nouveau_sgdma.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. #include "drmP.h"
  2. #include "nouveau_drv.h"
  3. #include <linux/pagemap.h>
  4. #include <linux/slab.h>
  5. #define NV_CTXDMA_PAGE_SHIFT 12
  6. #define NV_CTXDMA_PAGE_SIZE (1 << NV_CTXDMA_PAGE_SHIFT)
  7. #define NV_CTXDMA_PAGE_MASK (NV_CTXDMA_PAGE_SIZE - 1)
  8. struct nouveau_sgdma_be {
  9. struct ttm_backend backend;
  10. struct drm_device *dev;
  11. dma_addr_t *pages;
  12. bool *ttm_alloced;
  13. unsigned nr_pages;
  14. u64 offset;
  15. bool bound;
  16. };
  17. static int
  18. nouveau_sgdma_populate(struct ttm_backend *be, unsigned long num_pages,
  19. struct page **pages, struct page *dummy_read_page,
  20. dma_addr_t *dma_addrs)
  21. {
  22. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  23. struct drm_device *dev = nvbe->dev;
  24. NV_DEBUG(nvbe->dev, "num_pages = %ld\n", num_pages);
  25. if (nvbe->pages)
  26. return -EINVAL;
  27. nvbe->pages = kmalloc(sizeof(dma_addr_t) * num_pages, GFP_KERNEL);
  28. if (!nvbe->pages)
  29. return -ENOMEM;
  30. nvbe->ttm_alloced = kmalloc(sizeof(bool) * num_pages, GFP_KERNEL);
  31. if (!nvbe->ttm_alloced)
  32. return -ENOMEM;
  33. nvbe->nr_pages = 0;
  34. while (num_pages--) {
  35. if (dma_addrs[nvbe->nr_pages] != DMA_ERROR_CODE) {
  36. nvbe->pages[nvbe->nr_pages] =
  37. dma_addrs[nvbe->nr_pages];
  38. nvbe->ttm_alloced[nvbe->nr_pages] = true;
  39. } else {
  40. nvbe->pages[nvbe->nr_pages] =
  41. pci_map_page(dev->pdev, pages[nvbe->nr_pages], 0,
  42. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  43. if (pci_dma_mapping_error(dev->pdev,
  44. nvbe->pages[nvbe->nr_pages])) {
  45. be->func->clear(be);
  46. return -EFAULT;
  47. }
  48. }
  49. nvbe->nr_pages++;
  50. }
  51. return 0;
  52. }
  53. static void
  54. nouveau_sgdma_clear(struct ttm_backend *be)
  55. {
  56. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  57. struct drm_device *dev;
  58. if (nvbe && nvbe->pages) {
  59. dev = nvbe->dev;
  60. NV_DEBUG(dev, "\n");
  61. if (nvbe->bound)
  62. be->func->unbind(be);
  63. while (nvbe->nr_pages--) {
  64. if (!nvbe->ttm_alloced[nvbe->nr_pages])
  65. pci_unmap_page(dev->pdev, nvbe->pages[nvbe->nr_pages],
  66. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  67. }
  68. kfree(nvbe->pages);
  69. kfree(nvbe->ttm_alloced);
  70. nvbe->pages = NULL;
  71. nvbe->ttm_alloced = NULL;
  72. nvbe->nr_pages = 0;
  73. }
  74. }
  75. static void
  76. nouveau_sgdma_destroy(struct ttm_backend *be)
  77. {
  78. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  79. if (be) {
  80. NV_DEBUG(nvbe->dev, "\n");
  81. if (nvbe) {
  82. if (nvbe->pages)
  83. be->func->clear(be);
  84. kfree(nvbe);
  85. }
  86. }
  87. }
  88. static int
  89. nv04_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
  90. {
  91. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  92. struct drm_device *dev = nvbe->dev;
  93. struct drm_nouveau_private *dev_priv = dev->dev_private;
  94. struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
  95. unsigned i, j, pte;
  96. NV_DEBUG(dev, "pg=0x%lx\n", mem->start);
  97. nvbe->offset = mem->start << PAGE_SHIFT;
  98. pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
  99. for (i = 0; i < nvbe->nr_pages; i++) {
  100. dma_addr_t dma_offset = nvbe->pages[i];
  101. uint32_t offset_l = lower_32_bits(dma_offset);
  102. for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++) {
  103. nv_wo32(gpuobj, (pte * 4) + 0, offset_l | 3);
  104. dma_offset += NV_CTXDMA_PAGE_SIZE;
  105. }
  106. }
  107. nvbe->bound = true;
  108. return 0;
  109. }
  110. static int
  111. nv04_sgdma_unbind(struct ttm_backend *be)
  112. {
  113. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  114. struct drm_device *dev = nvbe->dev;
  115. struct drm_nouveau_private *dev_priv = dev->dev_private;
  116. struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
  117. unsigned i, j, pte;
  118. NV_DEBUG(dev, "\n");
  119. if (!nvbe->bound)
  120. return 0;
  121. pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
  122. for (i = 0; i < nvbe->nr_pages; i++) {
  123. for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++)
  124. nv_wo32(gpuobj, (pte * 4) + 0, 0x00000000);
  125. }
  126. nvbe->bound = false;
  127. return 0;
  128. }
  129. static struct ttm_backend_func nv04_sgdma_backend = {
  130. .populate = nouveau_sgdma_populate,
  131. .clear = nouveau_sgdma_clear,
  132. .bind = nv04_sgdma_bind,
  133. .unbind = nv04_sgdma_unbind,
  134. .destroy = nouveau_sgdma_destroy
  135. };
  136. static int
  137. nv50_sgdma_bind(struct ttm_backend *be, struct ttm_mem_reg *mem)
  138. {
  139. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  140. struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
  141. nvbe->offset = mem->start << PAGE_SHIFT;
  142. nouveau_vm_map_sg(&dev_priv->gart_info.vma, nvbe->offset,
  143. nvbe->nr_pages << PAGE_SHIFT, nvbe->pages);
  144. nvbe->bound = true;
  145. return 0;
  146. }
  147. static int
  148. nv50_sgdma_unbind(struct ttm_backend *be)
  149. {
  150. struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)be;
  151. struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
  152. if (!nvbe->bound)
  153. return 0;
  154. nouveau_vm_unmap_at(&dev_priv->gart_info.vma, nvbe->offset,
  155. nvbe->nr_pages << PAGE_SHIFT);
  156. nvbe->bound = false;
  157. return 0;
  158. }
  159. static struct ttm_backend_func nv50_sgdma_backend = {
  160. .populate = nouveau_sgdma_populate,
  161. .clear = nouveau_sgdma_clear,
  162. .bind = nv50_sgdma_bind,
  163. .unbind = nv50_sgdma_unbind,
  164. .destroy = nouveau_sgdma_destroy
  165. };
  166. struct ttm_backend *
  167. nouveau_sgdma_init_ttm(struct drm_device *dev)
  168. {
  169. struct drm_nouveau_private *dev_priv = dev->dev_private;
  170. struct nouveau_sgdma_be *nvbe;
  171. nvbe = kzalloc(sizeof(*nvbe), GFP_KERNEL);
  172. if (!nvbe)
  173. return NULL;
  174. nvbe->dev = dev;
  175. if (dev_priv->card_type >= NV_50)
  176. nvbe->backend.func = &nv50_sgdma_backend;
  177. else
  178. nvbe->backend.func = &nv04_sgdma_backend;
  179. return &nvbe->backend;
  180. }
  181. int
  182. nouveau_sgdma_init(struct drm_device *dev)
  183. {
  184. struct drm_nouveau_private *dev_priv = dev->dev_private;
  185. struct nouveau_gpuobj *gpuobj = NULL;
  186. uint32_t aper_size, obj_size;
  187. int i, ret;
  188. if (dev_priv->card_type >= NV_50) {
  189. ret = nouveau_vm_get(dev_priv->chan_vm, 512 * 1024 * 1024,
  190. 12, NV_MEM_ACCESS_RW,
  191. &dev_priv->gart_info.vma);
  192. if (ret)
  193. return ret;
  194. dev_priv->gart_info.aper_base = dev_priv->gart_info.vma.offset;
  195. dev_priv->gart_info.aper_size = 512 * 1024 * 1024;
  196. } else {
  197. if(dev_priv->ramin_rsvd_vram < 2 * 1024 * 1024)
  198. aper_size = 64 * 1024 * 1024;
  199. else
  200. aper_size = 512 * 1024 * 1024;
  201. obj_size = (aper_size >> NV_CTXDMA_PAGE_SHIFT) * 4;
  202. obj_size += 8; /* ctxdma header */
  203. ret = nouveau_gpuobj_new(dev, NULL, obj_size, 16,
  204. NVOBJ_FLAG_ZERO_ALLOC |
  205. NVOBJ_FLAG_ZERO_FREE, &gpuobj);
  206. if (ret) {
  207. NV_ERROR(dev, "Error creating sgdma object: %d\n", ret);
  208. return ret;
  209. }
  210. nv_wo32(gpuobj, 0, NV_CLASS_DMA_IN_MEMORY |
  211. (1 << 12) /* PT present */ |
  212. (0 << 13) /* PT *not* linear */ |
  213. (0 << 14) /* RW */ |
  214. (2 << 16) /* PCI */);
  215. nv_wo32(gpuobj, 4, aper_size - 1);
  216. for (i = 2; i < 2 + (aper_size >> 12); i++)
  217. nv_wo32(gpuobj, i * 4, 0x00000000);
  218. dev_priv->gart_info.sg_ctxdma = gpuobj;
  219. dev_priv->gart_info.aper_base = 0;
  220. dev_priv->gart_info.aper_size = aper_size;
  221. }
  222. dev_priv->gart_info.type = NOUVEAU_GART_SGDMA;
  223. return 0;
  224. }
  225. void
  226. nouveau_sgdma_takedown(struct drm_device *dev)
  227. {
  228. struct drm_nouveau_private *dev_priv = dev->dev_private;
  229. nouveau_gpuobj_ref(NULL, &dev_priv->gart_info.sg_ctxdma);
  230. nouveau_vm_put(&dev_priv->gart_info.vma);
  231. }
  232. uint32_t
  233. nouveau_sgdma_get_physical(struct drm_device *dev, uint32_t offset)
  234. {
  235. struct drm_nouveau_private *dev_priv = dev->dev_private;
  236. struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
  237. int pte = (offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
  238. BUG_ON(dev_priv->card_type >= NV_50);
  239. return (nv_ro32(gpuobj, 4 * pte) & ~NV_CTXDMA_PAGE_MASK) |
  240. (offset & NV_CTXDMA_PAGE_MASK);
  241. }