netxen_nic_init.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575
  1. /*
  2. * Copyright (C) 2003 - 2006 NetXen, Inc.
  3. * All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
  18. * MA 02111-1307, USA.
  19. *
  20. * The full GNU General Public License is included in this distribution
  21. * in the file called LICENSE.
  22. *
  23. * Contact Information:
  24. * info@netxen.com
  25. * NetXen,
  26. * 3965 Freedom Circle, Fourth floor,
  27. * Santa Clara, CA 95054
  28. *
  29. *
  30. * Source file for NIC routines to initialize the Phantom Hardware
  31. *
  32. */
  33. #include <linux/netdevice.h>
  34. #include <linux/delay.h>
  35. #include "netxen_nic.h"
  36. #include "netxen_nic_hw.h"
  37. #include "netxen_nic_phan_reg.h"
  38. struct crb_addr_pair {
  39. u32 addr;
  40. u32 data;
  41. };
  42. unsigned long last_schedule_time;
  43. #define NETXEN_MAX_CRB_XFORM 60
  44. static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
  45. #define NETXEN_ADDR_ERROR (0xffffffff)
  46. #define crb_addr_transform(name) \
  47. crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
  48. NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
  49. #define NETXEN_NIC_XDMA_RESET 0x8000ff
  50. static inline void
  51. netxen_nic_locked_write_reg(struct netxen_adapter *adapter,
  52. unsigned long off, int *data)
  53. {
  54. void __iomem *addr = pci_base_offset(adapter, off);
  55. writel(*data, addr);
  56. }
  57. static void crb_addr_transform_setup(void)
  58. {
  59. crb_addr_transform(XDMA);
  60. crb_addr_transform(TIMR);
  61. crb_addr_transform(SRE);
  62. crb_addr_transform(SQN3);
  63. crb_addr_transform(SQN2);
  64. crb_addr_transform(SQN1);
  65. crb_addr_transform(SQN0);
  66. crb_addr_transform(SQS3);
  67. crb_addr_transform(SQS2);
  68. crb_addr_transform(SQS1);
  69. crb_addr_transform(SQS0);
  70. crb_addr_transform(RPMX7);
  71. crb_addr_transform(RPMX6);
  72. crb_addr_transform(RPMX5);
  73. crb_addr_transform(RPMX4);
  74. crb_addr_transform(RPMX3);
  75. crb_addr_transform(RPMX2);
  76. crb_addr_transform(RPMX1);
  77. crb_addr_transform(RPMX0);
  78. crb_addr_transform(ROMUSB);
  79. crb_addr_transform(SN);
  80. crb_addr_transform(QMN);
  81. crb_addr_transform(QMS);
  82. crb_addr_transform(PGNI);
  83. crb_addr_transform(PGND);
  84. crb_addr_transform(PGN3);
  85. crb_addr_transform(PGN2);
  86. crb_addr_transform(PGN1);
  87. crb_addr_transform(PGN0);
  88. crb_addr_transform(PGSI);
  89. crb_addr_transform(PGSD);
  90. crb_addr_transform(PGS3);
  91. crb_addr_transform(PGS2);
  92. crb_addr_transform(PGS1);
  93. crb_addr_transform(PGS0);
  94. crb_addr_transform(PS);
  95. crb_addr_transform(PH);
  96. crb_addr_transform(NIU);
  97. crb_addr_transform(I2Q);
  98. crb_addr_transform(EG);
  99. crb_addr_transform(MN);
  100. crb_addr_transform(MS);
  101. crb_addr_transform(CAS2);
  102. crb_addr_transform(CAS1);
  103. crb_addr_transform(CAS0);
  104. crb_addr_transform(CAM);
  105. crb_addr_transform(C2C1);
  106. crb_addr_transform(C2C0);
  107. crb_addr_transform(SMB);
  108. }
  109. int netxen_init_firmware(struct netxen_adapter *adapter)
  110. {
  111. u32 state = 0, loops = 0, err = 0;
  112. /* Window 1 call */
  113. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  114. if (state == PHAN_INITIALIZE_ACK)
  115. return 0;
  116. while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
  117. udelay(100);
  118. /* Window 1 call */
  119. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  120. loops++;
  121. }
  122. if (loops >= 2000) {
  123. printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
  124. state);
  125. err = -EIO;
  126. return err;
  127. }
  128. /* Window 1 call */
  129. writel(MPORT_SINGLE_FUNCTION_MODE,
  130. NETXEN_CRB_NORMALIZE(adapter, CRB_MPORT_MODE));
  131. writel(PHAN_INITIALIZE_ACK,
  132. NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  133. return err;
  134. }
  135. #define NETXEN_ADDR_LIMIT 0xffffffffULL
  136. void *netxen_alloc(struct pci_dev *pdev, size_t sz, dma_addr_t * ptr,
  137. struct pci_dev **used_dev)
  138. {
  139. void *addr;
  140. addr = pci_alloc_consistent(pdev, sz, ptr);
  141. if ((unsigned long long)(*ptr) < NETXEN_ADDR_LIMIT) {
  142. *used_dev = pdev;
  143. return addr;
  144. }
  145. pci_free_consistent(pdev, sz, addr, *ptr);
  146. addr = pci_alloc_consistent(NULL, sz, ptr);
  147. *used_dev = NULL;
  148. return addr;
  149. }
  150. void netxen_initialize_adapter_sw(struct netxen_adapter *adapter)
  151. {
  152. int ctxid, ring;
  153. u32 i;
  154. u32 num_rx_bufs = 0;
  155. struct netxen_rcv_desc_ctx *rcv_desc;
  156. DPRINTK(INFO, "initializing some queues: %p\n", adapter);
  157. for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
  158. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  159. struct netxen_rx_buffer *rx_buf;
  160. rcv_desc = &adapter->recv_ctx[ctxid].rcv_desc[ring];
  161. rcv_desc->rcv_free = rcv_desc->max_rx_desc_count;
  162. rcv_desc->begin_alloc = 0;
  163. rx_buf = rcv_desc->rx_buf_arr;
  164. num_rx_bufs = rcv_desc->max_rx_desc_count;
  165. /*
  166. * Now go through all of them, set reference handles
  167. * and put them in the queues.
  168. */
  169. for (i = 0; i < num_rx_bufs; i++) {
  170. rx_buf->ref_handle = i;
  171. rx_buf->state = NETXEN_BUFFER_FREE;
  172. DPRINTK(INFO, "Rx buf:ctx%d i(%d) rx_buf:"
  173. "%p\n", ctxid, i, rx_buf);
  174. rx_buf++;
  175. }
  176. }
  177. }
  178. }
  179. void netxen_initialize_adapter_hw(struct netxen_adapter *adapter)
  180. {
  181. int ports = 0;
  182. struct netxen_board_info *board_info = &(adapter->ahw.boardcfg);
  183. if (netxen_nic_get_board_info(adapter) != 0)
  184. printk("%s: Error getting board config info.\n",
  185. netxen_nic_driver_name);
  186. get_brd_port_by_type(board_info->board_type, &ports);
  187. if (ports == 0)
  188. printk(KERN_ERR "%s: Unknown board type\n",
  189. netxen_nic_driver_name);
  190. adapter->ahw.max_ports = ports;
  191. }
  192. void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
  193. {
  194. switch (adapter->ahw.board_type) {
  195. case NETXEN_NIC_GBE:
  196. adapter->enable_phy_interrupts =
  197. netxen_niu_gbe_enable_phy_interrupts;
  198. adapter->disable_phy_interrupts =
  199. netxen_niu_gbe_disable_phy_interrupts;
  200. adapter->handle_phy_intr = netxen_nic_gbe_handle_phy_intr;
  201. adapter->macaddr_set = netxen_niu_macaddr_set;
  202. adapter->set_mtu = netxen_nic_set_mtu_gb;
  203. adapter->set_promisc = netxen_niu_set_promiscuous_mode;
  204. adapter->unset_promisc = netxen_niu_set_promiscuous_mode;
  205. adapter->phy_read = netxen_niu_gbe_phy_read;
  206. adapter->phy_write = netxen_niu_gbe_phy_write;
  207. adapter->init_port = netxen_niu_gbe_init_port;
  208. adapter->init_niu = netxen_nic_init_niu_gb;
  209. adapter->stop_port = netxen_niu_disable_gbe_port;
  210. break;
  211. case NETXEN_NIC_XGBE:
  212. adapter->enable_phy_interrupts =
  213. netxen_niu_xgbe_enable_phy_interrupts;
  214. adapter->disable_phy_interrupts =
  215. netxen_niu_xgbe_disable_phy_interrupts;
  216. adapter->handle_phy_intr = netxen_nic_xgbe_handle_phy_intr;
  217. adapter->macaddr_set = netxen_niu_xg_macaddr_set;
  218. adapter->set_mtu = netxen_nic_set_mtu_xgb;
  219. adapter->init_port = netxen_niu_xg_init_port;
  220. adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
  221. adapter->unset_promisc = netxen_niu_xg_set_promiscuous_mode;
  222. adapter->stop_port = netxen_niu_disable_xg_port;
  223. break;
  224. default:
  225. break;
  226. }
  227. }
  228. /*
  229. * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
  230. * address to external PCI CRB address.
  231. */
  232. u32 netxen_decode_crb_addr(u32 addr)
  233. {
  234. int i;
  235. u32 base_addr, offset, pci_base;
  236. crb_addr_transform_setup();
  237. pci_base = NETXEN_ADDR_ERROR;
  238. base_addr = addr & 0xfff00000;
  239. offset = addr & 0x000fffff;
  240. for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
  241. if (crb_addr_xform[i] == base_addr) {
  242. pci_base = i << 20;
  243. break;
  244. }
  245. }
  246. if (pci_base == NETXEN_ADDR_ERROR)
  247. return pci_base;
  248. else
  249. return (pci_base + offset);
  250. }
  251. static long rom_max_timeout = 10000;
  252. static long rom_lock_timeout = 1000000;
  253. static long rom_write_timeout = 700;
  254. static inline int rom_lock(struct netxen_adapter *adapter)
  255. {
  256. int iter;
  257. u32 done = 0;
  258. int timeout = 0;
  259. while (!done) {
  260. /* acquire semaphore2 from PCI HW block */
  261. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
  262. &done);
  263. if (done == 1)
  264. break;
  265. if (timeout >= rom_lock_timeout)
  266. return -EIO;
  267. timeout++;
  268. /*
  269. * Yield CPU
  270. */
  271. if (!in_atomic())
  272. schedule();
  273. else {
  274. for (iter = 0; iter < 20; iter++)
  275. cpu_relax(); /*This a nop instr on i386 */
  276. }
  277. }
  278. netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
  279. return 0;
  280. }
  281. int netxen_wait_rom_done(struct netxen_adapter *adapter)
  282. {
  283. long timeout = 0;
  284. long done = 0;
  285. while (done == 0) {
  286. done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
  287. done &= 2;
  288. timeout++;
  289. if (timeout >= rom_max_timeout) {
  290. printk("Timeout reached waiting for rom done");
  291. return -EIO;
  292. }
  293. }
  294. return 0;
  295. }
  296. static inline int netxen_rom_wren(struct netxen_adapter *adapter)
  297. {
  298. /* Set write enable latch in ROM status register */
  299. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  300. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  301. M25P_INSTR_WREN);
  302. if (netxen_wait_rom_done(adapter)) {
  303. return -1;
  304. }
  305. return 0;
  306. }
  307. static inline unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter,
  308. unsigned int addr)
  309. {
  310. unsigned int data = 0xdeaddead;
  311. data = netxen_nic_reg_read(adapter, addr);
  312. return data;
  313. }
  314. static inline int netxen_do_rom_rdsr(struct netxen_adapter *adapter)
  315. {
  316. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  317. M25P_INSTR_RDSR);
  318. if (netxen_wait_rom_done(adapter)) {
  319. return -1;
  320. }
  321. return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA);
  322. }
  323. static inline void netxen_rom_unlock(struct netxen_adapter *adapter)
  324. {
  325. u32 val;
  326. /* release semaphore2 */
  327. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
  328. }
  329. int netxen_rom_wip_poll(struct netxen_adapter *adapter)
  330. {
  331. long timeout = 0;
  332. long wip = 1;
  333. int val;
  334. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  335. while (wip != 0) {
  336. val = netxen_do_rom_rdsr(adapter);
  337. wip = val & 1;
  338. timeout++;
  339. if (timeout > rom_max_timeout) {
  340. return -1;
  341. }
  342. }
  343. return 0;
  344. }
  345. static inline int do_rom_fast_write(struct netxen_adapter *adapter, int addr,
  346. int data)
  347. {
  348. if (netxen_rom_wren(adapter)) {
  349. return -1;
  350. }
  351. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  352. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  353. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  354. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  355. M25P_INSTR_PP);
  356. if (netxen_wait_rom_done(adapter)) {
  357. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  358. return -1;
  359. }
  360. return netxen_rom_wip_poll(adapter);
  361. }
  362. static inline int
  363. do_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  364. {
  365. if (jiffies > (last_schedule_time + (8 * HZ))) {
  366. last_schedule_time = jiffies;
  367. schedule();
  368. }
  369. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  370. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  371. udelay(100); /* prevent bursting on CRB */
  372. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  373. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
  374. if (netxen_wait_rom_done(adapter)) {
  375. printk("Error waiting for rom done\n");
  376. return -EIO;
  377. }
  378. /* reset abyte_cnt and dummy_byte_cnt */
  379. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  380. udelay(100); /* prevent bursting on CRB */
  381. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  382. *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
  383. return 0;
  384. }
  385. static inline int
  386. do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  387. u8 *bytes, size_t size)
  388. {
  389. int addridx;
  390. int ret = 0;
  391. for (addridx = addr; addridx < (addr + size); addridx += 4) {
  392. ret = do_rom_fast_read(adapter, addridx, (int *)bytes);
  393. *(int *)bytes = cpu_to_le32(*(int *)bytes);
  394. if (ret != 0)
  395. break;
  396. bytes += 4;
  397. }
  398. return ret;
  399. }
  400. int
  401. netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  402. u8 *bytes, size_t size)
  403. {
  404. int ret;
  405. ret = rom_lock(adapter);
  406. if (ret < 0)
  407. return ret;
  408. ret = do_rom_fast_read_words(adapter, addr, bytes, size);
  409. netxen_rom_unlock(adapter);
  410. return ret;
  411. }
  412. int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  413. {
  414. int ret;
  415. if (rom_lock(adapter) != 0)
  416. return -EIO;
  417. ret = do_rom_fast_read(adapter, addr, valp);
  418. netxen_rom_unlock(adapter);
  419. return ret;
  420. }
  421. int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data)
  422. {
  423. int ret = 0;
  424. if (rom_lock(adapter) != 0) {
  425. return -1;
  426. }
  427. ret = do_rom_fast_write(adapter, addr, data);
  428. netxen_rom_unlock(adapter);
  429. return ret;
  430. }
  431. static inline int do_rom_fast_write_words(struct netxen_adapter *adapter,
  432. int addr, u8 *bytes, size_t size)
  433. {
  434. int addridx = addr;
  435. int ret = 0;
  436. while (addridx < (addr + size)) {
  437. int last_attempt = 0;
  438. int timeout = 0;
  439. int data;
  440. data = le32_to_cpu((*(u32*)bytes));
  441. ret = do_rom_fast_write(adapter, addridx, data);
  442. if (ret < 0)
  443. return ret;
  444. while(1) {
  445. int data1;
  446. ret = do_rom_fast_read(adapter, addridx, &data1);
  447. if (ret < 0)
  448. return ret;
  449. if (data1 == data)
  450. break;
  451. if (timeout++ >= rom_write_timeout) {
  452. if (last_attempt++ < 4) {
  453. ret = do_rom_fast_write(adapter,
  454. addridx, data);
  455. if (ret < 0)
  456. return ret;
  457. }
  458. else {
  459. printk(KERN_INFO "Data write did not "
  460. "succeed at address 0x%x\n", addridx);
  461. break;
  462. }
  463. }
  464. }
  465. bytes += 4;
  466. addridx += 4;
  467. }
  468. return ret;
  469. }
  470. int netxen_rom_fast_write_words(struct netxen_adapter *adapter, int addr,
  471. u8 *bytes, size_t size)
  472. {
  473. int ret = 0;
  474. ret = rom_lock(adapter);
  475. if (ret < 0)
  476. return ret;
  477. ret = do_rom_fast_write_words(adapter, addr, bytes, size);
  478. netxen_rom_unlock(adapter);
  479. return ret;
  480. }
  481. int netxen_rom_wrsr(struct netxen_adapter *adapter, int data)
  482. {
  483. int ret;
  484. ret = netxen_rom_wren(adapter);
  485. if (ret < 0)
  486. return ret;
  487. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  488. netxen_crb_writelit_adapter(adapter,
  489. NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0x1);
  490. ret = netxen_wait_rom_done(adapter);
  491. if (ret < 0)
  492. return ret;
  493. return netxen_rom_wip_poll(adapter);
  494. }
  495. int netxen_rom_rdsr(struct netxen_adapter *adapter)
  496. {
  497. int ret;
  498. ret = rom_lock(adapter);
  499. if (ret < 0)
  500. return ret;
  501. ret = netxen_do_rom_rdsr(adapter);
  502. netxen_rom_unlock(adapter);
  503. return ret;
  504. }
  505. int netxen_backup_crbinit(struct netxen_adapter *adapter)
  506. {
  507. int ret = FLASH_SUCCESS;
  508. int val;
  509. char *buffer = kmalloc(FLASH_SECTOR_SIZE, GFP_KERNEL);
  510. if (!buffer)
  511. return -ENOMEM;
  512. /* unlock sector 63 */
  513. val = netxen_rom_rdsr(adapter);
  514. val = val & 0xe3;
  515. ret = netxen_rom_wrsr(adapter, val);
  516. if (ret != FLASH_SUCCESS)
  517. goto out_kfree;
  518. ret = netxen_rom_wip_poll(adapter);
  519. if (ret != FLASH_SUCCESS)
  520. goto out_kfree;
  521. /* copy sector 0 to sector 63 */
  522. ret = netxen_rom_fast_read_words(adapter, CRBINIT_START,
  523. buffer, FLASH_SECTOR_SIZE);
  524. if (ret != FLASH_SUCCESS)
  525. goto out_kfree;
  526. ret = netxen_rom_fast_write_words(adapter, FIXED_START,
  527. buffer, FLASH_SECTOR_SIZE);
  528. if (ret != FLASH_SUCCESS)
  529. goto out_kfree;
  530. /* lock sector 63 */
  531. val = netxen_rom_rdsr(adapter);
  532. if (!(val & 0x8)) {
  533. val |= (0x1 << 2);
  534. /* lock sector 63 */
  535. if (netxen_rom_wrsr(adapter, val) == 0) {
  536. ret = netxen_rom_wip_poll(adapter);
  537. if (ret != FLASH_SUCCESS)
  538. goto out_kfree;
  539. /* lock SR writes */
  540. ret = netxen_rom_wip_poll(adapter);
  541. if (ret != FLASH_SUCCESS)
  542. goto out_kfree;
  543. }
  544. }
  545. out_kfree:
  546. kfree(buffer);
  547. return ret;
  548. }
  549. int netxen_do_rom_se(struct netxen_adapter *adapter, int addr)
  550. {
  551. netxen_rom_wren(adapter);
  552. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  553. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  554. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  555. M25P_INSTR_SE);
  556. if (netxen_wait_rom_done(adapter)) {
  557. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  558. return -1;
  559. }
  560. return netxen_rom_wip_poll(adapter);
  561. }
  562. void check_erased_flash(struct netxen_adapter *adapter, int addr)
  563. {
  564. int i;
  565. int val;
  566. int count = 0, erased_errors = 0;
  567. int range;
  568. range = (addr == USER_START) ? FIXED_START : addr + FLASH_SECTOR_SIZE;
  569. for (i = addr; i < range; i += 4) {
  570. netxen_rom_fast_read(adapter, i, &val);
  571. if (val != 0xffffffff)
  572. erased_errors++;
  573. count++;
  574. }
  575. if (erased_errors)
  576. printk(KERN_INFO "0x%x out of 0x%x words fail to be erased "
  577. "for sector address: %x\n", erased_errors, count, addr);
  578. }
  579. int netxen_rom_se(struct netxen_adapter *adapter, int addr)
  580. {
  581. int ret = 0;
  582. if (rom_lock(adapter) != 0) {
  583. return -1;
  584. }
  585. ret = netxen_do_rom_se(adapter, addr);
  586. netxen_rom_unlock(adapter);
  587. msleep(30);
  588. check_erased_flash(adapter, addr);
  589. return ret;
  590. }
  591. int
  592. netxen_flash_erase_sections(struct netxen_adapter *adapter, int start, int end)
  593. {
  594. int ret = FLASH_SUCCESS;
  595. int i;
  596. for (i = start; i < end; i++) {
  597. ret = netxen_rom_se(adapter, i * FLASH_SECTOR_SIZE);
  598. if (ret)
  599. break;
  600. ret = netxen_rom_wip_poll(adapter);
  601. if (ret < 0)
  602. return ret;
  603. }
  604. return ret;
  605. }
  606. int
  607. netxen_flash_erase_secondary(struct netxen_adapter *adapter)
  608. {
  609. int ret = FLASH_SUCCESS;
  610. int start, end;
  611. start = SECONDARY_START / FLASH_SECTOR_SIZE;
  612. end = USER_START / FLASH_SECTOR_SIZE;
  613. ret = netxen_flash_erase_sections(adapter, start, end);
  614. return ret;
  615. }
  616. int
  617. netxen_flash_erase_primary(struct netxen_adapter *adapter)
  618. {
  619. int ret = FLASH_SUCCESS;
  620. int start, end;
  621. start = PRIMARY_START / FLASH_SECTOR_SIZE;
  622. end = SECONDARY_START / FLASH_SECTOR_SIZE;
  623. ret = netxen_flash_erase_sections(adapter, start, end);
  624. return ret;
  625. }
  626. void netxen_halt_pegs(struct netxen_adapter *adapter)
  627. {
  628. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x3c, 1);
  629. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x3c, 1);
  630. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x3c, 1);
  631. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x3c, 1);
  632. }
  633. int netxen_flash_unlock(struct netxen_adapter *adapter)
  634. {
  635. int ret = 0;
  636. ret = netxen_rom_wrsr(adapter, 0);
  637. if (ret < 0)
  638. return ret;
  639. ret = netxen_rom_wren(adapter);
  640. if (ret < 0)
  641. return ret;
  642. return ret;
  643. }
  644. #define NETXEN_BOARDTYPE 0x4008
  645. #define NETXEN_BOARDNUM 0x400c
  646. #define NETXEN_CHIPNUM 0x4010
  647. #define NETXEN_ROMBUS_RESET 0xFFFFFFFF
  648. #define NETXEN_ROM_FIRST_BARRIER 0x800000000ULL
  649. #define NETXEN_ROM_FOUND_INIT 0x400
  650. int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
  651. {
  652. int addr, val, status;
  653. int n, i;
  654. int init_delay = 0;
  655. struct crb_addr_pair *buf;
  656. u32 off;
  657. /* resetall */
  658. status = netxen_nic_get_board_info(adapter);
  659. if (status)
  660. printk("%s: netxen_pinit_from_rom: Error getting board info\n",
  661. netxen_nic_driver_name);
  662. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  663. NETXEN_ROMBUS_RESET);
  664. if (verbose) {
  665. int val;
  666. if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
  667. printk("P2 ROM board type: 0x%08x\n", val);
  668. else
  669. printk("Could not read board type\n");
  670. if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
  671. printk("P2 ROM board num: 0x%08x\n", val);
  672. else
  673. printk("Could not read board number\n");
  674. if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
  675. printk("P2 ROM chip num: 0x%08x\n", val);
  676. else
  677. printk("Could not read chip number\n");
  678. }
  679. if (netxen_rom_fast_read(adapter, 0, &n) == 0
  680. && (n & NETXEN_ROM_FIRST_BARRIER)) {
  681. n &= ~NETXEN_ROM_ROUNDUP;
  682. if (n < NETXEN_ROM_FOUND_INIT) {
  683. if (verbose)
  684. printk("%s: %d CRB init values found"
  685. " in ROM.\n", netxen_nic_driver_name, n);
  686. } else {
  687. printk("%s:n=0x%x Error! NetXen card flash not"
  688. " initialized.\n", __FUNCTION__, n);
  689. return -EIO;
  690. }
  691. buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
  692. if (buf == NULL) {
  693. printk("%s: netxen_pinit_from_rom: Unable to calloc "
  694. "memory.\n", netxen_nic_driver_name);
  695. return -ENOMEM;
  696. }
  697. for (i = 0; i < n; i++) {
  698. if (netxen_rom_fast_read(adapter, 8 * i + 4, &val) != 0
  699. || netxen_rom_fast_read(adapter, 8 * i + 8,
  700. &addr) != 0)
  701. return -EIO;
  702. buf[i].addr = addr;
  703. buf[i].data = val;
  704. if (verbose)
  705. printk("%s: PCI: 0x%08x == 0x%08x\n",
  706. netxen_nic_driver_name, (unsigned int)
  707. netxen_decode_crb_addr(addr), val);
  708. }
  709. for (i = 0; i < n; i++) {
  710. off = netxen_decode_crb_addr(buf[i].addr);
  711. if (off == NETXEN_ADDR_ERROR) {
  712. printk(KERN_ERR"CRB init value out of range %x\n",
  713. buf[i].addr);
  714. continue;
  715. }
  716. off += NETXEN_PCI_CRBSPACE;
  717. /* skipping cold reboot MAGIC */
  718. if (off == NETXEN_CAM_RAM(0x1fc))
  719. continue;
  720. /* After writing this register, HW needs time for CRB */
  721. /* to quiet down (else crb_window returns 0xffffffff) */
  722. if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
  723. init_delay = 1;
  724. /* hold xdma in reset also */
  725. buf[i].data = NETXEN_NIC_XDMA_RESET;
  726. }
  727. if (ADDR_IN_WINDOW1(off)) {
  728. writel(buf[i].data,
  729. NETXEN_CRB_NORMALIZE(adapter, off));
  730. } else {
  731. netxen_nic_pci_change_crbwindow(adapter, 0);
  732. writel(buf[i].data,
  733. pci_base_offset(adapter, off));
  734. netxen_nic_pci_change_crbwindow(adapter, 1);
  735. }
  736. if (init_delay == 1) {
  737. ssleep(1);
  738. init_delay = 0;
  739. }
  740. msleep(1);
  741. }
  742. kfree(buf);
  743. /* disable_peg_cache_all */
  744. /* unreset_net_cache */
  745. netxen_nic_hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val,
  746. 4);
  747. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  748. (val & 0xffffff0f));
  749. /* p2dn replyCount */
  750. netxen_crb_writelit_adapter(adapter,
  751. NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
  752. /* disable_peg_cache 0 */
  753. netxen_crb_writelit_adapter(adapter,
  754. NETXEN_CRB_PEG_NET_D + 0x4c, 8);
  755. /* disable_peg_cache 1 */
  756. netxen_crb_writelit_adapter(adapter,
  757. NETXEN_CRB_PEG_NET_I + 0x4c, 8);
  758. /* peg_clr_all */
  759. /* peg_clr 0 */
  760. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8,
  761. 0);
  762. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc,
  763. 0);
  764. /* peg_clr 1 */
  765. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8,
  766. 0);
  767. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc,
  768. 0);
  769. /* peg_clr 2 */
  770. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8,
  771. 0);
  772. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc,
  773. 0);
  774. /* peg_clr 3 */
  775. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8,
  776. 0);
  777. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc,
  778. 0);
  779. }
  780. return 0;
  781. }
  782. int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
  783. {
  784. uint64_t addr;
  785. uint32_t hi;
  786. uint32_t lo;
  787. adapter->dummy_dma.addr =
  788. pci_alloc_consistent(adapter->ahw.pdev,
  789. NETXEN_HOST_DUMMY_DMA_SIZE,
  790. &adapter->dummy_dma.phys_addr);
  791. if (adapter->dummy_dma.addr == NULL) {
  792. printk("%s: ERROR: Could not allocate dummy DMA memory\n",
  793. __FUNCTION__);
  794. return -ENOMEM;
  795. }
  796. addr = (uint64_t) adapter->dummy_dma.phys_addr;
  797. hi = (addr >> 32) & 0xffffffff;
  798. lo = addr & 0xffffffff;
  799. writel(hi, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI));
  800. writel(lo, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO));
  801. return 0;
  802. }
  803. void netxen_free_adapter_offload(struct netxen_adapter *adapter)
  804. {
  805. if (adapter->dummy_dma.addr) {
  806. writel(0, NETXEN_CRB_NORMALIZE(adapter,
  807. CRB_HOST_DUMMY_BUF_ADDR_HI));
  808. writel(0, NETXEN_CRB_NORMALIZE(adapter,
  809. CRB_HOST_DUMMY_BUF_ADDR_LO));
  810. pci_free_consistent(adapter->ahw.pdev,
  811. NETXEN_HOST_DUMMY_DMA_SIZE,
  812. adapter->dummy_dma.addr,
  813. adapter->dummy_dma.phys_addr);
  814. adapter->dummy_dma.addr = NULL;
  815. }
  816. }
  817. void netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
  818. {
  819. u32 val = 0;
  820. int loops = 0;
  821. if (!pegtune_val) {
  822. val = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  823. while (val != PHAN_INITIALIZE_COMPLETE && loops < 200000) {
  824. udelay(100);
  825. schedule();
  826. val =
  827. readl(NETXEN_CRB_NORMALIZE
  828. (adapter, CRB_CMDPEG_STATE));
  829. loops++;
  830. }
  831. if (val != PHAN_INITIALIZE_COMPLETE)
  832. printk("WARNING: Initial boot wait loop failed...\n");
  833. }
  834. }
  835. int netxen_nic_rx_has_work(struct netxen_adapter *adapter)
  836. {
  837. int ctx;
  838. for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
  839. struct netxen_recv_context *recv_ctx =
  840. &(adapter->recv_ctx[ctx]);
  841. u32 consumer;
  842. struct status_desc *desc_head;
  843. struct status_desc *desc;
  844. consumer = recv_ctx->status_rx_consumer;
  845. desc_head = recv_ctx->rcv_status_desc_head;
  846. desc = &desc_head[consumer];
  847. if (netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)
  848. return 1;
  849. }
  850. return 0;
  851. }
  852. static inline int netxen_nic_check_temp(struct netxen_adapter *adapter)
  853. {
  854. int port_num;
  855. struct netxen_port *port;
  856. struct net_device *netdev;
  857. uint32_t temp, temp_state, temp_val;
  858. int rv = 0;
  859. temp = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_TEMP_STATE));
  860. temp_state = nx_get_temp_state(temp);
  861. temp_val = nx_get_temp_val(temp);
  862. if (temp_state == NX_TEMP_PANIC) {
  863. printk(KERN_ALERT
  864. "%s: Device temperature %d degrees C exceeds"
  865. " maximum allowed. Hardware has been shut down.\n",
  866. netxen_nic_driver_name, temp_val);
  867. for (port_num = 0; port_num < adapter->ahw.max_ports;
  868. port_num++) {
  869. port = adapter->port[port_num];
  870. netdev = port->netdev;
  871. netif_carrier_off(netdev);
  872. netif_stop_queue(netdev);
  873. }
  874. rv = 1;
  875. } else if (temp_state == NX_TEMP_WARN) {
  876. if (adapter->temp == NX_TEMP_NORMAL) {
  877. printk(KERN_ALERT
  878. "%s: Device temperature %d degrees C "
  879. "exceeds operating range."
  880. " Immediate action needed.\n",
  881. netxen_nic_driver_name, temp_val);
  882. }
  883. } else {
  884. if (adapter->temp == NX_TEMP_WARN) {
  885. printk(KERN_INFO
  886. "%s: Device temperature is now %d degrees C"
  887. " in normal range.\n", netxen_nic_driver_name,
  888. temp_val);
  889. }
  890. }
  891. adapter->temp = temp_state;
  892. return rv;
  893. }
  894. void netxen_watchdog_task(struct work_struct *work)
  895. {
  896. int port_num;
  897. struct netxen_port *port;
  898. struct net_device *netdev;
  899. struct netxen_adapter *adapter =
  900. container_of(work, struct netxen_adapter, watchdog_task);
  901. if (netxen_nic_check_temp(adapter))
  902. return;
  903. for (port_num = 0; port_num < adapter->ahw.max_ports; port_num++) {
  904. port = adapter->port[port_num];
  905. netdev = port->netdev;
  906. if ((netif_running(netdev)) && !netif_carrier_ok(netdev)) {
  907. printk(KERN_INFO "%s port %d, %s carrier is now ok\n",
  908. netxen_nic_driver_name, port_num, netdev->name);
  909. netif_carrier_on(netdev);
  910. }
  911. if (netif_queue_stopped(netdev))
  912. netif_wake_queue(netdev);
  913. }
  914. if (adapter->handle_phy_intr)
  915. adapter->handle_phy_intr(adapter);
  916. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  917. }
  918. /*
  919. * netxen_process_rcv() send the received packet to the protocol stack.
  920. * and if the number of receives exceeds RX_BUFFERS_REFILL, then we
  921. * invoke the routine to send more rx buffers to the Phantom...
  922. */
  923. void
  924. netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
  925. struct status_desc *desc)
  926. {
  927. struct netxen_port *port = adapter->port[netxen_get_sts_port(desc)];
  928. struct pci_dev *pdev = port->pdev;
  929. struct net_device *netdev = port->netdev;
  930. int index = netxen_get_sts_refhandle(desc);
  931. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  932. struct netxen_rx_buffer *buffer;
  933. struct sk_buff *skb;
  934. u32 length = netxen_get_sts_totallength(desc);
  935. u32 desc_ctx;
  936. struct netxen_rcv_desc_ctx *rcv_desc;
  937. int ret;
  938. desc_ctx = netxen_get_sts_type(desc);
  939. if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
  940. printk("%s: %s Bad Rcv descriptor ring\n",
  941. netxen_nic_driver_name, netdev->name);
  942. return;
  943. }
  944. rcv_desc = &recv_ctx->rcv_desc[desc_ctx];
  945. if (unlikely(index > rcv_desc->max_rx_desc_count)) {
  946. DPRINTK(ERR, "Got a buffer index:%x Max is %x\n",
  947. index, rcv_desc->max_rx_desc_count);
  948. return;
  949. }
  950. buffer = &rcv_desc->rx_buf_arr[index];
  951. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  952. buffer->lro_current_frags++;
  953. if (netxen_get_sts_desc_lro_last_frag(desc)) {
  954. buffer->lro_expected_frags =
  955. netxen_get_sts_desc_lro_cnt(desc);
  956. buffer->lro_length = length;
  957. }
  958. if (buffer->lro_current_frags != buffer->lro_expected_frags) {
  959. if (buffer->lro_expected_frags != 0) {
  960. printk("LRO: (refhandle:%x) recv frag."
  961. "wait for last. flags: %x expected:%d"
  962. "have:%d\n", index,
  963. netxen_get_sts_desc_lro_last_frag(desc),
  964. buffer->lro_expected_frags,
  965. buffer->lro_current_frags);
  966. }
  967. return;
  968. }
  969. }
  970. pci_unmap_single(pdev, buffer->dma, rcv_desc->dma_size,
  971. PCI_DMA_FROMDEVICE);
  972. skb = (struct sk_buff *)buffer->skb;
  973. if (likely(netxen_get_sts_status(desc) == STATUS_CKSUM_OK)) {
  974. port->stats.csummed++;
  975. skb->ip_summed = CHECKSUM_UNNECESSARY;
  976. }
  977. skb->dev = netdev;
  978. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  979. /* True length was only available on the last pkt */
  980. skb_put(skb, buffer->lro_length);
  981. } else {
  982. skb_put(skb, length);
  983. }
  984. skb->protocol = eth_type_trans(skb, netdev);
  985. ret = netif_receive_skb(skb);
  986. /*
  987. * RH: Do we need these stats on a regular basis. Can we get it from
  988. * Linux stats.
  989. */
  990. switch (ret) {
  991. case NET_RX_SUCCESS:
  992. port->stats.uphappy++;
  993. break;
  994. case NET_RX_CN_LOW:
  995. port->stats.uplcong++;
  996. break;
  997. case NET_RX_CN_MOD:
  998. port->stats.upmcong++;
  999. break;
  1000. case NET_RX_CN_HIGH:
  1001. port->stats.uphcong++;
  1002. break;
  1003. case NET_RX_DROP:
  1004. port->stats.updropped++;
  1005. break;
  1006. default:
  1007. port->stats.updunno++;
  1008. break;
  1009. }
  1010. netdev->last_rx = jiffies;
  1011. rcv_desc->rcv_free++;
  1012. rcv_desc->rcv_pending--;
  1013. /*
  1014. * We just consumed one buffer so post a buffer.
  1015. */
  1016. adapter->stats.post_called++;
  1017. buffer->skb = NULL;
  1018. buffer->state = NETXEN_BUFFER_FREE;
  1019. buffer->lro_current_frags = 0;
  1020. buffer->lro_expected_frags = 0;
  1021. port->stats.no_rcv++;
  1022. port->stats.rxbytes += length;
  1023. }
  1024. /* Process Receive status ring */
  1025. u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
  1026. {
  1027. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  1028. struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
  1029. struct status_desc *desc; /* used to read status desc here */
  1030. u32 consumer = recv_ctx->status_rx_consumer;
  1031. u32 producer = 0;
  1032. int count = 0, ring;
  1033. DPRINTK(INFO, "procesing receive\n");
  1034. /*
  1035. * we assume in this case that there is only one port and that is
  1036. * port #1...changes need to be done in firmware to indicate port
  1037. * number as part of the descriptor. This way we will be able to get
  1038. * the netdev which is associated with that device.
  1039. */
  1040. while (count < max) {
  1041. desc = &desc_head[consumer];
  1042. if (!(netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)) {
  1043. DPRINTK(ERR, "desc %p ownedby %x\n", desc,
  1044. netxen_get_sts_owner(desc));
  1045. break;
  1046. }
  1047. netxen_process_rcv(adapter, ctxid, desc);
  1048. netxen_clear_sts_owner(desc);
  1049. netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM);
  1050. consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1);
  1051. count++;
  1052. }
  1053. if (count) {
  1054. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  1055. netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
  1056. }
  1057. }
  1058. /* update the consumer index in phantom */
  1059. if (count) {
  1060. adapter->stats.process_rcv++;
  1061. recv_ctx->status_rx_consumer = consumer;
  1062. recv_ctx->status_rx_producer = producer;
  1063. /* Window = 1 */
  1064. writel(consumer,
  1065. NETXEN_CRB_NORMALIZE(adapter,
  1066. recv_crb_registers[ctxid].
  1067. crb_rcv_status_consumer));
  1068. }
  1069. return count;
  1070. }
  1071. /* Process Command status ring */
  1072. int netxen_process_cmd_ring(unsigned long data)
  1073. {
  1074. u32 last_consumer;
  1075. u32 consumer;
  1076. struct netxen_adapter *adapter = (struct netxen_adapter *)data;
  1077. int count1 = 0;
  1078. int count2 = 0;
  1079. struct netxen_cmd_buffer *buffer;
  1080. struct netxen_port *port; /* port #1 */
  1081. struct netxen_port *nport;
  1082. struct pci_dev *pdev;
  1083. struct netxen_skb_frag *frag;
  1084. u32 i;
  1085. struct sk_buff *skb = NULL;
  1086. int p;
  1087. int done;
  1088. spin_lock(&adapter->tx_lock);
  1089. last_consumer = adapter->last_cmd_consumer;
  1090. DPRINTK(INFO, "procesing xmit complete\n");
  1091. /* we assume in this case that there is only one port and that is
  1092. * port #1...changes need to be done in firmware to indicate port
  1093. * number as part of the descriptor. This way we will be able to get
  1094. * the netdev which is associated with that device.
  1095. */
  1096. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  1097. if (last_consumer == consumer) { /* Ring is empty */
  1098. DPRINTK(INFO, "last_consumer %d == consumer %d\n",
  1099. last_consumer, consumer);
  1100. spin_unlock(&adapter->tx_lock);
  1101. return 1;
  1102. }
  1103. adapter->proc_cmd_buf_counter++;
  1104. adapter->stats.process_xmit++;
  1105. /*
  1106. * Not needed - does not seem to be used anywhere.
  1107. * adapter->cmd_consumer = consumer;
  1108. */
  1109. spin_unlock(&adapter->tx_lock);
  1110. while ((last_consumer != consumer) && (count1 < MAX_STATUS_HANDLE)) {
  1111. buffer = &adapter->cmd_buf_arr[last_consumer];
  1112. port = adapter->port[buffer->port];
  1113. pdev = port->pdev;
  1114. frag = &buffer->frag_array[0];
  1115. skb = buffer->skb;
  1116. if (skb && (cmpxchg(&buffer->skb, skb, 0) == skb)) {
  1117. pci_unmap_single(pdev, frag->dma, frag->length,
  1118. PCI_DMA_TODEVICE);
  1119. for (i = 1; i < buffer->frag_count; i++) {
  1120. DPRINTK(INFO, "getting fragment no %d\n", i);
  1121. frag++; /* Get the next frag */
  1122. pci_unmap_page(pdev, frag->dma, frag->length,
  1123. PCI_DMA_TODEVICE);
  1124. }
  1125. port->stats.skbfreed++;
  1126. dev_kfree_skb_any(skb);
  1127. skb = NULL;
  1128. } else if (adapter->proc_cmd_buf_counter == 1) {
  1129. port->stats.txnullskb++;
  1130. }
  1131. if (unlikely(netif_queue_stopped(port->netdev)
  1132. && netif_carrier_ok(port->netdev))
  1133. && ((jiffies - port->netdev->trans_start) >
  1134. port->netdev->watchdog_timeo)) {
  1135. SCHEDULE_WORK(&port->tx_timeout_task);
  1136. }
  1137. last_consumer = get_next_index(last_consumer,
  1138. adapter->max_tx_desc_count);
  1139. count1++;
  1140. }
  1141. adapter->stats.noxmitdone += count1;
  1142. count2 = 0;
  1143. spin_lock(&adapter->tx_lock);
  1144. if ((--adapter->proc_cmd_buf_counter) == 0) {
  1145. adapter->last_cmd_consumer = last_consumer;
  1146. while ((adapter->last_cmd_consumer != consumer)
  1147. && (count2 < MAX_STATUS_HANDLE)) {
  1148. buffer =
  1149. &adapter->cmd_buf_arr[adapter->last_cmd_consumer];
  1150. count2++;
  1151. if (buffer->skb)
  1152. break;
  1153. else
  1154. adapter->last_cmd_consumer =
  1155. get_next_index(adapter->last_cmd_consumer,
  1156. adapter->max_tx_desc_count);
  1157. }
  1158. }
  1159. if (count1 || count2) {
  1160. for (p = 0; p < adapter->ahw.max_ports; p++) {
  1161. nport = adapter->port[p];
  1162. if (netif_queue_stopped(nport->netdev)
  1163. && (nport->flags & NETXEN_NETDEV_STATUS)) {
  1164. netif_wake_queue(nport->netdev);
  1165. nport->flags &= ~NETXEN_NETDEV_STATUS;
  1166. }
  1167. }
  1168. }
  1169. /*
  1170. * If everything is freed up to consumer then check if the ring is full
  1171. * If the ring is full then check if more needs to be freed and
  1172. * schedule the call back again.
  1173. *
  1174. * This happens when there are 2 CPUs. One could be freeing and the
  1175. * other filling it. If the ring is full when we get out of here and
  1176. * the card has already interrupted the host then the host can miss the
  1177. * interrupt.
  1178. *
  1179. * There is still a possible race condition and the host could miss an
  1180. * interrupt. The card has to take care of this.
  1181. */
  1182. if (adapter->last_cmd_consumer == consumer &&
  1183. (((adapter->cmd_producer + 1) %
  1184. adapter->max_tx_desc_count) == adapter->last_cmd_consumer)) {
  1185. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  1186. }
  1187. done = (adapter->last_cmd_consumer == consumer);
  1188. spin_unlock(&adapter->tx_lock);
  1189. DPRINTK(INFO, "last consumer is %d in %s\n", last_consumer,
  1190. __FUNCTION__);
  1191. return (done);
  1192. }
  1193. /*
  1194. * netxen_post_rx_buffers puts buffer in the Phantom memory
  1195. */
  1196. void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
  1197. {
  1198. struct pci_dev *pdev = adapter->ahw.pdev;
  1199. struct sk_buff *skb;
  1200. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1201. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1202. uint producer;
  1203. struct rcv_desc *pdesc;
  1204. struct netxen_rx_buffer *buffer;
  1205. int count = 0;
  1206. int index = 0;
  1207. netxen_ctx_msg msg = 0;
  1208. dma_addr_t dma;
  1209. adapter->stats.post_called++;
  1210. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1211. producer = rcv_desc->producer;
  1212. index = rcv_desc->begin_alloc;
  1213. buffer = &rcv_desc->rx_buf_arr[index];
  1214. /* We can start writing rx descriptors into the phantom memory. */
  1215. while (buffer->state == NETXEN_BUFFER_FREE) {
  1216. skb = dev_alloc_skb(rcv_desc->skb_size);
  1217. if (unlikely(!skb)) {
  1218. /*
  1219. * TODO
  1220. * We need to schedule the posting of buffers to the pegs.
  1221. */
  1222. rcv_desc->begin_alloc = index;
  1223. DPRINTK(ERR, "netxen_post_rx_buffers: "
  1224. " allocated only %d buffers\n", count);
  1225. break;
  1226. }
  1227. count++; /* now there should be no failure */
  1228. pdesc = &rcv_desc->desc_head[producer];
  1229. #if defined(XGB_DEBUG)
  1230. *(unsigned long *)(skb->head) = 0xc0debabe;
  1231. if (skb_is_nonlinear(skb)) {
  1232. printk("Allocated SKB @%p is nonlinear\n");
  1233. }
  1234. #endif
  1235. skb_reserve(skb, 2);
  1236. /* This will be setup when we receive the
  1237. * buffer after it has been filled FSL TBD TBD
  1238. * skb->dev = netdev;
  1239. */
  1240. dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size,
  1241. PCI_DMA_FROMDEVICE);
  1242. pdesc->addr_buffer = cpu_to_le64(dma);
  1243. buffer->skb = skb;
  1244. buffer->state = NETXEN_BUFFER_BUSY;
  1245. buffer->dma = dma;
  1246. /* make a rcv descriptor */
  1247. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1248. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1249. DPRINTK(INFO, "done writing descripter\n");
  1250. producer =
  1251. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1252. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1253. buffer = &rcv_desc->rx_buf_arr[index];
  1254. }
  1255. /* if we did allocate buffers, then write the count to Phantom */
  1256. if (count) {
  1257. rcv_desc->begin_alloc = index;
  1258. rcv_desc->rcv_pending += count;
  1259. adapter->stats.lastposted = count;
  1260. adapter->stats.posted += count;
  1261. rcv_desc->producer = producer;
  1262. if (rcv_desc->rcv_free >= 32) {
  1263. rcv_desc->rcv_free = 0;
  1264. /* Window = 1 */
  1265. writel((producer - 1) &
  1266. (rcv_desc->max_rx_desc_count - 1),
  1267. NETXEN_CRB_NORMALIZE(adapter,
  1268. recv_crb_registers[0].
  1269. rcv_desc_crb[ringid].
  1270. crb_rcv_producer_offset));
  1271. /*
  1272. * Write a doorbell msg to tell phanmon of change in
  1273. * receive ring producer
  1274. */
  1275. netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
  1276. netxen_set_msg_privid(msg);
  1277. netxen_set_msg_count(msg,
  1278. ((producer -
  1279. 1) & (rcv_desc->
  1280. max_rx_desc_count - 1)));
  1281. netxen_set_msg_ctxid(msg, 0);
  1282. netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
  1283. writel(msg,
  1284. DB_NORMALIZE(adapter,
  1285. NETXEN_RCV_PRODUCER_OFFSET));
  1286. }
  1287. }
  1288. }
  1289. void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, uint32_t ctx,
  1290. uint32_t ringid)
  1291. {
  1292. struct pci_dev *pdev = adapter->ahw.pdev;
  1293. struct sk_buff *skb;
  1294. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1295. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1296. u32 producer;
  1297. struct rcv_desc *pdesc;
  1298. struct netxen_rx_buffer *buffer;
  1299. int count = 0;
  1300. int index = 0;
  1301. adapter->stats.post_called++;
  1302. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1303. producer = rcv_desc->producer;
  1304. index = rcv_desc->begin_alloc;
  1305. buffer = &rcv_desc->rx_buf_arr[index];
  1306. /* We can start writing rx descriptors into the phantom memory. */
  1307. while (buffer->state == NETXEN_BUFFER_FREE) {
  1308. skb = dev_alloc_skb(rcv_desc->skb_size);
  1309. if (unlikely(!skb)) {
  1310. /*
  1311. * We need to schedule the posting of buffers to the pegs.
  1312. */
  1313. rcv_desc->begin_alloc = index;
  1314. DPRINTK(ERR, "netxen_post_rx_buffers_nodb: "
  1315. " allocated only %d buffers\n", count);
  1316. break;
  1317. }
  1318. count++; /* now there should be no failure */
  1319. pdesc = &rcv_desc->desc_head[producer];
  1320. skb_reserve(skb, 2);
  1321. /*
  1322. * This will be setup when we receive the
  1323. * buffer after it has been filled
  1324. * skb->dev = netdev;
  1325. */
  1326. buffer->skb = skb;
  1327. buffer->state = NETXEN_BUFFER_BUSY;
  1328. buffer->dma = pci_map_single(pdev, skb->data,
  1329. rcv_desc->dma_size,
  1330. PCI_DMA_FROMDEVICE);
  1331. /* make a rcv descriptor */
  1332. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1333. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1334. pdesc->addr_buffer = cpu_to_le64(buffer->dma);
  1335. DPRINTK(INFO, "done writing descripter\n");
  1336. producer =
  1337. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1338. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1339. buffer = &rcv_desc->rx_buf_arr[index];
  1340. }
  1341. /* if we did allocate buffers, then write the count to Phantom */
  1342. if (count) {
  1343. rcv_desc->begin_alloc = index;
  1344. rcv_desc->rcv_pending += count;
  1345. adapter->stats.lastposted = count;
  1346. adapter->stats.posted += count;
  1347. rcv_desc->producer = producer;
  1348. if (rcv_desc->rcv_free >= 32) {
  1349. rcv_desc->rcv_free = 0;
  1350. /* Window = 1 */
  1351. writel((producer - 1) &
  1352. (rcv_desc->max_rx_desc_count - 1),
  1353. NETXEN_CRB_NORMALIZE(adapter,
  1354. recv_crb_registers[0].
  1355. rcv_desc_crb[ringid].
  1356. crb_rcv_producer_offset));
  1357. wmb();
  1358. }
  1359. }
  1360. }
  1361. int netxen_nic_tx_has_work(struct netxen_adapter *adapter)
  1362. {
  1363. if (find_diff_among(adapter->last_cmd_consumer,
  1364. adapter->cmd_producer,
  1365. adapter->max_tx_desc_count) > 0)
  1366. return 1;
  1367. return 0;
  1368. }
  1369. void netxen_nic_clear_stats(struct netxen_adapter *adapter)
  1370. {
  1371. struct netxen_port *port;
  1372. int port_num;
  1373. memset(&adapter->stats, 0, sizeof(adapter->stats));
  1374. for (port_num = 0; port_num < adapter->ahw.max_ports; port_num++) {
  1375. port = adapter->port[port_num];
  1376. memset(&port->stats, 0, sizeof(port->stats));
  1377. }
  1378. }