sched.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. #ifdef CONFIG_SMP
  1676. /*
  1677. * Is this task likely cache-hot:
  1678. */
  1679. static int
  1680. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1681. {
  1682. s64 delta;
  1683. if (p->sched_class != &fair_sched_class)
  1684. return 0;
  1685. /*
  1686. * Buddy candidates are cache hot:
  1687. */
  1688. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1689. (&p->se == cfs_rq_of(&p->se)->next ||
  1690. &p->se == cfs_rq_of(&p->se)->last))
  1691. return 1;
  1692. if (sysctl_sched_migration_cost == -1)
  1693. return 1;
  1694. if (sysctl_sched_migration_cost == 0)
  1695. return 0;
  1696. delta = now - p->se.exec_start;
  1697. return delta < (s64)sysctl_sched_migration_cost;
  1698. }
  1699. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1700. {
  1701. int old_cpu = task_cpu(p);
  1702. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1703. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1704. #ifdef CONFIG_SCHED_DEBUG
  1705. /*
  1706. * We should never call set_task_cpu() on a blocked task,
  1707. * ttwu() will sort out the placement.
  1708. */
  1709. WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
  1710. #endif
  1711. trace_sched_migrate_task(p, new_cpu);
  1712. if (old_cpu != new_cpu) {
  1713. p->se.nr_migrations++;
  1714. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1715. 1, 1, NULL, 0);
  1716. }
  1717. p->se.vruntime -= old_cfsrq->min_vruntime -
  1718. new_cfsrq->min_vruntime;
  1719. __set_task_cpu(p, new_cpu);
  1720. }
  1721. struct migration_req {
  1722. struct list_head list;
  1723. struct task_struct *task;
  1724. int dest_cpu;
  1725. struct completion done;
  1726. };
  1727. /*
  1728. * The task's runqueue lock must be held.
  1729. * Returns true if you have to wait for migration thread.
  1730. */
  1731. static int
  1732. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1733. {
  1734. struct rq *rq = task_rq(p);
  1735. /*
  1736. * If the task is not on a runqueue (and not running), then
  1737. * the next wake-up will properly place the task.
  1738. */
  1739. if (!p->se.on_rq && !task_running(rq, p))
  1740. return 0;
  1741. init_completion(&req->done);
  1742. req->task = p;
  1743. req->dest_cpu = dest_cpu;
  1744. list_add(&req->list, &rq->migration_queue);
  1745. return 1;
  1746. }
  1747. /*
  1748. * wait_task_context_switch - wait for a thread to complete at least one
  1749. * context switch.
  1750. *
  1751. * @p must not be current.
  1752. */
  1753. void wait_task_context_switch(struct task_struct *p)
  1754. {
  1755. unsigned long nvcsw, nivcsw, flags;
  1756. int running;
  1757. struct rq *rq;
  1758. nvcsw = p->nvcsw;
  1759. nivcsw = p->nivcsw;
  1760. for (;;) {
  1761. /*
  1762. * The runqueue is assigned before the actual context
  1763. * switch. We need to take the runqueue lock.
  1764. *
  1765. * We could check initially without the lock but it is
  1766. * very likely that we need to take the lock in every
  1767. * iteration.
  1768. */
  1769. rq = task_rq_lock(p, &flags);
  1770. running = task_running(rq, p);
  1771. task_rq_unlock(rq, &flags);
  1772. if (likely(!running))
  1773. break;
  1774. /*
  1775. * The switch count is incremented before the actual
  1776. * context switch. We thus wait for two switches to be
  1777. * sure at least one completed.
  1778. */
  1779. if ((p->nvcsw - nvcsw) > 1)
  1780. break;
  1781. if ((p->nivcsw - nivcsw) > 1)
  1782. break;
  1783. cpu_relax();
  1784. }
  1785. }
  1786. /*
  1787. * wait_task_inactive - wait for a thread to unschedule.
  1788. *
  1789. * If @match_state is nonzero, it's the @p->state value just checked and
  1790. * not expected to change. If it changes, i.e. @p might have woken up,
  1791. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1792. * we return a positive number (its total switch count). If a second call
  1793. * a short while later returns the same number, the caller can be sure that
  1794. * @p has remained unscheduled the whole time.
  1795. *
  1796. * The caller must ensure that the task *will* unschedule sometime soon,
  1797. * else this function might spin for a *long* time. This function can't
  1798. * be called with interrupts off, or it may introduce deadlock with
  1799. * smp_call_function() if an IPI is sent by the same process we are
  1800. * waiting to become inactive.
  1801. */
  1802. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1803. {
  1804. unsigned long flags;
  1805. int running, on_rq;
  1806. unsigned long ncsw;
  1807. struct rq *rq;
  1808. for (;;) {
  1809. /*
  1810. * We do the initial early heuristics without holding
  1811. * any task-queue locks at all. We'll only try to get
  1812. * the runqueue lock when things look like they will
  1813. * work out!
  1814. */
  1815. rq = task_rq(p);
  1816. /*
  1817. * If the task is actively running on another CPU
  1818. * still, just relax and busy-wait without holding
  1819. * any locks.
  1820. *
  1821. * NOTE! Since we don't hold any locks, it's not
  1822. * even sure that "rq" stays as the right runqueue!
  1823. * But we don't care, since "task_running()" will
  1824. * return false if the runqueue has changed and p
  1825. * is actually now running somewhere else!
  1826. */
  1827. while (task_running(rq, p)) {
  1828. if (match_state && unlikely(p->state != match_state))
  1829. return 0;
  1830. cpu_relax();
  1831. }
  1832. /*
  1833. * Ok, time to look more closely! We need the rq
  1834. * lock now, to be *sure*. If we're wrong, we'll
  1835. * just go back and repeat.
  1836. */
  1837. rq = task_rq_lock(p, &flags);
  1838. trace_sched_wait_task(rq, p);
  1839. running = task_running(rq, p);
  1840. on_rq = p->se.on_rq;
  1841. ncsw = 0;
  1842. if (!match_state || p->state == match_state)
  1843. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1844. task_rq_unlock(rq, &flags);
  1845. /*
  1846. * If it changed from the expected state, bail out now.
  1847. */
  1848. if (unlikely(!ncsw))
  1849. break;
  1850. /*
  1851. * Was it really running after all now that we
  1852. * checked with the proper locks actually held?
  1853. *
  1854. * Oops. Go back and try again..
  1855. */
  1856. if (unlikely(running)) {
  1857. cpu_relax();
  1858. continue;
  1859. }
  1860. /*
  1861. * It's not enough that it's not actively running,
  1862. * it must be off the runqueue _entirely_, and not
  1863. * preempted!
  1864. *
  1865. * So if it was still runnable (but just not actively
  1866. * running right now), it's preempted, and we should
  1867. * yield - it could be a while.
  1868. */
  1869. if (unlikely(on_rq)) {
  1870. schedule_timeout_uninterruptible(1);
  1871. continue;
  1872. }
  1873. /*
  1874. * Ahh, all good. It wasn't running, and it wasn't
  1875. * runnable, which means that it will never become
  1876. * running in the future either. We're all done!
  1877. */
  1878. break;
  1879. }
  1880. return ncsw;
  1881. }
  1882. /***
  1883. * kick_process - kick a running thread to enter/exit the kernel
  1884. * @p: the to-be-kicked thread
  1885. *
  1886. * Cause a process which is running on another CPU to enter
  1887. * kernel-mode, without any delay. (to get signals handled.)
  1888. *
  1889. * NOTE: this function doesnt have to take the runqueue lock,
  1890. * because all it wants to ensure is that the remote task enters
  1891. * the kernel. If the IPI races and the task has been migrated
  1892. * to another CPU then no harm is done and the purpose has been
  1893. * achieved as well.
  1894. */
  1895. void kick_process(struct task_struct *p)
  1896. {
  1897. int cpu;
  1898. preempt_disable();
  1899. cpu = task_cpu(p);
  1900. if ((cpu != smp_processor_id()) && task_curr(p))
  1901. smp_send_reschedule(cpu);
  1902. preempt_enable();
  1903. }
  1904. EXPORT_SYMBOL_GPL(kick_process);
  1905. #endif /* CONFIG_SMP */
  1906. /**
  1907. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1908. * @p: the task to evaluate
  1909. * @func: the function to be called
  1910. * @info: the function call argument
  1911. *
  1912. * Calls the function @func when the task is currently running. This might
  1913. * be on the current CPU, which just calls the function directly
  1914. */
  1915. void task_oncpu_function_call(struct task_struct *p,
  1916. void (*func) (void *info), void *info)
  1917. {
  1918. int cpu;
  1919. preempt_disable();
  1920. cpu = task_cpu(p);
  1921. if (task_curr(p))
  1922. smp_call_function_single(cpu, func, info, 1);
  1923. preempt_enable();
  1924. }
  1925. #ifdef CONFIG_SMP
  1926. static int select_fallback_rq(int cpu, struct task_struct *p)
  1927. {
  1928. int dest_cpu;
  1929. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1930. /* Look for allowed, online CPU in same node. */
  1931. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1932. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1933. return dest_cpu;
  1934. /* Any allowed, online CPU? */
  1935. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1936. if (dest_cpu < nr_cpu_ids)
  1937. return dest_cpu;
  1938. /* No more Mr. Nice Guy. */
  1939. if (dest_cpu >= nr_cpu_ids) {
  1940. rcu_read_lock();
  1941. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1942. rcu_read_unlock();
  1943. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1944. /*
  1945. * Don't tell them about moving exiting tasks or
  1946. * kernel threads (both mm NULL), since they never
  1947. * leave kernel.
  1948. */
  1949. if (p->mm && printk_ratelimit()) {
  1950. printk(KERN_INFO "process %d (%s) no "
  1951. "longer affine to cpu%d\n",
  1952. task_pid_nr(p), p->comm, cpu);
  1953. }
  1954. }
  1955. return dest_cpu;
  1956. }
  1957. /*
  1958. * Called from:
  1959. *
  1960. * - fork, @p is stable because it isn't on the tasklist yet
  1961. *
  1962. * - exec, @p is unstable, retry loop
  1963. *
  1964. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1965. * we should be good.
  1966. */
  1967. static inline
  1968. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1969. {
  1970. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1971. /*
  1972. * In order not to call set_task_cpu() on a blocking task we need
  1973. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1974. * cpu.
  1975. *
  1976. * Since this is common to all placement strategies, this lives here.
  1977. *
  1978. * [ this allows ->select_task() to simply return task_cpu(p) and
  1979. * not worry about this generic constraint ]
  1980. */
  1981. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1982. !cpu_active(cpu)))
  1983. cpu = select_fallback_rq(task_cpu(p), p);
  1984. return cpu;
  1985. }
  1986. #endif
  1987. /***
  1988. * try_to_wake_up - wake up a thread
  1989. * @p: the to-be-woken-up thread
  1990. * @state: the mask of task states that can be woken
  1991. * @sync: do a synchronous wakeup?
  1992. *
  1993. * Put it on the run-queue if it's not already there. The "current"
  1994. * thread is always on the run-queue (except when the actual
  1995. * re-schedule is in progress), and as such you're allowed to do
  1996. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1997. * runnable without the overhead of this.
  1998. *
  1999. * returns failure only if the task is already active.
  2000. */
  2001. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2002. int wake_flags)
  2003. {
  2004. int cpu, orig_cpu, this_cpu, success = 0;
  2005. unsigned long flags;
  2006. struct rq *rq, *orig_rq;
  2007. if (!sched_feat(SYNC_WAKEUPS))
  2008. wake_flags &= ~WF_SYNC;
  2009. this_cpu = get_cpu();
  2010. smp_wmb();
  2011. rq = orig_rq = task_rq_lock(p, &flags);
  2012. update_rq_clock(rq);
  2013. if (!(p->state & state))
  2014. goto out;
  2015. if (p->se.on_rq)
  2016. goto out_running;
  2017. cpu = task_cpu(p);
  2018. orig_cpu = cpu;
  2019. #ifdef CONFIG_SMP
  2020. if (unlikely(task_running(rq, p)))
  2021. goto out_activate;
  2022. /*
  2023. * In order to handle concurrent wakeups and release the rq->lock
  2024. * we put the task in TASK_WAKING state.
  2025. *
  2026. * First fix up the nr_uninterruptible count:
  2027. */
  2028. if (task_contributes_to_load(p))
  2029. rq->nr_uninterruptible--;
  2030. p->state = TASK_WAKING;
  2031. if (p->sched_class->task_waking)
  2032. p->sched_class->task_waking(rq, p);
  2033. __task_rq_unlock(rq);
  2034. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2035. if (cpu != orig_cpu)
  2036. set_task_cpu(p, cpu);
  2037. rq = __task_rq_lock(p);
  2038. update_rq_clock(rq);
  2039. WARN_ON(p->state != TASK_WAKING);
  2040. cpu = task_cpu(p);
  2041. #ifdef CONFIG_SCHEDSTATS
  2042. schedstat_inc(rq, ttwu_count);
  2043. if (cpu == this_cpu)
  2044. schedstat_inc(rq, ttwu_local);
  2045. else {
  2046. struct sched_domain *sd;
  2047. for_each_domain(this_cpu, sd) {
  2048. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2049. schedstat_inc(sd, ttwu_wake_remote);
  2050. break;
  2051. }
  2052. }
  2053. }
  2054. #endif /* CONFIG_SCHEDSTATS */
  2055. out_activate:
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(p, se.nr_wakeups);
  2058. if (wake_flags & WF_SYNC)
  2059. schedstat_inc(p, se.nr_wakeups_sync);
  2060. if (orig_cpu != cpu)
  2061. schedstat_inc(p, se.nr_wakeups_migrate);
  2062. if (cpu == this_cpu)
  2063. schedstat_inc(p, se.nr_wakeups_local);
  2064. else
  2065. schedstat_inc(p, se.nr_wakeups_remote);
  2066. activate_task(rq, p, 1);
  2067. success = 1;
  2068. /*
  2069. * Only attribute actual wakeups done by this task.
  2070. */
  2071. if (!in_interrupt()) {
  2072. struct sched_entity *se = &current->se;
  2073. u64 sample = se->sum_exec_runtime;
  2074. if (se->last_wakeup)
  2075. sample -= se->last_wakeup;
  2076. else
  2077. sample -= se->start_runtime;
  2078. update_avg(&se->avg_wakeup, sample);
  2079. se->last_wakeup = se->sum_exec_runtime;
  2080. }
  2081. out_running:
  2082. trace_sched_wakeup(rq, p, success);
  2083. check_preempt_curr(rq, p, wake_flags);
  2084. p->state = TASK_RUNNING;
  2085. #ifdef CONFIG_SMP
  2086. if (p->sched_class->task_woken)
  2087. p->sched_class->task_woken(rq, p);
  2088. if (unlikely(rq->idle_stamp)) {
  2089. u64 delta = rq->clock - rq->idle_stamp;
  2090. u64 max = 2*sysctl_sched_migration_cost;
  2091. if (delta > max)
  2092. rq->avg_idle = max;
  2093. else
  2094. update_avg(&rq->avg_idle, delta);
  2095. rq->idle_stamp = 0;
  2096. }
  2097. #endif
  2098. out:
  2099. task_rq_unlock(rq, &flags);
  2100. put_cpu();
  2101. return success;
  2102. }
  2103. /**
  2104. * wake_up_process - Wake up a specific process
  2105. * @p: The process to be woken up.
  2106. *
  2107. * Attempt to wake up the nominated process and move it to the set of runnable
  2108. * processes. Returns 1 if the process was woken up, 0 if it was already
  2109. * running.
  2110. *
  2111. * It may be assumed that this function implies a write memory barrier before
  2112. * changing the task state if and only if any tasks are woken up.
  2113. */
  2114. int wake_up_process(struct task_struct *p)
  2115. {
  2116. return try_to_wake_up(p, TASK_ALL, 0);
  2117. }
  2118. EXPORT_SYMBOL(wake_up_process);
  2119. int wake_up_state(struct task_struct *p, unsigned int state)
  2120. {
  2121. return try_to_wake_up(p, state, 0);
  2122. }
  2123. /*
  2124. * Perform scheduler related setup for a newly forked process p.
  2125. * p is forked by current.
  2126. *
  2127. * __sched_fork() is basic setup used by init_idle() too:
  2128. */
  2129. static void __sched_fork(struct task_struct *p)
  2130. {
  2131. p->se.exec_start = 0;
  2132. p->se.sum_exec_runtime = 0;
  2133. p->se.prev_sum_exec_runtime = 0;
  2134. p->se.nr_migrations = 0;
  2135. p->se.last_wakeup = 0;
  2136. p->se.avg_overlap = 0;
  2137. p->se.start_runtime = 0;
  2138. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2139. #ifdef CONFIG_SCHEDSTATS
  2140. p->se.wait_start = 0;
  2141. p->se.wait_max = 0;
  2142. p->se.wait_count = 0;
  2143. p->se.wait_sum = 0;
  2144. p->se.sleep_start = 0;
  2145. p->se.sleep_max = 0;
  2146. p->se.sum_sleep_runtime = 0;
  2147. p->se.block_start = 0;
  2148. p->se.block_max = 0;
  2149. p->se.exec_max = 0;
  2150. p->se.slice_max = 0;
  2151. p->se.nr_migrations_cold = 0;
  2152. p->se.nr_failed_migrations_affine = 0;
  2153. p->se.nr_failed_migrations_running = 0;
  2154. p->se.nr_failed_migrations_hot = 0;
  2155. p->se.nr_forced_migrations = 0;
  2156. p->se.nr_wakeups = 0;
  2157. p->se.nr_wakeups_sync = 0;
  2158. p->se.nr_wakeups_migrate = 0;
  2159. p->se.nr_wakeups_local = 0;
  2160. p->se.nr_wakeups_remote = 0;
  2161. p->se.nr_wakeups_affine = 0;
  2162. p->se.nr_wakeups_affine_attempts = 0;
  2163. p->se.nr_wakeups_passive = 0;
  2164. p->se.nr_wakeups_idle = 0;
  2165. #endif
  2166. INIT_LIST_HEAD(&p->rt.run_list);
  2167. p->se.on_rq = 0;
  2168. INIT_LIST_HEAD(&p->se.group_node);
  2169. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2170. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2171. #endif
  2172. }
  2173. /*
  2174. * fork()/clone()-time setup:
  2175. */
  2176. void sched_fork(struct task_struct *p, int clone_flags)
  2177. {
  2178. int cpu = get_cpu();
  2179. __sched_fork(p);
  2180. /*
  2181. * We mark the process as waking here. This guarantees that
  2182. * nobody will actually run it, and a signal or other external
  2183. * event cannot wake it up and insert it on the runqueue either.
  2184. */
  2185. p->state = TASK_WAKING;
  2186. /*
  2187. * Revert to default priority/policy on fork if requested.
  2188. */
  2189. if (unlikely(p->sched_reset_on_fork)) {
  2190. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2191. p->policy = SCHED_NORMAL;
  2192. p->normal_prio = p->static_prio;
  2193. }
  2194. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2195. p->static_prio = NICE_TO_PRIO(0);
  2196. p->normal_prio = p->static_prio;
  2197. set_load_weight(p);
  2198. }
  2199. /*
  2200. * We don't need the reset flag anymore after the fork. It has
  2201. * fulfilled its duty:
  2202. */
  2203. p->sched_reset_on_fork = 0;
  2204. }
  2205. /*
  2206. * Make sure we do not leak PI boosting priority to the child.
  2207. */
  2208. p->prio = current->normal_prio;
  2209. if (!rt_prio(p->prio))
  2210. p->sched_class = &fair_sched_class;
  2211. if (p->sched_class->task_fork)
  2212. p->sched_class->task_fork(p);
  2213. #ifdef CONFIG_SMP
  2214. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2215. #endif
  2216. set_task_cpu(p, cpu);
  2217. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2218. if (likely(sched_info_on()))
  2219. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2220. #endif
  2221. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2222. p->oncpu = 0;
  2223. #endif
  2224. #ifdef CONFIG_PREEMPT
  2225. /* Want to start with kernel preemption disabled. */
  2226. task_thread_info(p)->preempt_count = 1;
  2227. #endif
  2228. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2229. put_cpu();
  2230. }
  2231. /*
  2232. * wake_up_new_task - wake up a newly created task for the first time.
  2233. *
  2234. * This function will do some initial scheduler statistics housekeeping
  2235. * that must be done for every newly created context, then puts the task
  2236. * on the runqueue and wakes it.
  2237. */
  2238. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2239. {
  2240. unsigned long flags;
  2241. struct rq *rq;
  2242. rq = task_rq_lock(p, &flags);
  2243. BUG_ON(p->state != TASK_WAKING);
  2244. p->state = TASK_RUNNING;
  2245. update_rq_clock(rq);
  2246. activate_task(rq, p, 0);
  2247. trace_sched_wakeup_new(rq, p, 1);
  2248. check_preempt_curr(rq, p, WF_FORK);
  2249. #ifdef CONFIG_SMP
  2250. if (p->sched_class->task_woken)
  2251. p->sched_class->task_woken(rq, p);
  2252. #endif
  2253. task_rq_unlock(rq, &flags);
  2254. }
  2255. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2256. /**
  2257. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2258. * @notifier: notifier struct to register
  2259. */
  2260. void preempt_notifier_register(struct preempt_notifier *notifier)
  2261. {
  2262. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2263. }
  2264. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2265. /**
  2266. * preempt_notifier_unregister - no longer interested in preemption notifications
  2267. * @notifier: notifier struct to unregister
  2268. *
  2269. * This is safe to call from within a preemption notifier.
  2270. */
  2271. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2272. {
  2273. hlist_del(&notifier->link);
  2274. }
  2275. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2276. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2277. {
  2278. struct preempt_notifier *notifier;
  2279. struct hlist_node *node;
  2280. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2281. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2282. }
  2283. static void
  2284. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2285. struct task_struct *next)
  2286. {
  2287. struct preempt_notifier *notifier;
  2288. struct hlist_node *node;
  2289. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2290. notifier->ops->sched_out(notifier, next);
  2291. }
  2292. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2293. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2294. {
  2295. }
  2296. static void
  2297. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2298. struct task_struct *next)
  2299. {
  2300. }
  2301. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2302. /**
  2303. * prepare_task_switch - prepare to switch tasks
  2304. * @rq: the runqueue preparing to switch
  2305. * @prev: the current task that is being switched out
  2306. * @next: the task we are going to switch to.
  2307. *
  2308. * This is called with the rq lock held and interrupts off. It must
  2309. * be paired with a subsequent finish_task_switch after the context
  2310. * switch.
  2311. *
  2312. * prepare_task_switch sets up locking and calls architecture specific
  2313. * hooks.
  2314. */
  2315. static inline void
  2316. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2317. struct task_struct *next)
  2318. {
  2319. fire_sched_out_preempt_notifiers(prev, next);
  2320. prepare_lock_switch(rq, next);
  2321. prepare_arch_switch(next);
  2322. }
  2323. /**
  2324. * finish_task_switch - clean up after a task-switch
  2325. * @rq: runqueue associated with task-switch
  2326. * @prev: the thread we just switched away from.
  2327. *
  2328. * finish_task_switch must be called after the context switch, paired
  2329. * with a prepare_task_switch call before the context switch.
  2330. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2331. * and do any other architecture-specific cleanup actions.
  2332. *
  2333. * Note that we may have delayed dropping an mm in context_switch(). If
  2334. * so, we finish that here outside of the runqueue lock. (Doing it
  2335. * with the lock held can cause deadlocks; see schedule() for
  2336. * details.)
  2337. */
  2338. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2339. __releases(rq->lock)
  2340. {
  2341. struct mm_struct *mm = rq->prev_mm;
  2342. long prev_state;
  2343. rq->prev_mm = NULL;
  2344. /*
  2345. * A task struct has one reference for the use as "current".
  2346. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2347. * schedule one last time. The schedule call will never return, and
  2348. * the scheduled task must drop that reference.
  2349. * The test for TASK_DEAD must occur while the runqueue locks are
  2350. * still held, otherwise prev could be scheduled on another cpu, die
  2351. * there before we look at prev->state, and then the reference would
  2352. * be dropped twice.
  2353. * Manfred Spraul <manfred@colorfullife.com>
  2354. */
  2355. prev_state = prev->state;
  2356. finish_arch_switch(prev);
  2357. perf_event_task_sched_in(current, cpu_of(rq));
  2358. finish_lock_switch(rq, prev);
  2359. fire_sched_in_preempt_notifiers(current);
  2360. if (mm)
  2361. mmdrop(mm);
  2362. if (unlikely(prev_state == TASK_DEAD)) {
  2363. /*
  2364. * Remove function-return probe instances associated with this
  2365. * task and put them back on the free list.
  2366. */
  2367. kprobe_flush_task(prev);
  2368. put_task_struct(prev);
  2369. }
  2370. }
  2371. #ifdef CONFIG_SMP
  2372. /* assumes rq->lock is held */
  2373. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2374. {
  2375. if (prev->sched_class->pre_schedule)
  2376. prev->sched_class->pre_schedule(rq, prev);
  2377. }
  2378. /* rq->lock is NOT held, but preemption is disabled */
  2379. static inline void post_schedule(struct rq *rq)
  2380. {
  2381. if (rq->post_schedule) {
  2382. unsigned long flags;
  2383. raw_spin_lock_irqsave(&rq->lock, flags);
  2384. if (rq->curr->sched_class->post_schedule)
  2385. rq->curr->sched_class->post_schedule(rq);
  2386. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2387. rq->post_schedule = 0;
  2388. }
  2389. }
  2390. #else
  2391. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2392. {
  2393. }
  2394. static inline void post_schedule(struct rq *rq)
  2395. {
  2396. }
  2397. #endif
  2398. /**
  2399. * schedule_tail - first thing a freshly forked thread must call.
  2400. * @prev: the thread we just switched away from.
  2401. */
  2402. asmlinkage void schedule_tail(struct task_struct *prev)
  2403. __releases(rq->lock)
  2404. {
  2405. struct rq *rq = this_rq();
  2406. finish_task_switch(rq, prev);
  2407. /*
  2408. * FIXME: do we need to worry about rq being invalidated by the
  2409. * task_switch?
  2410. */
  2411. post_schedule(rq);
  2412. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2413. /* In this case, finish_task_switch does not reenable preemption */
  2414. preempt_enable();
  2415. #endif
  2416. if (current->set_child_tid)
  2417. put_user(task_pid_vnr(current), current->set_child_tid);
  2418. }
  2419. /*
  2420. * context_switch - switch to the new MM and the new
  2421. * thread's register state.
  2422. */
  2423. static inline void
  2424. context_switch(struct rq *rq, struct task_struct *prev,
  2425. struct task_struct *next)
  2426. {
  2427. struct mm_struct *mm, *oldmm;
  2428. prepare_task_switch(rq, prev, next);
  2429. trace_sched_switch(rq, prev, next);
  2430. mm = next->mm;
  2431. oldmm = prev->active_mm;
  2432. /*
  2433. * For paravirt, this is coupled with an exit in switch_to to
  2434. * combine the page table reload and the switch backend into
  2435. * one hypercall.
  2436. */
  2437. arch_start_context_switch(prev);
  2438. if (likely(!mm)) {
  2439. next->active_mm = oldmm;
  2440. atomic_inc(&oldmm->mm_count);
  2441. enter_lazy_tlb(oldmm, next);
  2442. } else
  2443. switch_mm(oldmm, mm, next);
  2444. if (likely(!prev->mm)) {
  2445. prev->active_mm = NULL;
  2446. rq->prev_mm = oldmm;
  2447. }
  2448. /*
  2449. * Since the runqueue lock will be released by the next
  2450. * task (which is an invalid locking op but in the case
  2451. * of the scheduler it's an obvious special-case), so we
  2452. * do an early lockdep release here:
  2453. */
  2454. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2455. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2456. #endif
  2457. /* Here we just switch the register state and the stack. */
  2458. switch_to(prev, next, prev);
  2459. barrier();
  2460. /*
  2461. * this_rq must be evaluated again because prev may have moved
  2462. * CPUs since it called schedule(), thus the 'rq' on its stack
  2463. * frame will be invalid.
  2464. */
  2465. finish_task_switch(this_rq(), prev);
  2466. }
  2467. /*
  2468. * nr_running, nr_uninterruptible and nr_context_switches:
  2469. *
  2470. * externally visible scheduler statistics: current number of runnable
  2471. * threads, current number of uninterruptible-sleeping threads, total
  2472. * number of context switches performed since bootup.
  2473. */
  2474. unsigned long nr_running(void)
  2475. {
  2476. unsigned long i, sum = 0;
  2477. for_each_online_cpu(i)
  2478. sum += cpu_rq(i)->nr_running;
  2479. return sum;
  2480. }
  2481. unsigned long nr_uninterruptible(void)
  2482. {
  2483. unsigned long i, sum = 0;
  2484. for_each_possible_cpu(i)
  2485. sum += cpu_rq(i)->nr_uninterruptible;
  2486. /*
  2487. * Since we read the counters lockless, it might be slightly
  2488. * inaccurate. Do not allow it to go below zero though:
  2489. */
  2490. if (unlikely((long)sum < 0))
  2491. sum = 0;
  2492. return sum;
  2493. }
  2494. unsigned long long nr_context_switches(void)
  2495. {
  2496. int i;
  2497. unsigned long long sum = 0;
  2498. for_each_possible_cpu(i)
  2499. sum += cpu_rq(i)->nr_switches;
  2500. return sum;
  2501. }
  2502. unsigned long nr_iowait(void)
  2503. {
  2504. unsigned long i, sum = 0;
  2505. for_each_possible_cpu(i)
  2506. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2507. return sum;
  2508. }
  2509. unsigned long nr_iowait_cpu(void)
  2510. {
  2511. struct rq *this = this_rq();
  2512. return atomic_read(&this->nr_iowait);
  2513. }
  2514. unsigned long this_cpu_load(void)
  2515. {
  2516. struct rq *this = this_rq();
  2517. return this->cpu_load[0];
  2518. }
  2519. /* Variables and functions for calc_load */
  2520. static atomic_long_t calc_load_tasks;
  2521. static unsigned long calc_load_update;
  2522. unsigned long avenrun[3];
  2523. EXPORT_SYMBOL(avenrun);
  2524. /**
  2525. * get_avenrun - get the load average array
  2526. * @loads: pointer to dest load array
  2527. * @offset: offset to add
  2528. * @shift: shift count to shift the result left
  2529. *
  2530. * These values are estimates at best, so no need for locking.
  2531. */
  2532. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2533. {
  2534. loads[0] = (avenrun[0] + offset) << shift;
  2535. loads[1] = (avenrun[1] + offset) << shift;
  2536. loads[2] = (avenrun[2] + offset) << shift;
  2537. }
  2538. static unsigned long
  2539. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2540. {
  2541. load *= exp;
  2542. load += active * (FIXED_1 - exp);
  2543. return load >> FSHIFT;
  2544. }
  2545. /*
  2546. * calc_load - update the avenrun load estimates 10 ticks after the
  2547. * CPUs have updated calc_load_tasks.
  2548. */
  2549. void calc_global_load(void)
  2550. {
  2551. unsigned long upd = calc_load_update + 10;
  2552. long active;
  2553. if (time_before(jiffies, upd))
  2554. return;
  2555. active = atomic_long_read(&calc_load_tasks);
  2556. active = active > 0 ? active * FIXED_1 : 0;
  2557. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2558. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2559. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2560. calc_load_update += LOAD_FREQ;
  2561. }
  2562. /*
  2563. * Either called from update_cpu_load() or from a cpu going idle
  2564. */
  2565. static void calc_load_account_active(struct rq *this_rq)
  2566. {
  2567. long nr_active, delta;
  2568. nr_active = this_rq->nr_running;
  2569. nr_active += (long) this_rq->nr_uninterruptible;
  2570. if (nr_active != this_rq->calc_load_active) {
  2571. delta = nr_active - this_rq->calc_load_active;
  2572. this_rq->calc_load_active = nr_active;
  2573. atomic_long_add(delta, &calc_load_tasks);
  2574. }
  2575. }
  2576. /*
  2577. * Update rq->cpu_load[] statistics. This function is usually called every
  2578. * scheduler tick (TICK_NSEC).
  2579. */
  2580. static void update_cpu_load(struct rq *this_rq)
  2581. {
  2582. unsigned long this_load = this_rq->load.weight;
  2583. int i, scale;
  2584. this_rq->nr_load_updates++;
  2585. /* Update our load: */
  2586. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2587. unsigned long old_load, new_load;
  2588. /* scale is effectively 1 << i now, and >> i divides by scale */
  2589. old_load = this_rq->cpu_load[i];
  2590. new_load = this_load;
  2591. /*
  2592. * Round up the averaging division if load is increasing. This
  2593. * prevents us from getting stuck on 9 if the load is 10, for
  2594. * example.
  2595. */
  2596. if (new_load > old_load)
  2597. new_load += scale-1;
  2598. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2599. }
  2600. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2601. this_rq->calc_load_update += LOAD_FREQ;
  2602. calc_load_account_active(this_rq);
  2603. }
  2604. }
  2605. #ifdef CONFIG_SMP
  2606. /*
  2607. * double_rq_lock - safely lock two runqueues
  2608. *
  2609. * Note this does not disable interrupts like task_rq_lock,
  2610. * you need to do so manually before calling.
  2611. */
  2612. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2613. __acquires(rq1->lock)
  2614. __acquires(rq2->lock)
  2615. {
  2616. BUG_ON(!irqs_disabled());
  2617. if (rq1 == rq2) {
  2618. raw_spin_lock(&rq1->lock);
  2619. __acquire(rq2->lock); /* Fake it out ;) */
  2620. } else {
  2621. if (rq1 < rq2) {
  2622. raw_spin_lock(&rq1->lock);
  2623. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2624. } else {
  2625. raw_spin_lock(&rq2->lock);
  2626. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2627. }
  2628. }
  2629. update_rq_clock(rq1);
  2630. update_rq_clock(rq2);
  2631. }
  2632. /*
  2633. * double_rq_unlock - safely unlock two runqueues
  2634. *
  2635. * Note this does not restore interrupts like task_rq_unlock,
  2636. * you need to do so manually after calling.
  2637. */
  2638. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2639. __releases(rq1->lock)
  2640. __releases(rq2->lock)
  2641. {
  2642. raw_spin_unlock(&rq1->lock);
  2643. if (rq1 != rq2)
  2644. raw_spin_unlock(&rq2->lock);
  2645. else
  2646. __release(rq2->lock);
  2647. }
  2648. /*
  2649. * sched_exec - execve() is a valuable balancing opportunity, because at
  2650. * this point the task has the smallest effective memory and cache footprint.
  2651. */
  2652. void sched_exec(void)
  2653. {
  2654. struct task_struct *p = current;
  2655. struct migration_req req;
  2656. int dest_cpu, this_cpu;
  2657. unsigned long flags;
  2658. struct rq *rq;
  2659. again:
  2660. this_cpu = get_cpu();
  2661. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2662. if (dest_cpu == this_cpu) {
  2663. put_cpu();
  2664. return;
  2665. }
  2666. rq = task_rq_lock(p, &flags);
  2667. put_cpu();
  2668. /*
  2669. * select_task_rq() can race against ->cpus_allowed
  2670. */
  2671. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2672. || unlikely(!cpu_active(dest_cpu))) {
  2673. task_rq_unlock(rq, &flags);
  2674. goto again;
  2675. }
  2676. /* force the process onto the specified CPU */
  2677. if (migrate_task(p, dest_cpu, &req)) {
  2678. /* Need to wait for migration thread (might exit: take ref). */
  2679. struct task_struct *mt = rq->migration_thread;
  2680. get_task_struct(mt);
  2681. task_rq_unlock(rq, &flags);
  2682. wake_up_process(mt);
  2683. put_task_struct(mt);
  2684. wait_for_completion(&req.done);
  2685. return;
  2686. }
  2687. task_rq_unlock(rq, &flags);
  2688. }
  2689. /*
  2690. * pull_task - move a task from a remote runqueue to the local runqueue.
  2691. * Both runqueues must be locked.
  2692. */
  2693. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2694. struct rq *this_rq, int this_cpu)
  2695. {
  2696. deactivate_task(src_rq, p, 0);
  2697. set_task_cpu(p, this_cpu);
  2698. activate_task(this_rq, p, 0);
  2699. check_preempt_curr(this_rq, p, 0);
  2700. }
  2701. /*
  2702. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2703. */
  2704. static
  2705. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2706. struct sched_domain *sd, enum cpu_idle_type idle,
  2707. int *all_pinned)
  2708. {
  2709. int tsk_cache_hot = 0;
  2710. /*
  2711. * We do not migrate tasks that are:
  2712. * 1) running (obviously), or
  2713. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2714. * 3) are cache-hot on their current CPU.
  2715. */
  2716. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2717. schedstat_inc(p, se.nr_failed_migrations_affine);
  2718. return 0;
  2719. }
  2720. *all_pinned = 0;
  2721. if (task_running(rq, p)) {
  2722. schedstat_inc(p, se.nr_failed_migrations_running);
  2723. return 0;
  2724. }
  2725. /*
  2726. * Aggressive migration if:
  2727. * 1) task is cache cold, or
  2728. * 2) too many balance attempts have failed.
  2729. */
  2730. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2731. if (!tsk_cache_hot ||
  2732. sd->nr_balance_failed > sd->cache_nice_tries) {
  2733. #ifdef CONFIG_SCHEDSTATS
  2734. if (tsk_cache_hot) {
  2735. schedstat_inc(sd, lb_hot_gained[idle]);
  2736. schedstat_inc(p, se.nr_forced_migrations);
  2737. }
  2738. #endif
  2739. return 1;
  2740. }
  2741. if (tsk_cache_hot) {
  2742. schedstat_inc(p, se.nr_failed_migrations_hot);
  2743. return 0;
  2744. }
  2745. return 1;
  2746. }
  2747. static unsigned long
  2748. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2749. unsigned long max_load_move, struct sched_domain *sd,
  2750. enum cpu_idle_type idle, int *all_pinned,
  2751. int *this_best_prio, struct rq_iterator *iterator)
  2752. {
  2753. int loops = 0, pulled = 0, pinned = 0;
  2754. struct task_struct *p;
  2755. long rem_load_move = max_load_move;
  2756. if (max_load_move == 0)
  2757. goto out;
  2758. pinned = 1;
  2759. /*
  2760. * Start the load-balancing iterator:
  2761. */
  2762. p = iterator->start(iterator->arg);
  2763. next:
  2764. if (!p || loops++ > sysctl_sched_nr_migrate)
  2765. goto out;
  2766. if ((p->se.load.weight >> 1) > rem_load_move ||
  2767. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2768. p = iterator->next(iterator->arg);
  2769. goto next;
  2770. }
  2771. pull_task(busiest, p, this_rq, this_cpu);
  2772. pulled++;
  2773. rem_load_move -= p->se.load.weight;
  2774. #ifdef CONFIG_PREEMPT
  2775. /*
  2776. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2777. * will stop after the first task is pulled to minimize the critical
  2778. * section.
  2779. */
  2780. if (idle == CPU_NEWLY_IDLE)
  2781. goto out;
  2782. #endif
  2783. /*
  2784. * We only want to steal up to the prescribed amount of weighted load.
  2785. */
  2786. if (rem_load_move > 0) {
  2787. if (p->prio < *this_best_prio)
  2788. *this_best_prio = p->prio;
  2789. p = iterator->next(iterator->arg);
  2790. goto next;
  2791. }
  2792. out:
  2793. /*
  2794. * Right now, this is one of only two places pull_task() is called,
  2795. * so we can safely collect pull_task() stats here rather than
  2796. * inside pull_task().
  2797. */
  2798. schedstat_add(sd, lb_gained[idle], pulled);
  2799. if (all_pinned)
  2800. *all_pinned = pinned;
  2801. return max_load_move - rem_load_move;
  2802. }
  2803. /*
  2804. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2805. * this_rq, as part of a balancing operation within domain "sd".
  2806. * Returns 1 if successful and 0 otherwise.
  2807. *
  2808. * Called with both runqueues locked.
  2809. */
  2810. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2811. unsigned long max_load_move,
  2812. struct sched_domain *sd, enum cpu_idle_type idle,
  2813. int *all_pinned)
  2814. {
  2815. const struct sched_class *class = sched_class_highest;
  2816. unsigned long total_load_moved = 0;
  2817. int this_best_prio = this_rq->curr->prio;
  2818. do {
  2819. total_load_moved +=
  2820. class->load_balance(this_rq, this_cpu, busiest,
  2821. max_load_move - total_load_moved,
  2822. sd, idle, all_pinned, &this_best_prio);
  2823. class = class->next;
  2824. #ifdef CONFIG_PREEMPT
  2825. /*
  2826. * NEWIDLE balancing is a source of latency, so preemptible
  2827. * kernels will stop after the first task is pulled to minimize
  2828. * the critical section.
  2829. */
  2830. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2831. break;
  2832. #endif
  2833. } while (class && max_load_move > total_load_moved);
  2834. return total_load_moved > 0;
  2835. }
  2836. static int
  2837. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2838. struct sched_domain *sd, enum cpu_idle_type idle,
  2839. struct rq_iterator *iterator)
  2840. {
  2841. struct task_struct *p = iterator->start(iterator->arg);
  2842. int pinned = 0;
  2843. while (p) {
  2844. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2845. pull_task(busiest, p, this_rq, this_cpu);
  2846. /*
  2847. * Right now, this is only the second place pull_task()
  2848. * is called, so we can safely collect pull_task()
  2849. * stats here rather than inside pull_task().
  2850. */
  2851. schedstat_inc(sd, lb_gained[idle]);
  2852. return 1;
  2853. }
  2854. p = iterator->next(iterator->arg);
  2855. }
  2856. return 0;
  2857. }
  2858. /*
  2859. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2860. * part of active balancing operations within "domain".
  2861. * Returns 1 if successful and 0 otherwise.
  2862. *
  2863. * Called with both runqueues locked.
  2864. */
  2865. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2866. struct sched_domain *sd, enum cpu_idle_type idle)
  2867. {
  2868. const struct sched_class *class;
  2869. for_each_class(class) {
  2870. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2871. return 1;
  2872. }
  2873. return 0;
  2874. }
  2875. /********** Helpers for find_busiest_group ************************/
  2876. /*
  2877. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2878. * during load balancing.
  2879. */
  2880. struct sd_lb_stats {
  2881. struct sched_group *busiest; /* Busiest group in this sd */
  2882. struct sched_group *this; /* Local group in this sd */
  2883. unsigned long total_load; /* Total load of all groups in sd */
  2884. unsigned long total_pwr; /* Total power of all groups in sd */
  2885. unsigned long avg_load; /* Average load across all groups in sd */
  2886. /** Statistics of this group */
  2887. unsigned long this_load;
  2888. unsigned long this_load_per_task;
  2889. unsigned long this_nr_running;
  2890. /* Statistics of the busiest group */
  2891. unsigned long max_load;
  2892. unsigned long busiest_load_per_task;
  2893. unsigned long busiest_nr_running;
  2894. int group_imb; /* Is there imbalance in this sd */
  2895. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2896. int power_savings_balance; /* Is powersave balance needed for this sd */
  2897. struct sched_group *group_min; /* Least loaded group in sd */
  2898. struct sched_group *group_leader; /* Group which relieves group_min */
  2899. unsigned long min_load_per_task; /* load_per_task in group_min */
  2900. unsigned long leader_nr_running; /* Nr running of group_leader */
  2901. unsigned long min_nr_running; /* Nr running of group_min */
  2902. #endif
  2903. };
  2904. /*
  2905. * sg_lb_stats - stats of a sched_group required for load_balancing
  2906. */
  2907. struct sg_lb_stats {
  2908. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2909. unsigned long group_load; /* Total load over the CPUs of the group */
  2910. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2911. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2912. unsigned long group_capacity;
  2913. int group_imb; /* Is there an imbalance in the group ? */
  2914. };
  2915. /**
  2916. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2917. * @group: The group whose first cpu is to be returned.
  2918. */
  2919. static inline unsigned int group_first_cpu(struct sched_group *group)
  2920. {
  2921. return cpumask_first(sched_group_cpus(group));
  2922. }
  2923. /**
  2924. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2925. * @sd: The sched_domain whose load_idx is to be obtained.
  2926. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2927. */
  2928. static inline int get_sd_load_idx(struct sched_domain *sd,
  2929. enum cpu_idle_type idle)
  2930. {
  2931. int load_idx;
  2932. switch (idle) {
  2933. case CPU_NOT_IDLE:
  2934. load_idx = sd->busy_idx;
  2935. break;
  2936. case CPU_NEWLY_IDLE:
  2937. load_idx = sd->newidle_idx;
  2938. break;
  2939. default:
  2940. load_idx = sd->idle_idx;
  2941. break;
  2942. }
  2943. return load_idx;
  2944. }
  2945. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2946. /**
  2947. * init_sd_power_savings_stats - Initialize power savings statistics for
  2948. * the given sched_domain, during load balancing.
  2949. *
  2950. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2951. * @sds: Variable containing the statistics for sd.
  2952. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2953. */
  2954. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2955. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2956. {
  2957. /*
  2958. * Busy processors will not participate in power savings
  2959. * balance.
  2960. */
  2961. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2962. sds->power_savings_balance = 0;
  2963. else {
  2964. sds->power_savings_balance = 1;
  2965. sds->min_nr_running = ULONG_MAX;
  2966. sds->leader_nr_running = 0;
  2967. }
  2968. }
  2969. /**
  2970. * update_sd_power_savings_stats - Update the power saving stats for a
  2971. * sched_domain while performing load balancing.
  2972. *
  2973. * @group: sched_group belonging to the sched_domain under consideration.
  2974. * @sds: Variable containing the statistics of the sched_domain
  2975. * @local_group: Does group contain the CPU for which we're performing
  2976. * load balancing ?
  2977. * @sgs: Variable containing the statistics of the group.
  2978. */
  2979. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2980. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2981. {
  2982. if (!sds->power_savings_balance)
  2983. return;
  2984. /*
  2985. * If the local group is idle or completely loaded
  2986. * no need to do power savings balance at this domain
  2987. */
  2988. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2989. !sds->this_nr_running))
  2990. sds->power_savings_balance = 0;
  2991. /*
  2992. * If a group is already running at full capacity or idle,
  2993. * don't include that group in power savings calculations
  2994. */
  2995. if (!sds->power_savings_balance ||
  2996. sgs->sum_nr_running >= sgs->group_capacity ||
  2997. !sgs->sum_nr_running)
  2998. return;
  2999. /*
  3000. * Calculate the group which has the least non-idle load.
  3001. * This is the group from where we need to pick up the load
  3002. * for saving power
  3003. */
  3004. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3005. (sgs->sum_nr_running == sds->min_nr_running &&
  3006. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3007. sds->group_min = group;
  3008. sds->min_nr_running = sgs->sum_nr_running;
  3009. sds->min_load_per_task = sgs->sum_weighted_load /
  3010. sgs->sum_nr_running;
  3011. }
  3012. /*
  3013. * Calculate the group which is almost near its
  3014. * capacity but still has some space to pick up some load
  3015. * from other group and save more power
  3016. */
  3017. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3018. return;
  3019. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3020. (sgs->sum_nr_running == sds->leader_nr_running &&
  3021. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3022. sds->group_leader = group;
  3023. sds->leader_nr_running = sgs->sum_nr_running;
  3024. }
  3025. }
  3026. /**
  3027. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3028. * @sds: Variable containing the statistics of the sched_domain
  3029. * under consideration.
  3030. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3031. * @imbalance: Variable to store the imbalance.
  3032. *
  3033. * Description:
  3034. * Check if we have potential to perform some power-savings balance.
  3035. * If yes, set the busiest group to be the least loaded group in the
  3036. * sched_domain, so that it's CPUs can be put to idle.
  3037. *
  3038. * Returns 1 if there is potential to perform power-savings balance.
  3039. * Else returns 0.
  3040. */
  3041. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3042. int this_cpu, unsigned long *imbalance)
  3043. {
  3044. if (!sds->power_savings_balance)
  3045. return 0;
  3046. if (sds->this != sds->group_leader ||
  3047. sds->group_leader == sds->group_min)
  3048. return 0;
  3049. *imbalance = sds->min_load_per_task;
  3050. sds->busiest = sds->group_min;
  3051. return 1;
  3052. }
  3053. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3054. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3055. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3056. {
  3057. return;
  3058. }
  3059. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3060. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3061. {
  3062. return;
  3063. }
  3064. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3065. int this_cpu, unsigned long *imbalance)
  3066. {
  3067. return 0;
  3068. }
  3069. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3070. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3071. {
  3072. return SCHED_LOAD_SCALE;
  3073. }
  3074. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3075. {
  3076. return default_scale_freq_power(sd, cpu);
  3077. }
  3078. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3079. {
  3080. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3081. unsigned long smt_gain = sd->smt_gain;
  3082. smt_gain /= weight;
  3083. return smt_gain;
  3084. }
  3085. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3086. {
  3087. return default_scale_smt_power(sd, cpu);
  3088. }
  3089. unsigned long scale_rt_power(int cpu)
  3090. {
  3091. struct rq *rq = cpu_rq(cpu);
  3092. u64 total, available;
  3093. sched_avg_update(rq);
  3094. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3095. available = total - rq->rt_avg;
  3096. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3097. total = SCHED_LOAD_SCALE;
  3098. total >>= SCHED_LOAD_SHIFT;
  3099. return div_u64(available, total);
  3100. }
  3101. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3102. {
  3103. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3104. unsigned long power = SCHED_LOAD_SCALE;
  3105. struct sched_group *sdg = sd->groups;
  3106. if (sched_feat(ARCH_POWER))
  3107. power *= arch_scale_freq_power(sd, cpu);
  3108. else
  3109. power *= default_scale_freq_power(sd, cpu);
  3110. power >>= SCHED_LOAD_SHIFT;
  3111. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3112. if (sched_feat(ARCH_POWER))
  3113. power *= arch_scale_smt_power(sd, cpu);
  3114. else
  3115. power *= default_scale_smt_power(sd, cpu);
  3116. power >>= SCHED_LOAD_SHIFT;
  3117. }
  3118. power *= scale_rt_power(cpu);
  3119. power >>= SCHED_LOAD_SHIFT;
  3120. if (!power)
  3121. power = 1;
  3122. sdg->cpu_power = power;
  3123. }
  3124. static void update_group_power(struct sched_domain *sd, int cpu)
  3125. {
  3126. struct sched_domain *child = sd->child;
  3127. struct sched_group *group, *sdg = sd->groups;
  3128. unsigned long power;
  3129. if (!child) {
  3130. update_cpu_power(sd, cpu);
  3131. return;
  3132. }
  3133. power = 0;
  3134. group = child->groups;
  3135. do {
  3136. power += group->cpu_power;
  3137. group = group->next;
  3138. } while (group != child->groups);
  3139. sdg->cpu_power = power;
  3140. }
  3141. /**
  3142. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3143. * @sd: The sched_domain whose statistics are to be updated.
  3144. * @group: sched_group whose statistics are to be updated.
  3145. * @this_cpu: Cpu for which load balance is currently performed.
  3146. * @idle: Idle status of this_cpu
  3147. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3148. * @sd_idle: Idle status of the sched_domain containing group.
  3149. * @local_group: Does group contain this_cpu.
  3150. * @cpus: Set of cpus considered for load balancing.
  3151. * @balance: Should we balance.
  3152. * @sgs: variable to hold the statistics for this group.
  3153. */
  3154. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3155. struct sched_group *group, int this_cpu,
  3156. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3157. int local_group, const struct cpumask *cpus,
  3158. int *balance, struct sg_lb_stats *sgs)
  3159. {
  3160. unsigned long load, max_cpu_load, min_cpu_load;
  3161. int i;
  3162. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3163. unsigned long sum_avg_load_per_task;
  3164. unsigned long avg_load_per_task;
  3165. if (local_group) {
  3166. balance_cpu = group_first_cpu(group);
  3167. if (balance_cpu == this_cpu)
  3168. update_group_power(sd, this_cpu);
  3169. }
  3170. /* Tally up the load of all CPUs in the group */
  3171. sum_avg_load_per_task = avg_load_per_task = 0;
  3172. max_cpu_load = 0;
  3173. min_cpu_load = ~0UL;
  3174. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3175. struct rq *rq = cpu_rq(i);
  3176. if (*sd_idle && rq->nr_running)
  3177. *sd_idle = 0;
  3178. /* Bias balancing toward cpus of our domain */
  3179. if (local_group) {
  3180. if (idle_cpu(i) && !first_idle_cpu) {
  3181. first_idle_cpu = 1;
  3182. balance_cpu = i;
  3183. }
  3184. load = target_load(i, load_idx);
  3185. } else {
  3186. load = source_load(i, load_idx);
  3187. if (load > max_cpu_load)
  3188. max_cpu_load = load;
  3189. if (min_cpu_load > load)
  3190. min_cpu_load = load;
  3191. }
  3192. sgs->group_load += load;
  3193. sgs->sum_nr_running += rq->nr_running;
  3194. sgs->sum_weighted_load += weighted_cpuload(i);
  3195. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3196. }
  3197. /*
  3198. * First idle cpu or the first cpu(busiest) in this sched group
  3199. * is eligible for doing load balancing at this and above
  3200. * domains. In the newly idle case, we will allow all the cpu's
  3201. * to do the newly idle load balance.
  3202. */
  3203. if (idle != CPU_NEWLY_IDLE && local_group &&
  3204. balance_cpu != this_cpu && balance) {
  3205. *balance = 0;
  3206. return;
  3207. }
  3208. /* Adjust by relative CPU power of the group */
  3209. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3210. /*
  3211. * Consider the group unbalanced when the imbalance is larger
  3212. * than the average weight of two tasks.
  3213. *
  3214. * APZ: with cgroup the avg task weight can vary wildly and
  3215. * might not be a suitable number - should we keep a
  3216. * normalized nr_running number somewhere that negates
  3217. * the hierarchy?
  3218. */
  3219. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3220. group->cpu_power;
  3221. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3222. sgs->group_imb = 1;
  3223. sgs->group_capacity =
  3224. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3225. }
  3226. /**
  3227. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3228. * @sd: sched_domain whose statistics are to be updated.
  3229. * @this_cpu: Cpu for which load balance is currently performed.
  3230. * @idle: Idle status of this_cpu
  3231. * @sd_idle: Idle status of the sched_domain containing group.
  3232. * @cpus: Set of cpus considered for load balancing.
  3233. * @balance: Should we balance.
  3234. * @sds: variable to hold the statistics for this sched_domain.
  3235. */
  3236. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3237. enum cpu_idle_type idle, int *sd_idle,
  3238. const struct cpumask *cpus, int *balance,
  3239. struct sd_lb_stats *sds)
  3240. {
  3241. struct sched_domain *child = sd->child;
  3242. struct sched_group *group = sd->groups;
  3243. struct sg_lb_stats sgs;
  3244. int load_idx, prefer_sibling = 0;
  3245. if (child && child->flags & SD_PREFER_SIBLING)
  3246. prefer_sibling = 1;
  3247. init_sd_power_savings_stats(sd, sds, idle);
  3248. load_idx = get_sd_load_idx(sd, idle);
  3249. do {
  3250. int local_group;
  3251. local_group = cpumask_test_cpu(this_cpu,
  3252. sched_group_cpus(group));
  3253. memset(&sgs, 0, sizeof(sgs));
  3254. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3255. local_group, cpus, balance, &sgs);
  3256. if (local_group && balance && !(*balance))
  3257. return;
  3258. sds->total_load += sgs.group_load;
  3259. sds->total_pwr += group->cpu_power;
  3260. /*
  3261. * In case the child domain prefers tasks go to siblings
  3262. * first, lower the group capacity to one so that we'll try
  3263. * and move all the excess tasks away.
  3264. */
  3265. if (prefer_sibling)
  3266. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3267. if (local_group) {
  3268. sds->this_load = sgs.avg_load;
  3269. sds->this = group;
  3270. sds->this_nr_running = sgs.sum_nr_running;
  3271. sds->this_load_per_task = sgs.sum_weighted_load;
  3272. } else if (sgs.avg_load > sds->max_load &&
  3273. (sgs.sum_nr_running > sgs.group_capacity ||
  3274. sgs.group_imb)) {
  3275. sds->max_load = sgs.avg_load;
  3276. sds->busiest = group;
  3277. sds->busiest_nr_running = sgs.sum_nr_running;
  3278. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3279. sds->group_imb = sgs.group_imb;
  3280. }
  3281. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3282. group = group->next;
  3283. } while (group != sd->groups);
  3284. }
  3285. /**
  3286. * fix_small_imbalance - Calculate the minor imbalance that exists
  3287. * amongst the groups of a sched_domain, during
  3288. * load balancing.
  3289. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3290. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3291. * @imbalance: Variable to store the imbalance.
  3292. */
  3293. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3294. int this_cpu, unsigned long *imbalance)
  3295. {
  3296. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3297. unsigned int imbn = 2;
  3298. if (sds->this_nr_running) {
  3299. sds->this_load_per_task /= sds->this_nr_running;
  3300. if (sds->busiest_load_per_task >
  3301. sds->this_load_per_task)
  3302. imbn = 1;
  3303. } else
  3304. sds->this_load_per_task =
  3305. cpu_avg_load_per_task(this_cpu);
  3306. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3307. sds->busiest_load_per_task * imbn) {
  3308. *imbalance = sds->busiest_load_per_task;
  3309. return;
  3310. }
  3311. /*
  3312. * OK, we don't have enough imbalance to justify moving tasks,
  3313. * however we may be able to increase total CPU power used by
  3314. * moving them.
  3315. */
  3316. pwr_now += sds->busiest->cpu_power *
  3317. min(sds->busiest_load_per_task, sds->max_load);
  3318. pwr_now += sds->this->cpu_power *
  3319. min(sds->this_load_per_task, sds->this_load);
  3320. pwr_now /= SCHED_LOAD_SCALE;
  3321. /* Amount of load we'd subtract */
  3322. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3323. sds->busiest->cpu_power;
  3324. if (sds->max_load > tmp)
  3325. pwr_move += sds->busiest->cpu_power *
  3326. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3327. /* Amount of load we'd add */
  3328. if (sds->max_load * sds->busiest->cpu_power <
  3329. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3330. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3331. sds->this->cpu_power;
  3332. else
  3333. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3334. sds->this->cpu_power;
  3335. pwr_move += sds->this->cpu_power *
  3336. min(sds->this_load_per_task, sds->this_load + tmp);
  3337. pwr_move /= SCHED_LOAD_SCALE;
  3338. /* Move if we gain throughput */
  3339. if (pwr_move > pwr_now)
  3340. *imbalance = sds->busiest_load_per_task;
  3341. }
  3342. /**
  3343. * calculate_imbalance - Calculate the amount of imbalance present within the
  3344. * groups of a given sched_domain during load balance.
  3345. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3346. * @this_cpu: Cpu for which currently load balance is being performed.
  3347. * @imbalance: The variable to store the imbalance.
  3348. */
  3349. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3350. unsigned long *imbalance)
  3351. {
  3352. unsigned long max_pull;
  3353. /*
  3354. * In the presence of smp nice balancing, certain scenarios can have
  3355. * max load less than avg load(as we skip the groups at or below
  3356. * its cpu_power, while calculating max_load..)
  3357. */
  3358. if (sds->max_load < sds->avg_load) {
  3359. *imbalance = 0;
  3360. return fix_small_imbalance(sds, this_cpu, imbalance);
  3361. }
  3362. /* Don't want to pull so many tasks that a group would go idle */
  3363. max_pull = min(sds->max_load - sds->avg_load,
  3364. sds->max_load - sds->busiest_load_per_task);
  3365. /* How much load to actually move to equalise the imbalance */
  3366. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3367. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3368. / SCHED_LOAD_SCALE;
  3369. /*
  3370. * if *imbalance is less than the average load per runnable task
  3371. * there is no gaurantee that any tasks will be moved so we'll have
  3372. * a think about bumping its value to force at least one task to be
  3373. * moved
  3374. */
  3375. if (*imbalance < sds->busiest_load_per_task)
  3376. return fix_small_imbalance(sds, this_cpu, imbalance);
  3377. }
  3378. /******* find_busiest_group() helpers end here *********************/
  3379. /**
  3380. * find_busiest_group - Returns the busiest group within the sched_domain
  3381. * if there is an imbalance. If there isn't an imbalance, and
  3382. * the user has opted for power-savings, it returns a group whose
  3383. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3384. * such a group exists.
  3385. *
  3386. * Also calculates the amount of weighted load which should be moved
  3387. * to restore balance.
  3388. *
  3389. * @sd: The sched_domain whose busiest group is to be returned.
  3390. * @this_cpu: The cpu for which load balancing is currently being performed.
  3391. * @imbalance: Variable which stores amount of weighted load which should
  3392. * be moved to restore balance/put a group to idle.
  3393. * @idle: The idle status of this_cpu.
  3394. * @sd_idle: The idleness of sd
  3395. * @cpus: The set of CPUs under consideration for load-balancing.
  3396. * @balance: Pointer to a variable indicating if this_cpu
  3397. * is the appropriate cpu to perform load balancing at this_level.
  3398. *
  3399. * Returns: - the busiest group if imbalance exists.
  3400. * - If no imbalance and user has opted for power-savings balance,
  3401. * return the least loaded group whose CPUs can be
  3402. * put to idle by rebalancing its tasks onto our group.
  3403. */
  3404. static struct sched_group *
  3405. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3406. unsigned long *imbalance, enum cpu_idle_type idle,
  3407. int *sd_idle, const struct cpumask *cpus, int *balance)
  3408. {
  3409. struct sd_lb_stats sds;
  3410. memset(&sds, 0, sizeof(sds));
  3411. /*
  3412. * Compute the various statistics relavent for load balancing at
  3413. * this level.
  3414. */
  3415. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3416. balance, &sds);
  3417. /* Cases where imbalance does not exist from POV of this_cpu */
  3418. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3419. * at this level.
  3420. * 2) There is no busy sibling group to pull from.
  3421. * 3) This group is the busiest group.
  3422. * 4) This group is more busy than the avg busieness at this
  3423. * sched_domain.
  3424. * 5) The imbalance is within the specified limit.
  3425. * 6) Any rebalance would lead to ping-pong
  3426. */
  3427. if (balance && !(*balance))
  3428. goto ret;
  3429. if (!sds.busiest || sds.busiest_nr_running == 0)
  3430. goto out_balanced;
  3431. if (sds.this_load >= sds.max_load)
  3432. goto out_balanced;
  3433. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3434. if (sds.this_load >= sds.avg_load)
  3435. goto out_balanced;
  3436. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3437. goto out_balanced;
  3438. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3439. if (sds.group_imb)
  3440. sds.busiest_load_per_task =
  3441. min(sds.busiest_load_per_task, sds.avg_load);
  3442. /*
  3443. * We're trying to get all the cpus to the average_load, so we don't
  3444. * want to push ourselves above the average load, nor do we wish to
  3445. * reduce the max loaded cpu below the average load, as either of these
  3446. * actions would just result in more rebalancing later, and ping-pong
  3447. * tasks around. Thus we look for the minimum possible imbalance.
  3448. * Negative imbalances (*we* are more loaded than anyone else) will
  3449. * be counted as no imbalance for these purposes -- we can't fix that
  3450. * by pulling tasks to us. Be careful of negative numbers as they'll
  3451. * appear as very large values with unsigned longs.
  3452. */
  3453. if (sds.max_load <= sds.busiest_load_per_task)
  3454. goto out_balanced;
  3455. /* Looks like there is an imbalance. Compute it */
  3456. calculate_imbalance(&sds, this_cpu, imbalance);
  3457. return sds.busiest;
  3458. out_balanced:
  3459. /*
  3460. * There is no obvious imbalance. But check if we can do some balancing
  3461. * to save power.
  3462. */
  3463. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3464. return sds.busiest;
  3465. ret:
  3466. *imbalance = 0;
  3467. return NULL;
  3468. }
  3469. /*
  3470. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3471. */
  3472. static struct rq *
  3473. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3474. unsigned long imbalance, const struct cpumask *cpus)
  3475. {
  3476. struct rq *busiest = NULL, *rq;
  3477. unsigned long max_load = 0;
  3478. int i;
  3479. for_each_cpu(i, sched_group_cpus(group)) {
  3480. unsigned long power = power_of(i);
  3481. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3482. unsigned long wl;
  3483. if (!cpumask_test_cpu(i, cpus))
  3484. continue;
  3485. rq = cpu_rq(i);
  3486. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3487. wl /= power;
  3488. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3489. continue;
  3490. if (wl > max_load) {
  3491. max_load = wl;
  3492. busiest = rq;
  3493. }
  3494. }
  3495. return busiest;
  3496. }
  3497. /*
  3498. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3499. * so long as it is large enough.
  3500. */
  3501. #define MAX_PINNED_INTERVAL 512
  3502. /* Working cpumask for load_balance and load_balance_newidle. */
  3503. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3504. /*
  3505. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3506. * tasks if there is an imbalance.
  3507. */
  3508. static int load_balance(int this_cpu, struct rq *this_rq,
  3509. struct sched_domain *sd, enum cpu_idle_type idle,
  3510. int *balance)
  3511. {
  3512. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3513. struct sched_group *group;
  3514. unsigned long imbalance;
  3515. struct rq *busiest;
  3516. unsigned long flags;
  3517. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3518. cpumask_copy(cpus, cpu_active_mask);
  3519. /*
  3520. * When power savings policy is enabled for the parent domain, idle
  3521. * sibling can pick up load irrespective of busy siblings. In this case,
  3522. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3523. * portraying it as CPU_NOT_IDLE.
  3524. */
  3525. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3526. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3527. sd_idle = 1;
  3528. schedstat_inc(sd, lb_count[idle]);
  3529. redo:
  3530. update_shares(sd);
  3531. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3532. cpus, balance);
  3533. if (*balance == 0)
  3534. goto out_balanced;
  3535. if (!group) {
  3536. schedstat_inc(sd, lb_nobusyg[idle]);
  3537. goto out_balanced;
  3538. }
  3539. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3540. if (!busiest) {
  3541. schedstat_inc(sd, lb_nobusyq[idle]);
  3542. goto out_balanced;
  3543. }
  3544. BUG_ON(busiest == this_rq);
  3545. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3546. ld_moved = 0;
  3547. if (busiest->nr_running > 1) {
  3548. /*
  3549. * Attempt to move tasks. If find_busiest_group has found
  3550. * an imbalance but busiest->nr_running <= 1, the group is
  3551. * still unbalanced. ld_moved simply stays zero, so it is
  3552. * correctly treated as an imbalance.
  3553. */
  3554. local_irq_save(flags);
  3555. double_rq_lock(this_rq, busiest);
  3556. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3557. imbalance, sd, idle, &all_pinned);
  3558. double_rq_unlock(this_rq, busiest);
  3559. local_irq_restore(flags);
  3560. /*
  3561. * some other cpu did the load balance for us.
  3562. */
  3563. if (ld_moved && this_cpu != smp_processor_id())
  3564. resched_cpu(this_cpu);
  3565. /* All tasks on this runqueue were pinned by CPU affinity */
  3566. if (unlikely(all_pinned)) {
  3567. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3568. if (!cpumask_empty(cpus))
  3569. goto redo;
  3570. goto out_balanced;
  3571. }
  3572. }
  3573. if (!ld_moved) {
  3574. schedstat_inc(sd, lb_failed[idle]);
  3575. sd->nr_balance_failed++;
  3576. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3577. raw_spin_lock_irqsave(&busiest->lock, flags);
  3578. /* don't kick the migration_thread, if the curr
  3579. * task on busiest cpu can't be moved to this_cpu
  3580. */
  3581. if (!cpumask_test_cpu(this_cpu,
  3582. &busiest->curr->cpus_allowed)) {
  3583. raw_spin_unlock_irqrestore(&busiest->lock,
  3584. flags);
  3585. all_pinned = 1;
  3586. goto out_one_pinned;
  3587. }
  3588. if (!busiest->active_balance) {
  3589. busiest->active_balance = 1;
  3590. busiest->push_cpu = this_cpu;
  3591. active_balance = 1;
  3592. }
  3593. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3594. if (active_balance)
  3595. wake_up_process(busiest->migration_thread);
  3596. /*
  3597. * We've kicked active balancing, reset the failure
  3598. * counter.
  3599. */
  3600. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3601. }
  3602. } else
  3603. sd->nr_balance_failed = 0;
  3604. if (likely(!active_balance)) {
  3605. /* We were unbalanced, so reset the balancing interval */
  3606. sd->balance_interval = sd->min_interval;
  3607. } else {
  3608. /*
  3609. * If we've begun active balancing, start to back off. This
  3610. * case may not be covered by the all_pinned logic if there
  3611. * is only 1 task on the busy runqueue (because we don't call
  3612. * move_tasks).
  3613. */
  3614. if (sd->balance_interval < sd->max_interval)
  3615. sd->balance_interval *= 2;
  3616. }
  3617. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3618. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3619. ld_moved = -1;
  3620. goto out;
  3621. out_balanced:
  3622. schedstat_inc(sd, lb_balanced[idle]);
  3623. sd->nr_balance_failed = 0;
  3624. out_one_pinned:
  3625. /* tune up the balancing interval */
  3626. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3627. (sd->balance_interval < sd->max_interval))
  3628. sd->balance_interval *= 2;
  3629. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3630. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3631. ld_moved = -1;
  3632. else
  3633. ld_moved = 0;
  3634. out:
  3635. if (ld_moved)
  3636. update_shares(sd);
  3637. return ld_moved;
  3638. }
  3639. /*
  3640. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3641. * tasks if there is an imbalance.
  3642. *
  3643. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3644. * this_rq is locked.
  3645. */
  3646. static int
  3647. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3648. {
  3649. struct sched_group *group;
  3650. struct rq *busiest = NULL;
  3651. unsigned long imbalance;
  3652. int ld_moved = 0;
  3653. int sd_idle = 0;
  3654. int all_pinned = 0;
  3655. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3656. cpumask_copy(cpus, cpu_active_mask);
  3657. /*
  3658. * When power savings policy is enabled for the parent domain, idle
  3659. * sibling can pick up load irrespective of busy siblings. In this case,
  3660. * let the state of idle sibling percolate up as IDLE, instead of
  3661. * portraying it as CPU_NOT_IDLE.
  3662. */
  3663. if (sd->flags & SD_SHARE_CPUPOWER &&
  3664. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3665. sd_idle = 1;
  3666. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3667. redo:
  3668. update_shares_locked(this_rq, sd);
  3669. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3670. &sd_idle, cpus, NULL);
  3671. if (!group) {
  3672. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3673. goto out_balanced;
  3674. }
  3675. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3676. if (!busiest) {
  3677. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3678. goto out_balanced;
  3679. }
  3680. BUG_ON(busiest == this_rq);
  3681. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3682. ld_moved = 0;
  3683. if (busiest->nr_running > 1) {
  3684. /* Attempt to move tasks */
  3685. double_lock_balance(this_rq, busiest);
  3686. /* this_rq->clock is already updated */
  3687. update_rq_clock(busiest);
  3688. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3689. imbalance, sd, CPU_NEWLY_IDLE,
  3690. &all_pinned);
  3691. double_unlock_balance(this_rq, busiest);
  3692. if (unlikely(all_pinned)) {
  3693. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3694. if (!cpumask_empty(cpus))
  3695. goto redo;
  3696. }
  3697. }
  3698. if (!ld_moved) {
  3699. int active_balance = 0;
  3700. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3701. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3702. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3703. return -1;
  3704. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3705. return -1;
  3706. if (sd->nr_balance_failed++ < 2)
  3707. return -1;
  3708. /*
  3709. * The only task running in a non-idle cpu can be moved to this
  3710. * cpu in an attempt to completely freeup the other CPU
  3711. * package. The same method used to move task in load_balance()
  3712. * have been extended for load_balance_newidle() to speedup
  3713. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3714. *
  3715. * The package power saving logic comes from
  3716. * find_busiest_group(). If there are no imbalance, then
  3717. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3718. * f_b_g() will select a group from which a running task may be
  3719. * pulled to this cpu in order to make the other package idle.
  3720. * If there is no opportunity to make a package idle and if
  3721. * there are no imbalance, then f_b_g() will return NULL and no
  3722. * action will be taken in load_balance_newidle().
  3723. *
  3724. * Under normal task pull operation due to imbalance, there
  3725. * will be more than one task in the source run queue and
  3726. * move_tasks() will succeed. ld_moved will be true and this
  3727. * active balance code will not be triggered.
  3728. */
  3729. /* Lock busiest in correct order while this_rq is held */
  3730. double_lock_balance(this_rq, busiest);
  3731. /*
  3732. * don't kick the migration_thread, if the curr
  3733. * task on busiest cpu can't be moved to this_cpu
  3734. */
  3735. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3736. double_unlock_balance(this_rq, busiest);
  3737. all_pinned = 1;
  3738. return ld_moved;
  3739. }
  3740. if (!busiest->active_balance) {
  3741. busiest->active_balance = 1;
  3742. busiest->push_cpu = this_cpu;
  3743. active_balance = 1;
  3744. }
  3745. double_unlock_balance(this_rq, busiest);
  3746. /*
  3747. * Should not call ttwu while holding a rq->lock
  3748. */
  3749. raw_spin_unlock(&this_rq->lock);
  3750. if (active_balance)
  3751. wake_up_process(busiest->migration_thread);
  3752. raw_spin_lock(&this_rq->lock);
  3753. } else
  3754. sd->nr_balance_failed = 0;
  3755. update_shares_locked(this_rq, sd);
  3756. return ld_moved;
  3757. out_balanced:
  3758. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3759. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3760. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3761. return -1;
  3762. sd->nr_balance_failed = 0;
  3763. return 0;
  3764. }
  3765. /*
  3766. * idle_balance is called by schedule() if this_cpu is about to become
  3767. * idle. Attempts to pull tasks from other CPUs.
  3768. */
  3769. static void idle_balance(int this_cpu, struct rq *this_rq)
  3770. {
  3771. struct sched_domain *sd;
  3772. int pulled_task = 0;
  3773. unsigned long next_balance = jiffies + HZ;
  3774. this_rq->idle_stamp = this_rq->clock;
  3775. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3776. return;
  3777. for_each_domain(this_cpu, sd) {
  3778. unsigned long interval;
  3779. if (!(sd->flags & SD_LOAD_BALANCE))
  3780. continue;
  3781. if (sd->flags & SD_BALANCE_NEWIDLE)
  3782. /* If we've pulled tasks over stop searching: */
  3783. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3784. sd);
  3785. interval = msecs_to_jiffies(sd->balance_interval);
  3786. if (time_after(next_balance, sd->last_balance + interval))
  3787. next_balance = sd->last_balance + interval;
  3788. if (pulled_task) {
  3789. this_rq->idle_stamp = 0;
  3790. break;
  3791. }
  3792. }
  3793. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3794. /*
  3795. * We are going idle. next_balance may be set based on
  3796. * a busy processor. So reset next_balance.
  3797. */
  3798. this_rq->next_balance = next_balance;
  3799. }
  3800. }
  3801. /*
  3802. * active_load_balance is run by migration threads. It pushes running tasks
  3803. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3804. * running on each physical CPU where possible, and avoids physical /
  3805. * logical imbalances.
  3806. *
  3807. * Called with busiest_rq locked.
  3808. */
  3809. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3810. {
  3811. int target_cpu = busiest_rq->push_cpu;
  3812. struct sched_domain *sd;
  3813. struct rq *target_rq;
  3814. /* Is there any task to move? */
  3815. if (busiest_rq->nr_running <= 1)
  3816. return;
  3817. target_rq = cpu_rq(target_cpu);
  3818. /*
  3819. * This condition is "impossible", if it occurs
  3820. * we need to fix it. Originally reported by
  3821. * Bjorn Helgaas on a 128-cpu setup.
  3822. */
  3823. BUG_ON(busiest_rq == target_rq);
  3824. /* move a task from busiest_rq to target_rq */
  3825. double_lock_balance(busiest_rq, target_rq);
  3826. update_rq_clock(busiest_rq);
  3827. update_rq_clock(target_rq);
  3828. /* Search for an sd spanning us and the target CPU. */
  3829. for_each_domain(target_cpu, sd) {
  3830. if ((sd->flags & SD_LOAD_BALANCE) &&
  3831. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3832. break;
  3833. }
  3834. if (likely(sd)) {
  3835. schedstat_inc(sd, alb_count);
  3836. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3837. sd, CPU_IDLE))
  3838. schedstat_inc(sd, alb_pushed);
  3839. else
  3840. schedstat_inc(sd, alb_failed);
  3841. }
  3842. double_unlock_balance(busiest_rq, target_rq);
  3843. }
  3844. #ifdef CONFIG_NO_HZ
  3845. static struct {
  3846. atomic_t load_balancer;
  3847. cpumask_var_t cpu_mask;
  3848. cpumask_var_t ilb_grp_nohz_mask;
  3849. } nohz ____cacheline_aligned = {
  3850. .load_balancer = ATOMIC_INIT(-1),
  3851. };
  3852. int get_nohz_load_balancer(void)
  3853. {
  3854. return atomic_read(&nohz.load_balancer);
  3855. }
  3856. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3857. /**
  3858. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3859. * @cpu: The cpu whose lowest level of sched domain is to
  3860. * be returned.
  3861. * @flag: The flag to check for the lowest sched_domain
  3862. * for the given cpu.
  3863. *
  3864. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3865. */
  3866. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3867. {
  3868. struct sched_domain *sd;
  3869. for_each_domain(cpu, sd)
  3870. if (sd && (sd->flags & flag))
  3871. break;
  3872. return sd;
  3873. }
  3874. /**
  3875. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3876. * @cpu: The cpu whose domains we're iterating over.
  3877. * @sd: variable holding the value of the power_savings_sd
  3878. * for cpu.
  3879. * @flag: The flag to filter the sched_domains to be iterated.
  3880. *
  3881. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3882. * set, starting from the lowest sched_domain to the highest.
  3883. */
  3884. #define for_each_flag_domain(cpu, sd, flag) \
  3885. for (sd = lowest_flag_domain(cpu, flag); \
  3886. (sd && (sd->flags & flag)); sd = sd->parent)
  3887. /**
  3888. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3889. * @ilb_group: group to be checked for semi-idleness
  3890. *
  3891. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3892. *
  3893. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3894. * and atleast one non-idle CPU. This helper function checks if the given
  3895. * sched_group is semi-idle or not.
  3896. */
  3897. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3898. {
  3899. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3900. sched_group_cpus(ilb_group));
  3901. /*
  3902. * A sched_group is semi-idle when it has atleast one busy cpu
  3903. * and atleast one idle cpu.
  3904. */
  3905. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3906. return 0;
  3907. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3908. return 0;
  3909. return 1;
  3910. }
  3911. /**
  3912. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3913. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3914. *
  3915. * Returns: Returns the id of the idle load balancer if it exists,
  3916. * Else, returns >= nr_cpu_ids.
  3917. *
  3918. * This algorithm picks the idle load balancer such that it belongs to a
  3919. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3920. * completely idle packages/cores just for the purpose of idle load balancing
  3921. * when there are other idle cpu's which are better suited for that job.
  3922. */
  3923. static int find_new_ilb(int cpu)
  3924. {
  3925. struct sched_domain *sd;
  3926. struct sched_group *ilb_group;
  3927. /*
  3928. * Have idle load balancer selection from semi-idle packages only
  3929. * when power-aware load balancing is enabled
  3930. */
  3931. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3932. goto out_done;
  3933. /*
  3934. * Optimize for the case when we have no idle CPUs or only one
  3935. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3936. */
  3937. if (cpumask_weight(nohz.cpu_mask) < 2)
  3938. goto out_done;
  3939. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3940. ilb_group = sd->groups;
  3941. do {
  3942. if (is_semi_idle_group(ilb_group))
  3943. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3944. ilb_group = ilb_group->next;
  3945. } while (ilb_group != sd->groups);
  3946. }
  3947. out_done:
  3948. return cpumask_first(nohz.cpu_mask);
  3949. }
  3950. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3951. static inline int find_new_ilb(int call_cpu)
  3952. {
  3953. return cpumask_first(nohz.cpu_mask);
  3954. }
  3955. #endif
  3956. /*
  3957. * This routine will try to nominate the ilb (idle load balancing)
  3958. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3959. * load balancing on behalf of all those cpus. If all the cpus in the system
  3960. * go into this tickless mode, then there will be no ilb owner (as there is
  3961. * no need for one) and all the cpus will sleep till the next wakeup event
  3962. * arrives...
  3963. *
  3964. * For the ilb owner, tick is not stopped. And this tick will be used
  3965. * for idle load balancing. ilb owner will still be part of
  3966. * nohz.cpu_mask..
  3967. *
  3968. * While stopping the tick, this cpu will become the ilb owner if there
  3969. * is no other owner. And will be the owner till that cpu becomes busy
  3970. * or if all cpus in the system stop their ticks at which point
  3971. * there is no need for ilb owner.
  3972. *
  3973. * When the ilb owner becomes busy, it nominates another owner, during the
  3974. * next busy scheduler_tick()
  3975. */
  3976. int select_nohz_load_balancer(int stop_tick)
  3977. {
  3978. int cpu = smp_processor_id();
  3979. if (stop_tick) {
  3980. cpu_rq(cpu)->in_nohz_recently = 1;
  3981. if (!cpu_active(cpu)) {
  3982. if (atomic_read(&nohz.load_balancer) != cpu)
  3983. return 0;
  3984. /*
  3985. * If we are going offline and still the leader,
  3986. * give up!
  3987. */
  3988. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3989. BUG();
  3990. return 0;
  3991. }
  3992. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3993. /* time for ilb owner also to sleep */
  3994. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3995. if (atomic_read(&nohz.load_balancer) == cpu)
  3996. atomic_set(&nohz.load_balancer, -1);
  3997. return 0;
  3998. }
  3999. if (atomic_read(&nohz.load_balancer) == -1) {
  4000. /* make me the ilb owner */
  4001. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4002. return 1;
  4003. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4004. int new_ilb;
  4005. if (!(sched_smt_power_savings ||
  4006. sched_mc_power_savings))
  4007. return 1;
  4008. /*
  4009. * Check to see if there is a more power-efficient
  4010. * ilb.
  4011. */
  4012. new_ilb = find_new_ilb(cpu);
  4013. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4014. atomic_set(&nohz.load_balancer, -1);
  4015. resched_cpu(new_ilb);
  4016. return 0;
  4017. }
  4018. return 1;
  4019. }
  4020. } else {
  4021. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4022. return 0;
  4023. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4024. if (atomic_read(&nohz.load_balancer) == cpu)
  4025. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4026. BUG();
  4027. }
  4028. return 0;
  4029. }
  4030. #endif
  4031. static DEFINE_SPINLOCK(balancing);
  4032. /*
  4033. * It checks each scheduling domain to see if it is due to be balanced,
  4034. * and initiates a balancing operation if so.
  4035. *
  4036. * Balancing parameters are set up in arch_init_sched_domains.
  4037. */
  4038. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4039. {
  4040. int balance = 1;
  4041. struct rq *rq = cpu_rq(cpu);
  4042. unsigned long interval;
  4043. struct sched_domain *sd;
  4044. /* Earliest time when we have to do rebalance again */
  4045. unsigned long next_balance = jiffies + 60*HZ;
  4046. int update_next_balance = 0;
  4047. int need_serialize;
  4048. for_each_domain(cpu, sd) {
  4049. if (!(sd->flags & SD_LOAD_BALANCE))
  4050. continue;
  4051. interval = sd->balance_interval;
  4052. if (idle != CPU_IDLE)
  4053. interval *= sd->busy_factor;
  4054. /* scale ms to jiffies */
  4055. interval = msecs_to_jiffies(interval);
  4056. if (unlikely(!interval))
  4057. interval = 1;
  4058. if (interval > HZ*NR_CPUS/10)
  4059. interval = HZ*NR_CPUS/10;
  4060. need_serialize = sd->flags & SD_SERIALIZE;
  4061. if (need_serialize) {
  4062. if (!spin_trylock(&balancing))
  4063. goto out;
  4064. }
  4065. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4066. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4067. /*
  4068. * We've pulled tasks over so either we're no
  4069. * longer idle, or one of our SMT siblings is
  4070. * not idle.
  4071. */
  4072. idle = CPU_NOT_IDLE;
  4073. }
  4074. sd->last_balance = jiffies;
  4075. }
  4076. if (need_serialize)
  4077. spin_unlock(&balancing);
  4078. out:
  4079. if (time_after(next_balance, sd->last_balance + interval)) {
  4080. next_balance = sd->last_balance + interval;
  4081. update_next_balance = 1;
  4082. }
  4083. /*
  4084. * Stop the load balance at this level. There is another
  4085. * CPU in our sched group which is doing load balancing more
  4086. * actively.
  4087. */
  4088. if (!balance)
  4089. break;
  4090. }
  4091. /*
  4092. * next_balance will be updated only when there is a need.
  4093. * When the cpu is attached to null domain for ex, it will not be
  4094. * updated.
  4095. */
  4096. if (likely(update_next_balance))
  4097. rq->next_balance = next_balance;
  4098. }
  4099. /*
  4100. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4101. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4102. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4103. */
  4104. static void run_rebalance_domains(struct softirq_action *h)
  4105. {
  4106. int this_cpu = smp_processor_id();
  4107. struct rq *this_rq = cpu_rq(this_cpu);
  4108. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4109. CPU_IDLE : CPU_NOT_IDLE;
  4110. rebalance_domains(this_cpu, idle);
  4111. #ifdef CONFIG_NO_HZ
  4112. /*
  4113. * If this cpu is the owner for idle load balancing, then do the
  4114. * balancing on behalf of the other idle cpus whose ticks are
  4115. * stopped.
  4116. */
  4117. if (this_rq->idle_at_tick &&
  4118. atomic_read(&nohz.load_balancer) == this_cpu) {
  4119. struct rq *rq;
  4120. int balance_cpu;
  4121. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4122. if (balance_cpu == this_cpu)
  4123. continue;
  4124. /*
  4125. * If this cpu gets work to do, stop the load balancing
  4126. * work being done for other cpus. Next load
  4127. * balancing owner will pick it up.
  4128. */
  4129. if (need_resched())
  4130. break;
  4131. rebalance_domains(balance_cpu, CPU_IDLE);
  4132. rq = cpu_rq(balance_cpu);
  4133. if (time_after(this_rq->next_balance, rq->next_balance))
  4134. this_rq->next_balance = rq->next_balance;
  4135. }
  4136. }
  4137. #endif
  4138. }
  4139. static inline int on_null_domain(int cpu)
  4140. {
  4141. return !rcu_dereference(cpu_rq(cpu)->sd);
  4142. }
  4143. /*
  4144. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4145. *
  4146. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4147. * idle load balancing owner or decide to stop the periodic load balancing,
  4148. * if the whole system is idle.
  4149. */
  4150. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4151. {
  4152. #ifdef CONFIG_NO_HZ
  4153. /*
  4154. * If we were in the nohz mode recently and busy at the current
  4155. * scheduler tick, then check if we need to nominate new idle
  4156. * load balancer.
  4157. */
  4158. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4159. rq->in_nohz_recently = 0;
  4160. if (atomic_read(&nohz.load_balancer) == cpu) {
  4161. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4162. atomic_set(&nohz.load_balancer, -1);
  4163. }
  4164. if (atomic_read(&nohz.load_balancer) == -1) {
  4165. int ilb = find_new_ilb(cpu);
  4166. if (ilb < nr_cpu_ids)
  4167. resched_cpu(ilb);
  4168. }
  4169. }
  4170. /*
  4171. * If this cpu is idle and doing idle load balancing for all the
  4172. * cpus with ticks stopped, is it time for that to stop?
  4173. */
  4174. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4175. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4176. resched_cpu(cpu);
  4177. return;
  4178. }
  4179. /*
  4180. * If this cpu is idle and the idle load balancing is done by
  4181. * someone else, then no need raise the SCHED_SOFTIRQ
  4182. */
  4183. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4184. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4185. return;
  4186. #endif
  4187. /* Don't need to rebalance while attached to NULL domain */
  4188. if (time_after_eq(jiffies, rq->next_balance) &&
  4189. likely(!on_null_domain(cpu)))
  4190. raise_softirq(SCHED_SOFTIRQ);
  4191. }
  4192. #else /* CONFIG_SMP */
  4193. /*
  4194. * on UP we do not need to balance between CPUs:
  4195. */
  4196. static inline void idle_balance(int cpu, struct rq *rq)
  4197. {
  4198. }
  4199. #endif
  4200. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4201. EXPORT_PER_CPU_SYMBOL(kstat);
  4202. /*
  4203. * Return any ns on the sched_clock that have not yet been accounted in
  4204. * @p in case that task is currently running.
  4205. *
  4206. * Called with task_rq_lock() held on @rq.
  4207. */
  4208. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4209. {
  4210. u64 ns = 0;
  4211. if (task_current(rq, p)) {
  4212. update_rq_clock(rq);
  4213. ns = rq->clock - p->se.exec_start;
  4214. if ((s64)ns < 0)
  4215. ns = 0;
  4216. }
  4217. return ns;
  4218. }
  4219. unsigned long long task_delta_exec(struct task_struct *p)
  4220. {
  4221. unsigned long flags;
  4222. struct rq *rq;
  4223. u64 ns = 0;
  4224. rq = task_rq_lock(p, &flags);
  4225. ns = do_task_delta_exec(p, rq);
  4226. task_rq_unlock(rq, &flags);
  4227. return ns;
  4228. }
  4229. /*
  4230. * Return accounted runtime for the task.
  4231. * In case the task is currently running, return the runtime plus current's
  4232. * pending runtime that have not been accounted yet.
  4233. */
  4234. unsigned long long task_sched_runtime(struct task_struct *p)
  4235. {
  4236. unsigned long flags;
  4237. struct rq *rq;
  4238. u64 ns = 0;
  4239. rq = task_rq_lock(p, &flags);
  4240. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4241. task_rq_unlock(rq, &flags);
  4242. return ns;
  4243. }
  4244. /*
  4245. * Return sum_exec_runtime for the thread group.
  4246. * In case the task is currently running, return the sum plus current's
  4247. * pending runtime that have not been accounted yet.
  4248. *
  4249. * Note that the thread group might have other running tasks as well,
  4250. * so the return value not includes other pending runtime that other
  4251. * running tasks might have.
  4252. */
  4253. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4254. {
  4255. struct task_cputime totals;
  4256. unsigned long flags;
  4257. struct rq *rq;
  4258. u64 ns;
  4259. rq = task_rq_lock(p, &flags);
  4260. thread_group_cputime(p, &totals);
  4261. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4262. task_rq_unlock(rq, &flags);
  4263. return ns;
  4264. }
  4265. /*
  4266. * Account user cpu time to a process.
  4267. * @p: the process that the cpu time gets accounted to
  4268. * @cputime: the cpu time spent in user space since the last update
  4269. * @cputime_scaled: cputime scaled by cpu frequency
  4270. */
  4271. void account_user_time(struct task_struct *p, cputime_t cputime,
  4272. cputime_t cputime_scaled)
  4273. {
  4274. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4275. cputime64_t tmp;
  4276. /* Add user time to process. */
  4277. p->utime = cputime_add(p->utime, cputime);
  4278. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4279. account_group_user_time(p, cputime);
  4280. /* Add user time to cpustat. */
  4281. tmp = cputime_to_cputime64(cputime);
  4282. if (TASK_NICE(p) > 0)
  4283. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4284. else
  4285. cpustat->user = cputime64_add(cpustat->user, tmp);
  4286. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4287. /* Account for user time used */
  4288. acct_update_integrals(p);
  4289. }
  4290. /*
  4291. * Account guest cpu time to a process.
  4292. * @p: the process that the cpu time gets accounted to
  4293. * @cputime: the cpu time spent in virtual machine since the last update
  4294. * @cputime_scaled: cputime scaled by cpu frequency
  4295. */
  4296. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4297. cputime_t cputime_scaled)
  4298. {
  4299. cputime64_t tmp;
  4300. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4301. tmp = cputime_to_cputime64(cputime);
  4302. /* Add guest time to process. */
  4303. p->utime = cputime_add(p->utime, cputime);
  4304. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4305. account_group_user_time(p, cputime);
  4306. p->gtime = cputime_add(p->gtime, cputime);
  4307. /* Add guest time to cpustat. */
  4308. if (TASK_NICE(p) > 0) {
  4309. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4310. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4311. } else {
  4312. cpustat->user = cputime64_add(cpustat->user, tmp);
  4313. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4314. }
  4315. }
  4316. /*
  4317. * Account system cpu time to a process.
  4318. * @p: the process that the cpu time gets accounted to
  4319. * @hardirq_offset: the offset to subtract from hardirq_count()
  4320. * @cputime: the cpu time spent in kernel space since the last update
  4321. * @cputime_scaled: cputime scaled by cpu frequency
  4322. */
  4323. void account_system_time(struct task_struct *p, int hardirq_offset,
  4324. cputime_t cputime, cputime_t cputime_scaled)
  4325. {
  4326. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4327. cputime64_t tmp;
  4328. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4329. account_guest_time(p, cputime, cputime_scaled);
  4330. return;
  4331. }
  4332. /* Add system time to process. */
  4333. p->stime = cputime_add(p->stime, cputime);
  4334. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4335. account_group_system_time(p, cputime);
  4336. /* Add system time to cpustat. */
  4337. tmp = cputime_to_cputime64(cputime);
  4338. if (hardirq_count() - hardirq_offset)
  4339. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4340. else if (softirq_count())
  4341. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4342. else
  4343. cpustat->system = cputime64_add(cpustat->system, tmp);
  4344. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4345. /* Account for system time used */
  4346. acct_update_integrals(p);
  4347. }
  4348. /*
  4349. * Account for involuntary wait time.
  4350. * @steal: the cpu time spent in involuntary wait
  4351. */
  4352. void account_steal_time(cputime_t cputime)
  4353. {
  4354. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4355. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4356. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4357. }
  4358. /*
  4359. * Account for idle time.
  4360. * @cputime: the cpu time spent in idle wait
  4361. */
  4362. void account_idle_time(cputime_t cputime)
  4363. {
  4364. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4365. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4366. struct rq *rq = this_rq();
  4367. if (atomic_read(&rq->nr_iowait) > 0)
  4368. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4369. else
  4370. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4371. }
  4372. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4373. /*
  4374. * Account a single tick of cpu time.
  4375. * @p: the process that the cpu time gets accounted to
  4376. * @user_tick: indicates if the tick is a user or a system tick
  4377. */
  4378. void account_process_tick(struct task_struct *p, int user_tick)
  4379. {
  4380. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4381. struct rq *rq = this_rq();
  4382. if (user_tick)
  4383. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4384. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4385. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4386. one_jiffy_scaled);
  4387. else
  4388. account_idle_time(cputime_one_jiffy);
  4389. }
  4390. /*
  4391. * Account multiple ticks of steal time.
  4392. * @p: the process from which the cpu time has been stolen
  4393. * @ticks: number of stolen ticks
  4394. */
  4395. void account_steal_ticks(unsigned long ticks)
  4396. {
  4397. account_steal_time(jiffies_to_cputime(ticks));
  4398. }
  4399. /*
  4400. * Account multiple ticks of idle time.
  4401. * @ticks: number of stolen ticks
  4402. */
  4403. void account_idle_ticks(unsigned long ticks)
  4404. {
  4405. account_idle_time(jiffies_to_cputime(ticks));
  4406. }
  4407. #endif
  4408. /*
  4409. * Use precise platform statistics if available:
  4410. */
  4411. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4412. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4413. {
  4414. *ut = p->utime;
  4415. *st = p->stime;
  4416. }
  4417. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4418. {
  4419. struct task_cputime cputime;
  4420. thread_group_cputime(p, &cputime);
  4421. *ut = cputime.utime;
  4422. *st = cputime.stime;
  4423. }
  4424. #else
  4425. #ifndef nsecs_to_cputime
  4426. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4427. #endif
  4428. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4429. {
  4430. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4431. /*
  4432. * Use CFS's precise accounting:
  4433. */
  4434. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4435. if (total) {
  4436. u64 temp;
  4437. temp = (u64)(rtime * utime);
  4438. do_div(temp, total);
  4439. utime = (cputime_t)temp;
  4440. } else
  4441. utime = rtime;
  4442. /*
  4443. * Compare with previous values, to keep monotonicity:
  4444. */
  4445. p->prev_utime = max(p->prev_utime, utime);
  4446. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4447. *ut = p->prev_utime;
  4448. *st = p->prev_stime;
  4449. }
  4450. /*
  4451. * Must be called with siglock held.
  4452. */
  4453. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4454. {
  4455. struct signal_struct *sig = p->signal;
  4456. struct task_cputime cputime;
  4457. cputime_t rtime, utime, total;
  4458. thread_group_cputime(p, &cputime);
  4459. total = cputime_add(cputime.utime, cputime.stime);
  4460. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4461. if (total) {
  4462. u64 temp;
  4463. temp = (u64)(rtime * cputime.utime);
  4464. do_div(temp, total);
  4465. utime = (cputime_t)temp;
  4466. } else
  4467. utime = rtime;
  4468. sig->prev_utime = max(sig->prev_utime, utime);
  4469. sig->prev_stime = max(sig->prev_stime,
  4470. cputime_sub(rtime, sig->prev_utime));
  4471. *ut = sig->prev_utime;
  4472. *st = sig->prev_stime;
  4473. }
  4474. #endif
  4475. /*
  4476. * This function gets called by the timer code, with HZ frequency.
  4477. * We call it with interrupts disabled.
  4478. *
  4479. * It also gets called by the fork code, when changing the parent's
  4480. * timeslices.
  4481. */
  4482. void scheduler_tick(void)
  4483. {
  4484. int cpu = smp_processor_id();
  4485. struct rq *rq = cpu_rq(cpu);
  4486. struct task_struct *curr = rq->curr;
  4487. sched_clock_tick();
  4488. raw_spin_lock(&rq->lock);
  4489. update_rq_clock(rq);
  4490. update_cpu_load(rq);
  4491. curr->sched_class->task_tick(rq, curr, 0);
  4492. raw_spin_unlock(&rq->lock);
  4493. perf_event_task_tick(curr, cpu);
  4494. #ifdef CONFIG_SMP
  4495. rq->idle_at_tick = idle_cpu(cpu);
  4496. trigger_load_balance(rq, cpu);
  4497. #endif
  4498. }
  4499. notrace unsigned long get_parent_ip(unsigned long addr)
  4500. {
  4501. if (in_lock_functions(addr)) {
  4502. addr = CALLER_ADDR2;
  4503. if (in_lock_functions(addr))
  4504. addr = CALLER_ADDR3;
  4505. }
  4506. return addr;
  4507. }
  4508. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4509. defined(CONFIG_PREEMPT_TRACER))
  4510. void __kprobes add_preempt_count(int val)
  4511. {
  4512. #ifdef CONFIG_DEBUG_PREEMPT
  4513. /*
  4514. * Underflow?
  4515. */
  4516. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4517. return;
  4518. #endif
  4519. preempt_count() += val;
  4520. #ifdef CONFIG_DEBUG_PREEMPT
  4521. /*
  4522. * Spinlock count overflowing soon?
  4523. */
  4524. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4525. PREEMPT_MASK - 10);
  4526. #endif
  4527. if (preempt_count() == val)
  4528. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4529. }
  4530. EXPORT_SYMBOL(add_preempt_count);
  4531. void __kprobes sub_preempt_count(int val)
  4532. {
  4533. #ifdef CONFIG_DEBUG_PREEMPT
  4534. /*
  4535. * Underflow?
  4536. */
  4537. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4538. return;
  4539. /*
  4540. * Is the spinlock portion underflowing?
  4541. */
  4542. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4543. !(preempt_count() & PREEMPT_MASK)))
  4544. return;
  4545. #endif
  4546. if (preempt_count() == val)
  4547. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4548. preempt_count() -= val;
  4549. }
  4550. EXPORT_SYMBOL(sub_preempt_count);
  4551. #endif
  4552. /*
  4553. * Print scheduling while atomic bug:
  4554. */
  4555. static noinline void __schedule_bug(struct task_struct *prev)
  4556. {
  4557. struct pt_regs *regs = get_irq_regs();
  4558. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4559. prev->comm, prev->pid, preempt_count());
  4560. debug_show_held_locks(prev);
  4561. print_modules();
  4562. if (irqs_disabled())
  4563. print_irqtrace_events(prev);
  4564. if (regs)
  4565. show_regs(regs);
  4566. else
  4567. dump_stack();
  4568. }
  4569. /*
  4570. * Various schedule()-time debugging checks and statistics:
  4571. */
  4572. static inline void schedule_debug(struct task_struct *prev)
  4573. {
  4574. /*
  4575. * Test if we are atomic. Since do_exit() needs to call into
  4576. * schedule() atomically, we ignore that path for now.
  4577. * Otherwise, whine if we are scheduling when we should not be.
  4578. */
  4579. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4580. __schedule_bug(prev);
  4581. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4582. schedstat_inc(this_rq(), sched_count);
  4583. #ifdef CONFIG_SCHEDSTATS
  4584. if (unlikely(prev->lock_depth >= 0)) {
  4585. schedstat_inc(this_rq(), bkl_count);
  4586. schedstat_inc(prev, sched_info.bkl_count);
  4587. }
  4588. #endif
  4589. }
  4590. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4591. {
  4592. if (prev->state == TASK_RUNNING) {
  4593. u64 runtime = prev->se.sum_exec_runtime;
  4594. runtime -= prev->se.prev_sum_exec_runtime;
  4595. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4596. /*
  4597. * In order to avoid avg_overlap growing stale when we are
  4598. * indeed overlapping and hence not getting put to sleep, grow
  4599. * the avg_overlap on preemption.
  4600. *
  4601. * We use the average preemption runtime because that
  4602. * correlates to the amount of cache footprint a task can
  4603. * build up.
  4604. */
  4605. update_avg(&prev->se.avg_overlap, runtime);
  4606. }
  4607. prev->sched_class->put_prev_task(rq, prev);
  4608. }
  4609. /*
  4610. * Pick up the highest-prio task:
  4611. */
  4612. static inline struct task_struct *
  4613. pick_next_task(struct rq *rq)
  4614. {
  4615. const struct sched_class *class;
  4616. struct task_struct *p;
  4617. /*
  4618. * Optimization: we know that if all tasks are in
  4619. * the fair class we can call that function directly:
  4620. */
  4621. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4622. p = fair_sched_class.pick_next_task(rq);
  4623. if (likely(p))
  4624. return p;
  4625. }
  4626. class = sched_class_highest;
  4627. for ( ; ; ) {
  4628. p = class->pick_next_task(rq);
  4629. if (p)
  4630. return p;
  4631. /*
  4632. * Will never be NULL as the idle class always
  4633. * returns a non-NULL p:
  4634. */
  4635. class = class->next;
  4636. }
  4637. }
  4638. /*
  4639. * schedule() is the main scheduler function.
  4640. */
  4641. asmlinkage void __sched schedule(void)
  4642. {
  4643. struct task_struct *prev, *next;
  4644. unsigned long *switch_count;
  4645. struct rq *rq;
  4646. int cpu;
  4647. need_resched:
  4648. preempt_disable();
  4649. cpu = smp_processor_id();
  4650. rq = cpu_rq(cpu);
  4651. rcu_sched_qs(cpu);
  4652. prev = rq->curr;
  4653. switch_count = &prev->nivcsw;
  4654. release_kernel_lock(prev);
  4655. need_resched_nonpreemptible:
  4656. schedule_debug(prev);
  4657. if (sched_feat(HRTICK))
  4658. hrtick_clear(rq);
  4659. raw_spin_lock_irq(&rq->lock);
  4660. update_rq_clock(rq);
  4661. clear_tsk_need_resched(prev);
  4662. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4663. if (unlikely(signal_pending_state(prev->state, prev)))
  4664. prev->state = TASK_RUNNING;
  4665. else
  4666. deactivate_task(rq, prev, 1);
  4667. switch_count = &prev->nvcsw;
  4668. }
  4669. pre_schedule(rq, prev);
  4670. if (unlikely(!rq->nr_running))
  4671. idle_balance(cpu, rq);
  4672. put_prev_task(rq, prev);
  4673. next = pick_next_task(rq);
  4674. if (likely(prev != next)) {
  4675. sched_info_switch(prev, next);
  4676. perf_event_task_sched_out(prev, next, cpu);
  4677. rq->nr_switches++;
  4678. rq->curr = next;
  4679. ++*switch_count;
  4680. context_switch(rq, prev, next); /* unlocks the rq */
  4681. /*
  4682. * the context switch might have flipped the stack from under
  4683. * us, hence refresh the local variables.
  4684. */
  4685. cpu = smp_processor_id();
  4686. rq = cpu_rq(cpu);
  4687. } else
  4688. raw_spin_unlock_irq(&rq->lock);
  4689. post_schedule(rq);
  4690. if (unlikely(reacquire_kernel_lock(current) < 0))
  4691. goto need_resched_nonpreemptible;
  4692. preempt_enable_no_resched();
  4693. if (need_resched())
  4694. goto need_resched;
  4695. }
  4696. EXPORT_SYMBOL(schedule);
  4697. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4698. /*
  4699. * Look out! "owner" is an entirely speculative pointer
  4700. * access and not reliable.
  4701. */
  4702. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4703. {
  4704. unsigned int cpu;
  4705. struct rq *rq;
  4706. if (!sched_feat(OWNER_SPIN))
  4707. return 0;
  4708. #ifdef CONFIG_DEBUG_PAGEALLOC
  4709. /*
  4710. * Need to access the cpu field knowing that
  4711. * DEBUG_PAGEALLOC could have unmapped it if
  4712. * the mutex owner just released it and exited.
  4713. */
  4714. if (probe_kernel_address(&owner->cpu, cpu))
  4715. goto out;
  4716. #else
  4717. cpu = owner->cpu;
  4718. #endif
  4719. /*
  4720. * Even if the access succeeded (likely case),
  4721. * the cpu field may no longer be valid.
  4722. */
  4723. if (cpu >= nr_cpumask_bits)
  4724. goto out;
  4725. /*
  4726. * We need to validate that we can do a
  4727. * get_cpu() and that we have the percpu area.
  4728. */
  4729. if (!cpu_online(cpu))
  4730. goto out;
  4731. rq = cpu_rq(cpu);
  4732. for (;;) {
  4733. /*
  4734. * Owner changed, break to re-assess state.
  4735. */
  4736. if (lock->owner != owner)
  4737. break;
  4738. /*
  4739. * Is that owner really running on that cpu?
  4740. */
  4741. if (task_thread_info(rq->curr) != owner || need_resched())
  4742. return 0;
  4743. cpu_relax();
  4744. }
  4745. out:
  4746. return 1;
  4747. }
  4748. #endif
  4749. #ifdef CONFIG_PREEMPT
  4750. /*
  4751. * this is the entry point to schedule() from in-kernel preemption
  4752. * off of preempt_enable. Kernel preemptions off return from interrupt
  4753. * occur there and call schedule directly.
  4754. */
  4755. asmlinkage void __sched preempt_schedule(void)
  4756. {
  4757. struct thread_info *ti = current_thread_info();
  4758. /*
  4759. * If there is a non-zero preempt_count or interrupts are disabled,
  4760. * we do not want to preempt the current task. Just return..
  4761. */
  4762. if (likely(ti->preempt_count || irqs_disabled()))
  4763. return;
  4764. do {
  4765. add_preempt_count(PREEMPT_ACTIVE);
  4766. schedule();
  4767. sub_preempt_count(PREEMPT_ACTIVE);
  4768. /*
  4769. * Check again in case we missed a preemption opportunity
  4770. * between schedule and now.
  4771. */
  4772. barrier();
  4773. } while (need_resched());
  4774. }
  4775. EXPORT_SYMBOL(preempt_schedule);
  4776. /*
  4777. * this is the entry point to schedule() from kernel preemption
  4778. * off of irq context.
  4779. * Note, that this is called and return with irqs disabled. This will
  4780. * protect us against recursive calling from irq.
  4781. */
  4782. asmlinkage void __sched preempt_schedule_irq(void)
  4783. {
  4784. struct thread_info *ti = current_thread_info();
  4785. /* Catch callers which need to be fixed */
  4786. BUG_ON(ti->preempt_count || !irqs_disabled());
  4787. do {
  4788. add_preempt_count(PREEMPT_ACTIVE);
  4789. local_irq_enable();
  4790. schedule();
  4791. local_irq_disable();
  4792. sub_preempt_count(PREEMPT_ACTIVE);
  4793. /*
  4794. * Check again in case we missed a preemption opportunity
  4795. * between schedule and now.
  4796. */
  4797. barrier();
  4798. } while (need_resched());
  4799. }
  4800. #endif /* CONFIG_PREEMPT */
  4801. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4802. void *key)
  4803. {
  4804. return try_to_wake_up(curr->private, mode, wake_flags);
  4805. }
  4806. EXPORT_SYMBOL(default_wake_function);
  4807. /*
  4808. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4809. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4810. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4811. *
  4812. * There are circumstances in which we can try to wake a task which has already
  4813. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4814. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4815. */
  4816. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4817. int nr_exclusive, int wake_flags, void *key)
  4818. {
  4819. wait_queue_t *curr, *next;
  4820. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4821. unsigned flags = curr->flags;
  4822. if (curr->func(curr, mode, wake_flags, key) &&
  4823. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4824. break;
  4825. }
  4826. }
  4827. /**
  4828. * __wake_up - wake up threads blocked on a waitqueue.
  4829. * @q: the waitqueue
  4830. * @mode: which threads
  4831. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4832. * @key: is directly passed to the wakeup function
  4833. *
  4834. * It may be assumed that this function implies a write memory barrier before
  4835. * changing the task state if and only if any tasks are woken up.
  4836. */
  4837. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4838. int nr_exclusive, void *key)
  4839. {
  4840. unsigned long flags;
  4841. spin_lock_irqsave(&q->lock, flags);
  4842. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4843. spin_unlock_irqrestore(&q->lock, flags);
  4844. }
  4845. EXPORT_SYMBOL(__wake_up);
  4846. /*
  4847. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4848. */
  4849. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4850. {
  4851. __wake_up_common(q, mode, 1, 0, NULL);
  4852. }
  4853. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4854. {
  4855. __wake_up_common(q, mode, 1, 0, key);
  4856. }
  4857. /**
  4858. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4859. * @q: the waitqueue
  4860. * @mode: which threads
  4861. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4862. * @key: opaque value to be passed to wakeup targets
  4863. *
  4864. * The sync wakeup differs that the waker knows that it will schedule
  4865. * away soon, so while the target thread will be woken up, it will not
  4866. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4867. * with each other. This can prevent needless bouncing between CPUs.
  4868. *
  4869. * On UP it can prevent extra preemption.
  4870. *
  4871. * It may be assumed that this function implies a write memory barrier before
  4872. * changing the task state if and only if any tasks are woken up.
  4873. */
  4874. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4875. int nr_exclusive, void *key)
  4876. {
  4877. unsigned long flags;
  4878. int wake_flags = WF_SYNC;
  4879. if (unlikely(!q))
  4880. return;
  4881. if (unlikely(!nr_exclusive))
  4882. wake_flags = 0;
  4883. spin_lock_irqsave(&q->lock, flags);
  4884. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4885. spin_unlock_irqrestore(&q->lock, flags);
  4886. }
  4887. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4888. /*
  4889. * __wake_up_sync - see __wake_up_sync_key()
  4890. */
  4891. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4892. {
  4893. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4894. }
  4895. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4896. /**
  4897. * complete: - signals a single thread waiting on this completion
  4898. * @x: holds the state of this particular completion
  4899. *
  4900. * This will wake up a single thread waiting on this completion. Threads will be
  4901. * awakened in the same order in which they were queued.
  4902. *
  4903. * See also complete_all(), wait_for_completion() and related routines.
  4904. *
  4905. * It may be assumed that this function implies a write memory barrier before
  4906. * changing the task state if and only if any tasks are woken up.
  4907. */
  4908. void complete(struct completion *x)
  4909. {
  4910. unsigned long flags;
  4911. spin_lock_irqsave(&x->wait.lock, flags);
  4912. x->done++;
  4913. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4914. spin_unlock_irqrestore(&x->wait.lock, flags);
  4915. }
  4916. EXPORT_SYMBOL(complete);
  4917. /**
  4918. * complete_all: - signals all threads waiting on this completion
  4919. * @x: holds the state of this particular completion
  4920. *
  4921. * This will wake up all threads waiting on this particular completion event.
  4922. *
  4923. * It may be assumed that this function implies a write memory barrier before
  4924. * changing the task state if and only if any tasks are woken up.
  4925. */
  4926. void complete_all(struct completion *x)
  4927. {
  4928. unsigned long flags;
  4929. spin_lock_irqsave(&x->wait.lock, flags);
  4930. x->done += UINT_MAX/2;
  4931. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4932. spin_unlock_irqrestore(&x->wait.lock, flags);
  4933. }
  4934. EXPORT_SYMBOL(complete_all);
  4935. static inline long __sched
  4936. do_wait_for_common(struct completion *x, long timeout, int state)
  4937. {
  4938. if (!x->done) {
  4939. DECLARE_WAITQUEUE(wait, current);
  4940. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4941. __add_wait_queue_tail(&x->wait, &wait);
  4942. do {
  4943. if (signal_pending_state(state, current)) {
  4944. timeout = -ERESTARTSYS;
  4945. break;
  4946. }
  4947. __set_current_state(state);
  4948. spin_unlock_irq(&x->wait.lock);
  4949. timeout = schedule_timeout(timeout);
  4950. spin_lock_irq(&x->wait.lock);
  4951. } while (!x->done && timeout);
  4952. __remove_wait_queue(&x->wait, &wait);
  4953. if (!x->done)
  4954. return timeout;
  4955. }
  4956. x->done--;
  4957. return timeout ?: 1;
  4958. }
  4959. static long __sched
  4960. wait_for_common(struct completion *x, long timeout, int state)
  4961. {
  4962. might_sleep();
  4963. spin_lock_irq(&x->wait.lock);
  4964. timeout = do_wait_for_common(x, timeout, state);
  4965. spin_unlock_irq(&x->wait.lock);
  4966. return timeout;
  4967. }
  4968. /**
  4969. * wait_for_completion: - waits for completion of a task
  4970. * @x: holds the state of this particular completion
  4971. *
  4972. * This waits to be signaled for completion of a specific task. It is NOT
  4973. * interruptible and there is no timeout.
  4974. *
  4975. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4976. * and interrupt capability. Also see complete().
  4977. */
  4978. void __sched wait_for_completion(struct completion *x)
  4979. {
  4980. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4981. }
  4982. EXPORT_SYMBOL(wait_for_completion);
  4983. /**
  4984. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4985. * @x: holds the state of this particular completion
  4986. * @timeout: timeout value in jiffies
  4987. *
  4988. * This waits for either a completion of a specific task to be signaled or for a
  4989. * specified timeout to expire. The timeout is in jiffies. It is not
  4990. * interruptible.
  4991. */
  4992. unsigned long __sched
  4993. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4994. {
  4995. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4996. }
  4997. EXPORT_SYMBOL(wait_for_completion_timeout);
  4998. /**
  4999. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  5000. * @x: holds the state of this particular completion
  5001. *
  5002. * This waits for completion of a specific task to be signaled. It is
  5003. * interruptible.
  5004. */
  5005. int __sched wait_for_completion_interruptible(struct completion *x)
  5006. {
  5007. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5008. if (t == -ERESTARTSYS)
  5009. return t;
  5010. return 0;
  5011. }
  5012. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5013. /**
  5014. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5015. * @x: holds the state of this particular completion
  5016. * @timeout: timeout value in jiffies
  5017. *
  5018. * This waits for either a completion of a specific task to be signaled or for a
  5019. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5020. */
  5021. unsigned long __sched
  5022. wait_for_completion_interruptible_timeout(struct completion *x,
  5023. unsigned long timeout)
  5024. {
  5025. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5026. }
  5027. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5028. /**
  5029. * wait_for_completion_killable: - waits for completion of a task (killable)
  5030. * @x: holds the state of this particular completion
  5031. *
  5032. * This waits to be signaled for completion of a specific task. It can be
  5033. * interrupted by a kill signal.
  5034. */
  5035. int __sched wait_for_completion_killable(struct completion *x)
  5036. {
  5037. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5038. if (t == -ERESTARTSYS)
  5039. return t;
  5040. return 0;
  5041. }
  5042. EXPORT_SYMBOL(wait_for_completion_killable);
  5043. /**
  5044. * try_wait_for_completion - try to decrement a completion without blocking
  5045. * @x: completion structure
  5046. *
  5047. * Returns: 0 if a decrement cannot be done without blocking
  5048. * 1 if a decrement succeeded.
  5049. *
  5050. * If a completion is being used as a counting completion,
  5051. * attempt to decrement the counter without blocking. This
  5052. * enables us to avoid waiting if the resource the completion
  5053. * is protecting is not available.
  5054. */
  5055. bool try_wait_for_completion(struct completion *x)
  5056. {
  5057. unsigned long flags;
  5058. int ret = 1;
  5059. spin_lock_irqsave(&x->wait.lock, flags);
  5060. if (!x->done)
  5061. ret = 0;
  5062. else
  5063. x->done--;
  5064. spin_unlock_irqrestore(&x->wait.lock, flags);
  5065. return ret;
  5066. }
  5067. EXPORT_SYMBOL(try_wait_for_completion);
  5068. /**
  5069. * completion_done - Test to see if a completion has any waiters
  5070. * @x: completion structure
  5071. *
  5072. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5073. * 1 if there are no waiters.
  5074. *
  5075. */
  5076. bool completion_done(struct completion *x)
  5077. {
  5078. unsigned long flags;
  5079. int ret = 1;
  5080. spin_lock_irqsave(&x->wait.lock, flags);
  5081. if (!x->done)
  5082. ret = 0;
  5083. spin_unlock_irqrestore(&x->wait.lock, flags);
  5084. return ret;
  5085. }
  5086. EXPORT_SYMBOL(completion_done);
  5087. static long __sched
  5088. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5089. {
  5090. unsigned long flags;
  5091. wait_queue_t wait;
  5092. init_waitqueue_entry(&wait, current);
  5093. __set_current_state(state);
  5094. spin_lock_irqsave(&q->lock, flags);
  5095. __add_wait_queue(q, &wait);
  5096. spin_unlock(&q->lock);
  5097. timeout = schedule_timeout(timeout);
  5098. spin_lock_irq(&q->lock);
  5099. __remove_wait_queue(q, &wait);
  5100. spin_unlock_irqrestore(&q->lock, flags);
  5101. return timeout;
  5102. }
  5103. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5104. {
  5105. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5106. }
  5107. EXPORT_SYMBOL(interruptible_sleep_on);
  5108. long __sched
  5109. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5110. {
  5111. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5112. }
  5113. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5114. void __sched sleep_on(wait_queue_head_t *q)
  5115. {
  5116. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5117. }
  5118. EXPORT_SYMBOL(sleep_on);
  5119. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5120. {
  5121. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5122. }
  5123. EXPORT_SYMBOL(sleep_on_timeout);
  5124. #ifdef CONFIG_RT_MUTEXES
  5125. /*
  5126. * rt_mutex_setprio - set the current priority of a task
  5127. * @p: task
  5128. * @prio: prio value (kernel-internal form)
  5129. *
  5130. * This function changes the 'effective' priority of a task. It does
  5131. * not touch ->normal_prio like __setscheduler().
  5132. *
  5133. * Used by the rt_mutex code to implement priority inheritance logic.
  5134. */
  5135. void rt_mutex_setprio(struct task_struct *p, int prio)
  5136. {
  5137. unsigned long flags;
  5138. int oldprio, on_rq, running;
  5139. struct rq *rq;
  5140. const struct sched_class *prev_class = p->sched_class;
  5141. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5142. rq = task_rq_lock(p, &flags);
  5143. update_rq_clock(rq);
  5144. oldprio = p->prio;
  5145. on_rq = p->se.on_rq;
  5146. running = task_current(rq, p);
  5147. if (on_rq)
  5148. dequeue_task(rq, p, 0);
  5149. if (running)
  5150. p->sched_class->put_prev_task(rq, p);
  5151. if (rt_prio(prio))
  5152. p->sched_class = &rt_sched_class;
  5153. else
  5154. p->sched_class = &fair_sched_class;
  5155. p->prio = prio;
  5156. if (running)
  5157. p->sched_class->set_curr_task(rq);
  5158. if (on_rq) {
  5159. enqueue_task(rq, p, 0);
  5160. check_class_changed(rq, p, prev_class, oldprio, running);
  5161. }
  5162. task_rq_unlock(rq, &flags);
  5163. }
  5164. #endif
  5165. void set_user_nice(struct task_struct *p, long nice)
  5166. {
  5167. int old_prio, delta, on_rq;
  5168. unsigned long flags;
  5169. struct rq *rq;
  5170. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5171. return;
  5172. /*
  5173. * We have to be careful, if called from sys_setpriority(),
  5174. * the task might be in the middle of scheduling on another CPU.
  5175. */
  5176. rq = task_rq_lock(p, &flags);
  5177. update_rq_clock(rq);
  5178. /*
  5179. * The RT priorities are set via sched_setscheduler(), but we still
  5180. * allow the 'normal' nice value to be set - but as expected
  5181. * it wont have any effect on scheduling until the task is
  5182. * SCHED_FIFO/SCHED_RR:
  5183. */
  5184. if (task_has_rt_policy(p)) {
  5185. p->static_prio = NICE_TO_PRIO(nice);
  5186. goto out_unlock;
  5187. }
  5188. on_rq = p->se.on_rq;
  5189. if (on_rq)
  5190. dequeue_task(rq, p, 0);
  5191. p->static_prio = NICE_TO_PRIO(nice);
  5192. set_load_weight(p);
  5193. old_prio = p->prio;
  5194. p->prio = effective_prio(p);
  5195. delta = p->prio - old_prio;
  5196. if (on_rq) {
  5197. enqueue_task(rq, p, 0);
  5198. /*
  5199. * If the task increased its priority or is running and
  5200. * lowered its priority, then reschedule its CPU:
  5201. */
  5202. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5203. resched_task(rq->curr);
  5204. }
  5205. out_unlock:
  5206. task_rq_unlock(rq, &flags);
  5207. }
  5208. EXPORT_SYMBOL(set_user_nice);
  5209. /*
  5210. * can_nice - check if a task can reduce its nice value
  5211. * @p: task
  5212. * @nice: nice value
  5213. */
  5214. int can_nice(const struct task_struct *p, const int nice)
  5215. {
  5216. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5217. int nice_rlim = 20 - nice;
  5218. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5219. capable(CAP_SYS_NICE));
  5220. }
  5221. #ifdef __ARCH_WANT_SYS_NICE
  5222. /*
  5223. * sys_nice - change the priority of the current process.
  5224. * @increment: priority increment
  5225. *
  5226. * sys_setpriority is a more generic, but much slower function that
  5227. * does similar things.
  5228. */
  5229. SYSCALL_DEFINE1(nice, int, increment)
  5230. {
  5231. long nice, retval;
  5232. /*
  5233. * Setpriority might change our priority at the same moment.
  5234. * We don't have to worry. Conceptually one call occurs first
  5235. * and we have a single winner.
  5236. */
  5237. if (increment < -40)
  5238. increment = -40;
  5239. if (increment > 40)
  5240. increment = 40;
  5241. nice = TASK_NICE(current) + increment;
  5242. if (nice < -20)
  5243. nice = -20;
  5244. if (nice > 19)
  5245. nice = 19;
  5246. if (increment < 0 && !can_nice(current, nice))
  5247. return -EPERM;
  5248. retval = security_task_setnice(current, nice);
  5249. if (retval)
  5250. return retval;
  5251. set_user_nice(current, nice);
  5252. return 0;
  5253. }
  5254. #endif
  5255. /**
  5256. * task_prio - return the priority value of a given task.
  5257. * @p: the task in question.
  5258. *
  5259. * This is the priority value as seen by users in /proc.
  5260. * RT tasks are offset by -200. Normal tasks are centered
  5261. * around 0, value goes from -16 to +15.
  5262. */
  5263. int task_prio(const struct task_struct *p)
  5264. {
  5265. return p->prio - MAX_RT_PRIO;
  5266. }
  5267. /**
  5268. * task_nice - return the nice value of a given task.
  5269. * @p: the task in question.
  5270. */
  5271. int task_nice(const struct task_struct *p)
  5272. {
  5273. return TASK_NICE(p);
  5274. }
  5275. EXPORT_SYMBOL(task_nice);
  5276. /**
  5277. * idle_cpu - is a given cpu idle currently?
  5278. * @cpu: the processor in question.
  5279. */
  5280. int idle_cpu(int cpu)
  5281. {
  5282. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5283. }
  5284. /**
  5285. * idle_task - return the idle task for a given cpu.
  5286. * @cpu: the processor in question.
  5287. */
  5288. struct task_struct *idle_task(int cpu)
  5289. {
  5290. return cpu_rq(cpu)->idle;
  5291. }
  5292. /**
  5293. * find_process_by_pid - find a process with a matching PID value.
  5294. * @pid: the pid in question.
  5295. */
  5296. static struct task_struct *find_process_by_pid(pid_t pid)
  5297. {
  5298. return pid ? find_task_by_vpid(pid) : current;
  5299. }
  5300. /* Actually do priority change: must hold rq lock. */
  5301. static void
  5302. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5303. {
  5304. BUG_ON(p->se.on_rq);
  5305. p->policy = policy;
  5306. p->rt_priority = prio;
  5307. p->normal_prio = normal_prio(p);
  5308. /* we are holding p->pi_lock already */
  5309. p->prio = rt_mutex_getprio(p);
  5310. if (rt_prio(p->prio))
  5311. p->sched_class = &rt_sched_class;
  5312. else
  5313. p->sched_class = &fair_sched_class;
  5314. set_load_weight(p);
  5315. }
  5316. /*
  5317. * check the target process has a UID that matches the current process's
  5318. */
  5319. static bool check_same_owner(struct task_struct *p)
  5320. {
  5321. const struct cred *cred = current_cred(), *pcred;
  5322. bool match;
  5323. rcu_read_lock();
  5324. pcred = __task_cred(p);
  5325. match = (cred->euid == pcred->euid ||
  5326. cred->euid == pcred->uid);
  5327. rcu_read_unlock();
  5328. return match;
  5329. }
  5330. static int __sched_setscheduler(struct task_struct *p, int policy,
  5331. struct sched_param *param, bool user)
  5332. {
  5333. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5334. unsigned long flags;
  5335. const struct sched_class *prev_class = p->sched_class;
  5336. struct rq *rq;
  5337. int reset_on_fork;
  5338. /* may grab non-irq protected spin_locks */
  5339. BUG_ON(in_interrupt());
  5340. recheck:
  5341. /* double check policy once rq lock held */
  5342. if (policy < 0) {
  5343. reset_on_fork = p->sched_reset_on_fork;
  5344. policy = oldpolicy = p->policy;
  5345. } else {
  5346. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5347. policy &= ~SCHED_RESET_ON_FORK;
  5348. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5349. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5350. policy != SCHED_IDLE)
  5351. return -EINVAL;
  5352. }
  5353. /*
  5354. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5355. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5356. * SCHED_BATCH and SCHED_IDLE is 0.
  5357. */
  5358. if (param->sched_priority < 0 ||
  5359. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5360. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5361. return -EINVAL;
  5362. if (rt_policy(policy) != (param->sched_priority != 0))
  5363. return -EINVAL;
  5364. /*
  5365. * Allow unprivileged RT tasks to decrease priority:
  5366. */
  5367. if (user && !capable(CAP_SYS_NICE)) {
  5368. if (rt_policy(policy)) {
  5369. unsigned long rlim_rtprio;
  5370. if (!lock_task_sighand(p, &flags))
  5371. return -ESRCH;
  5372. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5373. unlock_task_sighand(p, &flags);
  5374. /* can't set/change the rt policy */
  5375. if (policy != p->policy && !rlim_rtprio)
  5376. return -EPERM;
  5377. /* can't increase priority */
  5378. if (param->sched_priority > p->rt_priority &&
  5379. param->sched_priority > rlim_rtprio)
  5380. return -EPERM;
  5381. }
  5382. /*
  5383. * Like positive nice levels, dont allow tasks to
  5384. * move out of SCHED_IDLE either:
  5385. */
  5386. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5387. return -EPERM;
  5388. /* can't change other user's priorities */
  5389. if (!check_same_owner(p))
  5390. return -EPERM;
  5391. /* Normal users shall not reset the sched_reset_on_fork flag */
  5392. if (p->sched_reset_on_fork && !reset_on_fork)
  5393. return -EPERM;
  5394. }
  5395. if (user) {
  5396. #ifdef CONFIG_RT_GROUP_SCHED
  5397. /*
  5398. * Do not allow realtime tasks into groups that have no runtime
  5399. * assigned.
  5400. */
  5401. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5402. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5403. return -EPERM;
  5404. #endif
  5405. retval = security_task_setscheduler(p, policy, param);
  5406. if (retval)
  5407. return retval;
  5408. }
  5409. /*
  5410. * make sure no PI-waiters arrive (or leave) while we are
  5411. * changing the priority of the task:
  5412. */
  5413. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5414. /*
  5415. * To be able to change p->policy safely, the apropriate
  5416. * runqueue lock must be held.
  5417. */
  5418. rq = __task_rq_lock(p);
  5419. /* recheck policy now with rq lock held */
  5420. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5421. policy = oldpolicy = -1;
  5422. __task_rq_unlock(rq);
  5423. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5424. goto recheck;
  5425. }
  5426. update_rq_clock(rq);
  5427. on_rq = p->se.on_rq;
  5428. running = task_current(rq, p);
  5429. if (on_rq)
  5430. deactivate_task(rq, p, 0);
  5431. if (running)
  5432. p->sched_class->put_prev_task(rq, p);
  5433. p->sched_reset_on_fork = reset_on_fork;
  5434. oldprio = p->prio;
  5435. __setscheduler(rq, p, policy, param->sched_priority);
  5436. if (running)
  5437. p->sched_class->set_curr_task(rq);
  5438. if (on_rq) {
  5439. activate_task(rq, p, 0);
  5440. check_class_changed(rq, p, prev_class, oldprio, running);
  5441. }
  5442. __task_rq_unlock(rq);
  5443. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5444. rt_mutex_adjust_pi(p);
  5445. return 0;
  5446. }
  5447. /**
  5448. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5449. * @p: the task in question.
  5450. * @policy: new policy.
  5451. * @param: structure containing the new RT priority.
  5452. *
  5453. * NOTE that the task may be already dead.
  5454. */
  5455. int sched_setscheduler(struct task_struct *p, int policy,
  5456. struct sched_param *param)
  5457. {
  5458. return __sched_setscheduler(p, policy, param, true);
  5459. }
  5460. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5461. /**
  5462. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5463. * @p: the task in question.
  5464. * @policy: new policy.
  5465. * @param: structure containing the new RT priority.
  5466. *
  5467. * Just like sched_setscheduler, only don't bother checking if the
  5468. * current context has permission. For example, this is needed in
  5469. * stop_machine(): we create temporary high priority worker threads,
  5470. * but our caller might not have that capability.
  5471. */
  5472. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5473. struct sched_param *param)
  5474. {
  5475. return __sched_setscheduler(p, policy, param, false);
  5476. }
  5477. static int
  5478. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5479. {
  5480. struct sched_param lparam;
  5481. struct task_struct *p;
  5482. int retval;
  5483. if (!param || pid < 0)
  5484. return -EINVAL;
  5485. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5486. return -EFAULT;
  5487. rcu_read_lock();
  5488. retval = -ESRCH;
  5489. p = find_process_by_pid(pid);
  5490. if (p != NULL)
  5491. retval = sched_setscheduler(p, policy, &lparam);
  5492. rcu_read_unlock();
  5493. return retval;
  5494. }
  5495. /**
  5496. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5497. * @pid: the pid in question.
  5498. * @policy: new policy.
  5499. * @param: structure containing the new RT priority.
  5500. */
  5501. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5502. struct sched_param __user *, param)
  5503. {
  5504. /* negative values for policy are not valid */
  5505. if (policy < 0)
  5506. return -EINVAL;
  5507. return do_sched_setscheduler(pid, policy, param);
  5508. }
  5509. /**
  5510. * sys_sched_setparam - set/change the RT priority of a thread
  5511. * @pid: the pid in question.
  5512. * @param: structure containing the new RT priority.
  5513. */
  5514. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5515. {
  5516. return do_sched_setscheduler(pid, -1, param);
  5517. }
  5518. /**
  5519. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5520. * @pid: the pid in question.
  5521. */
  5522. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5523. {
  5524. struct task_struct *p;
  5525. int retval;
  5526. if (pid < 0)
  5527. return -EINVAL;
  5528. retval = -ESRCH;
  5529. rcu_read_lock();
  5530. p = find_process_by_pid(pid);
  5531. if (p) {
  5532. retval = security_task_getscheduler(p);
  5533. if (!retval)
  5534. retval = p->policy
  5535. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5536. }
  5537. rcu_read_unlock();
  5538. return retval;
  5539. }
  5540. /**
  5541. * sys_sched_getparam - get the RT priority of a thread
  5542. * @pid: the pid in question.
  5543. * @param: structure containing the RT priority.
  5544. */
  5545. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5546. {
  5547. struct sched_param lp;
  5548. struct task_struct *p;
  5549. int retval;
  5550. if (!param || pid < 0)
  5551. return -EINVAL;
  5552. rcu_read_lock();
  5553. p = find_process_by_pid(pid);
  5554. retval = -ESRCH;
  5555. if (!p)
  5556. goto out_unlock;
  5557. retval = security_task_getscheduler(p);
  5558. if (retval)
  5559. goto out_unlock;
  5560. lp.sched_priority = p->rt_priority;
  5561. rcu_read_unlock();
  5562. /*
  5563. * This one might sleep, we cannot do it with a spinlock held ...
  5564. */
  5565. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5566. return retval;
  5567. out_unlock:
  5568. rcu_read_unlock();
  5569. return retval;
  5570. }
  5571. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5572. {
  5573. cpumask_var_t cpus_allowed, new_mask;
  5574. struct task_struct *p;
  5575. int retval;
  5576. get_online_cpus();
  5577. rcu_read_lock();
  5578. p = find_process_by_pid(pid);
  5579. if (!p) {
  5580. rcu_read_unlock();
  5581. put_online_cpus();
  5582. return -ESRCH;
  5583. }
  5584. /* Prevent p going away */
  5585. get_task_struct(p);
  5586. rcu_read_unlock();
  5587. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5588. retval = -ENOMEM;
  5589. goto out_put_task;
  5590. }
  5591. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5592. retval = -ENOMEM;
  5593. goto out_free_cpus_allowed;
  5594. }
  5595. retval = -EPERM;
  5596. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5597. goto out_unlock;
  5598. retval = security_task_setscheduler(p, 0, NULL);
  5599. if (retval)
  5600. goto out_unlock;
  5601. cpuset_cpus_allowed(p, cpus_allowed);
  5602. cpumask_and(new_mask, in_mask, cpus_allowed);
  5603. again:
  5604. retval = set_cpus_allowed_ptr(p, new_mask);
  5605. if (!retval) {
  5606. cpuset_cpus_allowed(p, cpus_allowed);
  5607. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5608. /*
  5609. * We must have raced with a concurrent cpuset
  5610. * update. Just reset the cpus_allowed to the
  5611. * cpuset's cpus_allowed
  5612. */
  5613. cpumask_copy(new_mask, cpus_allowed);
  5614. goto again;
  5615. }
  5616. }
  5617. out_unlock:
  5618. free_cpumask_var(new_mask);
  5619. out_free_cpus_allowed:
  5620. free_cpumask_var(cpus_allowed);
  5621. out_put_task:
  5622. put_task_struct(p);
  5623. put_online_cpus();
  5624. return retval;
  5625. }
  5626. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5627. struct cpumask *new_mask)
  5628. {
  5629. if (len < cpumask_size())
  5630. cpumask_clear(new_mask);
  5631. else if (len > cpumask_size())
  5632. len = cpumask_size();
  5633. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5634. }
  5635. /**
  5636. * sys_sched_setaffinity - set the cpu affinity of a process
  5637. * @pid: pid of the process
  5638. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5639. * @user_mask_ptr: user-space pointer to the new cpu mask
  5640. */
  5641. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5642. unsigned long __user *, user_mask_ptr)
  5643. {
  5644. cpumask_var_t new_mask;
  5645. int retval;
  5646. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5647. return -ENOMEM;
  5648. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5649. if (retval == 0)
  5650. retval = sched_setaffinity(pid, new_mask);
  5651. free_cpumask_var(new_mask);
  5652. return retval;
  5653. }
  5654. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5655. {
  5656. struct task_struct *p;
  5657. unsigned long flags;
  5658. struct rq *rq;
  5659. int retval;
  5660. get_online_cpus();
  5661. rcu_read_lock();
  5662. retval = -ESRCH;
  5663. p = find_process_by_pid(pid);
  5664. if (!p)
  5665. goto out_unlock;
  5666. retval = security_task_getscheduler(p);
  5667. if (retval)
  5668. goto out_unlock;
  5669. rq = task_rq_lock(p, &flags);
  5670. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5671. task_rq_unlock(rq, &flags);
  5672. out_unlock:
  5673. rcu_read_unlock();
  5674. put_online_cpus();
  5675. return retval;
  5676. }
  5677. /**
  5678. * sys_sched_getaffinity - get the cpu affinity of a process
  5679. * @pid: pid of the process
  5680. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5681. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5682. */
  5683. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5684. unsigned long __user *, user_mask_ptr)
  5685. {
  5686. int ret;
  5687. cpumask_var_t mask;
  5688. if (len < cpumask_size())
  5689. return -EINVAL;
  5690. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5691. return -ENOMEM;
  5692. ret = sched_getaffinity(pid, mask);
  5693. if (ret == 0) {
  5694. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5695. ret = -EFAULT;
  5696. else
  5697. ret = cpumask_size();
  5698. }
  5699. free_cpumask_var(mask);
  5700. return ret;
  5701. }
  5702. /**
  5703. * sys_sched_yield - yield the current processor to other threads.
  5704. *
  5705. * This function yields the current CPU to other tasks. If there are no
  5706. * other threads running on this CPU then this function will return.
  5707. */
  5708. SYSCALL_DEFINE0(sched_yield)
  5709. {
  5710. struct rq *rq = this_rq_lock();
  5711. schedstat_inc(rq, yld_count);
  5712. current->sched_class->yield_task(rq);
  5713. /*
  5714. * Since we are going to call schedule() anyway, there's
  5715. * no need to preempt or enable interrupts:
  5716. */
  5717. __release(rq->lock);
  5718. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5719. do_raw_spin_unlock(&rq->lock);
  5720. preempt_enable_no_resched();
  5721. schedule();
  5722. return 0;
  5723. }
  5724. static inline int should_resched(void)
  5725. {
  5726. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5727. }
  5728. static void __cond_resched(void)
  5729. {
  5730. add_preempt_count(PREEMPT_ACTIVE);
  5731. schedule();
  5732. sub_preempt_count(PREEMPT_ACTIVE);
  5733. }
  5734. int __sched _cond_resched(void)
  5735. {
  5736. if (should_resched()) {
  5737. __cond_resched();
  5738. return 1;
  5739. }
  5740. return 0;
  5741. }
  5742. EXPORT_SYMBOL(_cond_resched);
  5743. /*
  5744. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5745. * call schedule, and on return reacquire the lock.
  5746. *
  5747. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5748. * operations here to prevent schedule() from being called twice (once via
  5749. * spin_unlock(), once by hand).
  5750. */
  5751. int __cond_resched_lock(spinlock_t *lock)
  5752. {
  5753. int resched = should_resched();
  5754. int ret = 0;
  5755. lockdep_assert_held(lock);
  5756. if (spin_needbreak(lock) || resched) {
  5757. spin_unlock(lock);
  5758. if (resched)
  5759. __cond_resched();
  5760. else
  5761. cpu_relax();
  5762. ret = 1;
  5763. spin_lock(lock);
  5764. }
  5765. return ret;
  5766. }
  5767. EXPORT_SYMBOL(__cond_resched_lock);
  5768. int __sched __cond_resched_softirq(void)
  5769. {
  5770. BUG_ON(!in_softirq());
  5771. if (should_resched()) {
  5772. local_bh_enable();
  5773. __cond_resched();
  5774. local_bh_disable();
  5775. return 1;
  5776. }
  5777. return 0;
  5778. }
  5779. EXPORT_SYMBOL(__cond_resched_softirq);
  5780. /**
  5781. * yield - yield the current processor to other threads.
  5782. *
  5783. * This is a shortcut for kernel-space yielding - it marks the
  5784. * thread runnable and calls sys_sched_yield().
  5785. */
  5786. void __sched yield(void)
  5787. {
  5788. set_current_state(TASK_RUNNING);
  5789. sys_sched_yield();
  5790. }
  5791. EXPORT_SYMBOL(yield);
  5792. /*
  5793. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5794. * that process accounting knows that this is a task in IO wait state.
  5795. */
  5796. void __sched io_schedule(void)
  5797. {
  5798. struct rq *rq = raw_rq();
  5799. delayacct_blkio_start();
  5800. atomic_inc(&rq->nr_iowait);
  5801. current->in_iowait = 1;
  5802. schedule();
  5803. current->in_iowait = 0;
  5804. atomic_dec(&rq->nr_iowait);
  5805. delayacct_blkio_end();
  5806. }
  5807. EXPORT_SYMBOL(io_schedule);
  5808. long __sched io_schedule_timeout(long timeout)
  5809. {
  5810. struct rq *rq = raw_rq();
  5811. long ret;
  5812. delayacct_blkio_start();
  5813. atomic_inc(&rq->nr_iowait);
  5814. current->in_iowait = 1;
  5815. ret = schedule_timeout(timeout);
  5816. current->in_iowait = 0;
  5817. atomic_dec(&rq->nr_iowait);
  5818. delayacct_blkio_end();
  5819. return ret;
  5820. }
  5821. /**
  5822. * sys_sched_get_priority_max - return maximum RT priority.
  5823. * @policy: scheduling class.
  5824. *
  5825. * this syscall returns the maximum rt_priority that can be used
  5826. * by a given scheduling class.
  5827. */
  5828. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5829. {
  5830. int ret = -EINVAL;
  5831. switch (policy) {
  5832. case SCHED_FIFO:
  5833. case SCHED_RR:
  5834. ret = MAX_USER_RT_PRIO-1;
  5835. break;
  5836. case SCHED_NORMAL:
  5837. case SCHED_BATCH:
  5838. case SCHED_IDLE:
  5839. ret = 0;
  5840. break;
  5841. }
  5842. return ret;
  5843. }
  5844. /**
  5845. * sys_sched_get_priority_min - return minimum RT priority.
  5846. * @policy: scheduling class.
  5847. *
  5848. * this syscall returns the minimum rt_priority that can be used
  5849. * by a given scheduling class.
  5850. */
  5851. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5852. {
  5853. int ret = -EINVAL;
  5854. switch (policy) {
  5855. case SCHED_FIFO:
  5856. case SCHED_RR:
  5857. ret = 1;
  5858. break;
  5859. case SCHED_NORMAL:
  5860. case SCHED_BATCH:
  5861. case SCHED_IDLE:
  5862. ret = 0;
  5863. }
  5864. return ret;
  5865. }
  5866. /**
  5867. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5868. * @pid: pid of the process.
  5869. * @interval: userspace pointer to the timeslice value.
  5870. *
  5871. * this syscall writes the default timeslice value of a given process
  5872. * into the user-space timespec buffer. A value of '0' means infinity.
  5873. */
  5874. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5875. struct timespec __user *, interval)
  5876. {
  5877. struct task_struct *p;
  5878. unsigned int time_slice;
  5879. unsigned long flags;
  5880. struct rq *rq;
  5881. int retval;
  5882. struct timespec t;
  5883. if (pid < 0)
  5884. return -EINVAL;
  5885. retval = -ESRCH;
  5886. rcu_read_lock();
  5887. p = find_process_by_pid(pid);
  5888. if (!p)
  5889. goto out_unlock;
  5890. retval = security_task_getscheduler(p);
  5891. if (retval)
  5892. goto out_unlock;
  5893. rq = task_rq_lock(p, &flags);
  5894. time_slice = p->sched_class->get_rr_interval(rq, p);
  5895. task_rq_unlock(rq, &flags);
  5896. rcu_read_unlock();
  5897. jiffies_to_timespec(time_slice, &t);
  5898. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5899. return retval;
  5900. out_unlock:
  5901. rcu_read_unlock();
  5902. return retval;
  5903. }
  5904. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5905. void sched_show_task(struct task_struct *p)
  5906. {
  5907. unsigned long free = 0;
  5908. unsigned state;
  5909. state = p->state ? __ffs(p->state) + 1 : 0;
  5910. pr_info("%-13.13s %c", p->comm,
  5911. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5912. #if BITS_PER_LONG == 32
  5913. if (state == TASK_RUNNING)
  5914. pr_cont(" running ");
  5915. else
  5916. pr_cont(" %08lx ", thread_saved_pc(p));
  5917. #else
  5918. if (state == TASK_RUNNING)
  5919. pr_cont(" running task ");
  5920. else
  5921. pr_cont(" %016lx ", thread_saved_pc(p));
  5922. #endif
  5923. #ifdef CONFIG_DEBUG_STACK_USAGE
  5924. free = stack_not_used(p);
  5925. #endif
  5926. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5927. task_pid_nr(p), task_pid_nr(p->real_parent),
  5928. (unsigned long)task_thread_info(p)->flags);
  5929. show_stack(p, NULL);
  5930. }
  5931. void show_state_filter(unsigned long state_filter)
  5932. {
  5933. struct task_struct *g, *p;
  5934. #if BITS_PER_LONG == 32
  5935. pr_info(" task PC stack pid father\n");
  5936. #else
  5937. pr_info(" task PC stack pid father\n");
  5938. #endif
  5939. read_lock(&tasklist_lock);
  5940. do_each_thread(g, p) {
  5941. /*
  5942. * reset the NMI-timeout, listing all files on a slow
  5943. * console might take alot of time:
  5944. */
  5945. touch_nmi_watchdog();
  5946. if (!state_filter || (p->state & state_filter))
  5947. sched_show_task(p);
  5948. } while_each_thread(g, p);
  5949. touch_all_softlockup_watchdogs();
  5950. #ifdef CONFIG_SCHED_DEBUG
  5951. sysrq_sched_debug_show();
  5952. #endif
  5953. read_unlock(&tasklist_lock);
  5954. /*
  5955. * Only show locks if all tasks are dumped:
  5956. */
  5957. if (!state_filter)
  5958. debug_show_all_locks();
  5959. }
  5960. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5961. {
  5962. idle->sched_class = &idle_sched_class;
  5963. }
  5964. /**
  5965. * init_idle - set up an idle thread for a given CPU
  5966. * @idle: task in question
  5967. * @cpu: cpu the idle task belongs to
  5968. *
  5969. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5970. * flag, to make booting more robust.
  5971. */
  5972. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5973. {
  5974. struct rq *rq = cpu_rq(cpu);
  5975. unsigned long flags;
  5976. raw_spin_lock_irqsave(&rq->lock, flags);
  5977. __sched_fork(idle);
  5978. idle->state = TASK_RUNNING;
  5979. idle->se.exec_start = sched_clock();
  5980. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5981. __set_task_cpu(idle, cpu);
  5982. rq->curr = rq->idle = idle;
  5983. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5984. idle->oncpu = 1;
  5985. #endif
  5986. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5987. /* Set the preempt count _outside_ the spinlocks! */
  5988. #if defined(CONFIG_PREEMPT)
  5989. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5990. #else
  5991. task_thread_info(idle)->preempt_count = 0;
  5992. #endif
  5993. /*
  5994. * The idle tasks have their own, simple scheduling class:
  5995. */
  5996. idle->sched_class = &idle_sched_class;
  5997. ftrace_graph_init_task(idle);
  5998. }
  5999. /*
  6000. * In a system that switches off the HZ timer nohz_cpu_mask
  6001. * indicates which cpus entered this state. This is used
  6002. * in the rcu update to wait only for active cpus. For system
  6003. * which do not switch off the HZ timer nohz_cpu_mask should
  6004. * always be CPU_BITS_NONE.
  6005. */
  6006. cpumask_var_t nohz_cpu_mask;
  6007. /*
  6008. * Increase the granularity value when there are more CPUs,
  6009. * because with more CPUs the 'effective latency' as visible
  6010. * to users decreases. But the relationship is not linear,
  6011. * so pick a second-best guess by going with the log2 of the
  6012. * number of CPUs.
  6013. *
  6014. * This idea comes from the SD scheduler of Con Kolivas:
  6015. */
  6016. static int get_update_sysctl_factor(void)
  6017. {
  6018. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6019. unsigned int factor;
  6020. switch (sysctl_sched_tunable_scaling) {
  6021. case SCHED_TUNABLESCALING_NONE:
  6022. factor = 1;
  6023. break;
  6024. case SCHED_TUNABLESCALING_LINEAR:
  6025. factor = cpus;
  6026. break;
  6027. case SCHED_TUNABLESCALING_LOG:
  6028. default:
  6029. factor = 1 + ilog2(cpus);
  6030. break;
  6031. }
  6032. return factor;
  6033. }
  6034. static void update_sysctl(void)
  6035. {
  6036. unsigned int factor = get_update_sysctl_factor();
  6037. #define SET_SYSCTL(name) \
  6038. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6039. SET_SYSCTL(sched_min_granularity);
  6040. SET_SYSCTL(sched_latency);
  6041. SET_SYSCTL(sched_wakeup_granularity);
  6042. SET_SYSCTL(sched_shares_ratelimit);
  6043. #undef SET_SYSCTL
  6044. }
  6045. static inline void sched_init_granularity(void)
  6046. {
  6047. update_sysctl();
  6048. }
  6049. #ifdef CONFIG_SMP
  6050. /*
  6051. * This is how migration works:
  6052. *
  6053. * 1) we queue a struct migration_req structure in the source CPU's
  6054. * runqueue and wake up that CPU's migration thread.
  6055. * 2) we down() the locked semaphore => thread blocks.
  6056. * 3) migration thread wakes up (implicitly it forces the migrated
  6057. * thread off the CPU)
  6058. * 4) it gets the migration request and checks whether the migrated
  6059. * task is still in the wrong runqueue.
  6060. * 5) if it's in the wrong runqueue then the migration thread removes
  6061. * it and puts it into the right queue.
  6062. * 6) migration thread up()s the semaphore.
  6063. * 7) we wake up and the migration is done.
  6064. */
  6065. /*
  6066. * Change a given task's CPU affinity. Migrate the thread to a
  6067. * proper CPU and schedule it away if the CPU it's executing on
  6068. * is removed from the allowed bitmask.
  6069. *
  6070. * NOTE: the caller must have a valid reference to the task, the
  6071. * task must not exit() & deallocate itself prematurely. The
  6072. * call is not atomic; no spinlocks may be held.
  6073. */
  6074. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6075. {
  6076. struct migration_req req;
  6077. unsigned long flags;
  6078. struct rq *rq;
  6079. int ret = 0;
  6080. /*
  6081. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6082. * the ->cpus_allowed mask from under waking tasks, which would be
  6083. * possible when we change rq->lock in ttwu(), so synchronize against
  6084. * TASK_WAKING to avoid that.
  6085. */
  6086. again:
  6087. while (p->state == TASK_WAKING)
  6088. cpu_relax();
  6089. rq = task_rq_lock(p, &flags);
  6090. if (p->state == TASK_WAKING) {
  6091. task_rq_unlock(rq, &flags);
  6092. goto again;
  6093. }
  6094. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6095. ret = -EINVAL;
  6096. goto out;
  6097. }
  6098. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6099. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6100. ret = -EINVAL;
  6101. goto out;
  6102. }
  6103. if (p->sched_class->set_cpus_allowed)
  6104. p->sched_class->set_cpus_allowed(p, new_mask);
  6105. else {
  6106. cpumask_copy(&p->cpus_allowed, new_mask);
  6107. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6108. }
  6109. /* Can the task run on the task's current CPU? If so, we're done */
  6110. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6111. goto out;
  6112. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6113. /* Need help from migration thread: drop lock and wait. */
  6114. struct task_struct *mt = rq->migration_thread;
  6115. get_task_struct(mt);
  6116. task_rq_unlock(rq, &flags);
  6117. wake_up_process(rq->migration_thread);
  6118. put_task_struct(mt);
  6119. wait_for_completion(&req.done);
  6120. tlb_migrate_finish(p->mm);
  6121. return 0;
  6122. }
  6123. out:
  6124. task_rq_unlock(rq, &flags);
  6125. return ret;
  6126. }
  6127. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6128. /*
  6129. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6130. * this because either it can't run here any more (set_cpus_allowed()
  6131. * away from this CPU, or CPU going down), or because we're
  6132. * attempting to rebalance this task on exec (sched_exec).
  6133. *
  6134. * So we race with normal scheduler movements, but that's OK, as long
  6135. * as the task is no longer on this CPU.
  6136. *
  6137. * Returns non-zero if task was successfully migrated.
  6138. */
  6139. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6140. {
  6141. struct rq *rq_dest, *rq_src;
  6142. int ret = 0;
  6143. if (unlikely(!cpu_active(dest_cpu)))
  6144. return ret;
  6145. rq_src = cpu_rq(src_cpu);
  6146. rq_dest = cpu_rq(dest_cpu);
  6147. double_rq_lock(rq_src, rq_dest);
  6148. /* Already moved. */
  6149. if (task_cpu(p) != src_cpu)
  6150. goto done;
  6151. /* Affinity changed (again). */
  6152. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6153. goto fail;
  6154. /*
  6155. * If we're not on a rq, the next wake-up will ensure we're
  6156. * placed properly.
  6157. */
  6158. if (p->se.on_rq) {
  6159. deactivate_task(rq_src, p, 0);
  6160. set_task_cpu(p, dest_cpu);
  6161. activate_task(rq_dest, p, 0);
  6162. check_preempt_curr(rq_dest, p, 0);
  6163. }
  6164. done:
  6165. ret = 1;
  6166. fail:
  6167. double_rq_unlock(rq_src, rq_dest);
  6168. return ret;
  6169. }
  6170. #define RCU_MIGRATION_IDLE 0
  6171. #define RCU_MIGRATION_NEED_QS 1
  6172. #define RCU_MIGRATION_GOT_QS 2
  6173. #define RCU_MIGRATION_MUST_SYNC 3
  6174. /*
  6175. * migration_thread - this is a highprio system thread that performs
  6176. * thread migration by bumping thread off CPU then 'pushing' onto
  6177. * another runqueue.
  6178. */
  6179. static int migration_thread(void *data)
  6180. {
  6181. int badcpu;
  6182. int cpu = (long)data;
  6183. struct rq *rq;
  6184. rq = cpu_rq(cpu);
  6185. BUG_ON(rq->migration_thread != current);
  6186. set_current_state(TASK_INTERRUPTIBLE);
  6187. while (!kthread_should_stop()) {
  6188. struct migration_req *req;
  6189. struct list_head *head;
  6190. raw_spin_lock_irq(&rq->lock);
  6191. if (cpu_is_offline(cpu)) {
  6192. raw_spin_unlock_irq(&rq->lock);
  6193. break;
  6194. }
  6195. if (rq->active_balance) {
  6196. active_load_balance(rq, cpu);
  6197. rq->active_balance = 0;
  6198. }
  6199. head = &rq->migration_queue;
  6200. if (list_empty(head)) {
  6201. raw_spin_unlock_irq(&rq->lock);
  6202. schedule();
  6203. set_current_state(TASK_INTERRUPTIBLE);
  6204. continue;
  6205. }
  6206. req = list_entry(head->next, struct migration_req, list);
  6207. list_del_init(head->next);
  6208. if (req->task != NULL) {
  6209. raw_spin_unlock(&rq->lock);
  6210. __migrate_task(req->task, cpu, req->dest_cpu);
  6211. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6212. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6213. raw_spin_unlock(&rq->lock);
  6214. } else {
  6215. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6216. raw_spin_unlock(&rq->lock);
  6217. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6218. }
  6219. local_irq_enable();
  6220. complete(&req->done);
  6221. }
  6222. __set_current_state(TASK_RUNNING);
  6223. return 0;
  6224. }
  6225. #ifdef CONFIG_HOTPLUG_CPU
  6226. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6227. {
  6228. int ret;
  6229. local_irq_disable();
  6230. ret = __migrate_task(p, src_cpu, dest_cpu);
  6231. local_irq_enable();
  6232. return ret;
  6233. }
  6234. /*
  6235. * Figure out where task on dead CPU should go, use force if necessary.
  6236. */
  6237. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6238. {
  6239. int dest_cpu;
  6240. again:
  6241. dest_cpu = select_fallback_rq(dead_cpu, p);
  6242. /* It can have affinity changed while we were choosing. */
  6243. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6244. goto again;
  6245. }
  6246. /*
  6247. * While a dead CPU has no uninterruptible tasks queued at this point,
  6248. * it might still have a nonzero ->nr_uninterruptible counter, because
  6249. * for performance reasons the counter is not stricly tracking tasks to
  6250. * their home CPUs. So we just add the counter to another CPU's counter,
  6251. * to keep the global sum constant after CPU-down:
  6252. */
  6253. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6254. {
  6255. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6256. unsigned long flags;
  6257. local_irq_save(flags);
  6258. double_rq_lock(rq_src, rq_dest);
  6259. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6260. rq_src->nr_uninterruptible = 0;
  6261. double_rq_unlock(rq_src, rq_dest);
  6262. local_irq_restore(flags);
  6263. }
  6264. /* Run through task list and migrate tasks from the dead cpu. */
  6265. static void migrate_live_tasks(int src_cpu)
  6266. {
  6267. struct task_struct *p, *t;
  6268. read_lock(&tasklist_lock);
  6269. do_each_thread(t, p) {
  6270. if (p == current)
  6271. continue;
  6272. if (task_cpu(p) == src_cpu)
  6273. move_task_off_dead_cpu(src_cpu, p);
  6274. } while_each_thread(t, p);
  6275. read_unlock(&tasklist_lock);
  6276. }
  6277. /*
  6278. * Schedules idle task to be the next runnable task on current CPU.
  6279. * It does so by boosting its priority to highest possible.
  6280. * Used by CPU offline code.
  6281. */
  6282. void sched_idle_next(void)
  6283. {
  6284. int this_cpu = smp_processor_id();
  6285. struct rq *rq = cpu_rq(this_cpu);
  6286. struct task_struct *p = rq->idle;
  6287. unsigned long flags;
  6288. /* cpu has to be offline */
  6289. BUG_ON(cpu_online(this_cpu));
  6290. /*
  6291. * Strictly not necessary since rest of the CPUs are stopped by now
  6292. * and interrupts disabled on the current cpu.
  6293. */
  6294. raw_spin_lock_irqsave(&rq->lock, flags);
  6295. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6296. update_rq_clock(rq);
  6297. activate_task(rq, p, 0);
  6298. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6299. }
  6300. /*
  6301. * Ensures that the idle task is using init_mm right before its cpu goes
  6302. * offline.
  6303. */
  6304. void idle_task_exit(void)
  6305. {
  6306. struct mm_struct *mm = current->active_mm;
  6307. BUG_ON(cpu_online(smp_processor_id()));
  6308. if (mm != &init_mm)
  6309. switch_mm(mm, &init_mm, current);
  6310. mmdrop(mm);
  6311. }
  6312. /* called under rq->lock with disabled interrupts */
  6313. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6314. {
  6315. struct rq *rq = cpu_rq(dead_cpu);
  6316. /* Must be exiting, otherwise would be on tasklist. */
  6317. BUG_ON(!p->exit_state);
  6318. /* Cannot have done final schedule yet: would have vanished. */
  6319. BUG_ON(p->state == TASK_DEAD);
  6320. get_task_struct(p);
  6321. /*
  6322. * Drop lock around migration; if someone else moves it,
  6323. * that's OK. No task can be added to this CPU, so iteration is
  6324. * fine.
  6325. */
  6326. raw_spin_unlock_irq(&rq->lock);
  6327. move_task_off_dead_cpu(dead_cpu, p);
  6328. raw_spin_lock_irq(&rq->lock);
  6329. put_task_struct(p);
  6330. }
  6331. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6332. static void migrate_dead_tasks(unsigned int dead_cpu)
  6333. {
  6334. struct rq *rq = cpu_rq(dead_cpu);
  6335. struct task_struct *next;
  6336. for ( ; ; ) {
  6337. if (!rq->nr_running)
  6338. break;
  6339. update_rq_clock(rq);
  6340. next = pick_next_task(rq);
  6341. if (!next)
  6342. break;
  6343. next->sched_class->put_prev_task(rq, next);
  6344. migrate_dead(dead_cpu, next);
  6345. }
  6346. }
  6347. /*
  6348. * remove the tasks which were accounted by rq from calc_load_tasks.
  6349. */
  6350. static void calc_global_load_remove(struct rq *rq)
  6351. {
  6352. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6353. rq->calc_load_active = 0;
  6354. }
  6355. #endif /* CONFIG_HOTPLUG_CPU */
  6356. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6357. static struct ctl_table sd_ctl_dir[] = {
  6358. {
  6359. .procname = "sched_domain",
  6360. .mode = 0555,
  6361. },
  6362. {}
  6363. };
  6364. static struct ctl_table sd_ctl_root[] = {
  6365. {
  6366. .procname = "kernel",
  6367. .mode = 0555,
  6368. .child = sd_ctl_dir,
  6369. },
  6370. {}
  6371. };
  6372. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6373. {
  6374. struct ctl_table *entry =
  6375. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6376. return entry;
  6377. }
  6378. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6379. {
  6380. struct ctl_table *entry;
  6381. /*
  6382. * In the intermediate directories, both the child directory and
  6383. * procname are dynamically allocated and could fail but the mode
  6384. * will always be set. In the lowest directory the names are
  6385. * static strings and all have proc handlers.
  6386. */
  6387. for (entry = *tablep; entry->mode; entry++) {
  6388. if (entry->child)
  6389. sd_free_ctl_entry(&entry->child);
  6390. if (entry->proc_handler == NULL)
  6391. kfree(entry->procname);
  6392. }
  6393. kfree(*tablep);
  6394. *tablep = NULL;
  6395. }
  6396. static void
  6397. set_table_entry(struct ctl_table *entry,
  6398. const char *procname, void *data, int maxlen,
  6399. mode_t mode, proc_handler *proc_handler)
  6400. {
  6401. entry->procname = procname;
  6402. entry->data = data;
  6403. entry->maxlen = maxlen;
  6404. entry->mode = mode;
  6405. entry->proc_handler = proc_handler;
  6406. }
  6407. static struct ctl_table *
  6408. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6409. {
  6410. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6411. if (table == NULL)
  6412. return NULL;
  6413. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6414. sizeof(long), 0644, proc_doulongvec_minmax);
  6415. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6416. sizeof(long), 0644, proc_doulongvec_minmax);
  6417. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6418. sizeof(int), 0644, proc_dointvec_minmax);
  6419. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6420. sizeof(int), 0644, proc_dointvec_minmax);
  6421. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6422. sizeof(int), 0644, proc_dointvec_minmax);
  6423. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6424. sizeof(int), 0644, proc_dointvec_minmax);
  6425. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6426. sizeof(int), 0644, proc_dointvec_minmax);
  6427. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6428. sizeof(int), 0644, proc_dointvec_minmax);
  6429. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6430. sizeof(int), 0644, proc_dointvec_minmax);
  6431. set_table_entry(&table[9], "cache_nice_tries",
  6432. &sd->cache_nice_tries,
  6433. sizeof(int), 0644, proc_dointvec_minmax);
  6434. set_table_entry(&table[10], "flags", &sd->flags,
  6435. sizeof(int), 0644, proc_dointvec_minmax);
  6436. set_table_entry(&table[11], "name", sd->name,
  6437. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6438. /* &table[12] is terminator */
  6439. return table;
  6440. }
  6441. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6442. {
  6443. struct ctl_table *entry, *table;
  6444. struct sched_domain *sd;
  6445. int domain_num = 0, i;
  6446. char buf[32];
  6447. for_each_domain(cpu, sd)
  6448. domain_num++;
  6449. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6450. if (table == NULL)
  6451. return NULL;
  6452. i = 0;
  6453. for_each_domain(cpu, sd) {
  6454. snprintf(buf, 32, "domain%d", i);
  6455. entry->procname = kstrdup(buf, GFP_KERNEL);
  6456. entry->mode = 0555;
  6457. entry->child = sd_alloc_ctl_domain_table(sd);
  6458. entry++;
  6459. i++;
  6460. }
  6461. return table;
  6462. }
  6463. static struct ctl_table_header *sd_sysctl_header;
  6464. static void register_sched_domain_sysctl(void)
  6465. {
  6466. int i, cpu_num = num_possible_cpus();
  6467. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6468. char buf[32];
  6469. WARN_ON(sd_ctl_dir[0].child);
  6470. sd_ctl_dir[0].child = entry;
  6471. if (entry == NULL)
  6472. return;
  6473. for_each_possible_cpu(i) {
  6474. snprintf(buf, 32, "cpu%d", i);
  6475. entry->procname = kstrdup(buf, GFP_KERNEL);
  6476. entry->mode = 0555;
  6477. entry->child = sd_alloc_ctl_cpu_table(i);
  6478. entry++;
  6479. }
  6480. WARN_ON(sd_sysctl_header);
  6481. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6482. }
  6483. /* may be called multiple times per register */
  6484. static void unregister_sched_domain_sysctl(void)
  6485. {
  6486. if (sd_sysctl_header)
  6487. unregister_sysctl_table(sd_sysctl_header);
  6488. sd_sysctl_header = NULL;
  6489. if (sd_ctl_dir[0].child)
  6490. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6491. }
  6492. #else
  6493. static void register_sched_domain_sysctl(void)
  6494. {
  6495. }
  6496. static void unregister_sched_domain_sysctl(void)
  6497. {
  6498. }
  6499. #endif
  6500. static void set_rq_online(struct rq *rq)
  6501. {
  6502. if (!rq->online) {
  6503. const struct sched_class *class;
  6504. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6505. rq->online = 1;
  6506. for_each_class(class) {
  6507. if (class->rq_online)
  6508. class->rq_online(rq);
  6509. }
  6510. }
  6511. }
  6512. static void set_rq_offline(struct rq *rq)
  6513. {
  6514. if (rq->online) {
  6515. const struct sched_class *class;
  6516. for_each_class(class) {
  6517. if (class->rq_offline)
  6518. class->rq_offline(rq);
  6519. }
  6520. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6521. rq->online = 0;
  6522. }
  6523. }
  6524. /*
  6525. * migration_call - callback that gets triggered when a CPU is added.
  6526. * Here we can start up the necessary migration thread for the new CPU.
  6527. */
  6528. static int __cpuinit
  6529. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6530. {
  6531. struct task_struct *p;
  6532. int cpu = (long)hcpu;
  6533. unsigned long flags;
  6534. struct rq *rq;
  6535. switch (action) {
  6536. case CPU_UP_PREPARE:
  6537. case CPU_UP_PREPARE_FROZEN:
  6538. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6539. if (IS_ERR(p))
  6540. return NOTIFY_BAD;
  6541. kthread_bind(p, cpu);
  6542. /* Must be high prio: stop_machine expects to yield to it. */
  6543. rq = task_rq_lock(p, &flags);
  6544. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6545. task_rq_unlock(rq, &flags);
  6546. get_task_struct(p);
  6547. cpu_rq(cpu)->migration_thread = p;
  6548. rq->calc_load_update = calc_load_update;
  6549. break;
  6550. case CPU_ONLINE:
  6551. case CPU_ONLINE_FROZEN:
  6552. /* Strictly unnecessary, as first user will wake it. */
  6553. wake_up_process(cpu_rq(cpu)->migration_thread);
  6554. /* Update our root-domain */
  6555. rq = cpu_rq(cpu);
  6556. raw_spin_lock_irqsave(&rq->lock, flags);
  6557. if (rq->rd) {
  6558. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6559. set_rq_online(rq);
  6560. }
  6561. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6562. break;
  6563. #ifdef CONFIG_HOTPLUG_CPU
  6564. case CPU_UP_CANCELED:
  6565. case CPU_UP_CANCELED_FROZEN:
  6566. if (!cpu_rq(cpu)->migration_thread)
  6567. break;
  6568. /* Unbind it from offline cpu so it can run. Fall thru. */
  6569. kthread_bind(cpu_rq(cpu)->migration_thread,
  6570. cpumask_any(cpu_online_mask));
  6571. kthread_stop(cpu_rq(cpu)->migration_thread);
  6572. put_task_struct(cpu_rq(cpu)->migration_thread);
  6573. cpu_rq(cpu)->migration_thread = NULL;
  6574. break;
  6575. case CPU_DEAD:
  6576. case CPU_DEAD_FROZEN:
  6577. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6578. migrate_live_tasks(cpu);
  6579. rq = cpu_rq(cpu);
  6580. kthread_stop(rq->migration_thread);
  6581. put_task_struct(rq->migration_thread);
  6582. rq->migration_thread = NULL;
  6583. /* Idle task back to normal (off runqueue, low prio) */
  6584. raw_spin_lock_irq(&rq->lock);
  6585. update_rq_clock(rq);
  6586. deactivate_task(rq, rq->idle, 0);
  6587. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6588. rq->idle->sched_class = &idle_sched_class;
  6589. migrate_dead_tasks(cpu);
  6590. raw_spin_unlock_irq(&rq->lock);
  6591. cpuset_unlock();
  6592. migrate_nr_uninterruptible(rq);
  6593. BUG_ON(rq->nr_running != 0);
  6594. calc_global_load_remove(rq);
  6595. /*
  6596. * No need to migrate the tasks: it was best-effort if
  6597. * they didn't take sched_hotcpu_mutex. Just wake up
  6598. * the requestors.
  6599. */
  6600. raw_spin_lock_irq(&rq->lock);
  6601. while (!list_empty(&rq->migration_queue)) {
  6602. struct migration_req *req;
  6603. req = list_entry(rq->migration_queue.next,
  6604. struct migration_req, list);
  6605. list_del_init(&req->list);
  6606. raw_spin_unlock_irq(&rq->lock);
  6607. complete(&req->done);
  6608. raw_spin_lock_irq(&rq->lock);
  6609. }
  6610. raw_spin_unlock_irq(&rq->lock);
  6611. break;
  6612. case CPU_DYING:
  6613. case CPU_DYING_FROZEN:
  6614. /* Update our root-domain */
  6615. rq = cpu_rq(cpu);
  6616. raw_spin_lock_irqsave(&rq->lock, flags);
  6617. if (rq->rd) {
  6618. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6619. set_rq_offline(rq);
  6620. }
  6621. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6622. break;
  6623. #endif
  6624. }
  6625. return NOTIFY_OK;
  6626. }
  6627. /*
  6628. * Register at high priority so that task migration (migrate_all_tasks)
  6629. * happens before everything else. This has to be lower priority than
  6630. * the notifier in the perf_event subsystem, though.
  6631. */
  6632. static struct notifier_block __cpuinitdata migration_notifier = {
  6633. .notifier_call = migration_call,
  6634. .priority = 10
  6635. };
  6636. static int __init migration_init(void)
  6637. {
  6638. void *cpu = (void *)(long)smp_processor_id();
  6639. int err;
  6640. /* Start one for the boot CPU: */
  6641. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6642. BUG_ON(err == NOTIFY_BAD);
  6643. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6644. register_cpu_notifier(&migration_notifier);
  6645. return 0;
  6646. }
  6647. early_initcall(migration_init);
  6648. #endif
  6649. #ifdef CONFIG_SMP
  6650. #ifdef CONFIG_SCHED_DEBUG
  6651. static __read_mostly int sched_domain_debug_enabled;
  6652. static int __init sched_domain_debug_setup(char *str)
  6653. {
  6654. sched_domain_debug_enabled = 1;
  6655. return 0;
  6656. }
  6657. early_param("sched_debug", sched_domain_debug_setup);
  6658. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6659. struct cpumask *groupmask)
  6660. {
  6661. struct sched_group *group = sd->groups;
  6662. char str[256];
  6663. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6664. cpumask_clear(groupmask);
  6665. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6666. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6667. pr_cont("does not load-balance\n");
  6668. if (sd->parent)
  6669. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6670. return -1;
  6671. }
  6672. pr_cont("span %s level %s\n", str, sd->name);
  6673. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6674. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6675. }
  6676. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6677. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6678. }
  6679. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6680. do {
  6681. if (!group) {
  6682. pr_cont("\n");
  6683. pr_err("ERROR: group is NULL\n");
  6684. break;
  6685. }
  6686. if (!group->cpu_power) {
  6687. pr_cont("\n");
  6688. pr_err("ERROR: domain->cpu_power not set\n");
  6689. break;
  6690. }
  6691. if (!cpumask_weight(sched_group_cpus(group))) {
  6692. pr_cont("\n");
  6693. pr_err("ERROR: empty group\n");
  6694. break;
  6695. }
  6696. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6697. pr_cont("\n");
  6698. pr_err("ERROR: repeated CPUs\n");
  6699. break;
  6700. }
  6701. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6702. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6703. pr_cont(" %s", str);
  6704. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6705. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6706. }
  6707. group = group->next;
  6708. } while (group != sd->groups);
  6709. pr_cont("\n");
  6710. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6711. pr_err("ERROR: groups don't span domain->span\n");
  6712. if (sd->parent &&
  6713. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6714. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6715. return 0;
  6716. }
  6717. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6718. {
  6719. cpumask_var_t groupmask;
  6720. int level = 0;
  6721. if (!sched_domain_debug_enabled)
  6722. return;
  6723. if (!sd) {
  6724. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6725. return;
  6726. }
  6727. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6728. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6729. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6730. return;
  6731. }
  6732. for (;;) {
  6733. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6734. break;
  6735. level++;
  6736. sd = sd->parent;
  6737. if (!sd)
  6738. break;
  6739. }
  6740. free_cpumask_var(groupmask);
  6741. }
  6742. #else /* !CONFIG_SCHED_DEBUG */
  6743. # define sched_domain_debug(sd, cpu) do { } while (0)
  6744. #endif /* CONFIG_SCHED_DEBUG */
  6745. static int sd_degenerate(struct sched_domain *sd)
  6746. {
  6747. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6748. return 1;
  6749. /* Following flags need at least 2 groups */
  6750. if (sd->flags & (SD_LOAD_BALANCE |
  6751. SD_BALANCE_NEWIDLE |
  6752. SD_BALANCE_FORK |
  6753. SD_BALANCE_EXEC |
  6754. SD_SHARE_CPUPOWER |
  6755. SD_SHARE_PKG_RESOURCES)) {
  6756. if (sd->groups != sd->groups->next)
  6757. return 0;
  6758. }
  6759. /* Following flags don't use groups */
  6760. if (sd->flags & (SD_WAKE_AFFINE))
  6761. return 0;
  6762. return 1;
  6763. }
  6764. static int
  6765. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6766. {
  6767. unsigned long cflags = sd->flags, pflags = parent->flags;
  6768. if (sd_degenerate(parent))
  6769. return 1;
  6770. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6771. return 0;
  6772. /* Flags needing groups don't count if only 1 group in parent */
  6773. if (parent->groups == parent->groups->next) {
  6774. pflags &= ~(SD_LOAD_BALANCE |
  6775. SD_BALANCE_NEWIDLE |
  6776. SD_BALANCE_FORK |
  6777. SD_BALANCE_EXEC |
  6778. SD_SHARE_CPUPOWER |
  6779. SD_SHARE_PKG_RESOURCES);
  6780. if (nr_node_ids == 1)
  6781. pflags &= ~SD_SERIALIZE;
  6782. }
  6783. if (~cflags & pflags)
  6784. return 0;
  6785. return 1;
  6786. }
  6787. static void free_rootdomain(struct root_domain *rd)
  6788. {
  6789. synchronize_sched();
  6790. cpupri_cleanup(&rd->cpupri);
  6791. free_cpumask_var(rd->rto_mask);
  6792. free_cpumask_var(rd->online);
  6793. free_cpumask_var(rd->span);
  6794. kfree(rd);
  6795. }
  6796. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6797. {
  6798. struct root_domain *old_rd = NULL;
  6799. unsigned long flags;
  6800. raw_spin_lock_irqsave(&rq->lock, flags);
  6801. if (rq->rd) {
  6802. old_rd = rq->rd;
  6803. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6804. set_rq_offline(rq);
  6805. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6806. /*
  6807. * If we dont want to free the old_rt yet then
  6808. * set old_rd to NULL to skip the freeing later
  6809. * in this function:
  6810. */
  6811. if (!atomic_dec_and_test(&old_rd->refcount))
  6812. old_rd = NULL;
  6813. }
  6814. atomic_inc(&rd->refcount);
  6815. rq->rd = rd;
  6816. cpumask_set_cpu(rq->cpu, rd->span);
  6817. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6818. set_rq_online(rq);
  6819. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6820. if (old_rd)
  6821. free_rootdomain(old_rd);
  6822. }
  6823. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6824. {
  6825. gfp_t gfp = GFP_KERNEL;
  6826. memset(rd, 0, sizeof(*rd));
  6827. if (bootmem)
  6828. gfp = GFP_NOWAIT;
  6829. if (!alloc_cpumask_var(&rd->span, gfp))
  6830. goto out;
  6831. if (!alloc_cpumask_var(&rd->online, gfp))
  6832. goto free_span;
  6833. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6834. goto free_online;
  6835. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6836. goto free_rto_mask;
  6837. return 0;
  6838. free_rto_mask:
  6839. free_cpumask_var(rd->rto_mask);
  6840. free_online:
  6841. free_cpumask_var(rd->online);
  6842. free_span:
  6843. free_cpumask_var(rd->span);
  6844. out:
  6845. return -ENOMEM;
  6846. }
  6847. static void init_defrootdomain(void)
  6848. {
  6849. init_rootdomain(&def_root_domain, true);
  6850. atomic_set(&def_root_domain.refcount, 1);
  6851. }
  6852. static struct root_domain *alloc_rootdomain(void)
  6853. {
  6854. struct root_domain *rd;
  6855. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6856. if (!rd)
  6857. return NULL;
  6858. if (init_rootdomain(rd, false) != 0) {
  6859. kfree(rd);
  6860. return NULL;
  6861. }
  6862. return rd;
  6863. }
  6864. /*
  6865. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6866. * hold the hotplug lock.
  6867. */
  6868. static void
  6869. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6870. {
  6871. struct rq *rq = cpu_rq(cpu);
  6872. struct sched_domain *tmp;
  6873. /* Remove the sched domains which do not contribute to scheduling. */
  6874. for (tmp = sd; tmp; ) {
  6875. struct sched_domain *parent = tmp->parent;
  6876. if (!parent)
  6877. break;
  6878. if (sd_parent_degenerate(tmp, parent)) {
  6879. tmp->parent = parent->parent;
  6880. if (parent->parent)
  6881. parent->parent->child = tmp;
  6882. } else
  6883. tmp = tmp->parent;
  6884. }
  6885. if (sd && sd_degenerate(sd)) {
  6886. sd = sd->parent;
  6887. if (sd)
  6888. sd->child = NULL;
  6889. }
  6890. sched_domain_debug(sd, cpu);
  6891. rq_attach_root(rq, rd);
  6892. rcu_assign_pointer(rq->sd, sd);
  6893. }
  6894. /* cpus with isolated domains */
  6895. static cpumask_var_t cpu_isolated_map;
  6896. /* Setup the mask of cpus configured for isolated domains */
  6897. static int __init isolated_cpu_setup(char *str)
  6898. {
  6899. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6900. cpulist_parse(str, cpu_isolated_map);
  6901. return 1;
  6902. }
  6903. __setup("isolcpus=", isolated_cpu_setup);
  6904. /*
  6905. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6906. * to a function which identifies what group(along with sched group) a CPU
  6907. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6908. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6909. *
  6910. * init_sched_build_groups will build a circular linked list of the groups
  6911. * covered by the given span, and will set each group's ->cpumask correctly,
  6912. * and ->cpu_power to 0.
  6913. */
  6914. static void
  6915. init_sched_build_groups(const struct cpumask *span,
  6916. const struct cpumask *cpu_map,
  6917. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6918. struct sched_group **sg,
  6919. struct cpumask *tmpmask),
  6920. struct cpumask *covered, struct cpumask *tmpmask)
  6921. {
  6922. struct sched_group *first = NULL, *last = NULL;
  6923. int i;
  6924. cpumask_clear(covered);
  6925. for_each_cpu(i, span) {
  6926. struct sched_group *sg;
  6927. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6928. int j;
  6929. if (cpumask_test_cpu(i, covered))
  6930. continue;
  6931. cpumask_clear(sched_group_cpus(sg));
  6932. sg->cpu_power = 0;
  6933. for_each_cpu(j, span) {
  6934. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6935. continue;
  6936. cpumask_set_cpu(j, covered);
  6937. cpumask_set_cpu(j, sched_group_cpus(sg));
  6938. }
  6939. if (!first)
  6940. first = sg;
  6941. if (last)
  6942. last->next = sg;
  6943. last = sg;
  6944. }
  6945. last->next = first;
  6946. }
  6947. #define SD_NODES_PER_DOMAIN 16
  6948. #ifdef CONFIG_NUMA
  6949. /**
  6950. * find_next_best_node - find the next node to include in a sched_domain
  6951. * @node: node whose sched_domain we're building
  6952. * @used_nodes: nodes already in the sched_domain
  6953. *
  6954. * Find the next node to include in a given scheduling domain. Simply
  6955. * finds the closest node not already in the @used_nodes map.
  6956. *
  6957. * Should use nodemask_t.
  6958. */
  6959. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6960. {
  6961. int i, n, val, min_val, best_node = 0;
  6962. min_val = INT_MAX;
  6963. for (i = 0; i < nr_node_ids; i++) {
  6964. /* Start at @node */
  6965. n = (node + i) % nr_node_ids;
  6966. if (!nr_cpus_node(n))
  6967. continue;
  6968. /* Skip already used nodes */
  6969. if (node_isset(n, *used_nodes))
  6970. continue;
  6971. /* Simple min distance search */
  6972. val = node_distance(node, n);
  6973. if (val < min_val) {
  6974. min_val = val;
  6975. best_node = n;
  6976. }
  6977. }
  6978. node_set(best_node, *used_nodes);
  6979. return best_node;
  6980. }
  6981. /**
  6982. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6983. * @node: node whose cpumask we're constructing
  6984. * @span: resulting cpumask
  6985. *
  6986. * Given a node, construct a good cpumask for its sched_domain to span. It
  6987. * should be one that prevents unnecessary balancing, but also spreads tasks
  6988. * out optimally.
  6989. */
  6990. static void sched_domain_node_span(int node, struct cpumask *span)
  6991. {
  6992. nodemask_t used_nodes;
  6993. int i;
  6994. cpumask_clear(span);
  6995. nodes_clear(used_nodes);
  6996. cpumask_or(span, span, cpumask_of_node(node));
  6997. node_set(node, used_nodes);
  6998. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6999. int next_node = find_next_best_node(node, &used_nodes);
  7000. cpumask_or(span, span, cpumask_of_node(next_node));
  7001. }
  7002. }
  7003. #endif /* CONFIG_NUMA */
  7004. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7005. /*
  7006. * The cpus mask in sched_group and sched_domain hangs off the end.
  7007. *
  7008. * ( See the the comments in include/linux/sched.h:struct sched_group
  7009. * and struct sched_domain. )
  7010. */
  7011. struct static_sched_group {
  7012. struct sched_group sg;
  7013. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7014. };
  7015. struct static_sched_domain {
  7016. struct sched_domain sd;
  7017. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7018. };
  7019. struct s_data {
  7020. #ifdef CONFIG_NUMA
  7021. int sd_allnodes;
  7022. cpumask_var_t domainspan;
  7023. cpumask_var_t covered;
  7024. cpumask_var_t notcovered;
  7025. #endif
  7026. cpumask_var_t nodemask;
  7027. cpumask_var_t this_sibling_map;
  7028. cpumask_var_t this_core_map;
  7029. cpumask_var_t send_covered;
  7030. cpumask_var_t tmpmask;
  7031. struct sched_group **sched_group_nodes;
  7032. struct root_domain *rd;
  7033. };
  7034. enum s_alloc {
  7035. sa_sched_groups = 0,
  7036. sa_rootdomain,
  7037. sa_tmpmask,
  7038. sa_send_covered,
  7039. sa_this_core_map,
  7040. sa_this_sibling_map,
  7041. sa_nodemask,
  7042. sa_sched_group_nodes,
  7043. #ifdef CONFIG_NUMA
  7044. sa_notcovered,
  7045. sa_covered,
  7046. sa_domainspan,
  7047. #endif
  7048. sa_none,
  7049. };
  7050. /*
  7051. * SMT sched-domains:
  7052. */
  7053. #ifdef CONFIG_SCHED_SMT
  7054. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7055. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7056. static int
  7057. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7058. struct sched_group **sg, struct cpumask *unused)
  7059. {
  7060. if (sg)
  7061. *sg = &per_cpu(sched_groups, cpu).sg;
  7062. return cpu;
  7063. }
  7064. #endif /* CONFIG_SCHED_SMT */
  7065. /*
  7066. * multi-core sched-domains:
  7067. */
  7068. #ifdef CONFIG_SCHED_MC
  7069. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7070. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7071. #endif /* CONFIG_SCHED_MC */
  7072. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7073. static int
  7074. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7075. struct sched_group **sg, struct cpumask *mask)
  7076. {
  7077. int group;
  7078. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7079. group = cpumask_first(mask);
  7080. if (sg)
  7081. *sg = &per_cpu(sched_group_core, group).sg;
  7082. return group;
  7083. }
  7084. #elif defined(CONFIG_SCHED_MC)
  7085. static int
  7086. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7087. struct sched_group **sg, struct cpumask *unused)
  7088. {
  7089. if (sg)
  7090. *sg = &per_cpu(sched_group_core, cpu).sg;
  7091. return cpu;
  7092. }
  7093. #endif
  7094. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7095. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7096. static int
  7097. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7098. struct sched_group **sg, struct cpumask *mask)
  7099. {
  7100. int group;
  7101. #ifdef CONFIG_SCHED_MC
  7102. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7103. group = cpumask_first(mask);
  7104. #elif defined(CONFIG_SCHED_SMT)
  7105. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7106. group = cpumask_first(mask);
  7107. #else
  7108. group = cpu;
  7109. #endif
  7110. if (sg)
  7111. *sg = &per_cpu(sched_group_phys, group).sg;
  7112. return group;
  7113. }
  7114. #ifdef CONFIG_NUMA
  7115. /*
  7116. * The init_sched_build_groups can't handle what we want to do with node
  7117. * groups, so roll our own. Now each node has its own list of groups which
  7118. * gets dynamically allocated.
  7119. */
  7120. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7121. static struct sched_group ***sched_group_nodes_bycpu;
  7122. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7123. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7124. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7125. struct sched_group **sg,
  7126. struct cpumask *nodemask)
  7127. {
  7128. int group;
  7129. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7130. group = cpumask_first(nodemask);
  7131. if (sg)
  7132. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7133. return group;
  7134. }
  7135. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7136. {
  7137. struct sched_group *sg = group_head;
  7138. int j;
  7139. if (!sg)
  7140. return;
  7141. do {
  7142. for_each_cpu(j, sched_group_cpus(sg)) {
  7143. struct sched_domain *sd;
  7144. sd = &per_cpu(phys_domains, j).sd;
  7145. if (j != group_first_cpu(sd->groups)) {
  7146. /*
  7147. * Only add "power" once for each
  7148. * physical package.
  7149. */
  7150. continue;
  7151. }
  7152. sg->cpu_power += sd->groups->cpu_power;
  7153. }
  7154. sg = sg->next;
  7155. } while (sg != group_head);
  7156. }
  7157. static int build_numa_sched_groups(struct s_data *d,
  7158. const struct cpumask *cpu_map, int num)
  7159. {
  7160. struct sched_domain *sd;
  7161. struct sched_group *sg, *prev;
  7162. int n, j;
  7163. cpumask_clear(d->covered);
  7164. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7165. if (cpumask_empty(d->nodemask)) {
  7166. d->sched_group_nodes[num] = NULL;
  7167. goto out;
  7168. }
  7169. sched_domain_node_span(num, d->domainspan);
  7170. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7171. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7172. GFP_KERNEL, num);
  7173. if (!sg) {
  7174. pr_warning("Can not alloc domain group for node %d\n", num);
  7175. return -ENOMEM;
  7176. }
  7177. d->sched_group_nodes[num] = sg;
  7178. for_each_cpu(j, d->nodemask) {
  7179. sd = &per_cpu(node_domains, j).sd;
  7180. sd->groups = sg;
  7181. }
  7182. sg->cpu_power = 0;
  7183. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7184. sg->next = sg;
  7185. cpumask_or(d->covered, d->covered, d->nodemask);
  7186. prev = sg;
  7187. for (j = 0; j < nr_node_ids; j++) {
  7188. n = (num + j) % nr_node_ids;
  7189. cpumask_complement(d->notcovered, d->covered);
  7190. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7191. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7192. if (cpumask_empty(d->tmpmask))
  7193. break;
  7194. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7195. if (cpumask_empty(d->tmpmask))
  7196. continue;
  7197. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7198. GFP_KERNEL, num);
  7199. if (!sg) {
  7200. pr_warning("Can not alloc domain group for node %d\n",
  7201. j);
  7202. return -ENOMEM;
  7203. }
  7204. sg->cpu_power = 0;
  7205. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7206. sg->next = prev->next;
  7207. cpumask_or(d->covered, d->covered, d->tmpmask);
  7208. prev->next = sg;
  7209. prev = sg;
  7210. }
  7211. out:
  7212. return 0;
  7213. }
  7214. #endif /* CONFIG_NUMA */
  7215. #ifdef CONFIG_NUMA
  7216. /* Free memory allocated for various sched_group structures */
  7217. static void free_sched_groups(const struct cpumask *cpu_map,
  7218. struct cpumask *nodemask)
  7219. {
  7220. int cpu, i;
  7221. for_each_cpu(cpu, cpu_map) {
  7222. struct sched_group **sched_group_nodes
  7223. = sched_group_nodes_bycpu[cpu];
  7224. if (!sched_group_nodes)
  7225. continue;
  7226. for (i = 0; i < nr_node_ids; i++) {
  7227. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7228. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7229. if (cpumask_empty(nodemask))
  7230. continue;
  7231. if (sg == NULL)
  7232. continue;
  7233. sg = sg->next;
  7234. next_sg:
  7235. oldsg = sg;
  7236. sg = sg->next;
  7237. kfree(oldsg);
  7238. if (oldsg != sched_group_nodes[i])
  7239. goto next_sg;
  7240. }
  7241. kfree(sched_group_nodes);
  7242. sched_group_nodes_bycpu[cpu] = NULL;
  7243. }
  7244. }
  7245. #else /* !CONFIG_NUMA */
  7246. static void free_sched_groups(const struct cpumask *cpu_map,
  7247. struct cpumask *nodemask)
  7248. {
  7249. }
  7250. #endif /* CONFIG_NUMA */
  7251. /*
  7252. * Initialize sched groups cpu_power.
  7253. *
  7254. * cpu_power indicates the capacity of sched group, which is used while
  7255. * distributing the load between different sched groups in a sched domain.
  7256. * Typically cpu_power for all the groups in a sched domain will be same unless
  7257. * there are asymmetries in the topology. If there are asymmetries, group
  7258. * having more cpu_power will pickup more load compared to the group having
  7259. * less cpu_power.
  7260. */
  7261. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7262. {
  7263. struct sched_domain *child;
  7264. struct sched_group *group;
  7265. long power;
  7266. int weight;
  7267. WARN_ON(!sd || !sd->groups);
  7268. if (cpu != group_first_cpu(sd->groups))
  7269. return;
  7270. child = sd->child;
  7271. sd->groups->cpu_power = 0;
  7272. if (!child) {
  7273. power = SCHED_LOAD_SCALE;
  7274. weight = cpumask_weight(sched_domain_span(sd));
  7275. /*
  7276. * SMT siblings share the power of a single core.
  7277. * Usually multiple threads get a better yield out of
  7278. * that one core than a single thread would have,
  7279. * reflect that in sd->smt_gain.
  7280. */
  7281. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7282. power *= sd->smt_gain;
  7283. power /= weight;
  7284. power >>= SCHED_LOAD_SHIFT;
  7285. }
  7286. sd->groups->cpu_power += power;
  7287. return;
  7288. }
  7289. /*
  7290. * Add cpu_power of each child group to this groups cpu_power.
  7291. */
  7292. group = child->groups;
  7293. do {
  7294. sd->groups->cpu_power += group->cpu_power;
  7295. group = group->next;
  7296. } while (group != child->groups);
  7297. }
  7298. /*
  7299. * Initializers for schedule domains
  7300. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7301. */
  7302. #ifdef CONFIG_SCHED_DEBUG
  7303. # define SD_INIT_NAME(sd, type) sd->name = #type
  7304. #else
  7305. # define SD_INIT_NAME(sd, type) do { } while (0)
  7306. #endif
  7307. #define SD_INIT(sd, type) sd_init_##type(sd)
  7308. #define SD_INIT_FUNC(type) \
  7309. static noinline void sd_init_##type(struct sched_domain *sd) \
  7310. { \
  7311. memset(sd, 0, sizeof(*sd)); \
  7312. *sd = SD_##type##_INIT; \
  7313. sd->level = SD_LV_##type; \
  7314. SD_INIT_NAME(sd, type); \
  7315. }
  7316. SD_INIT_FUNC(CPU)
  7317. #ifdef CONFIG_NUMA
  7318. SD_INIT_FUNC(ALLNODES)
  7319. SD_INIT_FUNC(NODE)
  7320. #endif
  7321. #ifdef CONFIG_SCHED_SMT
  7322. SD_INIT_FUNC(SIBLING)
  7323. #endif
  7324. #ifdef CONFIG_SCHED_MC
  7325. SD_INIT_FUNC(MC)
  7326. #endif
  7327. static int default_relax_domain_level = -1;
  7328. static int __init setup_relax_domain_level(char *str)
  7329. {
  7330. unsigned long val;
  7331. val = simple_strtoul(str, NULL, 0);
  7332. if (val < SD_LV_MAX)
  7333. default_relax_domain_level = val;
  7334. return 1;
  7335. }
  7336. __setup("relax_domain_level=", setup_relax_domain_level);
  7337. static void set_domain_attribute(struct sched_domain *sd,
  7338. struct sched_domain_attr *attr)
  7339. {
  7340. int request;
  7341. if (!attr || attr->relax_domain_level < 0) {
  7342. if (default_relax_domain_level < 0)
  7343. return;
  7344. else
  7345. request = default_relax_domain_level;
  7346. } else
  7347. request = attr->relax_domain_level;
  7348. if (request < sd->level) {
  7349. /* turn off idle balance on this domain */
  7350. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7351. } else {
  7352. /* turn on idle balance on this domain */
  7353. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7354. }
  7355. }
  7356. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7357. const struct cpumask *cpu_map)
  7358. {
  7359. switch (what) {
  7360. case sa_sched_groups:
  7361. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7362. d->sched_group_nodes = NULL;
  7363. case sa_rootdomain:
  7364. free_rootdomain(d->rd); /* fall through */
  7365. case sa_tmpmask:
  7366. free_cpumask_var(d->tmpmask); /* fall through */
  7367. case sa_send_covered:
  7368. free_cpumask_var(d->send_covered); /* fall through */
  7369. case sa_this_core_map:
  7370. free_cpumask_var(d->this_core_map); /* fall through */
  7371. case sa_this_sibling_map:
  7372. free_cpumask_var(d->this_sibling_map); /* fall through */
  7373. case sa_nodemask:
  7374. free_cpumask_var(d->nodemask); /* fall through */
  7375. case sa_sched_group_nodes:
  7376. #ifdef CONFIG_NUMA
  7377. kfree(d->sched_group_nodes); /* fall through */
  7378. case sa_notcovered:
  7379. free_cpumask_var(d->notcovered); /* fall through */
  7380. case sa_covered:
  7381. free_cpumask_var(d->covered); /* fall through */
  7382. case sa_domainspan:
  7383. free_cpumask_var(d->domainspan); /* fall through */
  7384. #endif
  7385. case sa_none:
  7386. break;
  7387. }
  7388. }
  7389. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7390. const struct cpumask *cpu_map)
  7391. {
  7392. #ifdef CONFIG_NUMA
  7393. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7394. return sa_none;
  7395. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7396. return sa_domainspan;
  7397. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7398. return sa_covered;
  7399. /* Allocate the per-node list of sched groups */
  7400. d->sched_group_nodes = kcalloc(nr_node_ids,
  7401. sizeof(struct sched_group *), GFP_KERNEL);
  7402. if (!d->sched_group_nodes) {
  7403. pr_warning("Can not alloc sched group node list\n");
  7404. return sa_notcovered;
  7405. }
  7406. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7407. #endif
  7408. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7409. return sa_sched_group_nodes;
  7410. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7411. return sa_nodemask;
  7412. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7413. return sa_this_sibling_map;
  7414. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7415. return sa_this_core_map;
  7416. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7417. return sa_send_covered;
  7418. d->rd = alloc_rootdomain();
  7419. if (!d->rd) {
  7420. pr_warning("Cannot alloc root domain\n");
  7421. return sa_tmpmask;
  7422. }
  7423. return sa_rootdomain;
  7424. }
  7425. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7426. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7427. {
  7428. struct sched_domain *sd = NULL;
  7429. #ifdef CONFIG_NUMA
  7430. struct sched_domain *parent;
  7431. d->sd_allnodes = 0;
  7432. if (cpumask_weight(cpu_map) >
  7433. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7434. sd = &per_cpu(allnodes_domains, i).sd;
  7435. SD_INIT(sd, ALLNODES);
  7436. set_domain_attribute(sd, attr);
  7437. cpumask_copy(sched_domain_span(sd), cpu_map);
  7438. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7439. d->sd_allnodes = 1;
  7440. }
  7441. parent = sd;
  7442. sd = &per_cpu(node_domains, i).sd;
  7443. SD_INIT(sd, NODE);
  7444. set_domain_attribute(sd, attr);
  7445. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7446. sd->parent = parent;
  7447. if (parent)
  7448. parent->child = sd;
  7449. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7450. #endif
  7451. return sd;
  7452. }
  7453. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7454. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7455. struct sched_domain *parent, int i)
  7456. {
  7457. struct sched_domain *sd;
  7458. sd = &per_cpu(phys_domains, i).sd;
  7459. SD_INIT(sd, CPU);
  7460. set_domain_attribute(sd, attr);
  7461. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7462. sd->parent = parent;
  7463. if (parent)
  7464. parent->child = sd;
  7465. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7466. return sd;
  7467. }
  7468. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7469. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7470. struct sched_domain *parent, int i)
  7471. {
  7472. struct sched_domain *sd = parent;
  7473. #ifdef CONFIG_SCHED_MC
  7474. sd = &per_cpu(core_domains, i).sd;
  7475. SD_INIT(sd, MC);
  7476. set_domain_attribute(sd, attr);
  7477. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7478. sd->parent = parent;
  7479. parent->child = sd;
  7480. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7481. #endif
  7482. return sd;
  7483. }
  7484. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7485. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7486. struct sched_domain *parent, int i)
  7487. {
  7488. struct sched_domain *sd = parent;
  7489. #ifdef CONFIG_SCHED_SMT
  7490. sd = &per_cpu(cpu_domains, i).sd;
  7491. SD_INIT(sd, SIBLING);
  7492. set_domain_attribute(sd, attr);
  7493. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7494. sd->parent = parent;
  7495. parent->child = sd;
  7496. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7497. #endif
  7498. return sd;
  7499. }
  7500. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7501. const struct cpumask *cpu_map, int cpu)
  7502. {
  7503. switch (l) {
  7504. #ifdef CONFIG_SCHED_SMT
  7505. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7506. cpumask_and(d->this_sibling_map, cpu_map,
  7507. topology_thread_cpumask(cpu));
  7508. if (cpu == cpumask_first(d->this_sibling_map))
  7509. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7510. &cpu_to_cpu_group,
  7511. d->send_covered, d->tmpmask);
  7512. break;
  7513. #endif
  7514. #ifdef CONFIG_SCHED_MC
  7515. case SD_LV_MC: /* set up multi-core groups */
  7516. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7517. if (cpu == cpumask_first(d->this_core_map))
  7518. init_sched_build_groups(d->this_core_map, cpu_map,
  7519. &cpu_to_core_group,
  7520. d->send_covered, d->tmpmask);
  7521. break;
  7522. #endif
  7523. case SD_LV_CPU: /* set up physical groups */
  7524. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7525. if (!cpumask_empty(d->nodemask))
  7526. init_sched_build_groups(d->nodemask, cpu_map,
  7527. &cpu_to_phys_group,
  7528. d->send_covered, d->tmpmask);
  7529. break;
  7530. #ifdef CONFIG_NUMA
  7531. case SD_LV_ALLNODES:
  7532. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7533. d->send_covered, d->tmpmask);
  7534. break;
  7535. #endif
  7536. default:
  7537. break;
  7538. }
  7539. }
  7540. /*
  7541. * Build sched domains for a given set of cpus and attach the sched domains
  7542. * to the individual cpus
  7543. */
  7544. static int __build_sched_domains(const struct cpumask *cpu_map,
  7545. struct sched_domain_attr *attr)
  7546. {
  7547. enum s_alloc alloc_state = sa_none;
  7548. struct s_data d;
  7549. struct sched_domain *sd;
  7550. int i;
  7551. #ifdef CONFIG_NUMA
  7552. d.sd_allnodes = 0;
  7553. #endif
  7554. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7555. if (alloc_state != sa_rootdomain)
  7556. goto error;
  7557. alloc_state = sa_sched_groups;
  7558. /*
  7559. * Set up domains for cpus specified by the cpu_map.
  7560. */
  7561. for_each_cpu(i, cpu_map) {
  7562. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7563. cpu_map);
  7564. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7565. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7566. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7567. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7568. }
  7569. for_each_cpu(i, cpu_map) {
  7570. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7571. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7572. }
  7573. /* Set up physical groups */
  7574. for (i = 0; i < nr_node_ids; i++)
  7575. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7576. #ifdef CONFIG_NUMA
  7577. /* Set up node groups */
  7578. if (d.sd_allnodes)
  7579. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7580. for (i = 0; i < nr_node_ids; i++)
  7581. if (build_numa_sched_groups(&d, cpu_map, i))
  7582. goto error;
  7583. #endif
  7584. /* Calculate CPU power for physical packages and nodes */
  7585. #ifdef CONFIG_SCHED_SMT
  7586. for_each_cpu(i, cpu_map) {
  7587. sd = &per_cpu(cpu_domains, i).sd;
  7588. init_sched_groups_power(i, sd);
  7589. }
  7590. #endif
  7591. #ifdef CONFIG_SCHED_MC
  7592. for_each_cpu(i, cpu_map) {
  7593. sd = &per_cpu(core_domains, i).sd;
  7594. init_sched_groups_power(i, sd);
  7595. }
  7596. #endif
  7597. for_each_cpu(i, cpu_map) {
  7598. sd = &per_cpu(phys_domains, i).sd;
  7599. init_sched_groups_power(i, sd);
  7600. }
  7601. #ifdef CONFIG_NUMA
  7602. for (i = 0; i < nr_node_ids; i++)
  7603. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7604. if (d.sd_allnodes) {
  7605. struct sched_group *sg;
  7606. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7607. d.tmpmask);
  7608. init_numa_sched_groups_power(sg);
  7609. }
  7610. #endif
  7611. /* Attach the domains */
  7612. for_each_cpu(i, cpu_map) {
  7613. #ifdef CONFIG_SCHED_SMT
  7614. sd = &per_cpu(cpu_domains, i).sd;
  7615. #elif defined(CONFIG_SCHED_MC)
  7616. sd = &per_cpu(core_domains, i).sd;
  7617. #else
  7618. sd = &per_cpu(phys_domains, i).sd;
  7619. #endif
  7620. cpu_attach_domain(sd, d.rd, i);
  7621. }
  7622. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7623. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7624. return 0;
  7625. error:
  7626. __free_domain_allocs(&d, alloc_state, cpu_map);
  7627. return -ENOMEM;
  7628. }
  7629. static int build_sched_domains(const struct cpumask *cpu_map)
  7630. {
  7631. return __build_sched_domains(cpu_map, NULL);
  7632. }
  7633. static cpumask_var_t *doms_cur; /* current sched domains */
  7634. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7635. static struct sched_domain_attr *dattr_cur;
  7636. /* attribues of custom domains in 'doms_cur' */
  7637. /*
  7638. * Special case: If a kmalloc of a doms_cur partition (array of
  7639. * cpumask) fails, then fallback to a single sched domain,
  7640. * as determined by the single cpumask fallback_doms.
  7641. */
  7642. static cpumask_var_t fallback_doms;
  7643. /*
  7644. * arch_update_cpu_topology lets virtualized architectures update the
  7645. * cpu core maps. It is supposed to return 1 if the topology changed
  7646. * or 0 if it stayed the same.
  7647. */
  7648. int __attribute__((weak)) arch_update_cpu_topology(void)
  7649. {
  7650. return 0;
  7651. }
  7652. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7653. {
  7654. int i;
  7655. cpumask_var_t *doms;
  7656. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7657. if (!doms)
  7658. return NULL;
  7659. for (i = 0; i < ndoms; i++) {
  7660. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7661. free_sched_domains(doms, i);
  7662. return NULL;
  7663. }
  7664. }
  7665. return doms;
  7666. }
  7667. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7668. {
  7669. unsigned int i;
  7670. for (i = 0; i < ndoms; i++)
  7671. free_cpumask_var(doms[i]);
  7672. kfree(doms);
  7673. }
  7674. /*
  7675. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7676. * For now this just excludes isolated cpus, but could be used to
  7677. * exclude other special cases in the future.
  7678. */
  7679. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7680. {
  7681. int err;
  7682. arch_update_cpu_topology();
  7683. ndoms_cur = 1;
  7684. doms_cur = alloc_sched_domains(ndoms_cur);
  7685. if (!doms_cur)
  7686. doms_cur = &fallback_doms;
  7687. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7688. dattr_cur = NULL;
  7689. err = build_sched_domains(doms_cur[0]);
  7690. register_sched_domain_sysctl();
  7691. return err;
  7692. }
  7693. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7694. struct cpumask *tmpmask)
  7695. {
  7696. free_sched_groups(cpu_map, tmpmask);
  7697. }
  7698. /*
  7699. * Detach sched domains from a group of cpus specified in cpu_map
  7700. * These cpus will now be attached to the NULL domain
  7701. */
  7702. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7703. {
  7704. /* Save because hotplug lock held. */
  7705. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7706. int i;
  7707. for_each_cpu(i, cpu_map)
  7708. cpu_attach_domain(NULL, &def_root_domain, i);
  7709. synchronize_sched();
  7710. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7711. }
  7712. /* handle null as "default" */
  7713. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7714. struct sched_domain_attr *new, int idx_new)
  7715. {
  7716. struct sched_domain_attr tmp;
  7717. /* fast path */
  7718. if (!new && !cur)
  7719. return 1;
  7720. tmp = SD_ATTR_INIT;
  7721. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7722. new ? (new + idx_new) : &tmp,
  7723. sizeof(struct sched_domain_attr));
  7724. }
  7725. /*
  7726. * Partition sched domains as specified by the 'ndoms_new'
  7727. * cpumasks in the array doms_new[] of cpumasks. This compares
  7728. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7729. * It destroys each deleted domain and builds each new domain.
  7730. *
  7731. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7732. * The masks don't intersect (don't overlap.) We should setup one
  7733. * sched domain for each mask. CPUs not in any of the cpumasks will
  7734. * not be load balanced. If the same cpumask appears both in the
  7735. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7736. * it as it is.
  7737. *
  7738. * The passed in 'doms_new' should be allocated using
  7739. * alloc_sched_domains. This routine takes ownership of it and will
  7740. * free_sched_domains it when done with it. If the caller failed the
  7741. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7742. * and partition_sched_domains() will fallback to the single partition
  7743. * 'fallback_doms', it also forces the domains to be rebuilt.
  7744. *
  7745. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7746. * ndoms_new == 0 is a special case for destroying existing domains,
  7747. * and it will not create the default domain.
  7748. *
  7749. * Call with hotplug lock held
  7750. */
  7751. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7752. struct sched_domain_attr *dattr_new)
  7753. {
  7754. int i, j, n;
  7755. int new_topology;
  7756. mutex_lock(&sched_domains_mutex);
  7757. /* always unregister in case we don't destroy any domains */
  7758. unregister_sched_domain_sysctl();
  7759. /* Let architecture update cpu core mappings. */
  7760. new_topology = arch_update_cpu_topology();
  7761. n = doms_new ? ndoms_new : 0;
  7762. /* Destroy deleted domains */
  7763. for (i = 0; i < ndoms_cur; i++) {
  7764. for (j = 0; j < n && !new_topology; j++) {
  7765. if (cpumask_equal(doms_cur[i], doms_new[j])
  7766. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7767. goto match1;
  7768. }
  7769. /* no match - a current sched domain not in new doms_new[] */
  7770. detach_destroy_domains(doms_cur[i]);
  7771. match1:
  7772. ;
  7773. }
  7774. if (doms_new == NULL) {
  7775. ndoms_cur = 0;
  7776. doms_new = &fallback_doms;
  7777. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7778. WARN_ON_ONCE(dattr_new);
  7779. }
  7780. /* Build new domains */
  7781. for (i = 0; i < ndoms_new; i++) {
  7782. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7783. if (cpumask_equal(doms_new[i], doms_cur[j])
  7784. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7785. goto match2;
  7786. }
  7787. /* no match - add a new doms_new */
  7788. __build_sched_domains(doms_new[i],
  7789. dattr_new ? dattr_new + i : NULL);
  7790. match2:
  7791. ;
  7792. }
  7793. /* Remember the new sched domains */
  7794. if (doms_cur != &fallback_doms)
  7795. free_sched_domains(doms_cur, ndoms_cur);
  7796. kfree(dattr_cur); /* kfree(NULL) is safe */
  7797. doms_cur = doms_new;
  7798. dattr_cur = dattr_new;
  7799. ndoms_cur = ndoms_new;
  7800. register_sched_domain_sysctl();
  7801. mutex_unlock(&sched_domains_mutex);
  7802. }
  7803. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7804. static void arch_reinit_sched_domains(void)
  7805. {
  7806. get_online_cpus();
  7807. /* Destroy domains first to force the rebuild */
  7808. partition_sched_domains(0, NULL, NULL);
  7809. rebuild_sched_domains();
  7810. put_online_cpus();
  7811. }
  7812. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7813. {
  7814. unsigned int level = 0;
  7815. if (sscanf(buf, "%u", &level) != 1)
  7816. return -EINVAL;
  7817. /*
  7818. * level is always be positive so don't check for
  7819. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7820. * What happens on 0 or 1 byte write,
  7821. * need to check for count as well?
  7822. */
  7823. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7824. return -EINVAL;
  7825. if (smt)
  7826. sched_smt_power_savings = level;
  7827. else
  7828. sched_mc_power_savings = level;
  7829. arch_reinit_sched_domains();
  7830. return count;
  7831. }
  7832. #ifdef CONFIG_SCHED_MC
  7833. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7834. char *page)
  7835. {
  7836. return sprintf(page, "%u\n", sched_mc_power_savings);
  7837. }
  7838. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7839. const char *buf, size_t count)
  7840. {
  7841. return sched_power_savings_store(buf, count, 0);
  7842. }
  7843. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7844. sched_mc_power_savings_show,
  7845. sched_mc_power_savings_store);
  7846. #endif
  7847. #ifdef CONFIG_SCHED_SMT
  7848. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7849. char *page)
  7850. {
  7851. return sprintf(page, "%u\n", sched_smt_power_savings);
  7852. }
  7853. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7854. const char *buf, size_t count)
  7855. {
  7856. return sched_power_savings_store(buf, count, 1);
  7857. }
  7858. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7859. sched_smt_power_savings_show,
  7860. sched_smt_power_savings_store);
  7861. #endif
  7862. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7863. {
  7864. int err = 0;
  7865. #ifdef CONFIG_SCHED_SMT
  7866. if (smt_capable())
  7867. err = sysfs_create_file(&cls->kset.kobj,
  7868. &attr_sched_smt_power_savings.attr);
  7869. #endif
  7870. #ifdef CONFIG_SCHED_MC
  7871. if (!err && mc_capable())
  7872. err = sysfs_create_file(&cls->kset.kobj,
  7873. &attr_sched_mc_power_savings.attr);
  7874. #endif
  7875. return err;
  7876. }
  7877. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7878. #ifndef CONFIG_CPUSETS
  7879. /*
  7880. * Add online and remove offline CPUs from the scheduler domains.
  7881. * When cpusets are enabled they take over this function.
  7882. */
  7883. static int update_sched_domains(struct notifier_block *nfb,
  7884. unsigned long action, void *hcpu)
  7885. {
  7886. switch (action) {
  7887. case CPU_ONLINE:
  7888. case CPU_ONLINE_FROZEN:
  7889. case CPU_DOWN_PREPARE:
  7890. case CPU_DOWN_PREPARE_FROZEN:
  7891. case CPU_DOWN_FAILED:
  7892. case CPU_DOWN_FAILED_FROZEN:
  7893. partition_sched_domains(1, NULL, NULL);
  7894. return NOTIFY_OK;
  7895. default:
  7896. return NOTIFY_DONE;
  7897. }
  7898. }
  7899. #endif
  7900. static int update_runtime(struct notifier_block *nfb,
  7901. unsigned long action, void *hcpu)
  7902. {
  7903. int cpu = (int)(long)hcpu;
  7904. switch (action) {
  7905. case CPU_DOWN_PREPARE:
  7906. case CPU_DOWN_PREPARE_FROZEN:
  7907. disable_runtime(cpu_rq(cpu));
  7908. return NOTIFY_OK;
  7909. case CPU_DOWN_FAILED:
  7910. case CPU_DOWN_FAILED_FROZEN:
  7911. case CPU_ONLINE:
  7912. case CPU_ONLINE_FROZEN:
  7913. enable_runtime(cpu_rq(cpu));
  7914. return NOTIFY_OK;
  7915. default:
  7916. return NOTIFY_DONE;
  7917. }
  7918. }
  7919. void __init sched_init_smp(void)
  7920. {
  7921. cpumask_var_t non_isolated_cpus;
  7922. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7923. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7924. #if defined(CONFIG_NUMA)
  7925. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7926. GFP_KERNEL);
  7927. BUG_ON(sched_group_nodes_bycpu == NULL);
  7928. #endif
  7929. get_online_cpus();
  7930. mutex_lock(&sched_domains_mutex);
  7931. arch_init_sched_domains(cpu_active_mask);
  7932. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7933. if (cpumask_empty(non_isolated_cpus))
  7934. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7935. mutex_unlock(&sched_domains_mutex);
  7936. put_online_cpus();
  7937. #ifndef CONFIG_CPUSETS
  7938. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7939. hotcpu_notifier(update_sched_domains, 0);
  7940. #endif
  7941. /* RT runtime code needs to handle some hotplug events */
  7942. hotcpu_notifier(update_runtime, 0);
  7943. init_hrtick();
  7944. /* Move init over to a non-isolated CPU */
  7945. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7946. BUG();
  7947. sched_init_granularity();
  7948. free_cpumask_var(non_isolated_cpus);
  7949. init_sched_rt_class();
  7950. }
  7951. #else
  7952. void __init sched_init_smp(void)
  7953. {
  7954. sched_init_granularity();
  7955. }
  7956. #endif /* CONFIG_SMP */
  7957. const_debug unsigned int sysctl_timer_migration = 1;
  7958. int in_sched_functions(unsigned long addr)
  7959. {
  7960. return in_lock_functions(addr) ||
  7961. (addr >= (unsigned long)__sched_text_start
  7962. && addr < (unsigned long)__sched_text_end);
  7963. }
  7964. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7965. {
  7966. cfs_rq->tasks_timeline = RB_ROOT;
  7967. INIT_LIST_HEAD(&cfs_rq->tasks);
  7968. #ifdef CONFIG_FAIR_GROUP_SCHED
  7969. cfs_rq->rq = rq;
  7970. #endif
  7971. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7972. }
  7973. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7974. {
  7975. struct rt_prio_array *array;
  7976. int i;
  7977. array = &rt_rq->active;
  7978. for (i = 0; i < MAX_RT_PRIO; i++) {
  7979. INIT_LIST_HEAD(array->queue + i);
  7980. __clear_bit(i, array->bitmap);
  7981. }
  7982. /* delimiter for bitsearch: */
  7983. __set_bit(MAX_RT_PRIO, array->bitmap);
  7984. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7985. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7986. #ifdef CONFIG_SMP
  7987. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7988. #endif
  7989. #endif
  7990. #ifdef CONFIG_SMP
  7991. rt_rq->rt_nr_migratory = 0;
  7992. rt_rq->overloaded = 0;
  7993. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  7994. #endif
  7995. rt_rq->rt_time = 0;
  7996. rt_rq->rt_throttled = 0;
  7997. rt_rq->rt_runtime = 0;
  7998. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  7999. #ifdef CONFIG_RT_GROUP_SCHED
  8000. rt_rq->rt_nr_boosted = 0;
  8001. rt_rq->rq = rq;
  8002. #endif
  8003. }
  8004. #ifdef CONFIG_FAIR_GROUP_SCHED
  8005. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8006. struct sched_entity *se, int cpu, int add,
  8007. struct sched_entity *parent)
  8008. {
  8009. struct rq *rq = cpu_rq(cpu);
  8010. tg->cfs_rq[cpu] = cfs_rq;
  8011. init_cfs_rq(cfs_rq, rq);
  8012. cfs_rq->tg = tg;
  8013. if (add)
  8014. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8015. tg->se[cpu] = se;
  8016. /* se could be NULL for init_task_group */
  8017. if (!se)
  8018. return;
  8019. if (!parent)
  8020. se->cfs_rq = &rq->cfs;
  8021. else
  8022. se->cfs_rq = parent->my_q;
  8023. se->my_q = cfs_rq;
  8024. se->load.weight = tg->shares;
  8025. se->load.inv_weight = 0;
  8026. se->parent = parent;
  8027. }
  8028. #endif
  8029. #ifdef CONFIG_RT_GROUP_SCHED
  8030. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8031. struct sched_rt_entity *rt_se, int cpu, int add,
  8032. struct sched_rt_entity *parent)
  8033. {
  8034. struct rq *rq = cpu_rq(cpu);
  8035. tg->rt_rq[cpu] = rt_rq;
  8036. init_rt_rq(rt_rq, rq);
  8037. rt_rq->tg = tg;
  8038. rt_rq->rt_se = rt_se;
  8039. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8040. if (add)
  8041. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8042. tg->rt_se[cpu] = rt_se;
  8043. if (!rt_se)
  8044. return;
  8045. if (!parent)
  8046. rt_se->rt_rq = &rq->rt;
  8047. else
  8048. rt_se->rt_rq = parent->my_q;
  8049. rt_se->my_q = rt_rq;
  8050. rt_se->parent = parent;
  8051. INIT_LIST_HEAD(&rt_se->run_list);
  8052. }
  8053. #endif
  8054. void __init sched_init(void)
  8055. {
  8056. int i, j;
  8057. unsigned long alloc_size = 0, ptr;
  8058. #ifdef CONFIG_FAIR_GROUP_SCHED
  8059. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8060. #endif
  8061. #ifdef CONFIG_RT_GROUP_SCHED
  8062. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8063. #endif
  8064. #ifdef CONFIG_USER_SCHED
  8065. alloc_size *= 2;
  8066. #endif
  8067. #ifdef CONFIG_CPUMASK_OFFSTACK
  8068. alloc_size += num_possible_cpus() * cpumask_size();
  8069. #endif
  8070. if (alloc_size) {
  8071. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8072. #ifdef CONFIG_FAIR_GROUP_SCHED
  8073. init_task_group.se = (struct sched_entity **)ptr;
  8074. ptr += nr_cpu_ids * sizeof(void **);
  8075. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8076. ptr += nr_cpu_ids * sizeof(void **);
  8077. #ifdef CONFIG_USER_SCHED
  8078. root_task_group.se = (struct sched_entity **)ptr;
  8079. ptr += nr_cpu_ids * sizeof(void **);
  8080. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8081. ptr += nr_cpu_ids * sizeof(void **);
  8082. #endif /* CONFIG_USER_SCHED */
  8083. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8084. #ifdef CONFIG_RT_GROUP_SCHED
  8085. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8086. ptr += nr_cpu_ids * sizeof(void **);
  8087. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8088. ptr += nr_cpu_ids * sizeof(void **);
  8089. #ifdef CONFIG_USER_SCHED
  8090. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8091. ptr += nr_cpu_ids * sizeof(void **);
  8092. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8093. ptr += nr_cpu_ids * sizeof(void **);
  8094. #endif /* CONFIG_USER_SCHED */
  8095. #endif /* CONFIG_RT_GROUP_SCHED */
  8096. #ifdef CONFIG_CPUMASK_OFFSTACK
  8097. for_each_possible_cpu(i) {
  8098. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8099. ptr += cpumask_size();
  8100. }
  8101. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8102. }
  8103. #ifdef CONFIG_SMP
  8104. init_defrootdomain();
  8105. #endif
  8106. init_rt_bandwidth(&def_rt_bandwidth,
  8107. global_rt_period(), global_rt_runtime());
  8108. #ifdef CONFIG_RT_GROUP_SCHED
  8109. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8110. global_rt_period(), global_rt_runtime());
  8111. #ifdef CONFIG_USER_SCHED
  8112. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8113. global_rt_period(), RUNTIME_INF);
  8114. #endif /* CONFIG_USER_SCHED */
  8115. #endif /* CONFIG_RT_GROUP_SCHED */
  8116. #ifdef CONFIG_GROUP_SCHED
  8117. list_add(&init_task_group.list, &task_groups);
  8118. INIT_LIST_HEAD(&init_task_group.children);
  8119. #ifdef CONFIG_USER_SCHED
  8120. INIT_LIST_HEAD(&root_task_group.children);
  8121. init_task_group.parent = &root_task_group;
  8122. list_add(&init_task_group.siblings, &root_task_group.children);
  8123. #endif /* CONFIG_USER_SCHED */
  8124. #endif /* CONFIG_GROUP_SCHED */
  8125. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8126. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8127. __alignof__(unsigned long));
  8128. #endif
  8129. for_each_possible_cpu(i) {
  8130. struct rq *rq;
  8131. rq = cpu_rq(i);
  8132. raw_spin_lock_init(&rq->lock);
  8133. rq->nr_running = 0;
  8134. rq->calc_load_active = 0;
  8135. rq->calc_load_update = jiffies + LOAD_FREQ;
  8136. init_cfs_rq(&rq->cfs, rq);
  8137. init_rt_rq(&rq->rt, rq);
  8138. #ifdef CONFIG_FAIR_GROUP_SCHED
  8139. init_task_group.shares = init_task_group_load;
  8140. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8141. #ifdef CONFIG_CGROUP_SCHED
  8142. /*
  8143. * How much cpu bandwidth does init_task_group get?
  8144. *
  8145. * In case of task-groups formed thr' the cgroup filesystem, it
  8146. * gets 100% of the cpu resources in the system. This overall
  8147. * system cpu resource is divided among the tasks of
  8148. * init_task_group and its child task-groups in a fair manner,
  8149. * based on each entity's (task or task-group's) weight
  8150. * (se->load.weight).
  8151. *
  8152. * In other words, if init_task_group has 10 tasks of weight
  8153. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8154. * then A0's share of the cpu resource is:
  8155. *
  8156. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8157. *
  8158. * We achieve this by letting init_task_group's tasks sit
  8159. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8160. */
  8161. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8162. #elif defined CONFIG_USER_SCHED
  8163. root_task_group.shares = NICE_0_LOAD;
  8164. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8165. /*
  8166. * In case of task-groups formed thr' the user id of tasks,
  8167. * init_task_group represents tasks belonging to root user.
  8168. * Hence it forms a sibling of all subsequent groups formed.
  8169. * In this case, init_task_group gets only a fraction of overall
  8170. * system cpu resource, based on the weight assigned to root
  8171. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8172. * by letting tasks of init_task_group sit in a separate cfs_rq
  8173. * (init_tg_cfs_rq) and having one entity represent this group of
  8174. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8175. */
  8176. init_tg_cfs_entry(&init_task_group,
  8177. &per_cpu(init_tg_cfs_rq, i),
  8178. &per_cpu(init_sched_entity, i), i, 1,
  8179. root_task_group.se[i]);
  8180. #endif
  8181. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8182. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8183. #ifdef CONFIG_RT_GROUP_SCHED
  8184. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8185. #ifdef CONFIG_CGROUP_SCHED
  8186. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8187. #elif defined CONFIG_USER_SCHED
  8188. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8189. init_tg_rt_entry(&init_task_group,
  8190. &per_cpu(init_rt_rq_var, i),
  8191. &per_cpu(init_sched_rt_entity, i), i, 1,
  8192. root_task_group.rt_se[i]);
  8193. #endif
  8194. #endif
  8195. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8196. rq->cpu_load[j] = 0;
  8197. #ifdef CONFIG_SMP
  8198. rq->sd = NULL;
  8199. rq->rd = NULL;
  8200. rq->post_schedule = 0;
  8201. rq->active_balance = 0;
  8202. rq->next_balance = jiffies;
  8203. rq->push_cpu = 0;
  8204. rq->cpu = i;
  8205. rq->online = 0;
  8206. rq->migration_thread = NULL;
  8207. rq->idle_stamp = 0;
  8208. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8209. INIT_LIST_HEAD(&rq->migration_queue);
  8210. rq_attach_root(rq, &def_root_domain);
  8211. #endif
  8212. init_rq_hrtick(rq);
  8213. atomic_set(&rq->nr_iowait, 0);
  8214. }
  8215. set_load_weight(&init_task);
  8216. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8217. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8218. #endif
  8219. #ifdef CONFIG_SMP
  8220. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8221. #endif
  8222. #ifdef CONFIG_RT_MUTEXES
  8223. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8224. #endif
  8225. /*
  8226. * The boot idle thread does lazy MMU switching as well:
  8227. */
  8228. atomic_inc(&init_mm.mm_count);
  8229. enter_lazy_tlb(&init_mm, current);
  8230. /*
  8231. * Make us the idle thread. Technically, schedule() should not be
  8232. * called from this thread, however somewhere below it might be,
  8233. * but because we are the idle thread, we just pick up running again
  8234. * when this runqueue becomes "idle".
  8235. */
  8236. init_idle(current, smp_processor_id());
  8237. calc_load_update = jiffies + LOAD_FREQ;
  8238. /*
  8239. * During early bootup we pretend to be a normal task:
  8240. */
  8241. current->sched_class = &fair_sched_class;
  8242. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8243. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8244. #ifdef CONFIG_SMP
  8245. #ifdef CONFIG_NO_HZ
  8246. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8247. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8248. #endif
  8249. /* May be allocated at isolcpus cmdline parse time */
  8250. if (cpu_isolated_map == NULL)
  8251. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8252. #endif /* SMP */
  8253. perf_event_init();
  8254. scheduler_running = 1;
  8255. }
  8256. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8257. static inline int preempt_count_equals(int preempt_offset)
  8258. {
  8259. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8260. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8261. }
  8262. void __might_sleep(char *file, int line, int preempt_offset)
  8263. {
  8264. #ifdef in_atomic
  8265. static unsigned long prev_jiffy; /* ratelimiting */
  8266. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8267. system_state != SYSTEM_RUNNING || oops_in_progress)
  8268. return;
  8269. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8270. return;
  8271. prev_jiffy = jiffies;
  8272. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8273. file, line);
  8274. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8275. in_atomic(), irqs_disabled(),
  8276. current->pid, current->comm);
  8277. debug_show_held_locks(current);
  8278. if (irqs_disabled())
  8279. print_irqtrace_events(current);
  8280. dump_stack();
  8281. #endif
  8282. }
  8283. EXPORT_SYMBOL(__might_sleep);
  8284. #endif
  8285. #ifdef CONFIG_MAGIC_SYSRQ
  8286. static void normalize_task(struct rq *rq, struct task_struct *p)
  8287. {
  8288. int on_rq;
  8289. update_rq_clock(rq);
  8290. on_rq = p->se.on_rq;
  8291. if (on_rq)
  8292. deactivate_task(rq, p, 0);
  8293. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8294. if (on_rq) {
  8295. activate_task(rq, p, 0);
  8296. resched_task(rq->curr);
  8297. }
  8298. }
  8299. void normalize_rt_tasks(void)
  8300. {
  8301. struct task_struct *g, *p;
  8302. unsigned long flags;
  8303. struct rq *rq;
  8304. read_lock_irqsave(&tasklist_lock, flags);
  8305. do_each_thread(g, p) {
  8306. /*
  8307. * Only normalize user tasks:
  8308. */
  8309. if (!p->mm)
  8310. continue;
  8311. p->se.exec_start = 0;
  8312. #ifdef CONFIG_SCHEDSTATS
  8313. p->se.wait_start = 0;
  8314. p->se.sleep_start = 0;
  8315. p->se.block_start = 0;
  8316. #endif
  8317. if (!rt_task(p)) {
  8318. /*
  8319. * Renice negative nice level userspace
  8320. * tasks back to 0:
  8321. */
  8322. if (TASK_NICE(p) < 0 && p->mm)
  8323. set_user_nice(p, 0);
  8324. continue;
  8325. }
  8326. raw_spin_lock(&p->pi_lock);
  8327. rq = __task_rq_lock(p);
  8328. normalize_task(rq, p);
  8329. __task_rq_unlock(rq);
  8330. raw_spin_unlock(&p->pi_lock);
  8331. } while_each_thread(g, p);
  8332. read_unlock_irqrestore(&tasklist_lock, flags);
  8333. }
  8334. #endif /* CONFIG_MAGIC_SYSRQ */
  8335. #ifdef CONFIG_IA64
  8336. /*
  8337. * These functions are only useful for the IA64 MCA handling.
  8338. *
  8339. * They can only be called when the whole system has been
  8340. * stopped - every CPU needs to be quiescent, and no scheduling
  8341. * activity can take place. Using them for anything else would
  8342. * be a serious bug, and as a result, they aren't even visible
  8343. * under any other configuration.
  8344. */
  8345. /**
  8346. * curr_task - return the current task for a given cpu.
  8347. * @cpu: the processor in question.
  8348. *
  8349. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8350. */
  8351. struct task_struct *curr_task(int cpu)
  8352. {
  8353. return cpu_curr(cpu);
  8354. }
  8355. /**
  8356. * set_curr_task - set the current task for a given cpu.
  8357. * @cpu: the processor in question.
  8358. * @p: the task pointer to set.
  8359. *
  8360. * Description: This function must only be used when non-maskable interrupts
  8361. * are serviced on a separate stack. It allows the architecture to switch the
  8362. * notion of the current task on a cpu in a non-blocking manner. This function
  8363. * must be called with all CPU's synchronized, and interrupts disabled, the
  8364. * and caller must save the original value of the current task (see
  8365. * curr_task() above) and restore that value before reenabling interrupts and
  8366. * re-starting the system.
  8367. *
  8368. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8369. */
  8370. void set_curr_task(int cpu, struct task_struct *p)
  8371. {
  8372. cpu_curr(cpu) = p;
  8373. }
  8374. #endif
  8375. #ifdef CONFIG_FAIR_GROUP_SCHED
  8376. static void free_fair_sched_group(struct task_group *tg)
  8377. {
  8378. int i;
  8379. for_each_possible_cpu(i) {
  8380. if (tg->cfs_rq)
  8381. kfree(tg->cfs_rq[i]);
  8382. if (tg->se)
  8383. kfree(tg->se[i]);
  8384. }
  8385. kfree(tg->cfs_rq);
  8386. kfree(tg->se);
  8387. }
  8388. static
  8389. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8390. {
  8391. struct cfs_rq *cfs_rq;
  8392. struct sched_entity *se;
  8393. struct rq *rq;
  8394. int i;
  8395. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8396. if (!tg->cfs_rq)
  8397. goto err;
  8398. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8399. if (!tg->se)
  8400. goto err;
  8401. tg->shares = NICE_0_LOAD;
  8402. for_each_possible_cpu(i) {
  8403. rq = cpu_rq(i);
  8404. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8405. GFP_KERNEL, cpu_to_node(i));
  8406. if (!cfs_rq)
  8407. goto err;
  8408. se = kzalloc_node(sizeof(struct sched_entity),
  8409. GFP_KERNEL, cpu_to_node(i));
  8410. if (!se)
  8411. goto err_free_rq;
  8412. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8413. }
  8414. return 1;
  8415. err_free_rq:
  8416. kfree(cfs_rq);
  8417. err:
  8418. return 0;
  8419. }
  8420. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8421. {
  8422. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8423. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8424. }
  8425. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8426. {
  8427. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8428. }
  8429. #else /* !CONFG_FAIR_GROUP_SCHED */
  8430. static inline void free_fair_sched_group(struct task_group *tg)
  8431. {
  8432. }
  8433. static inline
  8434. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8435. {
  8436. return 1;
  8437. }
  8438. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8439. {
  8440. }
  8441. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8442. {
  8443. }
  8444. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8445. #ifdef CONFIG_RT_GROUP_SCHED
  8446. static void free_rt_sched_group(struct task_group *tg)
  8447. {
  8448. int i;
  8449. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8450. for_each_possible_cpu(i) {
  8451. if (tg->rt_rq)
  8452. kfree(tg->rt_rq[i]);
  8453. if (tg->rt_se)
  8454. kfree(tg->rt_se[i]);
  8455. }
  8456. kfree(tg->rt_rq);
  8457. kfree(tg->rt_se);
  8458. }
  8459. static
  8460. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8461. {
  8462. struct rt_rq *rt_rq;
  8463. struct sched_rt_entity *rt_se;
  8464. struct rq *rq;
  8465. int i;
  8466. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8467. if (!tg->rt_rq)
  8468. goto err;
  8469. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8470. if (!tg->rt_se)
  8471. goto err;
  8472. init_rt_bandwidth(&tg->rt_bandwidth,
  8473. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8474. for_each_possible_cpu(i) {
  8475. rq = cpu_rq(i);
  8476. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8477. GFP_KERNEL, cpu_to_node(i));
  8478. if (!rt_rq)
  8479. goto err;
  8480. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8481. GFP_KERNEL, cpu_to_node(i));
  8482. if (!rt_se)
  8483. goto err_free_rq;
  8484. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8485. }
  8486. return 1;
  8487. err_free_rq:
  8488. kfree(rt_rq);
  8489. err:
  8490. return 0;
  8491. }
  8492. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8493. {
  8494. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8495. &cpu_rq(cpu)->leaf_rt_rq_list);
  8496. }
  8497. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8498. {
  8499. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8500. }
  8501. #else /* !CONFIG_RT_GROUP_SCHED */
  8502. static inline void free_rt_sched_group(struct task_group *tg)
  8503. {
  8504. }
  8505. static inline
  8506. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8507. {
  8508. return 1;
  8509. }
  8510. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8511. {
  8512. }
  8513. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8514. {
  8515. }
  8516. #endif /* CONFIG_RT_GROUP_SCHED */
  8517. #ifdef CONFIG_GROUP_SCHED
  8518. static void free_sched_group(struct task_group *tg)
  8519. {
  8520. free_fair_sched_group(tg);
  8521. free_rt_sched_group(tg);
  8522. kfree(tg);
  8523. }
  8524. /* allocate runqueue etc for a new task group */
  8525. struct task_group *sched_create_group(struct task_group *parent)
  8526. {
  8527. struct task_group *tg;
  8528. unsigned long flags;
  8529. int i;
  8530. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8531. if (!tg)
  8532. return ERR_PTR(-ENOMEM);
  8533. if (!alloc_fair_sched_group(tg, parent))
  8534. goto err;
  8535. if (!alloc_rt_sched_group(tg, parent))
  8536. goto err;
  8537. spin_lock_irqsave(&task_group_lock, flags);
  8538. for_each_possible_cpu(i) {
  8539. register_fair_sched_group(tg, i);
  8540. register_rt_sched_group(tg, i);
  8541. }
  8542. list_add_rcu(&tg->list, &task_groups);
  8543. WARN_ON(!parent); /* root should already exist */
  8544. tg->parent = parent;
  8545. INIT_LIST_HEAD(&tg->children);
  8546. list_add_rcu(&tg->siblings, &parent->children);
  8547. spin_unlock_irqrestore(&task_group_lock, flags);
  8548. return tg;
  8549. err:
  8550. free_sched_group(tg);
  8551. return ERR_PTR(-ENOMEM);
  8552. }
  8553. /* rcu callback to free various structures associated with a task group */
  8554. static void free_sched_group_rcu(struct rcu_head *rhp)
  8555. {
  8556. /* now it should be safe to free those cfs_rqs */
  8557. free_sched_group(container_of(rhp, struct task_group, rcu));
  8558. }
  8559. /* Destroy runqueue etc associated with a task group */
  8560. void sched_destroy_group(struct task_group *tg)
  8561. {
  8562. unsigned long flags;
  8563. int i;
  8564. spin_lock_irqsave(&task_group_lock, flags);
  8565. for_each_possible_cpu(i) {
  8566. unregister_fair_sched_group(tg, i);
  8567. unregister_rt_sched_group(tg, i);
  8568. }
  8569. list_del_rcu(&tg->list);
  8570. list_del_rcu(&tg->siblings);
  8571. spin_unlock_irqrestore(&task_group_lock, flags);
  8572. /* wait for possible concurrent references to cfs_rqs complete */
  8573. call_rcu(&tg->rcu, free_sched_group_rcu);
  8574. }
  8575. /* change task's runqueue when it moves between groups.
  8576. * The caller of this function should have put the task in its new group
  8577. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8578. * reflect its new group.
  8579. */
  8580. void sched_move_task(struct task_struct *tsk)
  8581. {
  8582. int on_rq, running;
  8583. unsigned long flags;
  8584. struct rq *rq;
  8585. rq = task_rq_lock(tsk, &flags);
  8586. update_rq_clock(rq);
  8587. running = task_current(rq, tsk);
  8588. on_rq = tsk->se.on_rq;
  8589. if (on_rq)
  8590. dequeue_task(rq, tsk, 0);
  8591. if (unlikely(running))
  8592. tsk->sched_class->put_prev_task(rq, tsk);
  8593. set_task_rq(tsk, task_cpu(tsk));
  8594. #ifdef CONFIG_FAIR_GROUP_SCHED
  8595. if (tsk->sched_class->moved_group)
  8596. tsk->sched_class->moved_group(tsk);
  8597. #endif
  8598. if (unlikely(running))
  8599. tsk->sched_class->set_curr_task(rq);
  8600. if (on_rq)
  8601. enqueue_task(rq, tsk, 0);
  8602. task_rq_unlock(rq, &flags);
  8603. }
  8604. #endif /* CONFIG_GROUP_SCHED */
  8605. #ifdef CONFIG_FAIR_GROUP_SCHED
  8606. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8607. {
  8608. struct cfs_rq *cfs_rq = se->cfs_rq;
  8609. int on_rq;
  8610. on_rq = se->on_rq;
  8611. if (on_rq)
  8612. dequeue_entity(cfs_rq, se, 0);
  8613. se->load.weight = shares;
  8614. se->load.inv_weight = 0;
  8615. if (on_rq)
  8616. enqueue_entity(cfs_rq, se, 0);
  8617. }
  8618. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8619. {
  8620. struct cfs_rq *cfs_rq = se->cfs_rq;
  8621. struct rq *rq = cfs_rq->rq;
  8622. unsigned long flags;
  8623. raw_spin_lock_irqsave(&rq->lock, flags);
  8624. __set_se_shares(se, shares);
  8625. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8626. }
  8627. static DEFINE_MUTEX(shares_mutex);
  8628. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8629. {
  8630. int i;
  8631. unsigned long flags;
  8632. /*
  8633. * We can't change the weight of the root cgroup.
  8634. */
  8635. if (!tg->se[0])
  8636. return -EINVAL;
  8637. if (shares < MIN_SHARES)
  8638. shares = MIN_SHARES;
  8639. else if (shares > MAX_SHARES)
  8640. shares = MAX_SHARES;
  8641. mutex_lock(&shares_mutex);
  8642. if (tg->shares == shares)
  8643. goto done;
  8644. spin_lock_irqsave(&task_group_lock, flags);
  8645. for_each_possible_cpu(i)
  8646. unregister_fair_sched_group(tg, i);
  8647. list_del_rcu(&tg->siblings);
  8648. spin_unlock_irqrestore(&task_group_lock, flags);
  8649. /* wait for any ongoing reference to this group to finish */
  8650. synchronize_sched();
  8651. /*
  8652. * Now we are free to modify the group's share on each cpu
  8653. * w/o tripping rebalance_share or load_balance_fair.
  8654. */
  8655. tg->shares = shares;
  8656. for_each_possible_cpu(i) {
  8657. /*
  8658. * force a rebalance
  8659. */
  8660. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8661. set_se_shares(tg->se[i], shares);
  8662. }
  8663. /*
  8664. * Enable load balance activity on this group, by inserting it back on
  8665. * each cpu's rq->leaf_cfs_rq_list.
  8666. */
  8667. spin_lock_irqsave(&task_group_lock, flags);
  8668. for_each_possible_cpu(i)
  8669. register_fair_sched_group(tg, i);
  8670. list_add_rcu(&tg->siblings, &tg->parent->children);
  8671. spin_unlock_irqrestore(&task_group_lock, flags);
  8672. done:
  8673. mutex_unlock(&shares_mutex);
  8674. return 0;
  8675. }
  8676. unsigned long sched_group_shares(struct task_group *tg)
  8677. {
  8678. return tg->shares;
  8679. }
  8680. #endif
  8681. #ifdef CONFIG_RT_GROUP_SCHED
  8682. /*
  8683. * Ensure that the real time constraints are schedulable.
  8684. */
  8685. static DEFINE_MUTEX(rt_constraints_mutex);
  8686. static unsigned long to_ratio(u64 period, u64 runtime)
  8687. {
  8688. if (runtime == RUNTIME_INF)
  8689. return 1ULL << 20;
  8690. return div64_u64(runtime << 20, period);
  8691. }
  8692. /* Must be called with tasklist_lock held */
  8693. static inline int tg_has_rt_tasks(struct task_group *tg)
  8694. {
  8695. struct task_struct *g, *p;
  8696. do_each_thread(g, p) {
  8697. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8698. return 1;
  8699. } while_each_thread(g, p);
  8700. return 0;
  8701. }
  8702. struct rt_schedulable_data {
  8703. struct task_group *tg;
  8704. u64 rt_period;
  8705. u64 rt_runtime;
  8706. };
  8707. static int tg_schedulable(struct task_group *tg, void *data)
  8708. {
  8709. struct rt_schedulable_data *d = data;
  8710. struct task_group *child;
  8711. unsigned long total, sum = 0;
  8712. u64 period, runtime;
  8713. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8714. runtime = tg->rt_bandwidth.rt_runtime;
  8715. if (tg == d->tg) {
  8716. period = d->rt_period;
  8717. runtime = d->rt_runtime;
  8718. }
  8719. #ifdef CONFIG_USER_SCHED
  8720. if (tg == &root_task_group) {
  8721. period = global_rt_period();
  8722. runtime = global_rt_runtime();
  8723. }
  8724. #endif
  8725. /*
  8726. * Cannot have more runtime than the period.
  8727. */
  8728. if (runtime > period && runtime != RUNTIME_INF)
  8729. return -EINVAL;
  8730. /*
  8731. * Ensure we don't starve existing RT tasks.
  8732. */
  8733. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8734. return -EBUSY;
  8735. total = to_ratio(period, runtime);
  8736. /*
  8737. * Nobody can have more than the global setting allows.
  8738. */
  8739. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8740. return -EINVAL;
  8741. /*
  8742. * The sum of our children's runtime should not exceed our own.
  8743. */
  8744. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8745. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8746. runtime = child->rt_bandwidth.rt_runtime;
  8747. if (child == d->tg) {
  8748. period = d->rt_period;
  8749. runtime = d->rt_runtime;
  8750. }
  8751. sum += to_ratio(period, runtime);
  8752. }
  8753. if (sum > total)
  8754. return -EINVAL;
  8755. return 0;
  8756. }
  8757. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8758. {
  8759. struct rt_schedulable_data data = {
  8760. .tg = tg,
  8761. .rt_period = period,
  8762. .rt_runtime = runtime,
  8763. };
  8764. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8765. }
  8766. static int tg_set_bandwidth(struct task_group *tg,
  8767. u64 rt_period, u64 rt_runtime)
  8768. {
  8769. int i, err = 0;
  8770. mutex_lock(&rt_constraints_mutex);
  8771. read_lock(&tasklist_lock);
  8772. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8773. if (err)
  8774. goto unlock;
  8775. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8776. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8777. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8778. for_each_possible_cpu(i) {
  8779. struct rt_rq *rt_rq = tg->rt_rq[i];
  8780. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8781. rt_rq->rt_runtime = rt_runtime;
  8782. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8783. }
  8784. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8785. unlock:
  8786. read_unlock(&tasklist_lock);
  8787. mutex_unlock(&rt_constraints_mutex);
  8788. return err;
  8789. }
  8790. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8791. {
  8792. u64 rt_runtime, rt_period;
  8793. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8794. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8795. if (rt_runtime_us < 0)
  8796. rt_runtime = RUNTIME_INF;
  8797. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8798. }
  8799. long sched_group_rt_runtime(struct task_group *tg)
  8800. {
  8801. u64 rt_runtime_us;
  8802. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8803. return -1;
  8804. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8805. do_div(rt_runtime_us, NSEC_PER_USEC);
  8806. return rt_runtime_us;
  8807. }
  8808. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8809. {
  8810. u64 rt_runtime, rt_period;
  8811. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8812. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8813. if (rt_period == 0)
  8814. return -EINVAL;
  8815. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8816. }
  8817. long sched_group_rt_period(struct task_group *tg)
  8818. {
  8819. u64 rt_period_us;
  8820. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8821. do_div(rt_period_us, NSEC_PER_USEC);
  8822. return rt_period_us;
  8823. }
  8824. static int sched_rt_global_constraints(void)
  8825. {
  8826. u64 runtime, period;
  8827. int ret = 0;
  8828. if (sysctl_sched_rt_period <= 0)
  8829. return -EINVAL;
  8830. runtime = global_rt_runtime();
  8831. period = global_rt_period();
  8832. /*
  8833. * Sanity check on the sysctl variables.
  8834. */
  8835. if (runtime > period && runtime != RUNTIME_INF)
  8836. return -EINVAL;
  8837. mutex_lock(&rt_constraints_mutex);
  8838. read_lock(&tasklist_lock);
  8839. ret = __rt_schedulable(NULL, 0, 0);
  8840. read_unlock(&tasklist_lock);
  8841. mutex_unlock(&rt_constraints_mutex);
  8842. return ret;
  8843. }
  8844. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8845. {
  8846. /* Don't accept realtime tasks when there is no way for them to run */
  8847. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8848. return 0;
  8849. return 1;
  8850. }
  8851. #else /* !CONFIG_RT_GROUP_SCHED */
  8852. static int sched_rt_global_constraints(void)
  8853. {
  8854. unsigned long flags;
  8855. int i;
  8856. if (sysctl_sched_rt_period <= 0)
  8857. return -EINVAL;
  8858. /*
  8859. * There's always some RT tasks in the root group
  8860. * -- migration, kstopmachine etc..
  8861. */
  8862. if (sysctl_sched_rt_runtime == 0)
  8863. return -EBUSY;
  8864. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8865. for_each_possible_cpu(i) {
  8866. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8867. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8868. rt_rq->rt_runtime = global_rt_runtime();
  8869. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8870. }
  8871. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8872. return 0;
  8873. }
  8874. #endif /* CONFIG_RT_GROUP_SCHED */
  8875. int sched_rt_handler(struct ctl_table *table, int write,
  8876. void __user *buffer, size_t *lenp,
  8877. loff_t *ppos)
  8878. {
  8879. int ret;
  8880. int old_period, old_runtime;
  8881. static DEFINE_MUTEX(mutex);
  8882. mutex_lock(&mutex);
  8883. old_period = sysctl_sched_rt_period;
  8884. old_runtime = sysctl_sched_rt_runtime;
  8885. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8886. if (!ret && write) {
  8887. ret = sched_rt_global_constraints();
  8888. if (ret) {
  8889. sysctl_sched_rt_period = old_period;
  8890. sysctl_sched_rt_runtime = old_runtime;
  8891. } else {
  8892. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8893. def_rt_bandwidth.rt_period =
  8894. ns_to_ktime(global_rt_period());
  8895. }
  8896. }
  8897. mutex_unlock(&mutex);
  8898. return ret;
  8899. }
  8900. #ifdef CONFIG_CGROUP_SCHED
  8901. /* return corresponding task_group object of a cgroup */
  8902. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8903. {
  8904. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8905. struct task_group, css);
  8906. }
  8907. static struct cgroup_subsys_state *
  8908. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8909. {
  8910. struct task_group *tg, *parent;
  8911. if (!cgrp->parent) {
  8912. /* This is early initialization for the top cgroup */
  8913. return &init_task_group.css;
  8914. }
  8915. parent = cgroup_tg(cgrp->parent);
  8916. tg = sched_create_group(parent);
  8917. if (IS_ERR(tg))
  8918. return ERR_PTR(-ENOMEM);
  8919. return &tg->css;
  8920. }
  8921. static void
  8922. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8923. {
  8924. struct task_group *tg = cgroup_tg(cgrp);
  8925. sched_destroy_group(tg);
  8926. }
  8927. static int
  8928. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8929. {
  8930. #ifdef CONFIG_RT_GROUP_SCHED
  8931. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8932. return -EINVAL;
  8933. #else
  8934. /* We don't support RT-tasks being in separate groups */
  8935. if (tsk->sched_class != &fair_sched_class)
  8936. return -EINVAL;
  8937. #endif
  8938. return 0;
  8939. }
  8940. static int
  8941. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8942. struct task_struct *tsk, bool threadgroup)
  8943. {
  8944. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8945. if (retval)
  8946. return retval;
  8947. if (threadgroup) {
  8948. struct task_struct *c;
  8949. rcu_read_lock();
  8950. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8951. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8952. if (retval) {
  8953. rcu_read_unlock();
  8954. return retval;
  8955. }
  8956. }
  8957. rcu_read_unlock();
  8958. }
  8959. return 0;
  8960. }
  8961. static void
  8962. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8963. struct cgroup *old_cont, struct task_struct *tsk,
  8964. bool threadgroup)
  8965. {
  8966. sched_move_task(tsk);
  8967. if (threadgroup) {
  8968. struct task_struct *c;
  8969. rcu_read_lock();
  8970. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8971. sched_move_task(c);
  8972. }
  8973. rcu_read_unlock();
  8974. }
  8975. }
  8976. #ifdef CONFIG_FAIR_GROUP_SCHED
  8977. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8978. u64 shareval)
  8979. {
  8980. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8981. }
  8982. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8983. {
  8984. struct task_group *tg = cgroup_tg(cgrp);
  8985. return (u64) tg->shares;
  8986. }
  8987. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8988. #ifdef CONFIG_RT_GROUP_SCHED
  8989. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8990. s64 val)
  8991. {
  8992. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8993. }
  8994. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8995. {
  8996. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8997. }
  8998. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8999. u64 rt_period_us)
  9000. {
  9001. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9002. }
  9003. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9004. {
  9005. return sched_group_rt_period(cgroup_tg(cgrp));
  9006. }
  9007. #endif /* CONFIG_RT_GROUP_SCHED */
  9008. static struct cftype cpu_files[] = {
  9009. #ifdef CONFIG_FAIR_GROUP_SCHED
  9010. {
  9011. .name = "shares",
  9012. .read_u64 = cpu_shares_read_u64,
  9013. .write_u64 = cpu_shares_write_u64,
  9014. },
  9015. #endif
  9016. #ifdef CONFIG_RT_GROUP_SCHED
  9017. {
  9018. .name = "rt_runtime_us",
  9019. .read_s64 = cpu_rt_runtime_read,
  9020. .write_s64 = cpu_rt_runtime_write,
  9021. },
  9022. {
  9023. .name = "rt_period_us",
  9024. .read_u64 = cpu_rt_period_read_uint,
  9025. .write_u64 = cpu_rt_period_write_uint,
  9026. },
  9027. #endif
  9028. };
  9029. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9030. {
  9031. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9032. }
  9033. struct cgroup_subsys cpu_cgroup_subsys = {
  9034. .name = "cpu",
  9035. .create = cpu_cgroup_create,
  9036. .destroy = cpu_cgroup_destroy,
  9037. .can_attach = cpu_cgroup_can_attach,
  9038. .attach = cpu_cgroup_attach,
  9039. .populate = cpu_cgroup_populate,
  9040. .subsys_id = cpu_cgroup_subsys_id,
  9041. .early_init = 1,
  9042. };
  9043. #endif /* CONFIG_CGROUP_SCHED */
  9044. #ifdef CONFIG_CGROUP_CPUACCT
  9045. /*
  9046. * CPU accounting code for task groups.
  9047. *
  9048. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9049. * (balbir@in.ibm.com).
  9050. */
  9051. /* track cpu usage of a group of tasks and its child groups */
  9052. struct cpuacct {
  9053. struct cgroup_subsys_state css;
  9054. /* cpuusage holds pointer to a u64-type object on every cpu */
  9055. u64 *cpuusage;
  9056. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9057. struct cpuacct *parent;
  9058. };
  9059. struct cgroup_subsys cpuacct_subsys;
  9060. /* return cpu accounting group corresponding to this container */
  9061. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9062. {
  9063. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9064. struct cpuacct, css);
  9065. }
  9066. /* return cpu accounting group to which this task belongs */
  9067. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9068. {
  9069. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9070. struct cpuacct, css);
  9071. }
  9072. /* create a new cpu accounting group */
  9073. static struct cgroup_subsys_state *cpuacct_create(
  9074. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9075. {
  9076. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9077. int i;
  9078. if (!ca)
  9079. goto out;
  9080. ca->cpuusage = alloc_percpu(u64);
  9081. if (!ca->cpuusage)
  9082. goto out_free_ca;
  9083. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9084. if (percpu_counter_init(&ca->cpustat[i], 0))
  9085. goto out_free_counters;
  9086. if (cgrp->parent)
  9087. ca->parent = cgroup_ca(cgrp->parent);
  9088. return &ca->css;
  9089. out_free_counters:
  9090. while (--i >= 0)
  9091. percpu_counter_destroy(&ca->cpustat[i]);
  9092. free_percpu(ca->cpuusage);
  9093. out_free_ca:
  9094. kfree(ca);
  9095. out:
  9096. return ERR_PTR(-ENOMEM);
  9097. }
  9098. /* destroy an existing cpu accounting group */
  9099. static void
  9100. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9101. {
  9102. struct cpuacct *ca = cgroup_ca(cgrp);
  9103. int i;
  9104. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9105. percpu_counter_destroy(&ca->cpustat[i]);
  9106. free_percpu(ca->cpuusage);
  9107. kfree(ca);
  9108. }
  9109. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9110. {
  9111. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9112. u64 data;
  9113. #ifndef CONFIG_64BIT
  9114. /*
  9115. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9116. */
  9117. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9118. data = *cpuusage;
  9119. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9120. #else
  9121. data = *cpuusage;
  9122. #endif
  9123. return data;
  9124. }
  9125. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9126. {
  9127. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9128. #ifndef CONFIG_64BIT
  9129. /*
  9130. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9131. */
  9132. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9133. *cpuusage = val;
  9134. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9135. #else
  9136. *cpuusage = val;
  9137. #endif
  9138. }
  9139. /* return total cpu usage (in nanoseconds) of a group */
  9140. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9141. {
  9142. struct cpuacct *ca = cgroup_ca(cgrp);
  9143. u64 totalcpuusage = 0;
  9144. int i;
  9145. for_each_present_cpu(i)
  9146. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9147. return totalcpuusage;
  9148. }
  9149. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9150. u64 reset)
  9151. {
  9152. struct cpuacct *ca = cgroup_ca(cgrp);
  9153. int err = 0;
  9154. int i;
  9155. if (reset) {
  9156. err = -EINVAL;
  9157. goto out;
  9158. }
  9159. for_each_present_cpu(i)
  9160. cpuacct_cpuusage_write(ca, i, 0);
  9161. out:
  9162. return err;
  9163. }
  9164. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9165. struct seq_file *m)
  9166. {
  9167. struct cpuacct *ca = cgroup_ca(cgroup);
  9168. u64 percpu;
  9169. int i;
  9170. for_each_present_cpu(i) {
  9171. percpu = cpuacct_cpuusage_read(ca, i);
  9172. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9173. }
  9174. seq_printf(m, "\n");
  9175. return 0;
  9176. }
  9177. static const char *cpuacct_stat_desc[] = {
  9178. [CPUACCT_STAT_USER] = "user",
  9179. [CPUACCT_STAT_SYSTEM] = "system",
  9180. };
  9181. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9182. struct cgroup_map_cb *cb)
  9183. {
  9184. struct cpuacct *ca = cgroup_ca(cgrp);
  9185. int i;
  9186. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9187. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9188. val = cputime64_to_clock_t(val);
  9189. cb->fill(cb, cpuacct_stat_desc[i], val);
  9190. }
  9191. return 0;
  9192. }
  9193. static struct cftype files[] = {
  9194. {
  9195. .name = "usage",
  9196. .read_u64 = cpuusage_read,
  9197. .write_u64 = cpuusage_write,
  9198. },
  9199. {
  9200. .name = "usage_percpu",
  9201. .read_seq_string = cpuacct_percpu_seq_read,
  9202. },
  9203. {
  9204. .name = "stat",
  9205. .read_map = cpuacct_stats_show,
  9206. },
  9207. };
  9208. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9209. {
  9210. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9211. }
  9212. /*
  9213. * charge this task's execution time to its accounting group.
  9214. *
  9215. * called with rq->lock held.
  9216. */
  9217. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9218. {
  9219. struct cpuacct *ca;
  9220. int cpu;
  9221. if (unlikely(!cpuacct_subsys.active))
  9222. return;
  9223. cpu = task_cpu(tsk);
  9224. rcu_read_lock();
  9225. ca = task_ca(tsk);
  9226. for (; ca; ca = ca->parent) {
  9227. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9228. *cpuusage += cputime;
  9229. }
  9230. rcu_read_unlock();
  9231. }
  9232. /*
  9233. * Charge the system/user time to the task's accounting group.
  9234. */
  9235. static void cpuacct_update_stats(struct task_struct *tsk,
  9236. enum cpuacct_stat_index idx, cputime_t val)
  9237. {
  9238. struct cpuacct *ca;
  9239. if (unlikely(!cpuacct_subsys.active))
  9240. return;
  9241. rcu_read_lock();
  9242. ca = task_ca(tsk);
  9243. do {
  9244. percpu_counter_add(&ca->cpustat[idx], val);
  9245. ca = ca->parent;
  9246. } while (ca);
  9247. rcu_read_unlock();
  9248. }
  9249. struct cgroup_subsys cpuacct_subsys = {
  9250. .name = "cpuacct",
  9251. .create = cpuacct_create,
  9252. .destroy = cpuacct_destroy,
  9253. .populate = cpuacct_populate,
  9254. .subsys_id = cpuacct_subsys_id,
  9255. };
  9256. #endif /* CONFIG_CGROUP_CPUACCT */
  9257. #ifndef CONFIG_SMP
  9258. int rcu_expedited_torture_stats(char *page)
  9259. {
  9260. return 0;
  9261. }
  9262. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9263. void synchronize_sched_expedited(void)
  9264. {
  9265. }
  9266. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9267. #else /* #ifndef CONFIG_SMP */
  9268. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9269. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9270. #define RCU_EXPEDITED_STATE_POST -2
  9271. #define RCU_EXPEDITED_STATE_IDLE -1
  9272. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9273. int rcu_expedited_torture_stats(char *page)
  9274. {
  9275. int cnt = 0;
  9276. int cpu;
  9277. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9278. for_each_online_cpu(cpu) {
  9279. cnt += sprintf(&page[cnt], " %d:%d",
  9280. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9281. }
  9282. cnt += sprintf(&page[cnt], "\n");
  9283. return cnt;
  9284. }
  9285. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9286. static long synchronize_sched_expedited_count;
  9287. /*
  9288. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9289. * approach to force grace period to end quickly. This consumes
  9290. * significant time on all CPUs, and is thus not recommended for
  9291. * any sort of common-case code.
  9292. *
  9293. * Note that it is illegal to call this function while holding any
  9294. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9295. * observe this restriction will result in deadlock.
  9296. */
  9297. void synchronize_sched_expedited(void)
  9298. {
  9299. int cpu;
  9300. unsigned long flags;
  9301. bool need_full_sync = 0;
  9302. struct rq *rq;
  9303. struct migration_req *req;
  9304. long snap;
  9305. int trycount = 0;
  9306. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9307. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9308. get_online_cpus();
  9309. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9310. put_online_cpus();
  9311. if (trycount++ < 10)
  9312. udelay(trycount * num_online_cpus());
  9313. else {
  9314. synchronize_sched();
  9315. return;
  9316. }
  9317. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9318. smp_mb(); /* ensure test happens before caller kfree */
  9319. return;
  9320. }
  9321. get_online_cpus();
  9322. }
  9323. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9324. for_each_online_cpu(cpu) {
  9325. rq = cpu_rq(cpu);
  9326. req = &per_cpu(rcu_migration_req, cpu);
  9327. init_completion(&req->done);
  9328. req->task = NULL;
  9329. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9330. raw_spin_lock_irqsave(&rq->lock, flags);
  9331. list_add(&req->list, &rq->migration_queue);
  9332. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9333. wake_up_process(rq->migration_thread);
  9334. }
  9335. for_each_online_cpu(cpu) {
  9336. rcu_expedited_state = cpu;
  9337. req = &per_cpu(rcu_migration_req, cpu);
  9338. rq = cpu_rq(cpu);
  9339. wait_for_completion(&req->done);
  9340. raw_spin_lock_irqsave(&rq->lock, flags);
  9341. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9342. need_full_sync = 1;
  9343. req->dest_cpu = RCU_MIGRATION_IDLE;
  9344. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9345. }
  9346. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9347. synchronize_sched_expedited_count++;
  9348. mutex_unlock(&rcu_sched_expedited_mutex);
  9349. put_online_cpus();
  9350. if (need_full_sync)
  9351. synchronize_sched();
  9352. }
  9353. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9354. #endif /* #else #ifndef CONFIG_SMP */