_setsize_buftarg_flags(btp,
  1273. PAGE_SIZE, bdev_logical_block_size(bdev), 0);
  1274. }
  1275. int
  1276. xfs_setsize_buftarg(
  1277. xfs_buftarg_t *btp,
  1278. unsigned int blocksize,
  1279. unsigned int sectorsize)
  1280. {
  1281. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1282. }
  1283. xfs_buftarg_t *
  1284. xfs_alloc_buftarg(
  1285. struct xfs_mount *mp,
  1286. struct block_device *bdev,
  1287. int external,
  1288. const char *fsname)
  1289. {
  1290. xfs_buftarg_t *btp;
  1291. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1292. btp->bt_mount = mp;
  1293. btp->bt_dev = bdev->bd_dev;
  1294. btp->bt_bdev = bdev;
  1295. btp->bt_bdi = blk_get_backing_dev_info(bdev);
  1296. if (!btp->bt_bdi)
  1297. goto error;
  1298. INIT_LIST_HEAD(&btp->bt_lru);
  1299. spin_lock_init(&btp->bt_lru_lock);
  1300. if (xfs_setsize_buftarg_early(btp, bdev))
  1301. goto error;
  1302. btp->bt_shrinker.shrink = xfs_buftarg_shrink;
  1303. btp->bt_shrinker.seeks = DEFAULT_SEEKS;
  1304. register_shrinker(&btp->bt_shrinker);
  1305. return btp;
  1306. error:
  1307. kmem_free(btp);
  1308. return NULL;
  1309. }
  1310. /*
  1311. * Add a buffer to the delayed write list.
  1312. *
  1313. * This queues a buffer for writeout if it hasn't already been. Note that
  1314. * neither this routine nor the buffer list submission functions perform
  1315. * any internal synchronization. It is expected that the lists are thread-local
  1316. * to the callers.
  1317. *
  1318. * Returns true if we queued up the buffer, or false if it already had
  1319. * been on the buffer list.
  1320. */
  1321. bool
  1322. xfs_buf_delwri_queue(
  1323. struct xfs_buf *bp,
  1324. struct list_head *list)
  1325. {
  1326. ASSERT(xfs_buf_islocked(bp));
  1327. ASSERT(!(bp->b_flags & XBF_READ));
  1328. /*
  1329. * If the buffer is already marked delwri it already is queued up
  1330. * by someone else for imediate writeout. Just ignore it in that
  1331. * case.
  1332. */
  1333. if (bp->b_flags & _XBF_DELWRI_Q) {
  1334. trace_xfs_buf_delwri_queued(bp, _RET_IP_);
  1335. return false;
  1336. }
  1337. trace_xfs_buf_delwri_queue(bp, _RET_IP_);
  1338. /*
  1339. * If a buffer gets written out synchronously or marked stale while it
  1340. * is on a delwri list we lazily remove it. To do this, the other party
  1341. * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
  1342. * It remains referenced and on the list. In a rare corner case it
  1343. * might get readded to a delwri list after the synchronous writeout, in
  1344. * which case we need just need to re-add the flag here.
  1345. */
  1346. bp->b_flags |= _XBF_DELWRI_Q;
  1347. if (list_empty(&bp->b_list)) {
  1348. atomic_inc(&bp->b_hold);
  1349. list_add_tail(&bp->b_list, list);
  1350. }
  1351. return true;
  1352. }
  1353. /*
  1354. * Compare function is more complex than it needs to be because
  1355. * the return value is only 32 bits and we are doing comparisons
  1356. * on 64 bit values
  1357. */
  1358. static int
  1359. xfs_buf_cmp(
  1360. void *priv,
  1361. struct list_head *a,
  1362. struct list_head *b)
  1363. {
  1364. struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
  1365. struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
  1366. xfs_daddr_t diff;
  1367. diff = ap->b_bn - bp->b_bn;
  1368. if (diff < 0)
  1369. return -1;
  1370. if (diff > 0)
  1371. return 1;
  1372. return 0;
  1373. }
  1374. static int
  1375. __xfs_buf_delwri_submit(
  1376. struct list_head *buffer_list,
  1377. struct list_head *io_list,
  1378. bool wait)
  1379. {
  1380. struct blk_plug plug;
  1381. struct xfs_buf *bp, *n;
  1382. int pinned = 0;
  1383. list_for_each_entry_safe(bp, n, buffer_list, b_list) {
  1384. if (!wait) {
  1385. if (xfs_buf_ispinned(bp)) {
  1386. pinned++;
  1387. continue;
  1388. }
  1389. if (!xfs_buf_trylock(bp))
  1390. continue;
  1391. } else {
  1392. xfs_buf_lock(bp);
  1393. }
  1394. /*
  1395. * Someone else might have written the buffer synchronously or
  1396. * marked it stale in the meantime. In that case only the
  1397. * _XBF_DELWRI_Q flag got cleared, and we have to drop the
  1398. * reference and remove it from the list here.
  1399. */
  1400. if (!(bp->b_flags & _XBF_DELWRI_Q)) {
  1401. list_del_init(&bp->b_list);
  1402. xfs_buf_relse(bp);
  1403. continue;
  1404. }
  1405. list_move_tail(&bp->b_list, io_list);
  1406. trace_xfs_buf_delwri_split(bp, _RET_IP_);
  1407. }
  1408. list_sort(NULL, io_list, xfs_buf_cmp);
  1409. blk_start_plug(&plug);
  1410. list_for_each_entry_safe(bp, n, io_list, b_list) {
  1411. bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
  1412. bp->b_flags |= XBF_WRITE;
  1413. if (!wait) {
  1414. bp->b_flags |= XBF_ASYNC;
  1415. list_del_init(&bp->b_list);
  1416. }
  1417. xfs_bdstrat_cb(bp);
  1418. }
  1419. blk_finish_plug(&plug);
  1420. return pinned;
  1421. }
  1422. /*
  1423. * Write out a buffer list asynchronously.
  1424. *
  1425. * This will take the @buffer_list, write all non-locked and non-pinned buffers
  1426. * out and not wait for I/O completion on any of the buffers. This interface
  1427. * is only safely useable for callers that can track I/O completion by higher
  1428. * level means, e.g. AIL pushing as the @buffer_list is consumed in this
  1429. * function.
  1430. */
  1431. int
  1432. xfs_buf_delwri_submit_nowait(
  1433. struct list_head *buffer_list)
  1434. {
  1435. LIST_HEAD (io_list);
  1436. return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
  1437. }
  1438. /*
  1439. * Write out a buffer list synchronously.
  1440. *
  1441. * This will take the @buffer_list, write all buffers out and wait for I/O
  1442. * completion on all of the buffers. @buffer_list is consumed by the function,
  1443. * so callers must have some other way of tracking buffers if they require such
  1444. * functionality.
  1445. */
  1446. int
  1447. xfs_buf_delwri_submit(
  1448. struct list_head *buffer_list)
  1449. {
  1450. LIST_HEAD (io_list);
  1451. int error = 0, error2;
  1452. struct xfs_buf *bp;
  1453. __xfs_buf_delwri_submit(buffer_list, &io_list, true);
  1454. /* Wait for IO to complete. */
  1455. while (!list_empty(&io_list)) {
  1456. bp = list_first_entry(&io_list, struct xfs_buf, b_list);
  1457. list_del_init(&bp->b_list);
  1458. error2 = xfs_buf_iowait(bp);
  1459. xfs_buf_relse(bp);
  1460. if (!error)
  1461. error = error2;
  1462. }
  1463. return error;
  1464. }
  1465. int __init
  1466. xfs_buf_init(void)
  1467. {
  1468. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1469. KM_ZONE_HWALIGN, NULL);
  1470. if (!xfs_buf_zone)
  1471. goto out;
  1472. xfslogd_workqueue = alloc_workqueue("xfslogd",
  1473. WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
  1474. if (!xfslogd_workqueue)
  1475. goto out_free_buf_zone;
  1476. return 0;
  1477. out_free_buf_zone:
  1478. kmem_zone_destroy(xfs_buf_zone);
  1479. out:
  1480. return -ENOMEM;
  1481. }
  1482. void
  1483. xfs_buf_terminate(void)
  1484. {
  1485. destroy_workqueue(xfslogd_workqueue);
  1486. kmem_zone_destroy(xfs_buf_zone);
  1487. }